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ABSTRACT

We address the problem of recognizing actions from arbitrary views for a multi-camera system. We argue
that poses are important for understanding human actions and the strength of the pose representation
affects the overall performance of the action recognition system. Based on this idea, we present a new
view-independent representation for human poses. Assuming that the data is initially provided in the
form of volumetric data, the volume of the human body is first divided into a sequence of horizontal lay-
ers, and then the intersections of the body segments with each layer are coded with enclosing circles. The
circular features in all layers (i) the number of circles, (ii) the area of the outer circle, and (iii) the area of
the inner circle are then used to generate a pose descriptor. The pose descriptors of all frames in an action
sequence are further combined to generate corresponding motion descriptors. Action recognition is then
performed with a simple nearest neighbor classifier. Experiments performed on the benchmark IXMAS
multi-view dataset demonstrate that the performance of our method is comparable to the other methods

in the literature.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Understanding human actions by video analysis is one of the
challenging problems of computer vision [1-4,6,8,12,13]. The
majority of work on this subject focuses on understanding actions
from videos captured by a single camera [7,9-11]. However, single-
camera systems have drawbacks degrading the recognition perfor-
mance, such as dependency on viewpoint and problems due to
self-occlusion. Multi-camera systems have emerged as a solution
[5,14,15,23,28], and now more affordable, they are preferred now-
adays against single camera systems for many applications.

While methods that integrate a set of 2D views are also gaining
popularity, in the majority of the works a single frame is modeled
as a 3D volume. An argument against volumes is about the effi-
ciency of algorithms used for reconstruction, but with recent
real-time algorithms [33,34] this problem can be overcome. In vol-
ume based systems it is difficult to use an articulated body model
reliably [14,15], thus most studies consider actions as 3D shapes
that change over time.

The representation should be view independent and should not
restrict the camera configuration, that is the action should be
recognized for any orientation of the person and for arbitrary posi-
tions of the cameras. While there are available 3D shape descrip-
tors that provide rotational invariance for shape matching and
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retrieval [19-21], for human action recognition it is sufficient to
consider variations around the vertical axis of the human body
(e.g. the action of an upside-down person should be considered
different).

In this study, focusing on the importance of human poses in
understanding actions [18,16,17], we present a new representation
for encoding the shape of the pose initially provided as a volume.
We consider body parts as cylindrical shapes with various sizes
and rotations. However, representing volumetric data as cylinders
is error-prone to noise and difficult to model. Instead, we use their
projections onto horizontal planes intersecting the human body in
every layer. We assume that the intersection can be generalized as
circles. Furthermore, changes in the number, area and relative
position of these circles over the body and over time provide
important cues. The proposed representation does not depend on
the view and therefore does not require alignment of the poses,
which is difficult to do in the case of noisy data, to perform an ori-
entation equalization. We focus on representing the poses to ex-
plore to what extent a human pose can help in understanding
human actions. We therefore keep the classification part simple
and observe that better results can be obtained with our proposed
method compared to complex representations.

Before describing the details of our method, we briefly discuss
previous work on multi-camera action recognition in Section 2.
We then present the view-independent pose representation in
Section 3, the motion representation for actions using proposed
pose features in Section 4 and our method for action recognition
in Section 5. Experimental results on a benchmark dataset are
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provided in Section 6 and compared with other studies in Section 7.
Finally, we summarize our main contributions and present future
plans in Section 8.

2. Related work

The approaches proposed for multi-camera systems can be
grouped based on how they use images from multiple cameras
and how they ensure view independence. One group of approaches
use 3D representations of poses constructed from multiple camera
images to further model the actions.

In Ref. [15], a 3D cylindrical shape context is presented for mul-
ti-camera gesture analysis over volumetric data. For capturing the
human body configuration, voxels falling into different bins of a
multilayered cylindrical histogram are accumulated. Next, the
temporal information of an action is modeled using Hidden Mar-
kov Model (HMM). This study does not address view independence
in 3D, instead, subjects are asked to rotate while training the
system.

A similar work on volumetric data is by Cohen and Li [14] where
view-independent pose identification is provided. Reference points
placed on a cylindrical shape are used to encode voxel distributions
of a pose that result in a shape representation invariant to rotation,
scale and translation.

Two parallel studies based on view-invariant features over 3D
representation are performed by Canton-Ferrer et al. [22] and
Weinland et al. [23]. These studies extend the motion templates
of Bobick and Davis [7] to three dimensions, calling them Motion
History Volume (MHV). MHV represents the entire action as a sin-
gle volumetric data, functioning as the temporal memory of the ac-
tion. In Ref. [23], the authors provide view invariance for action
recognition by transforming MHV into cylindrical coordinates
and using Fourier analysis. Unlike [23], Canton-Ferrer et al. [22] en-
sure view invariance by using 3D invariant statistical moments.

One recent work proposes a 4D action feature model (4D-AFM)
to build spatial-temporal information [27]. It creates a map from
3D spatial-temporal volume (STV) [11] of individual videos to 4D
action shape of ordered 3D visual hulls. Recognition is performed
by matching STV of observed video with 4D-AFM.

Stressing the importance of the pose information, in recent
studies action recognition is performed over particular poses.
Weinland et al. [24] present a probabilistic method based on exem-
plars using HMM. Exemplars are volumetric key-poses extracted
by reconstruction from action sequences. Actions are recognized
by an exhaustive search over parameters to match the 2D projec-
tions of exemplars with 2D observations. A similar work is that
of Lv and Nevatia [25], called Action Net. It is a graph-based ap-
proach modeling 3D poses as transitions of 2D views rendered
from motion capture sequences. Each 2D view is represented as a

shape context descriptor in each node of the graph. For recognition,
the most probable path on Action Net returns the matched se-
quence with the observed action.

In [26], activities are modeled as a combination of various
HMMs trained per body part over motion capture data. Then, 2D
tracks over videos and their corresponding matches in 3D help to
solve viewpoint variations. Through this method, the study pro-
vides a more generic system for unseen and composite activities.

In Ref. [28], Souvenir and Babbs extend shape descriptor based
on radon transform and generate 64 silhouettes taken from differ-
ent views of a visual hull. Action recognition is performed by esti-
mating the optimum viewpoint parameter that would result in the
lowest reconstruction error.

In another group of studies, the image features extracted from
multiple camera images are fused to understand actions. One such
work is presented in [29], where bag-of-video-words approach is
applied to a multi-view dataset. The method detects interest points
and extracts spatial-temporal information by quantizing them.
However, it is hard to infer the poses by the orderless features.
Moreover, extracted features like interest points are highly influ-
enced by illumination affects and the actors’ clothing, relative to
the reconstructed volumes.

In this study, we focus on view-independent features extracted
from volumetric poses. We test our approach on IXMAS multi-
camera action dataset [23] that was also used by Refs. [23-
25,27-29]. Detailed discussion and comparison with other studies
can be found in Section 7.

3. Pose representation

In our study, actions are considered as 3D poses that change
over time. We emphasize the importance of pose information since
in some cases a key pose can reveal enough information for classi-
fying actions [18,16,17]. In the next section, we introduce motion
features as changes in consecutive poses, necessary for learning ac-
tion dynamics.

Volumetric data reveal important cues for understanding the
shape of a human pose, but representing an action based on volu-
metric data is costly and can easily be affected by noise. Our pro-
posed pose representation is effective in keeping the important
characteristics of the poses while being efficient with the encod-
ings used. The representation is independent of the view and trans-
lation and does not require the poses to be aligned or the actions to
be performed in specified orientations and positions.

In the following, we first describe our method to encode the vol-
umetric data, then present the features used for representing the
pose information.

Fig. 1. Poses from some actions: check watch, cross arms, scratch head, sit down, get up, turn around, walk, wave, punch, kick and pick up. We divide the volumetric
representation of a pose into layers. The intersection of body segments with each layer are then coded with enclosing circles.
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Fig. 2. Representation of volumetric data as a collection of circles in each layer. From left to right: voxel grid of a walking pose and four sample layers (at [ =4, [=10, [ = 20,
I=40), image in each layer instance, connected components (CCs) over the enhanced image, and fitted circles.

3.1. Encoding the volumetric data using layers of circles

Human body parts have cylindrical structures, and therefore the
intersection of a pose with a horizontal plane can be modeled as a
set of ellipses that can be further simplified by circles. We base our
approach on this observation, and describe 3D poses using a set of
features extracted from circles fitted to projections of the volumet-
ric data on horizontal planes. As shown in Fig. 1, circular represen-
tation preserves the pose information while significantly reducing
the data to be processed. In Section 6, we compare the perfor-
mances when ellipses are used for representation rather than
circles.

We assume that 3D poses are provided as visual hulls in the
form of voxel grids constructed by multi-camera acquisition. For

our representation, a voxel grid is divided into horizontal layers
perpendicular to the vertical axis and turns into a collection of lay-
ers [=1,...,n, where n is the number of layers on the vertical axis.
For instance, for a 64 x 64 x 64 voxel grid we obtain 64 layers.

Initially, each layer contains a set of pixels that is the projection
of voxels on it. Since visual hull reconstruction may result in noise
and defects that should be eliminated prior to feature extraction,
we first evaluate each layer as a binary image consisting of pixels.
Then we apply morphological closing using a disk structural ele-
ment with a radius of 2 to close up internal holes and reduce noise
in the data. We find the connected components (CCs) in each layer
by looking at the 8-neighbors. Finally, a minimum bounding circle
is fitted to each CC. Fig. 2 illustrates the entire process on a sample
pose.

o)
O O

Fig. 3. Proposed circular features on example cases (best viewed in color): Given the fitted circles in the top row, we show the proposed circular features in the bottom row.
For all examples, the number of fitted circles in each layer corresponds to the number of circles feature. The outer circle (black) is the minimum bounding circle, which
includes all circles, and the inner circle (blue) is the circle bounding the centers of all the circles. In the first example, there is only one fitted circle, therefore the area of the
outer circle is equal to the fitted circle, and there is no inner circle. In the second and third examples, the number of circles and the areas of the outer circles are the same.
However, the areas of the inner circles are different because of the distance between the fitted circles. In the fourth and fifth examples, we present cases that include three
body parts (number of circles). If we compare the third and fourth cases, we observe that the areas of the outer and inner circles are the same, while the number of circles are
different. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Circle-based pose representation

The proposed circular representation provides important local
cues about the body configuration: the number of body parts pass-
ing through that layer, how much they spread over that layer and
how far they are from each other. We utilize the following circular
features to model these cues (see Fig. 3). The proposed features al-
low a simple and easy way to provide a view-independent
representation.

3.2.1. Number of circles

The articulated structure of the body creates a different
number of intersections in each layer. For example, the layer
corresponding to the head is likely to have a single circle,
and a layer corresponding to the legs is likely to have two cir-
cles. Therefore, as our first feature, we examine the number of
circles to find the number of body parts intersecting with a
layer.
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In this representation, a pose is described by a vector c,
c=Ic,....cl" 1)

where each ¢, 1 <1< n, is the number of circles extracted from
layer I.

3.2.2. Area of outer circle

The maximum area covering all body parts passing through a
layer is another important local cue to understand the body config-
uration in this layer, even in the case of noise. For example, the
maximum area at the level of the legs can provide information
such as whether the legs are open or closed.

To include all circles in that layer, the maximum area that covers
all body parts in a layer is found by fitting a minimum bounding cir-
cle. We refer to this minimum bounding circle as the outer circle.

In this representation, a pose is described by a vector o,

0=1o1,....00] 2)
where each 0, 1 <1< n, is the area of the outer circle in layer L
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Fig. 4. View invariance: Two kick poses performed by two different actors. The left column is the volumetric data for a pose from the kick action (64 x 64 x 64 voxel grid).
The middle column is the representation of the pose as a collection of bounding circles. The right column is the plot of the area of the outer circle’s feature vector showing the
bounding circle’s area per layer. Note that the feature vectors of the same pose from different viewpoints are very similar.
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Fig. 5. Motion Set for 13 actions. From top to bottom: check watch, cross arms, scratch head, sit down, get up, turn around, walk, wave, punch, kick, point, pick up and throw.

From left to right: O, O, Op, C, C;, Cp, I, I, I..

3.2.3. Area of inner circle
The third feature encodes spaces in a pose volume and is repre-
sented by the relative distances between body parts. For this pur-
pose, an inner circle bounding the centers of all circles is found. In
this representation, a pose is described by a vector i,
i=iy,...,i)

©
o

where each i;, 1 <1< n, is the area of the inner circle in layer L

Note that rather than using the area of outer and inner circles,
the radii could be used. The choice for area is made in order to am-
plify the differences. It is also empirically observed that area is bet-
ter than radius.

For all feature vectors ¢, 0, and i, encoding starts in layer [ =1
corresponding to the bottom of the voxel grid, and a value of zero
is stored for any layer with no pixels. This kind of encoding retains
the order of the extracted features and the body location with re-
spect to the floor (bottom of voxel grid).

3.3. Discussion on the proposed pose representation

The proposed circular features have several advantages. First,
these features store discriminative information about the

characteristics of an actual human pose. In most cases, poses are
identified by the maximum extension of the body parts corre-
sponding to the silhouette contours in the 2D scenarios. However,
this information is usually lost in single-camera systems depend-
ing on relative actor orientation. When we have volumetric data,
we can easily approximate this information by the bounding
circles. Moreover, fitting free form circles helps us to solve pose

Table 1
Motion Set: the motion descriptor as a set of motion matrices.

Number of circles
C=[c",...,c™ GC=G oC Variation of circle count in a fixed layer
through time

C,=GpoC Variation of circle count through body

Area of outer circle
0=o!,...,0m™ O,=G o0 Variation of outer circle in a fixed layer
through time
0,=G, 00 Variation of outer circle through body

Area of inner circle

1=, i") I;=G; ol  Variation of inner circle in a fixed layer
through time
I,=Gpol Variation of inner circle through body
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Fig. 6. Example views from the IXMAS dataset captured by five different synchronized cameras [23].

ambiguities related to the actor’s style. It is robust for handling the
variations that can occur in the performance of the same pose by
different actors.

Second, our pose representation significantly reduces the
encoding of 3D data while increasing the efficiency and preserving
the effectiveness of the system. A circle can be represented with
only two parameters, i.e. center point and radius, and the average
number of circles per layer is approximately 2. This significant
reduction in the number of voxels is further improved with the
introduction of the vectors ¢, o, and i. Although the encoding is
lossy, it is enough to identify poses and further actions when com-
bined with the temporal variations.

Most importantly, the proposed features are robust for viewing
changes. In a multi-camera system, an actor should be free to per-
form an action in any orientation and position. The system should
thus be able to identify similar poses even in the case of viewpoint
variations, that is, in the case of rotating a pose through the vertical
axis. As the proposed circular features are extracted in each layer
perpendicular to the vertical axis, any change in the orientation
or position of the pose will result in the translation of the extracted
circles but will not affect their areas (also radius), counts or relative
positions. Therefore, the introduced three feature vectors ¢, 0, and i
hold pose information independently from the view and are robust
to small changes in the poses. Fig. 4 shows an example in which
the descriptors are very similar while the action is performed by
two different actors and from two different viewpoints.

4. Motion representation

In the previous section, we present our representation to en-
code a 3D pose in a single action frame using feature vectors c, o,
and i. In the following, we use the proposed pose vectors to encode

Pose Accuracies with L, Norm
100 - - - : :

9 | :Ob_

80 f — 1

60 1

40 1

20 1

C area C radius E area E major E minor

Fig. 7. Leave-one-out classification results for pose samples. Poses are classified
using the L, norm with features o and op. Results show performances of the o
feature when computed using Circle Area, Circle Radius, Ellipse Area, Ellipse Major Axis

and Ellipse Minor Axis, respectively.

human actions as motion matrices formed by concatenating pose
descriptors in all action frames. Then we introduce additional mo-
tion features to measure variations in the body and temporal
domains.

4.1. Motion matrices

Let p' = [p},... ,pg]T be the pose vector at frame t, where n is
the number of layers, and p} is any representation of the fitted cir-
cles in layer L That is, p* is one of the vectors c, o, or i. We define a
matrix P as a collection of vectors p*, P=[p,...,p™], where m is
the number of frames in an action period. Matrix P holds all poses
during an action and can be visualized as an image of size n x m,
where n is the number of rows, and m is the number of columns
(see Fig. 5).

A generic motion descriptor should be scale invariant in order
to be independent from actor, gender, etc. In our study, rather than
normalizing and scaling at the pose level, we apply them to motion
matrices containing consecutive frames. In this way, we obtain a
better understanding of body variation in terms of width and
height through time.

Let P be any of the motion matrices described above with en-
triespf,I=1,...,nand t=1,...,m. First we obtain a normalized ma-
trix entry pn} as follows:

pj — min(P)
max(P) — min(P)

pn = (4)
where min(P) and max(P) are minimum and maximum values of
matrix P respectively.

Then, we resize the P matrix by bilinear interpolation to an
average size trained over samples. Resizing eliminates frame count
and layer count differences among matrices, while preserving mo-
tion patterns.

Since we work on voxel data, the valuable information will be
the voxel occupancy in a layer and its variation in amount and
direction over time (corresponding to the velocity of the parts).
Using matrix P, a specific action can be characterized with the
changes in the circles over the body or over time. A single column
stores information about the amount of change in the shape of the
pose (body) at a given time t. Similarly, a single row stores infor-
mation about the amount of change through the entire action per-
iod (time) for a given layer L

In order to extract this information, we evaluate the differences
on the features of the circles in consecutive layers and in consecu-
tive frames. We apply a vertical differentiation operator G, as an
approximation to vertical derivatives, over matrix P to find the
change over the body, and refer to the resulting matrix as Py.

Table 2
Minimum, maximum and average sizes of all primitive actions after pruning.

Layer count (n) Frame count (m)

min 41 13
max 58 99
avg ~48 ~40
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Similarly, we convolve matrix P with a horizontal differentiation
operator, G, to find the change over time, and refer to the resulting
matrix as P;.

The two new matrices P, and P;, together with the original ma-
trix P, are then used as the motion descriptors that encode varia-
tions of the circles over the body and time to be used in
recognizing actions.

Remember that P can be created using any of the pose descrip-
tors ¢, o, or i. Therefore, a motion descriptor consists of the follow-
ing set of matrices, which we refer to as Motion Set:

M= {c7ct7cbao70t70b7l7lt7lb} (5)

where C=|[c!,...,c™] is the matrix generated using the number of
circles feature, O =[0,...,0™] is the matrix generated using the
area of the outer circle feature, I = [i!,...,i™] is the matrix generated
using the area of the inner circle feature, and the others are the
matrices obtained by applying vertical and horizontal differentia-
tion operators over these matrices. The summary of the motion
descriptors is given in Table 1.

4.2. Implementation details for motion matrices

We perform some operations over matrix P for pruning and
noise removal prior to the normalization and formation of new
matrices P, and P..

After pose vector concatenation, matrix P is in the size of
64 x m, where 64 is the height of the voxel grid and m is the action
period. However, some layers (rows) are not occupied by the body
for the entire action. Therefore, first operation is to clean up the
motion matrices from rows that are not used throughout the action
period. After pruning, we obtain a n x m matrix, where n depends
on the maximum height of the actor over all action frames. Simi-
larly, action periods may vary from one actor to another, resulting
in a different number of frames.

The provided volumetric data is obtained by shape from the sil-
houette technique. However, extracted silhouettes have some de-
fects, affecting the volumes and our circular representation. After
pruning, we perform interpolation over motion matrices P to en-
hance the circular representation and to fill gaps corresponding
to missing circles. In some layers, missing voxels result in smaller
circle sizes. We apply a spatio-temporal smoothing over the mo-
tion matrices to tackle this problem. If a circle in a layer has a smal-
ler value than the average of its 4-neighbors then it is replaced
with the average value.

5. Action recognition

With the introduction of the motion descriptors in the previous
section, action recognition is turned into a problem of matching
the Motion Set (M) of the actions.

We present a two-level action classification scheme to improve
the classification accuracy. In the first level, actions are classified in
terms of global motion information by a simple approach that di-
vides actions into two groups: upper-body actions such as punch
or wave and full-body actions such as walk or kick. Then, in the
second level, actions are classified into basic classes based on mo-
tion matrix similarities measured by Earth Mover’s distance (EMD)
or Euclidean distance.

5.1. Full-body vs. upper-body classification

A simple way to classify actions is to evaluate global motion
information such as detecting whether the motion occurs in the
upper or lower part of the human body. We observe that lower-
body motions cause changes in the entire body configuration. We

Table 3

Leave-one-out nearest neighbor classification results for pose representation evaluated with bi op. Vectors are compared using the L, norm.

Check watch

80.56

Pick

Kick

Point punch

80.56

63.89
83.33

Wave
77.78
66.67

Walk

Sit

Scratch head

94.44
77.78
77.78

Cross arms
88.89
100.00

Acc.

88.89
100.00

77.78
83.33

100.00

100.00

87.66
86.2

Carea

97.22

100.00

86.11

Earea

86.11

72.22

75.00

100.00

100.00

63.89

79.94 61.11

Emajor
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Table 4

Stand-alone recognition performances of each matrix in Motion Set for 13 actions and 12 actors. The motion matrices are scaled to 48 x 40. Results denote that O outperforms

others with Euclidean Distance and Oy is the best one for Earth Mover's Distance.

Acc. (%) 0 o 0y I I, Iy c G G
Euclidean 85.26 66.00 81.00 49.40 31.00 37.80 57.10 32.50 37.60
Earth Mover’s 72.90 80.34 75.40 53.00 48.30 45.50 64.70 61.80 55.60

propose an action classification method that decides whether a test
instance is a member of the full or upper body Motion Sets.

We represent each action with a feature that reveals the
amount of motion in each layer during an action period. For this
purpose, we calculate v, the variation of the outer circle area, for
all layers of n x m matrix O, where n is the number of body layers,
m is the length of the action period. Then, we train a binary Sup-
port Vector Machine (SVM) classifier using the defined feature vec-
tor, v = vy,. .., U, to learn upper-body and lower-body actions. SVM
classifier is formed using RBF kernel.

As will be discussed later, the proposed two-level classification
method increases the recognition performance. Moreover, the total
running time decreases a considerable amount, parallel to the
descending pairs to be compared.

5.2. Matching actions

After the first-level classification as an upper-body or full-body
action, we perform a second, level classification. We calculate a
Motion Set, M for each action and use it for comparison with other
actions. For this purpose, we use the nearest neighbor
classification.

Let us assume M’ and M are Motion Sets containing motion
matrices for two action instances. Let P’ be one n x m matrix from
set M', where n is the layer count and m is the time. During the
comparison of the two actions, we compute a global dissimilarity
D(P', PY). We use the same methodology to compare all the matri-
ces in the Motion Sets. Note that if a motion belongs to the upper-
body set, we perform a comparison only for the upper body layers,
Z,...,n

5.3. Distance metrics

There are many distance metrics, such as L, norms, Earth
Mover’s Distance [30], Diffusion Distance [31] and x% L, norms

Accuracy with Different Distance Measures
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Fig. 8. Leave-one-out classification results for action samples. Actions are classified
with the O feature using L, and EMD. We show performances of the O feature when
computed using Circle Area, Circle Radius, Ellipse Area, Ellipse Major Axis and Ellipse
Minor Axis, respectively.

and y? are affected by small changes in bin locations, whereas,
EMD and Diffusion Distance alleviate shift effects in bin locations
and in some cases outperform other distance metrics [31,32].

We test two different distance measures. One is the well-known
L, norm and the other is the shift-invariant EMD. Although EMD is
robust for shift effects, we find that L, gives better performance
than EMD in some cases.

Classical EMD algorithms have high O(N*logN) computational
complexity. In this study, we apply EMD-L;, which is a O(N?)
EMD algorithm based on L; ground distance [32]. Furthermore,
EMD-L, algorithm does not require normalization to the unit mass
over the arrays. This increase its feasibility over our motion matri-
ces, which are only scale normalized.

6. Experimental results
6.1. Dataset

We test our method on the publicly available IXMAS dataset
[23], which is a benchmark dataset of various actions taken with
multiple cameras. There are 13 actions in this dataset: check
watch, cross arms, scratch head, sit down, get up, turn around,
walk, wave, punch, kick, point, pick up and throw. Each action is
performed three times with free orientation and position by 12 dif-
ferent actors. Multi-view videos are recorded by five synchronized
and calibrated cameras. Example views from the camera setup are
shown in Fig. 6. Since our focus is on pose and motion representa-
tion, we do not deal with reconstruction and use the available vol-
umetric data in the form of a 64 x 64 x 64 voxel grid. For motion
segmentation, we use the segmentations provided by Weinland
et al. [23].

6.2. Evaluation of pose representation

In the first part of the experiments, we evaluate the perfor-
mance of proposed pose representation. For this purpose, we
Feature Accuracies with Different Distance Metrics
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Fig. 9. Leave-one-out classification results for action samples. Actions are classified
with various features using L, and EMD. Results denote that O outperforms others
with Euclidean Distance and O has the highest accuracy for Earth Mover’s Distance.
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construct a key-pose dataset obtained from IXMAS. Among the
dataset actions, sit down, stand up and pick up have identical
key-poses, but in different order. Similarly, punch, point and throw
actions can be grouped as identical in terms of key-poses. We con-
struct a dataset of nine classes consisting of 324 key-poses in total;
key-pose is selected from each action video of the dataset (see
Table 3).

We measure pose retrieval performance by a simple nearest
neighbor classifier using L, norm. We use o and o, pose vectors,
with variation through the body, as our feature. Experiments show
that the op feature outperforms o. Accuracies and class perfor-
mances for the oy, feature are shown in Table 3.

While computing the o and oy, features, we follow a similar pro-
cedure as for motion matrices. First we obtain a pruned circular
representation to remove unoccupied layers at the top and bottom
of the visual hulls, then normalize it with the maximum value.
Then, we resize all pose vectors to a fixed size of 48 using bilinear
interpolation. Finally, we compute the oy, feature by applying a
[-101] filter over o.

In addition to circle fitting, we perform experiments for a repre-
sentation based on ellipses. We compute o vectors by ellipses
rather than circles. For ellipses, we define three features that can
be used instead of the circle area: ellipse area, ellipse major axis
and ellipse minor axis. The results are illustrated in Fig. 7.

Similarly, we test the performance of the circle radius for pose
retrieval. Although performances of all features are very close to
each other, circle area outperforms others. Moreover, using circle
area rather than circle radius provides a slightly better perfor-
mance. Here, the scale factor reveals the differences among circles.

6.3. Evaluation of motion representation and action recognition

Each action is represented with a Motion Set, M, where motion
descriptors C, O, I are obtained by concatenation of pose descrip-
tors. After enhancement, all n x m main motion matrices C, O,
and I are resized to a fixed size matrix by bilinear interpolation.
For the IXMAS dataset, considering the average, minimum and
maximum layer and frame sizes for actions ( shown in Table 2),
matrices are scaled into a fixed 48 x 40 size matrix. Other values
are also experimented with, but only slight changes are observed.

Other matrices in M, i.e. Cp, C;, Op, Oy, I, and I, are obtained by
applying the Sobel operator on matrices C, O, I to measure the cir-
cular variations through the body and time.

L, Performance of O with Other Matrices
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We perform a two-level action classification. In the first level, a
simple binary SVM classifier is trained for full-body vs. upper-body
classification. On the IXMAS dataset, we label check watch, cross
arms, scratch head, wave, punch, point and throw actions as
upper-body actions, and sit down, get up, turn around, walk, kick
and pick up as full-body actions. We selected three actors for each
action for training, and use the rest of the actors for testing. We ob-
tain a classification accuracy of 99.22%, which is almost perfect.

In the second level, actions are compared within their corre-
sponding upper-body or full-body sets using the nearest neighbor
method with different distance metrics, L, norm and EMD-L;. We
use the leave-one-out strategy. All samples belonging to an actor
are excluded, to be used as test samples, and the samples remain-
ing are used as training samples. The accuracy results are obtained
by averaging over all the actors.

In the first part of the experiments, we evaluate stand-alone
recognition performances for each motion representation (see
Fig. 9). The results indicate that the accuracy of matrix O, is higher
than the accuracies of all other motion matrices when EMD is used
as the distance measure. In EMD experiments, motion matrices O,
and O, outperform the original matrix O. However, this is not true
for matrices C and I. For the Euclidean case, O outperforms the rest,
with the highest 85.26% accuracy. But in this case, O, has a lower
performance than O and O,. Detailed accuracies are given in
Table 4.

Similar to the pose experiments, we also evaluate the behavior
of the most discriminative feature in the cases of different struc-
tures fitted to the voxels. For this purpose, we show performances
of the O feature in Fig. 8 when computed using Circle Area, Circle
Radius, Ellipse Area, Ellipse Major Axis and Ellipse Minor Axis, respec-
tively, with different distance metrics.

In the second part of the experiments, we evaluate the recogni-
tion performance as a mixture of motion matrices to utilize differ-
ent motion features at the same time. For this purpose, we
combine two motion matrices from Motion Set using a linear
weighting scheme. Stand-alone evaluation indicates that matrices
0 and O; have the best performances for Euclidean and EMD,
respectively. Therefore we choose them as the main features and
add other features as pairwise combinations. We calculate the
weighted sum of distances for two action sequences i and j as:

D(i,j) = aD(0',0') + (1 — 0)D(P', P') (6)

where P M and P # O (P # O for EMD).

EMD Performance of Ot with Other Matrices
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Fig. 10. « search for two-level classification: the combination of O matrix with others using L, and the combination of O, matrix using EMD. O and I pair gives the highest
accuracy (86.97%) with Euclidean Distance and « = 0.9 value. O, and O, give the best performance, with o = 0.8, resulting in an accuracy of 85.90% for EMD measurement.
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As shown in Fig. 10, O, and Oy, give the best performances with
o = 0.8, resulting in an accuracy of 85.90% for EMD measurement.
On the other hand, O and I pair gives the highest accuracy; 86.97%
with Euclidean Distance and o = 0.9 value.

To further incorporate all features, we select one feature matrix
per feature type that has the highest accuracy among three. We
pick either P, P, or P, from each type. Based on the stand-alone per-
formances, one matrix outperform others in the same feature type.
This time, we calculate the weighted sum of distances with alpha
and beta parameters. For Euclidean distance, we report a maximum
accuracy of 88.63% with weights 0.7, 0.1 and 0.2 for the O, C and I
combination, respectively. For the EMD experiment, we report
85.26% with same weights for O, C and I, respectively.

Fig. 11 shows the confusion matrices for the best configurations.
In the experiments, we observe no important difference in the per-
formance with the addition of new features, and for simplicity we
prefer to combine only three features.

The recognitions of three actions, namely, wave, point and
throw, have lower performances with respect to other action cate-
gories. The main problem with the wave action is confusion with
the scratch head action. In many wave sequences, even in the
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volumetric data, the periodicity of the wave action is rarely or
never recognized. Some actors just barely move hand, while others
move arms. From this observation, a low recognition rate is to be
expected.

Similarly, the point and punch actions are confused with each
other. Both actions contain similar poses, but a difference between
punch and point is in the duration of the actions. In motion pat-
terns, we observe high peak for punch actions. This peak can be a
high value occurring in the same layer but with a short duration,
or it can be an increase through the z axis (corresponding y axis
in the motion matrix). After scaling, the distinctive pattern is pre-
served and peak variations among these two actions can be clearly
observed. But again, depending on the actor’s style, the duration is
not consistent; some actors perform a punch action very slowly,
and it looks like the point action. In such cases, it is likely that
the scaling of the motion matrices results in the similar represen-
tation of these two action categories.

Another low recognition performance is observed for the throw
action. The dataset contains variants of the throw action, per-
formed by different actors, as throw from above and throw from
below. Even in this situation, we achieve 80.56% accuracy for the
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Fig. 11. Confusion matrices for two-level classification on 13 actions and 12 actors. The left confusion matrix is for Eucledian Distance, with an accuracy 88.63%, while the
right one is the result of the EMD, with an accuracy of 85.26%. Results are computed by the sum of weighted distances over three feature matrices. Matrix size is 48 x 40.
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Fig. 12. Confusion matrices for single-level classification on 13 actions and 12 actors. The left confusion matrix is for Eucledian computation giving 82.69% accuracy by
combining O and I with weights 0.8, 0.2. The right confusion matrix is the EMD computation reported 82.05% accuracy by combining O and I with weights 0.7, 0.3. Results are
computed by the sum of weighted distances over three feature matrices. Matrix size is 48 x 40.
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throw action, with fewer training samples in the same category.
Aside from this, throw is mainly confused with punch action, be-
cause of similar peak patterns related to actor style.

In the third part of the experiments, we evaluate the system’s
performance on single-level classification (i.e. classifying a full
set of actions without classifying them into full-body vs. upper-
body actions). As in the two-level case, O and O, outperform others
when we compare their stand-alone performances. Similarly, we
compute the distances among action samples by first selecting
one feature from each feature type, and then combining the
weighted sum of three distances. For the Euclidean experiment,
the O feature again gives the highest accuracy 82.69% when com-
bined with I using weights 0.8, 0.2. For EMD, we report an accuracy
of 82.05% by combining O and I with weights 0.7, 0.3. Please note
that both experiments are done by combining three feature types.
However, C does not increase the results. The confusion matrices of
the best reported results are given in Fig. 12.

We observe that adding a two-level classification improves the
overall accuracy from 82.69% to 88.69%. Moreover, if execution
time is crucial, this method decreases the running time by elimi-
nating half of the comparisons between pairs for matching.

7. Comparisons with other studies

The IXMAS dataset is introduced in [23] and used in several
other studies. In this section, we compare our results with the
other studies in the literature that use the same dataset. Remem-
ber that we use the full dataset, with 13 actions and 12 actors,
and obtain a 88.63% recognition performance.

In some studies [23,24,27], not the full set, but a subset consist-
ing of 11 actions and 10 actors is used. In order to compare our
method with those studies, we also test our method over 11 ac-
tions and 10 actors. With a similar evaluation of different configu-
rations as in the full case, we obtain a 98.7% performance for the
upper-body vs. full-body classification, and for action recognition
in a two-level classification scheme the best reported performance,
90.91%, is obtained for the O, I and C combination with weights
0.7, 0.1, 0.2, respectively using Euclidean Distance. Similarly, we
report a 90.30% recognition accuracy for the EMD experiment, for
an O, I and C combination with weights 0.7, 0.2, 0.1 respectively.
The confusion matrix for 11 actions, and 10 actors is shown in
Fig. 13.
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Fig. 13. Confusion matrix for two-level classification on 11 actions and 10 actors,
with an accuracy of 90.91%. This is the result of O, I and C combination weights 0.7,
0.1, 0.2. Matrix size is 48 x 40.

Table 5
Comparison of our method with others tested on the IXMAS dataset.

Method Accuracy (over Accuracy (over
11 actions) (%) 13 actions) (%)

Weinland et al. [23] 93.33 -

Our method 90.91 88.63

Liu and Shah [29] - 82.8

Weinland et al. [24] 81.27 -

Lv and Nevatia [25] - 80.6

Yan et al. [27] 78.0 -

Although a direct comparison is difficult, we arrange studies in
terms of performances on the multi-view IXMAS dataset in Table 5.
As can be seen from the results, our performance is comparable to
the best result in the literature and superior to the other studies in
terms of the recognition rate. This is very promising considering
the efficiency of the proposed encoding scheme.

Weinland et al. [23] report an accuracy of 93.33% over 11 ac-
tions. However, in their later work [24], they obtain 81.27% accu-
racy on the same dataset. This shows that 3D-based recognition
is more robust than 2D to 3D matching. Lv and Nevatia [25] use
2D matching. Note that they test on the whole dataset, however
they further add standing action, and divide throw action into
two action categories as throw above and throw below. Liu and
Shah [29] report the second-highest score over 13 actions. Their
approach is based on multiple images features rather than 3D rep-
resentations. However, it proposes an orderless feature set, which
is difficult to use for pose estimation.

8. Summary and future directions

The principal contributions of this paper can be summarized as
follows:

- First, we introduce a new layer-based pose representation using
circular features. For this purpose, three view-invariant features
are introduced to encode the circles in a layer, which are then
combined over all layers to describe a pose on a single frame:
the number of circles, the area of the outer circle that covers
all body parts passing through a layer, and the area of the inner
circle that encodes the distance between body parts in a layer.
The study demonstrates that this circular model is effective
for providing view invariance. Moreover, representation does
not require alignment.

- Second, we introduce a new motion representation for describ-
ing actions based on our pose representation. Motion features
are extracted from matrices constructed as a combination of
pose features over all frames. The extracted motion features
encode spatial-temporal neighborhood information in twofold:
variations of circular features in consecutive layers of a pose
and variations of circular features in consecutive poses through
time.

- Finally, we use our motion representation to propose a two
stage action recognition algorithm using two well-known dis-
tance measures: L, norm and EMD-L; “cross-bin” distance
[32]. Experiments show that the performance of our method
is comparable to the other methods in the literature.

Although we study volumetric data in the form of a voxel grid
throughout the paper, the idea of circular features can be easily
adapted to other 3D representations, such as surface points. The
proposed descriptor can also achieve a good performance for shape
matching and retrieval of human-body-like shapes. Moreover, the
same approach can be used to fit a skeleton to a 3D shape by con-
necting the centers of circles in each layer.
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