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a b s t r a c t

Hazard function plays an important role in reliability and survival analysis. In some real
life applications, abrupt changes in the hazard function may be observed and it is of
interest to detect the location and the size of the change. Hazard models with a change-
point are considered when the observations are subject to random left truncation and
right censoring. For a piecewise constant hazard function with a single change-point, two
estimation methods based on the maximum likelihood ideas are considered. The first
method assumes parametric families of distributions for the censoring and truncation
variables, whereas the second one is based on conditional likelihood approaches. A
simulation study is carried out to illustrate the performances of the proposed estimators.
The results indicate that the fully parametric method performs better especially for
estimating the size of the change, however the difference between the twomethods vanish
as the sample size increases. It is also observed that the full likelihood approach is not
robust to model misspecification.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hazard function plays an important role in reliability and survival studies since it quantifies the instantaneous risk of
failure of an item at a given time point. In the majority of the studies existing in the literature, either a smooth, continuous
hazard function is assumedwhen the objective is the estimation of this function itself, or as in the Coxmodel of proportional
hazards, the emphasis is more on the estimation of the effects of the covariates, rather than the hazard function itself.
Estimation of the hazard function presents a more interesting and a challenging task when this function displays abrupt
changes in time which may correspond to significant improvements in the health conditions of a patient due to a particular
treatment, or an alarming deterioration in the physical conditions of an equipment due to fatigue. As discussed by Frobish
and Ebrahimi (2009), patients may experience events according to a common hazard rate function and they may receive
treatments. It is commonly observed that the treatment takes its full effect only after a time lag. The curing effect of a
medication or a treatment may as well deteriorate or dampen steeply after a certain period of time. In such cases it is of
interest to detect both the time when such a change occurs and the size of the change.

One of the earliest works that consider changes in the hazard function is byMatthews and Farewell (1982) which studied
a piecewise constant hazard model with a single change-point given by

λ(t) =


β 0 ≤ t < τ
β + θ t ≥ τ ,

(1)

where β and β + θ > 0. Here β represents the initial constant hazard rate, θ represents the size of the change in the
hazard rate, and τ is the location of the change-point, all of which are unknown. Matthews and Farewell (1982) applied this
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model to the data of times-to-relapse after remission induction for leukemia patients, where it is suspected that the relapse
rate may change after an unknown time. They used numerical techniques to obtain maximum likelihood estimates and
simulated the sampling distribution of the likelihood ratio statistic for the null hypothesis that there is no change-point.
Loader (1991) also considered the piecewise constant hazard model with a single change-point and discussed inference
based on the likelihood ratio process. He derived approximate confidence regions for the change-point and the size of the
change. He also discussed the effect of random censoring. Pham andNguyen (1993) considered the asymptotic validity of the
bootstrap method in this model and showed that the parametric bootstrap of the change-point parameters works. Several
other authors considered hazard change-point models including Luo et al. (1997), Antoniadis et al. (1998) and Gijbels and
Gürler (2003) and more recently Goodman et al. (2006), Karasoy and Kadılar (2007), Liu et al. (2008), Frobish and Ebrahimi
(2009) and Dupuy (2009).

As briefly reviewed above, most of the studies in literature for hazard change points estimation, assume either complete
observations or random censoring. Although censoring naturally arises in medical data in several forms, another form of
incomplete data observed in survival studies is truncation, where the observed sample comes only from a subset of the
population. Like censoring, truncation corresponds to a form of biased sampling. In survival studies a subject may not be
included in the study if the time origin of event time precedes the chronological time that the study starts, hence a truncation
occurs because the incidences that have occurred before the recordings have started are lost to observation. As discussed in
Kalbfleisch and Lawless (1989), AIDS data especially in the initial stages of the disease is an example of truncated data. On the
other hand, once a subject is included in the study, she or he is also subject to censoring due to drop out or other causes such
as competing risks. Hence, left truncation and right censoring may naturally arise in cases where truncation excludes some
subjects from the study. The effects of truncation become more significant when a newly discovered epidemic in survival
studies or a new product launch in reliability are considered. Studies where both truncation and censoring are considered
include Turnbull (1976), Hyde (1977), Tsai et al. (1987), Uzunoğulları and Wang (1992), Gijbels and Wang (1993), Pan and
Chappell (1998), Hudgens et al. (2001) and Lim et al. (2002) among others.

To the best of our knowledge, a model where the observations are subject to both truncation and censoring has not
been studied for estimation of piecewise constant hazard functions with a change-point. In this paper we aim to fill this
gap by considering estimation methods for left truncated and right censored data. We consider the model given in (1) and
discuss two approaches based on maximum likelihood ideas. In the first approach, we assume parametric families for the
truncation and censoring variables, andwe refer to this approach as the full likelihood approach. Since our primary interest is
in the estimation of the hazard function for the variable of interest, the truncating and censoring variables arise as nuisance
variables. In the full likelihood approach, assumptions regarding these variables introduce some difficulty for the estimation
procedure. In the second approach, we do not assume any parametric families for these variables, and we rather treat the
data as a random sample given that it is subject to the observed censoring and truncation effects, which we refer to as
the conditional likelihood approach. The advantages and disadvantages of these approaches are discussed in the numerical
analysis section, in the context of estimation difficulties and misspecification of the models for censoring and truncation in
the fully parametric approach. Our simulation studies indicate that the full likelihood approach performs better especially
for estimating the size of the change, however the difference between the twomethods vanish as the sample size increases.
The simulation studies also indicate that the full likelihood approach is not robust to model misspecification.

The rest of the paper is organized as follows: In Section 2 we present preliminary results, in Section 3 we discuss the full
likelihood approach, and in Section 4 we discuss the conditional likelihood approach. Section 5 contains numerical studies
for evaluating the performances of the estimators, and Section 6 concludes.

2. Preliminaries

We first present some preliminary results and notation. Consider a random variable of interest X , representing the time
until an event occurs, which may correspond to the survival time of a patient after a treatment or the time until failure of
a component. Let Y and C be the truncation and censoring variables respectively, which prevent the complete observation
of the variable X . We assume that X, Y , C are independent and nonnegative. Let T = min(X, C), and δ = I(T = X), where
I is the indicator function. In the presence of left truncation and right censoring, instead of observing independent and
identically distributed (i.i.d.) samples of X , we observe triplets (T , Y , δ) only if Y ≤ T , otherwise nothing is observed. Thus
the observations come from the conditional distribution of (T , Y , δ), given that Y ≤ T . The observed data are given by a set
of i.i.d. observations (ti, yi, δi) for i = 1, . . . , n.

Our focus is on hazard function λ(x), defined by λ(x) = f (x)/[1−F(x)], where f is the probability density function (p.d.f.)
and F is the cumulative distribution function (c.d.f.). For any c.d.f. K(x), let K̄(x) = 1−K(x). The survival function is defined
by S(x) = F̄(x), and the cumulative hazard function is defined by Λ(x) =

 x
0 λ(u)du.

Suppose X has the hazard function λ as given in (1). Then, the p.d.f. f , the c.d.f. F , the survival function S, and the
cumulative hazard function Λ of X are as given below, which are all piecewise functions.

f (x) =


βe−βx

≡ f1(x) 0 ≤ x < τ

(β + θ)e−βx−θ(x−τ)
≡ f2(x) x ≥ τ

, (2)

F(x) =


1 − e−βx

≡ F1(x) 0 ≤ x < τ

1 − e−βx−θ(x−τ)
≡ F2(x) x ≥ τ ,

(3)
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S(x) =


e−βx

≡ S1(x) 0 ≤ x < τ

e−βx−θ(x−τ)
≡ S2(x) x ≥ τ

(4)

and

Λ(x) =


βx 0 ≤ x < τ
βx + θ(x − τ) x ≥ τ

. (5)

The functions before and after the change points are denoted separately for the ease of derivations given in Section 4.

3. Full likelihood approach

The random variable of interest X has the hazard function given in (1) with a single change point. Our objective is to
estimate the time, τ , of the change-point, along with the constant hazard level, β , before the change-point, and the size
of the jump, θ , at the change point. In the full likelihood approach, we assume parametric families of distributions for the
censoring and truncation variables. Suppose the censoring variable C has the p.d.f. h and c.d.f. H with a (possibly vector
valued) parameter γ , and the truncation variable Y has the p.d.f. g and c.d.f. G with a (possibly vector valued) parameter ν.
We assume that the p.d.f’s h and g are continuous and differentiable with respect to their unknown parameters. Our aim is
to estimate the unknown parameters τ , β, θ, γ , and ν.

Let us denote the set of unknown parameters by Ψ = {β, θ, τ , γ , ν}. In what follows, we describe the maximum
likelihood procedure for estimating Ψ , and then illustrate this procedure for special cases of censoring and truncation
distributions.

3.1. Likelihood function

As described in Section 2, in the left truncation and right censoring model one observes triplets (T , Y , δ) only if Y ≤ T ,
otherwise nothing is observed. Hence the observed variables belong to the following conditional distribution:

F1 ≡ F1(t, y, δ|Y ≤ T ) = P(T ≤ t; Y ≤ y; δ|Y ≤ T ).

Let α = P(Y ≤ T ) be the probability that a (Y , T ) pair is observed without truncation. We can write α more explicitly as
follows:

α = P(Y ≤ T ) = P(Y ≤ min(X, C)) =

∫
∞

0

∫
∞

y

∫
∞

y
f (x)h(c)g(y)dcdxdy

=

∫
∞

0
F̄(y)H̄(y)dG(y). (6)

We decompose F1 into two parts, the sub-distribution function of uncensored observations, Fu, and the sub-distribution
function of censored observations, Fc . These distributions can be expressed as follows:

Fu ≡ Fu(t, y, δ = 1|Y ≤ T ) = P(T ≤ t, Y ≤ y, δ = 1|Y ≤ T )

= P(T ≤ t, Y ≤ y, δ = 1, Y ≤ T )α−1

= α−1
∫ t

0

∫ y

u
H̄(x)dF(x)dG(u). (7)

The corresponding sub-density of censored observations is

fu(t, y) =
∂Fu
∂y∂t

= α−1g(y)H̄(t)f (t). (8)

Similarly, the sub-distribution function of censored observations is
Fc ≡ Fc(t, y, δ = 0|Y ≤ T ) = P(T ≤ t, Y ≤ y, δ = 0|Y ≤ T )

= P(T ≤ t, Y ≤ y, δ = 0, Y ≤ T )α−1

= α−1
∫ y

0

∫ t

u
F̄(c)dH(c)dG(u), (9)

and the corresponding sub-density function is

fc(t, y) =
∂Fc
∂y∂t

= α−1g(y)F̄(t)h(t). (10)

Now consider the observed sample (ti, yi, δi) for i = 1, . . . , n. The likelihood contribution of an observed uncensored
triplet (tj, yj, δj) for some j ∈ {1, . . . , n} is fu(tj, yj), and the likelihood contribution for an observed censored triplet
(tk, yk, δk) for some k ∈ {1, . . . , n}, k ≠ j, is fc(tk, yk). Then the likelihood function can be written as follows:

L =

n∏
i=1

α−1g(yi)[H̄(ti)f (ti)]δi [F̄(ti)h(ti)]1−δi . (11)
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Taking logarithms, we have the log-likelihood function

log L = −n logα +

n−
i=1

log g(yi) +

n−
i=1

log h(ti) −

n−
i=1

Λ(ti) +

n−
i=1

δi log λ(ti) −

n−
i=1

δi log λc(ti), (12)

where λ is the hazard function of X, Λ is the cumulative hazard function of X , and λc is the hazard function of the censoring
variable C .

3.2. Estimation

The likelihood function L is not differentiable with respect to τ , hence it is not possible to find the maximum likelihood
estimators (M.L.E.’s) for Ψ using standard methods. However, for fixed τ , L is continuous and differentiable with respect to
the remaining parameters in Ψ . Therefore we first fix the value of τ and find the M.L.E.’s for the remaining parameters as a
function of τ . Then we search for the value of τ as our estimator, which maximizes the likelihood function over a number of
grid points on a specific interval [τ0, τ1]. Formally speaking, for a fixed τ , let Ψτ = {β, θ, γ , ν}τ be the parameter set to be
estimated, and let U(Ψτ ) be the corresponding score vector composed of the first derivatives of the log-likelihood function,
which is given by

U(Ψτ ) =



∂ log L
∂β

∂ log L
∂θ

∂ log L
∂γ

∂ log L
∂ν


. (13)

Then, the M.L.E. Ψ̂τ = (β̂, θ̂ , γ̂ , ν̂)τ for Ψτ is obtained as the solution to the system of equations U(Ψτ ) = 0. Let
τi ∈ [τ0, τ1], i = 1, . . . ,m, denote the fixed grid points in the search interval and let Lτi denote the maximum value of
the log-likelihood function for τ = τi. That is

Lτi = L({β̂, θ̂ , γ̂ , ν̂}τi , τi).

Then the proposed estimators for the change-point τ and the rest of the parameters are given by

τ̂ = argmaxτi
Lτi (14)

and

Ψ̂ = {(β̂, θ̂ , γ̂ , ν̂)τ̂ , τ̂ }. (15)

For the estimationmethod proposed above, it is of interest to see the impact of the choice of the search interval [τ0, τ1] on
the estimators. On the one hand, this interval is desired to be sufficiently wide in practice in order to include the unknown
parameter τ , but on the other hand it should be narrow enough to avoid the erratic behavior of the likelihood function at
the extreme τi values. A sensible selection of this interval could be made in reference to an expert opinion in practice.

3.3. Two special cases

In order to illustrate the full likelihood approach, we consider two cases. In the first case both the censoring and the
truncation variables are assumed to have exponential distributions, in the second case both are assumed to have Weibull
distributions. In both cases, we only present how model parameters are estimated for a fixed τ , the estimation procedure
proceeds as described in Section 3.2.

3.3.1. Exponential distribution
In this case, the censoring variable C and the truncation variable Y are both assumed to have exponential distributions

with rate parameters γ and ν respectively. Note that the hazard function of the censoring variable is λc(t) = γ , and the
hazard function of the truncation variable is λy(t) = ν.

Consider an observed random sample (ti, yi, δi) for i = 1, . . . , n. For a fixed τ , let A and B denote the set of observations
such that ti ≤ τ and ti > τ , respectively. Formally, A = {i : ti ≤ τ }, B = {i : ti > τ }. Let n1A denote the number uncensored
observations that are less than or equal to τ , n1B denote the number of uncensored observations that are larger than τ , and
nB denote the number of observations that are larger than τ . Let t̄, ȳ and δ̄ denote the samplemeans. Then for a fixed τ , after
some steps the log-likelihood function (12) can be written as

log L = n log
γ ν

α


− (γ + β)nt̄ − νnȳ − θ

−
B

ti − nBτ


+ n1A logβ + n1B log(β + θ) − nδ̄ log γ , (16)
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where

α = P(Y ≤ T ) =
ν

w
−

νθe−wτ

w(w + θ)
, (17)

and w = β + γ + ν.
Taking the derivative of log L with respect to the unknown parameters, the score vector (13) is computed as

U(Ψτ ) =



∂ log L
∂β

∂ log L
∂θ

∂ log L
∂γ

∂ log L
∂ν


=



nE1
α

−

n−
i=1

ti +
−
A

δi
1
β

+

−
B

δi
1

β + θ

nE2
α

−

−
B

(ti − τ) +

−
B

δi
1

β + θ

n
α
E1 +

n
γ

−

n−
i=1

ti −
n−

i=1

δi
1
γ

−n

1
ν

−
E1
α


+

n−
i=1


1
ν

− yi




.

Here the quantities E1 and E2 are given by

E1 =

∫
∞

0
yF̄(y)H̄(y)dG(y)

=
ν

w2
+ ν exp−wτ

[
τ(w + θ) + 1

(w + θ)2
−

τw + 1
w2

]
and

E2 =

∫
∞

τ

(y − τ)F̄(y)H̄(y)dG(y)

=
ν exp−wτ

(w + θ)2
.

For the fixed τ , the M.L.E. Ψ̂τ = (β̂, θ̂ , γ̂ , ν̂)τ for Ψτ is obtained as the solution to the system of equations U(Ψτ ) = 0.
This solution is obtained by numerical methods since closed form expressions cannot be obtained.

3.3.2. Weibull distribution
We next discuss another special case where the censoring variable C and the truncation variable Y are both assumed to

have Weibull distributions with shape parameters a and s, and rate parameters b and v respectively. Note that the hazard
function of the censoring variable is λc(t) = abta−1 and the hazard function of the truncation variable is λy(t) = svts−1.
Then using (6) we have

α = P(Y ≤ T = min(X, C))

= sv
[∫ τ

0
ys−1e−βy−vys−byady +

∫
∞

τ

ys−1e−βy−vys−bya−θy+θτdy
]

. (18)

Consider an observed random sample (ti, yi, δi) for i = 1, . . . , n. Let U denote the set of uncensored observations. For a
fixed τ , let A and B denote the set of observations such that ti ≤ τ and ti > τ , respectively. Let nA denote the number of
observations that are smaller than τ , nB denote the number of observations that are larger than τ , n1 denote the number of
uncensored observations, n1A denote the number uncensored observations that are less than or equal to τ , and n1B denote
the number of uncensored observations that are larger than τ . Then for a fixed τ , after some steps the log-likelihood function
(12) can be written as

log L = −n logα + n log asbv + (a − 1)
n−

i=1

log yi − b
n−

i=1

yai + (s − 1)
n−

i=1

log ti − v

n−
i=1

tsi − β

n−
i=1

ti − θ
−
B

ti

+ nBθτ + n1A logβ + n1B logβ + θ − n1 log sv − (s − 1)
−
U

log ti. (19)

The resulting likelihood function makes it very complicated to calculate the score vector (13) and to proceed the estimation
in the usual way, mainly due to the complicated structure of α, which is a function of the other parameters. Therefore we
use numerical procedures to maximize the likelihood function.

4. Conditional likelihood approach

In the full likelihood approach, the distributional assumptions regarding the censoring and truncation variables
complicate the estimations procedure as the number of parameters to be estimated increases. In this section we discuss
an alternative procedure which targets estimating the parameters in the hazard function of interest only. Let X be a random
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variable with the hazard function (1). The random variable X is subject to left truncation and right censoring, where the full
observation of X is prevented by a right censoring variable C and a left truncation variable Y as described in Section 2. Unlike
the full likelihood approach, here we do not assume parametric families of distributions for the censoring and truncation
variables. Instead, we treat the data as a random sample given that it is subject to the observed values of censoring and
truncation variables. We refer to this approach as the conditional likelihood approach. Our main concern is again to estimate
the location of the change-point, alongwith the hazard rate before the change-point and the size of the change. Let us denote
the set of unknown parameters by Ψ = {β, θ, τ }. In the rest of this section we describe a maximum likelihood estimation
procedure for estimating Ψ .

4.1. Likelihood function

Klein and Moeschberger (2003) summarized the likelihood construction techniques frequently used in survival analysis
literature. According to this construction, various types of censoring and truncation schemes have different contributions
to the likelihood function. For example, if X is a random variable of interest with p.d.f. f and survival function S, and if X is
subject to right censoring, then the contribution of an observed exact lifetime x to the likelihood function is given by f (x),
and the contribution of an observed censoring time c to the likelihood function is given by S(c). When we generalize this
approach to the left truncation and right censoring model, we have the following.

Recall that in the left truncation and right censoring model, one observes the triplets (T , Y , δ) only if Y ≤ T , otherwise
nothing is observed. Consider an observed random sample (ti, yi, δi) for i = 1, . . . , n. In this case, the contribution of an
exact lifetime (ti = xi) to the likelihood function is f (xi)/S(yi), and the contribution of an observed censoring time (ti = ci)
to the likelihood function is S(ci)/S(yi). Putting together all the components, one may write the conditional likelihood
function as

L ∝

∏
i∈D

f (xi)
S(yi)

∏
i∈R

S(ci)
S(yi)

, (20)

where D is the set of observations where the real lifetimes are observed and R is the set observations where the censoring
times are observed only.

4.2. Estimation

When we construct the likelihood function (20) for the piecewise constant hazard model (1), is not differentiable with
respect to τ , hence it is not possible to find theM.L.E.’s forΨ using standardmethods. Therefore, we take the same approach
as in Section 3, where we first fix the value of τ and find the M.L.E.’s for the remaining parameters as a function of τ . Then
we search for the value of τ as our estimator, which maximizes the likelihood function over a number of grid points on a
specific interval [τ0, τ1].

Let us start with the problem of finding the M.L.E.’s of β and θ for a fixed τ . Consider an observed random sample
(ti, yi, δi) for i = 1, . . . , n. Note that the p.d.f. and the survival function of X are piecewise functions as described in (2)
and (4). Then for a fixed τ , there are six possible types of observations that have different contributions to the likelihood
function, all of which are given in Table 1. For example, A denotes the set of observed triplets for which t is an actual
lifetime x, and both x and the observed truncation variable y are less than τ . The contribution of such (x, y) pairs to the
likelihood function is f1(x)/S1(y), where f1 and S1 are as described in (2) and (4). We define the sets B, C,D, E, F , and
their likelihood contributions similarly. Let nA denote the number of observed triplets in set A, let

∏
A denote the product

over set A, let nB,C denote the total number of observed triplets in sets B and C , and let
∑

B,C denote the sum over sets
B and C . Define all the other related subscripts similarly. Then for a fixed τ , we can write the likelihood function as
follows:

L(β, θ |y, t, δ) =

∏
A

f1(xi)
S1(yi)

∏
B

f2(xi)
S1(yi)

∏
C

f2(xi)
S2(yi)

∏
D

S1(ci)
S1(yi)

∏
E

S2(ci)
S1(yi)

∏
F

S2(ci)
S2(yi)

= βnA(β + θ)nB,C exp


nβ(ȳ − t̄) + θ

−
C,F

yi −
−
B,C

xi −
−
E,F

ci + nB,Eτ


.

Following the notation in Section 3, for a fixed τ , let Ψτ = {β, θ}τ be the parameter set to be estimated, and
let U(Ψτ ) be the corresponding score vector composed of the first derivatives of the log-likelihood function, which is
given by

U(Ψτ ) =


∂ ln L
∂β

∂ ln L
∂θ

 =


nA

β
+

nB,C

β + θ
+ n(ȳ − t̄)

nB,C

β + θ
+

−
C,F

yi −
−
B,C

xi −
−
E,F

ci + nB,Eτ

 . (21)
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Table 1
Likelihood contributions of different observation types.

Type of observation Contribution to likelihood

A = {(ti, yi, δi) : δi = 1, yi < xi ≤ τ } f1(xi)/S1(yi)
B = {(ti, yi, δi) : δi = 1, yi ≤ τ < xi} f2(xi)/S1(yi)
C = {(ti, yi, δi) : δi = 1, τ < yi < xi} f2(xi)/S2(yi)
D = {(ti, yi, δi) : δi = 0, yi < ci ≤ τ } S1(ci)/S1(yi)
E = {(ti, yi, δi) : δi = 0, yi ≤ τ < ci} S2(ci)/S1(yi)
F = {(ti, yi, δi) : δi = 0, τ < yi < ci} S2(ci)/S2(yi)

Then, the M.L.E. Ψ̂τ = (β̂, θ̂ )τ for Ψτ is obtained as the solution of the system of equations U(Ψτ ) = 0, which results in the
estimators:

β̂ =
nA∑

C,F
yi −

∑
B,C

xi −
∑
E,F

ci + τnB,E − n(ȳ − t̄)
(22)

and

θ̂ =
−nB,C∑

C,F
yi −

∑
B,C

xi −
∑
E,F

ci + τnBE
− β̂. (23)

Let τi ∈ [τ0, τ1], i = 1, . . . ,m denote the fixed grid points in the search interval and let Lτi denote the maximum of the
likelihood function for τ = τi. That is

Lτi = L({β̂, θ̂}τi , τi).

Then the proposed estimators for the change-point τ and the rest of the parameters are given by

τ̂ = argmaxτi
Lτi (24)

and

Ψ̂ = {(β̂, θ̂ )τ̂ , τ̂ }. (25)

5. Numerical studies

The full likelihood model specifies parametric families of distributions for the censoring and truncation variables and
it is expected to give more accurate results when the model specification is correct. Its drawbacks are the risk of model
misspecification, the large number of parameters to be estimated, and the lack of closed form estimators which forces one
to use numerical methods for estimation. Sometimes the numerical methods may not lead to the maximum likelihood
estimators, especially for small sample sizes. The conditional likelihood model on the other hand, does not assume any
parametric families of distributions for censoring and truncation variables, and focuses only on estimating the model
parameters of the hazard function. This simpler approach provides closed form estimators for the model parameters and
does not have the risk of model misspecification. The conditional likelihood approach, however, emphasizes more the
observed values of the censoring and truncation variables and somewhat overlooks their random nature. This results in
increased bias and variance especially for small samples, which disappears as the sample size increases.

In this section we present the results of a numerical study which aims to address three issues concerning the perfor-
mances of the proposed estimators. Firstly we are interested in the general performances of the proposed estimation meth-
ods under several choices of model parameters. Secondly, we are interested in the comparison of the performances of full
and conditional likelihood methods with respect to the factors such as the size of the hazard change, censoring and trunca-
tion levels, and the sample size. Finally, we want to investigate how sensitive the full likelihood method is with respect to
misspecification of the distributions of censoring and truncation variables. We address these three issues in Sections 5.1–
5.3, respectively. All three issues are important, since the full likelihood approach requires estimation of more parameters
and results in a more complicated maximization procedure. We are interested to see whether this difficulty is justified by
significantly better performance under correctmodel specification, andwhether it is robust tomisspecification of themodel.

Throughout the numerical study, we consider two cases that we refer to as the exponential case and the Weibull case. In
the exponential case both censoring and truncation variables have exponential distributions with rate parameters γ and ν
respectively. In theWeibull case the truncation variable hasWeibull distributionwith shape parameter s and rate parameter
v, and the censoring variable has exponential distribution with rate parameter b. For both cases we study different choices
of the hazard change-point model parameters β, θ , and τ . In order to illustrate the impact of truncation and censoring we
consider three different observation levels that correspond to various degrees of available information. In particular, we use
α = P(Y < T ) as one component of observation level that corresponds to the proportion of untruncated observations. For
the censoring component we consider α′, the proportion of uncensored observations among the observed (Y , T , δ) triplets,
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where α′
= P(X < C |Y < T ). In the cases that we report here, the observation levels are α = α′

= 60%, 75%, 90%,
which are set by using appropriate parametrization for censoring and truncation variables. The impact of the sample size
is investigated by considering three different sample sizes, namely n = 60, 100, 140 and 180, and a simulation size of
1000 samples is used to assess the performances of the procedures given in Sections 3.3.1 and 3.3.2 for the exponential and
Weibull (a = 1) cases respectively. The search intervals [τ0, τ1]were taken to be large intervals, selected by considering the
observed data range. All computations are done with the statistical software R. For the numerical optimization procedures,
the ‘‘L-BFGS-B’’ method in the ‘‘optim’’ function of R is used, which employs the method by Byrd et al. (1995). Due to space
considerations we discuss below relevant subsets of the obtained results for the issues addressed. In particular, for the
general sensitivity of the methods, we only present the exponential case with sample size n = 180 with 75% observation
level, since the other choices qualitatively yield similar results.We then focus on the comparison of themethods and present
results for different sample size and observation level choices for an arbitrarily selected sample of parameter configurations.
Some further results of the numerical study are provided in the Appendix.

5.1. Performances of estimation methods under several choices of hazard change-point model parameters

We first illustrate the performances of full and conditional likelihoodmethods under different choices of hazard change-
point model parameters. We consider different configurations of model parameters from the sets β ∈ {0.2, 0.5, 1}, θ ∈

{0.1, 0.2, 0.5, 2}, and τ ∈ {1, 2, 3, 5, 7}. Here we focus on the exponential case with observation level α = α′
= 75%,

and we consider samples of size 180. For each configuration, empirical mean square errors are given in Table 2. The results
indicate that both methods perform reasonably well in estimating the model parameters for the cases investigated. The
largest mean square errors are observed for the censoring parameter γ and the size of the jump θ . The performances of the
two methods are generally comparable showing similar improvement or deterioration behaviors as the system parameters
change. In particular, we observe that the mean square error values worsen for larger values of γ , and this worsening is
most emphasized in the estimation of θ . Here we note that in all these configurations with higher mean square errors, such
as configurations 14, 17 and 20, only about 10% of the observed data points are greater than the change-point τ , and this has
a negative effect on the performances of the estimators. We also note that in such cases where both estimators worsen, the
full likelihood estimator performs significantly better than the conditional likelihood. In order to see the effect of changes
in the initial hazard rate β only, we can look at the configuration sequence 12–13–14, where out of three parameters of
the hazard change-point model (1), only β increases. Note that in this sequence censoring and truncation parameters are
changed in order to keep the observation levels at 75%.We observe that asβ increases the change-point becomes less visible,
and the mean square errors increase. Similarly, in order to see the effect of changes in the jump size θ only, we can look at
the configuration sequence 12–15–18–21, where we observe that as θ increases it is easier to detect the change-point and
the mean square errors for the location of the change τ decrease. Finally, to see the effect of changes in τ only, we can look
at the configuration sequence 3–5–25–31–32, where we do not observe significant changes in mean square errors.

5.2. Sensitivity of estimation methods with respect to jump size, sample size, and observation levels

In this sectionwe take a closer look at the four of the hazard change-pointmodels given in Table 2, in order to compare the
performances of the full and conditional likelihood methods. We take into account factors such as jump size, observation
levels and sample size, and we present extensive simulation results for configurations 5, 11, 23 and 27. We study these
models under both exponential and Weibull cases, with observation levels α = α′

= 60%, 75%, 90%, and sample sizes
n = 60, 100, 140, 180. The censoring and truncation parameters used for this experimental setting are given in Table 3. For
each case, empirical bias, standard deviation, and mean square error are computed. Some representative cases are given in
Tables 4 and 5, reporting the performances of full and conditional likelihood approaches for the exponential case, at 75%
observation level. The only difference between Configurations 5 and 11 is the larger jump size in configuration 11, thus
we report the two together in Table 4 to see the effect of this difference. Similarly, Configurations 23 and 27 are reported
together in Table 5. The complete simulation results for Configurations 11 and 23 are given in the Appendix. The results
indicate that both methods perform reasonably well in estimating the model parameters for both the exponential case and
theWeibull case. As expected, biases and standard deviations decrease as the sample size and the observation level increase.
For a large jump, the estimation of τ is better than the small jump since it is easier to detect the change. The empirical bias
and standard deviation of the estimators of the parameters of the censoring and truncation variables tend to be larger than
that of the remaining model parameters, especially for smaller observation levels.

As for the comparison of the full and the conditional likelihood approaches, when the model specification is correct as
in the cases reported in Tables 4 and 5 (and Tables 6–10 in the Appendix), both methods have similar performances for
estimating τ and β in terms of the mean square error, but the full likelihood method performs better for estimating θ .
However, the performance differences for estimating θ seem to vanish as the sample size increases. In order to point out the
relative performances of the two approaches for estimating θ , we present four graphs in Fig. 1 for exponential and Weibull
cases for configurations 11 and 23. Let MSEF (θ) denote the empirical mean square error for the estimator of θ using the full
likelihood approach, and let MSEC (θ) denote the empirical mean square error for the estimator of θ using the conditional
likelihood approach. The vertical axes of all graphs in Fig. 1 give the percentage increase in mean square error when using
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Table 2
Empirical mean square errors for 32 configurations. Exponential case, observation level 75%, n = 180. The columns τF and τC
contain the empirical values for τ using the full model and the conditional model, respectively, similar to other parameters.
This notation is used in all the remaining tables.

Con. Model parameters Full likelihood Conditional likelihood
τ β θ ν γ τF βF θF νF γF τC βC θC

1 1 0.5 0.1 2 0.15 0.094 0.008 0.015 0.076 0.003 0.099 0.023 0.038
2 1 1 0.1 3.8 0.27 0.106 0.013 0.073 0.232 0.010 0.107 0.030 0.135
3 1 0.2 0.2 1.03 0.09 0.011 0.003 0.005 0.030 0.002 0.012 0.005 0.006
4 1 0.5 0.2 2 0.17 0.069 0.008 0.015 0.087 0.004 0.077 0.018 0.032
5 1 1 0.2 3.75 0.27 0.017 0.011 0.051 0.256 0.011 0.017 0.017 0.082
6 1 0.2 0.5 1.25 0.13 0.004 0.003 0.007 0.058 0.004 0.004 0.003 0.007
7 1 0.5 0.5 2.1 0.18 0.022 0.007 0.017 0.114 0.006 0.021 0.007 0.017
8 1 1 0.5 4 0.3 0.012 0.012 0.077 0.301 0.013 0.013 0.013 0.082
9 1 0.2 2 1.6 0.21 0.000 0.003 0.048 0.154 0.019 0.000 0.003 0.047

10 1 0.5 2 2.35 0.25 0.000 0.007 0.077 0.227 0.019 0.000 0.008 0.075
11 1 1 2 4.1 0.31 0.002 0.012 0.239 0.396 0.016 0.002 0.012 0.235
12 2 0.2 0.1 0.85 0.07 0.077 0.001 0.002 0.017 0.001 0.080 0.002 0.003
13 2 0.5 0.1 2 0.14 0.102 0.003 0.015 0.068 0.003 0.102 0.004 0.022
14 2 1 0.1 3.75 0.26 0.110 0.008 0.305 0.247 0.010 0.107 0.010 0.493
15 2 0.2 0.2 0.9 0.08 0.040 0.001 0.003 0.022 0.001 0.041 0.001 0.003
16 2 0.5 0.2 2 0.14 0.080 0.003 0.018 0.072 0.003 0.082 0.004 0.022
17 2 1 0.2 3.6 0.25 0.104 0.010 0.182 0.244 0.010 0.106 0.011 0.465
18 2 0.2 0.5 1 0.1 0.006 0.001 0.006 0.038 0.003 0.007 0.002 0.006
19 2 0.5 0.5 2 0.16 0.034 0.003 0.032 0.082 0.004 0.034 0.003 0.032
20 2 1 0.5 3.8 0.27 0.076 0.008 0.139 0.322 0.011 0.080 0.009 0.881
21 2 0.2 2 1.2 0.14 0.000 0.001 0.054 0.029 0.006 0.000 0.001 0.055
22 2 0.5 2 2 0.18 0.001 0.004 0.147 0.114 0.007 0.001 0.004 0.157
23 3 0.2 0.1 0.78 0.06 0.016 0.001 0.002 0.012 0.001 0.016 0.001 0.002
24 3 0.5 0.1 1.96 0.13 0.109 0.002 0.025 0.061 0.002 0.105 0.003 0.036
25 3 0.2 0.2 0.85 0.07 0.045 0.001 0.003 0.017 0.001 0.045 0.001 0.003
26 3 0.5 0.2 1.96 0.13 0.091 0.002 0.035 0.063 0.002 0.092 0.003 0.040
27 3 0.2 0.5 0.9 0.09 0.011 0.001 0.008 0.024 0.002 0.011 0.001 0.008
28 3 0.5 0.5 1.96 0.14 0.049 0.003 0.072 0.072 0.003 0.049 0.003 0.072
29 3 0.2 2 1 0.1 0.000 0.001 0.066 0.038 0.003 0.000 0.001 0.066
30 3 0.5 2 1.96 0.15 0.006 0.003 0.282 0.080 0.004 0.006 0.003 0.393
31 5 0.2 0.2 0.8 0.07 0.062 0.001 0.005 0.015 0.001 0.061 0.001 0.004
32 7 0.2 0.2 0.8 0.06 0.079 0.000 0.008 0.013 0.001 0.079 0.000 0.008

Table 3
Censoring and truncation parameters for different cases.

Case Configuration Observation level
60% 75% 90%

Exponential 5 ν 2.2 3.75 10
γ 0.48 0.27 0.1

11 ν 2.4 4.1 11
γ 0.57 0.31 0.12

23 ν 0.49 0.8 2.1
γ 0.107 0.062 0.023

27 ν 0.55 0.9 2
γ 0.15 0.086 0.03

Weibull 5 s 2 2 2
v 8 16 90
b 0.7 0.35 0.12

11 s 2 2 2
v 9.2 18.5 84
b 0.85 0.43 0.14

23 s 2 2 2
v 0.35 0.7 3.7
b 0.17 0.085 0.025

27 s 2 2 2
v 0.45 0.8 3.7
b 0.22 0.115 0.04

the conditional likelihood approach for estimating θ , instead of using the full likelihood approach. This can be considered
as the cost of using the simpler conditional likelihood approach. We denote this quantity by PIMSEC (θ), where

PIMSEC (θ) = 100 × [MSEC (θ) − MSEF (θ)]/MSEF (θ).
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Table 4
Performances of the estimators, exponential case, Configurations 5 and 11, observation level 75%.

n Full likelihood Conditional likelihood
τF βF θF νF γF τC βC θC

Con. 5 (small jump) 60 bias 0.016 −0.032 0.266 −0.257 0.092 0.003 0.024 0.119
stdev 0.135 0.185 0.371 0.690 0.105 0.136 0.236 0.558
mse 0.019 0.035 0.209 0.542 0.020 0.019 0.056 0.326

100 bias 0.007 −0.036 0.194 −0.274 0.082 0.004 −0.004 0.108
stdev 0.129 0.144 0.276 0.525 0.077 0.131 0.179 0.395
mse 0.017 0.022 0.114 0.350 0.013 0.017 0.032 0.168

140 bias 0.007 −0.013 0.144 −0.337 0.088 −0.003 0.014 0.074
stdev 0.130 0.129 0.229 0.438 0.063 0.133 0.158 0.329
mse 0.017 0.017 0.073 0.306 0.012 0.018 0.025 0.113

180 bias 0.013 −0.010 0.109 −0.326 0.087 0.009 0.010 0.053
stdev 0.129 0.106 0.197 0.387 0.057 0.131 0.130 0.282
mse 0.017 0.011 0.051 0.256 0.011 0.017 0.017 0.082

Con. 11 (large jump) 60 bias 0.014 0.012 0.184 −0.332 0.114 0.017 0.012 0.487
stdev 0.077 0.198 0.368 0.613 0.126 0.079 0.209 0.918
mse 0.006 0.039 0.169 0.486 0.029 0.007 0.044 1.080

100 bias 0.009 0.003 0.115 −0.259 0.105 0.009 0.013 0.249
stdev 0.065 0.146 0.362 0.406 0.095 0.068 0.153 0.662
mse 0.004 0.021 0.144 0.232 0.020 0.005 0.024 0.500

140 bias 0.003 0.009 0.076 −0.386 0.103 0.004 0.011 0.137
stdev 0.050 0.127 0.349 0.470 0.067 0.051 0.129 0.510
mse 0.003 0.016 0.128 0.3709 0.015 0.003 0.017 0.279

180 bias 0.001 0.002 0.054 −0.221 0.0980 0.002 0.012 0.090
stdev 0.042 0.112 0.312 0.430 0.054 0.040 0.080 0.410
mse 0.002 0.013 0.100 0.234 0.013 0.002 0.007 0.176

Table 5
Performances of the estimators, exponential case, Configurations 23 and 27, observation level 75%.

n Full likelihood Conditional likelihood
τF βF θF νF γF τC βC θC

Con. 23 (small jump) 60 bias 0.042 −0.003 0.022 −0.059 0.023 0.038 0.001 0.018
stdev 0.127 0.044 0.060 0.146 0.025 0.130 0.055 0.089
mse 0.018 0.002 0.004 0.025 0.001 0.018 0.003 0.008

100 bias 0.031 0.0001 0.017 −0.076 0.022 0.032 0.002 0.014
stdev 0.126 0.037 0.052 0.118 0.019 0.127 0.040 0.064
mse 0.017 0.001 0.003 0.020 0.001 0.017 0.002 0.004

140 bias 0.026 0.0001 0.013 −0.077 0.021 0.029 0.002 0.010
stdev 0.125 0.030 0.045 0.096 0.015 0.124 0.032 0.050
mse 0.016 0.001 0.002 0.015 0.001 0.016 0.001 0.003

180 bias 0.019 0.0003 0.009 −0.071 0.020 0.026 0.002 0.007
stdev 0.124 0.026 0.039 0.084 0.011 0.122 0.028 0.041
mse 0.016 0.001 0.002 0.012 0.001 0.016 0.001 0.002

Con. 27 (large jump) n = 60 bias 0.044 0.002 0.075 −0.107 0.039 0.048 0.003 0.070
stdev 0.186 0.052 0.160 0.184 0.037 0.188 0.053 0.160
mse 0.037 0.003 0.031 0.045 0.003 0.038 0.003 0.030

n = 100 bias 0.027 0.003 0.041 −0.123 0.038 0.029 0.004 0.036
stdev 0.149 0.039 0.123 0.141 0.027 0.149 0.040 0.123
mse 0.023 0.002 0.017 0.035 0.002 0.023 0.002 0.016

n = 140 bias 0.017 0.005 0.025 −0.120 0.037 0.019 0.006 0.019
stdev 0.119 0.034 0.095 0.116 0.023 0.120 0.034 0.095
mse 0.014 0.001 0.010 0.028 0.002 0.015 0.001 0.009

n = 180 bias 0.011 0.004 0.020 −0.117 0.037 0.012 0.005 0.015
stdev 0.104 0.029 0.086 0.101 0.020 0.105 0.029 0.087
mse 0.011 0.001 0.008 0.024 0.002 0.011 0.001 0.008

The horizontal axes of the graphs in Fig. 1 represent the observation levels, 60%, 75% and 90%. Each graph gives the profiles
of PIMSEC (θ) for three observation levels for sample sizes 60, 100, 140 and 180. The results indicate that the cost of using
the conditional model can be very high, but this remarkable cost vanishes fast as the sample size increases. Recall that Fig. 1
reports the comparisons for estimating θ , where the conditional likelihood approach has the poorest performance. For the
other model parameters the two methods are very similar. Note that when the observation level is 60% and when n = 60,
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a b

c d

Fig. 1. Comparison of full likelihood model and conditional likelihood model via PIMSEC (θ). (a) Exponential case, configuration 11, (b) Exponential case,
configuration 23, (c) Weibull case, configuration 11, (d) Weibull case, configuration 23. Sample sizes are n = 60 (− − −), n = 100 (· · ·), n = 140 (— · —)
and n = 180 (—).

a b

Fig. 2. (a) Under misspecification, comparison of full model and conditional model via PIMSEC (θ). (b) Comparison of correct specification and
misspecification via PIMSEF ,E(θ). Sample sizes are n = 60 (− − −), n = 100 (· · ·), n = 140 (— · —) and n = 180 (—).

we do not have results in Fig. 1-c. This is because at this level our optimization routines in the full likelihood model did not
lead to a solution, which was noted earlier as a disadvantage of the full likelihood model.

5.3. The effect of model misspecification

In order to address the issue regarding the effect of model misspecification in the full likelihood approach, we carried
out two simulation studies where the data are generated from configuration 11 and Weibull case with the parameters
given in Table 3. In the first study we compared the full likelihood model which falsely assumes exponential distribution
for the censoring and truncation variables with the conditional likelihood model. In the second study we compared the full
likelihood model which falsely assumes exponential distribution with the one that correctly assumes Weibull distribution.

Fig. 2-a reports the results for the first study, where the graph is designed similar to the graphs in Fig. 1 with PIMSEC (θ)
on the vertical axis. Note that this graph is comparable with Fig. 1-c, and the decrease in the PIMSEC (θ) values indicate the
importance of model misspecification. When n = 180 the conditional approach performs better.
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Fig. 2-b reports the results for the second study for illustrating the disadvantages ofmodelmisspecification. LetMSEF ,E(θ)
denote the empiricalmean square error for the estimator of θ using the exponential full likelihoodmodel, and letMSEF ,W (θ)
denote the empirical mean square error for the estimator of θ using the Weibull full likelihood model. Define

PIMSEF ,W (θ) = 100 × [MSEF ,W (θ) − MSEF ,E(θ)]/MSEF ,E(θ).

The vertical axis of Fig. 2-b is the PIMSEF ,W (θ), where negative values indicate the importance of model misspecification.
The results show that PIMSEF ,W (θ) can get as low as −50 indicating that the correct specification performs much better. In
summary, Fig. 2 provides some evidence that the full likelihood model is not robust to misspecification of the model.

6. Summary and conclusions

In this paper we considered piecewise constant hazard functions with a single unknown change-point, when the
observations are subject to random left truncation and right censoring. We discussed two maximum likelihood estimation
procedures, namely, the full likelihood method and the conditional likelihood method. The full likelihood method assumes
parametric families of distributions for the censoring and truncation variables. This complicates the model to some extent,
as the number of parameters to be estimated increase, and the lack of closed form maximum likelihood estimators forces
one to use numerical optimization techniques. If the distributional assumptions are accurate, this fully parametric model is
expected to produce good estimators. The conditional likelihoodmethod does not make any distributional assumptions and
focuses only on estimating the three model parameters of the hazard function. Its simpler structure allows the conditional
likelihoodmethod to provide closed form estimators for themodel parameters. However, it can have large bias and variance
especially for small sample sizes, since it constructs the censoring and truncation component of the likelihood function solely
on the observed values.

Our numerical studies indicate that both methods can easily be implemented and their performances are good. When
the distributional assumptions of the full likelihood method are correct, the performances of the two methods are close for
estimating the location of the change-point and the initial hazard rate, but for estimating the size of the change, the full
likelihood method performs better. We observed that this difference tends to vanish as the sample size increases. Another
important finding of the study is that the full likelihood model is not robust to model misspecification, and in some cases it
is outperformed by the conditional likelihood model.

Appendix

Here we present the results of the numerical study discussed in Section 5 in more detail. We report Configurations 11
and 23 as representatives of large jump and small jump cases, respectively. Tables 6 and 7 report the exponential case for
observation levels 60% and 90%. Note that a 75% observation level is given in Section 5. Tables 8–10 report the Weibull case
for observation levels 60%, 75% and 90%.

Table 6
Performance of the estimators, exponential case, Configurations 11 and 23, observation level 60%.

n Full likelihood Conditional likelihood
τF βF θF νF γF τC βC θC

Con. 11 (large jump) 60 bias 0.022 0.091 0.184 −0.844 0.308 0.032 0.111 0.654
stdev 0.081 0.224 0.378 0.509 0.132 0.084 0.250 1.345
mse 0.007 0.058 0.177 0.971 0.112 0.008 0.075 2.237

100 bias 0.012 0.068 0.118 −0.731 0.282 0.020 0.119 0.288
stdev 0.069 0.171 0.376 0.283 0.078 0.072 0.209 0.871
mse 0.005 0.034 0.149 0.614 0.086 0.006 0.058 0.842

140 bias 0.008 0.059 0.107 −0.798 0.335 0.012 0.108 0.158
stdev 0.055 0.142 0.367 0.194 0.098 0.058 0.173 0.657
mse 0.003 0.024 0.146 0.674 0.122 0.004 0.042 0.457

180 bias 0.005 0.051 0.099 −0.712 0.313 0.008 0.101 0.084
stdev 0.044 0.132 0.351 0.179 0.068 0.046 0.156 0.492
mse 0.002 0.020 0.133 0.539 0.103 0.002 0.035 0.249

Con. 23 (small jump) 60 bias 0.038 0.011 0.021 −0.178 0.069 0.033 0.033 −0.011
stdev 0.135 0.051 0.064 0.128 0.045 0.136 0.082 0.122
mse 0.020 0.003 0.005 0.048 0.007 0.020 0.008 0.015

100 bias 0.027 0.005 0.016 −0.145 0.065 0.023 0.028 −0.013
stdev 0.131 0.041 0.057 0.065 0.030 0.138 0.062 0.090
mse 0.018 0.002 0.004 0.025 0.005 0.020 0.005 0.008

140 bias 0.020 0.016 0.011 −0.191 0.067 0.022 0.030 −0.015
stdev 0.127 0.038 0.051 0.088 0.029 0.132 0.050 0.072
mse 0.017 0.002 0.003 0.044 0.005 0.018 0.003 0.005

180 bias 0.016 0.005 0.008 −0.171 0.060 0.020 0.026 −0.015
stdev 0.120 0.030 0.046 0.074 0.025 0.130 0.044 0.061
mse 0.015 0.001 0.002 0.035 0.004 0.017 0.003 0.004
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Table 7
Performance of the estimators, exponential case, Configurations 11 and 23, observation level 90%.

n Full likelihood Conditional likelihood
τF βF θF νF γF τC βC θC

Con. 11 (large jump) 60 bias 0.013 0.001 0.154 0.012 0.016 0.013 −0.005 0.444
stdev 0.074 0.172 0.377 1.302 0.059 0.076 0.174 0.892
mse 0.006 0.030 0.166 1.695 0.004 0.006 0.030 0.993

100 bias 0.006 −0.001 0.110 0.007 0.016 0.006 −0.004 0.228
stdev 0.061 0.128 0.369 1.135 0.046 0.061 0.129 0.627
mse 0.004 0.016 0.148 1.288 0.002 0.004 0.017 0.445

140 bias 0.002 −0.001 0.085 −0.039 0.015 0.002 −0.003 0.157
stdev 0.052 0.114 0.342 0.988 0.037 0.052 0.114 0.499
mse 0.003 0.013 0.124 0.978 0.002 0.003 0.013 0.274

180 bias 0.001 −0.001 0.062 0.003 0.014 0.002 −0.002 0.112
stdev 0.044 0.103 0.334 0.879 0.031 0.047 0.096 0.392
mse 0.002 0.011 0.115 0.773 0.001 0.002 0.009 0.166

Con. 23 (small jump) 60 bias 0.033 −0.006 0.021 0.001 0.004 0.030 −0.005 0.023
stdev 0.131 0.039 0.058 0.299 0.011 0.131 0.043 0.076
mse 0.018 0.002 0.004 0.089 0.0001 0.018 0.002 0.006

100 bias 0.034 −0.005 0.016 0.004 0.003 0.032 −0.004 0.017
stdev 0.126 0.031 0.049 0.244 0.008 0.127 0.032 0.056
mse 0.017 0.001 0.003 0.060 0.0001 0.017 0.001 0.003

140 bias 0.022 −0.003 0.015 −0.012 0.003 0.023 −0.004 0.015
stdev 0.125 0.027 0.044 0.199 0.007 0.125 0.027 0.046
mse 0.016 0.001 0.002 0.040 0.0001 0.016 0.001 0.002

180 bias 0.019 −0.002 0.014 0.005 0.002 0.017 −0.003 0.013
stdev 0.124 0.025 0.040 0.181 0.005 0.121 0.024 0.041
mse 0.016 0.001 0.002 0.033 0.0001 0.015 0.001 0.002

Table 8
Performance of the estimators, Weibull case, Configurations 11 and 23, observation level 60%.

n Full likelihood Conditional likelihood
τF βF θF sF vF bF τC βC θC

Con. 11 (large jump) 100 bias 0.012 −0.006 0.310 0.022 0.376 0.008 0.011 −0.008 0.468
stdev 0.071 0.157 0.597 0.148 1.768 0.127 0.071 0.157 0.957
mse 0.005 0.025 0.453 0.022 3.267 0.016 0.005 0.025 1.135

140 bias 0.005 −0.016 0.223 0.009 0.221 0.003 0.006 −0.017 0.303
stdev 0.057 0.134 0.548 0.128 1.589 0.113 0.059 0.134 0.714
mse 0.003 0.018 0.350 0.016 2.574 0.013 0.004 0.018 0.602

180 bias 0.003 −0.008 0.180 0.004 0.112 0.001 0.003 −0.015 0.181
stdev 0.045 0.119 0.551 0.110 1.472 0.096 0.049 0.118 0.602
mse 0.002 0.014 0.336 0.012 2.179 0.009 0.002 0.014 0.395

Con. 23 (small jump) 60 bias 0.030 −0.016 0.046 0.046 0.006 0.002 0.031 −0.009 0.034
stdev 0.132 0.046 0.072 0.226 0.075 0.036 0.131 0.057 0.099
mse 0.018 0.002 0.007 0.053 0.006 0.001 0.018 0.003 0.011

100 bias 0.024 −0.010 0.029 0.024 0.004 0.001 0.021 −0.006 0.022
stdev 0.130 0.037 0.059 0.160 0.054 0.028 0.130 0.042 0.074
mse 0.017 0.001 0.004 0.026 0.003 0.001 0.017 0.002 0.006

140 bias 0.021 −0.007 0.021 0.016 0.003 0.001 0.020 −0.006 0.020
stdev 0.125 0.033 0.054 0.139 0.046 0.023 0.125 0.035 0.059
mse 0.016 0.001 0.003 0.020 0.002 0.001 0.016 0.001 0.004

180 bias 0.018 −0.002 0.014 0.010 0.002 0.001 0.018 −0.005 0.019
stdev 0.121 0.030 0.051 0.117 0.038 0.021 0.121 0.028 0.050
mse 0.015 0.001 0.003 0.014 0.001 0.0001 0.015 0.001 0.003
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Table 9
Performance of the estimators, Weibull case, Configurations 11 and 23, observation level 75%.

n Full likelihood Conditional likelihood
τF βF θF sF vF bF τC βC θC

Con. 11 (large jump) 60 bias 0.004 −0.009 0.233 0.011 0.574 −0.003 0.007 −0.014 0.503
stdev 0.081 0.198 0.572 0.131 2.843 0.110 0.082 0.198 1.005
mse 0.007 0.039 0.381 0.017 8.412 0.012 0.007 0.039 1.263

100 bias 0.007 −0.006 0.203 0.026 1.233 −0.007 0.008 −0.007 0.275
stdev 0.070 0.148 0.543 0.130 3.537 0.068 0.070 0.148 0.692
mse 0.005 0.022 0.336 0.018 14.031 0.005 0.005 0.022 0.554

140 bias 0.008 −0.005 0.184 −0.006 −0.149 0.005 0.008 −0.006 0.231
stdev 0.051 0.120 0.501 0.080 1.659 0.073 0.052 0.120 0.603
mse 0.003 0.014 0.285 0.006 2.774 0.005 0.003 0.014 0.417

180 bias 0.007 −0.004 0.170 −0.002 −0.121 0.003 0.004 −0.005 0.205
stdev 0.042 0.095 0.472 0.060 1.974 0.054 0.041 0.102 0.531
mse 0.002 0.009 0.252 0.004 3.911 0.003 0.002 0.010 0.324

Con. 23 (small jump) 60 bias 0.047 −0.012 0.039 0.057 0.013 0.002 0.042 −0.008 0.031
stdev 0.128 0.042 0.067 0.217 0.119 0.022 0.130 0.049 0.087
mse 0.019 0.002 0.006 0.050 0.014 0.0001 0.019 0.002 0.009

100 bias 0.024 −0.008 0.025 0.026 0.007 0.001 0.020 −0.006 0.021
stdev 0.128 0.034 0.053 0.159 0.086 0.018 0.129 0.037 0.062
mse 0.017 0.001 0.003 0.026 0.007 0.0001 0.017 0.001 0.004

140 bias 0.017 −0.007 0.020 0.019 0.007 0.002 0.016 −0.006 0.018
stdev 0.123 0.029 0.047 0.138 0.074 0.015 0.124 0.031 0.052
mse 0.015 0.001 0.003 0.019 0.006 0.0001 0.016 0.001 0.003

180 bias 0.010 −0.004 0.018 0.011 0.005 0.001 0.008 −0.005 0.011
stdev 0.105 0.021 0.041 0.121 0.069 0.014 0.116 0.028 0.044
mse 0.011 0.0001 0.002 0.015 0.005 0.0001 0.014 0.001 0.002

Table 10
Performance of the estimators, Weibull case, Configurations 11 and 23, observation level 90%.

n Full likelihood Conditional likelihood
τF βF θF sF vF bF τC βC θC

Con. 11 (large jump) 60 bias 0.009 −0.015 0.273 0.012 2.498 −0.001 0.011 −0.016 0.427
stdev 0.076 0.169 0.578 0.079 9.100 0.059 0.077 0.170 0.902
mse 0.006 0.029 0.409 0.006 89.050 0.003 0.006 0.029 0.996

100 bias 0.009 −0.006 0.206 0.002 0.315 0.0004 0.009 −0.007 0.262
stdev 0.060 0.140 0.515 0.051 3.848 0.046 0.061 0.141 0.640
mse 0.004 0.020 0.308 0.003 14.906 0.002 0.004 0.020 0.478

140 bias 0.003 −0.010 0.135 0.003 0.463 0.001 0.003 −0.011 0.156
stdev 0.048 0.118 0.454 0.047 3.805 0.040 0.049 0.118 0.509
mse 0.002 0.014 0.224 0.002 14.692 0.002 0.002 0.014 0.283

180 bias 0.001 −0.008 0.172 0.001 0.296 0.001 0.001 −0.008 0.087
stdev 0.031 0.110 0.392 0.041 3.112 0.037 0.041 0.099 0.427
mse 0.001 0.012 0.183 0.002 9.772 0.001 0.002 0.010 0.190

Con. 23 (small jump) 60 bias 0.035 −0.008 0.026 0.046 0.190 0.0005 0.030 −0.006 0.022
stdev 0.132 0.040 0.068 0.206 0.570 0.011 0.134 0.044 0.075
mse 0.019 0.002 0.005 0.045 0.361 0.0001 0.019 0.002 0.006

100 bias 0.030 −0.006 0.021 0.027 0.114 0.001 0.027 −0.005 0.019
stdev 0.123 0.032 0.054 0.159 0.497 0.008 0.124 0.034 0.058
mse 0.016 0.001 0.003 0.026 0.260 0.0001 0.016 0.001 0.004

140 bias 0.015 −0.005 0.013 0.011 0.056 0.0002 0.016 −0.005 0.012
stdev 0.123 0.026 0.044 0.133 0.420 0.007 0.124 0.027 0.046
mse 0.015 0.001 0.002 0.018 0.180 0.0001 0.016 0.001 0.002

180 bias 0.011 −0.004 0.007 0.007 0.029 0.0001 0.010 −0.004 0.010
stdev 0.118 0.019 0.033 0.124 0.393 0.005 0.120 0.021 0.033
mse 0.014 0.0001 0.001 0.015 0.155 0.0001 0.015 0.0001 0.001
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