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Abstract

In this paper, we study the problem of two-machine, identical parts robotic cell scheduling with operational $exibility.
We assume that every part to be processed has a number of operations to be completed in these two machines and both
machines are capable of performing all of the operations. The decision to be made includes 8nding the optimal robot
move cycle and the corresponding optimal allocation of operations to these two machines that jointly minimize the cycle
time. We prove that with this de8nition of the problem 1-unit robot move cycles are no longer necessarily optimal and
that according to the given parameters either one of the 1-unit robot move cycles or a 2-unit robot move cycle is optimal.
The regions of optimality are presented.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In order to be successful in today’s highly competitive world, increasing productivity is an essential factor for manufac-
turing systems. Recent technological improvements opened new perspectives for industries. As a result, many industries
are making use of automation, and hence the use of robots in industry is increasing rapidly. Robots are installed in
order to reduce labor cost, to increase output, to provide more $exible production systems and to replace people working
in dangerous or hazardous conditions [3]. An important application of robots in manufacturing is their use as material
handling devices in robotic cells, where a robotic cell contains two or more robot-served machines [10]. There are no
buAers at or between the machines. For the complexity of unlimited buAer space problem, we refer to Hurink and Knust
[9]. Logendran and Sriskandarajah [11] study three diAerent robotic cell layouts: robot-centered cells (where the robot
movement is rotational), in-line robotic cells (where the robot moves linearly) and mobile-robot cells (generalization of
in-line robotic cells and robot-centered cells). Sethi et al. [12] proved that for a 2-machine robotic cell producing a single
part type, the optimal solution is a 1-unit cycle, where an n-unit cycle can be de8ned as a robot move cycle which
produces exactly n units and ends up with the same state of the cell as the starting state. Hall et al. [8] proved that for
three machine cells, producing single part-types, the repetition of 1-unit cycles dominates more complicated policies that
produce two units. Crama and Klundert [6] established the validity of the conjecture of Sethi et al. [12] that “1-unit cycles
yield optimal production rates for 3-machine robotic $owshops”. Brauner and Finke [2] proved that 1-unit cycles do not
necessarily yield optimal solutions for cells of size four or large. Reviews of the literature related to cyclic scheduling
problems in robotic cells without buAers can be found in Crama et al. [4] and Sriskandarajah et al. [13].

In the current literature, the allocation of the operations to each machine is assumed to be constant and for given
processing times the optimum robot move cycle minimizing the cycle time is to be determined. In some manufacturing
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operations such as chemical electroplating this assumption is meaningful and these operations mostly require no-wait
constraints (see for example [1]). However, in $exible manufacturing systems (FMS) the processing stations are predom-
inantly CNC machines and they possess operation 0exibility by de8nition. Operation $exibility can be de8ned as the
ability to interchange the ordering of several operations for each part type [3]. Therefore, assuming that processing times
are 8xed on each CNC machine may not accurately represent the capabilities of the CNC machines and limits the number
of alternatives unnecessarily for these systems. In this study we assume that each part has a number of diAerent operations
to be completed. Henceforth, the problem to be considered is to allocate the operations to the machines and is to 8nd the
robot move cycle that corresponds to this allocation of operations in order to jointly minimize the cycle time or in other
words, maximize the long run average throughput rate.

For this problem de8nition, we prove that the optimal solution is not necessarily a 1-unit cycle as in the case of
Sethi et al. [12] and show that the optimal solution could be a 2-unit cycle for some parameter input. We present regions
of optimality for the potentially optimal robot move cycles.

The remainder of the paper is organized as follows. In the next section we present the problem de8nition and 1-unit
robot move cycles. The operation allocation problem is described in Section 3. In Section 4, sensitivity analysis on
parameters is made and in Section 5, we comment on the results and suggest new research directions.

2. Preliminaries and problem de�nition

This section reviews some standard terminology from the literature and introduces several de8nitions particular to this
paper. Also in this section we give a formal de8nition of our problem and introduce our systematic approach in cycle
time calculations.

We consider an in-line robotic cell of two identical machines which repeatedly produces one type of product. There is
no buAer between the machines. The layout of the cell can be seen in Fig. 1. Each of the identical parts has a number of
operations to be performed. The processing times are assumed to be identical for every operation in both of the machines.
Consistent with the existing literature (see [12]), the loading and unloading times and the travel time of the robot from one
station to a consecutive station are all assumed to be constant. Furthermore, the robot travel times satisfy the triangular
equality (see [6]).

In this study, we consider the robotic cell to be composed of CNC machines and a material handling robot. The
CNC machines possess operational $exibility and process $exibility by de8nition. Browne et al. [3] de8nes process $ex-
ibility as the ability to handle a mixture of operations. That is, if a part requires diAerent operations such as drilling,
milling, etc., process $exibility states that, one CNC can handle all of these operations. This is achieved by the tool
magazines of these CNC machines which are capable of changing the tools easily and with very small setup times.
On the other hand, operational $exibility is de8ned as the ability to interchange the ordering of several operations
for each part type. That is, the processing sequence of operations required for a part type can be changed. In this
study we assume that the operations constituting each part may be processed in any order. These two types of $exi-
bilities make it possible to allocate every operation to any one of the two machines. As the allocation of the opera-
tions changes, the processing times on the machines also change accordingly. As a result, in our study the processing
times are not 8xed but rather are decision variables. We will try to 8nd the processing times on both of the ma-
chines by allocating the operations to the machines and 8nding the robot move cycle which will jointly minimize the
cycle time.

The following de8nitions on robot activities and n-unit robot move cycles are borrowed from Crama and Van de
Klundert [5].

Input Buffer
Machine 1 Machine 2

Output Buffer

RobotLinear Tracks

Fig. 1. Inline robotic cell layout.
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De�nition 1. Ai is the robot activity de8ned as; robot unloads machine i, transfers part from machine i to machine i+1,
loads machine i + 1. The machines are numbered as 1 and 2, the input buAer is numbered as 0 and the output buAer is
numbered as 3. So we have activities A0; A1, and A2.

De�nition 2. An n-unit robot move cycle is the move cycle in which starting with an initial state of the system, the robot
performs each activity exactly n times and ends up with the initial state of the system again. Note that, in an n-unit robot
move cycle exactly n parts are produced.

Let us assume that each part has p required operations to be performed on either machine. We will use the following
parameters and decision variables:

ti = Processing time of operation i on either machine 1 or 2, where i∈ [1 : : : p].
P = Total processing time required to 8nish the production of a part, that is the sum of the processing times of all

the p operations, t1 + t2 + · · · + tp.
	= The load (or unload) time of workstations by the robot.

= Time taken by the robot to travel between two consecutive stations.
T = Long run average cycle time of any robot move cycle to produce one part.

In other words, using the classi8cation scheme of Hall et al. [8], we can de8ne our problem as IRC2 | k=1; 
i=
; 	i=	 | T
with operational $exibility.

Sethi et al. [12] proved that there are two feasible 1-unit robot move cycles:

S1 ≡ This can be represented by the sequence of robot activities A0A1A2. Initially the system is empty and the robot
is in front of the input buAer. After the listed activities are performed, the robot returns to the input buAer. Sethi
et al. [12] provided the cycle time of S1 as

6	 + 6
+ a+ b;

where a is the processing time of the part on the 8rst machine and b is the processing time of the part on the
second machine. In our notation, a is the sum of a speci8c subset of operation times from {t1; t2; : : : ; tp} and
b= P − a.

S2 ≡ This cycle is represented as A0A2A1. Initially, only the second machine is loaded and the robot is in front of the
input buAer. Then the robot sequences these activities and returns to the input buAer. The cycle time of S2 as
given in [12] is

4	 + 4
+ max{2	 + 4
; a; b}

or equivalently

6	 + 8
+ max{0; a− (2	 + 4
); b− (2	 + 4
)};

where a and b are as de8ned above.

Now let us consider an example which will shed light on our assumptions of process and operational $exibility.

Example. Assume that we have 8ve operations to be completed with corresponding operation times, t1 = 13; t2 = 17;
t3 = 10; t4 = 5 and t5 = 5. So P = t1 + t2 + t3 + t4 + t5 = 50. Take 	= 1 and 
= 2. If we assumed, as done in the current
literature, that there is no process and operational $exibility, we should state that some operations must be processed on
the 8rst machine while the remaining ones must be processed on the second machine in all repetitions of the production
cycle. For such a case, considering all allocation possibilities of these operations to two machines, allocating operation 1
and 3 to the 8rst (second) machine and the remaining ones to the second (8rst) machine gives the minimum cycle time
using S2. Thus, let us assume that a= t1 + t3 = 23 and b= t2 + t4 + t5 = 27. In such a case, the cycle time would be:

T = 6 × 1 + 8 × 2 + max{0; (23 − 10); (27 − 10)} = 39:

However, if we consider the process and operational $exibility of the machines, then the allocation of these operations to
the machines need not be the same in all repetitions of the robot move cycle. Consider repetitions of cycle S2. Assume
that in the 8rst repetition of the cycle we allocated the operations as before so that a= 23 and b= 27 and in the second
repetition we did just the opposite. Consider allocating tasks 1 and 3 to the second machine instead of the 8rst and the
remaining ones to the 8rst machine. Thus, now we have a = 27 and b = 23. Assume that we use these two diAerent
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allocations of operations alternatingly. Then, the long run average cycle time for S2 becomes:

T =
12 × 1 + 16 × 2 + max{0; (23 − 10); (23 − 10)} + max{0; (27 − 10); (27 − 10)}

2
= 37

which is less than 39. The Gantt Charts shown in Fig. 2 helps comparing the standard and the operational-assignment
cases. The bold dashed lines show the end of the 8rst repetition and start of the second repetition of the S2 cycle. As
it is observed from the Gantt Chart for the standard case, the 8rst and second repetitions of the S2 cycle are identical.
The 8rst repetition ends at time 39 and the second repetition ends at time 39 × 2 = 78. However, two repetitions are
not identical for the operational assignment case. In particular, the 8rst repetition takes 35 time units while the second
repetition takes 39 time units. In this example, the total processing times of each machine are the same in both cases.
By allowing diAerent allocations in each repetition, we can decrease the total idle time of the 8rst machine from 14 to
10 and the robot from 17 to 15 time units, respectively, in each cycle. As a result, the long run average cycle time is
decreased by 2 time units, which corresponds to 2

39 = 5:1% increase in the throughput. This example clearly shows that
8xing the processing times on each CNC machine is a major hindrance limiting the better of the alternatives.

In the current practice, the processing time of every part on every machine has to be known in advance so as to
calculate the cycle times. Since, in this study, we considered processing times as decision variables, in order to 8nd the
cycle times we need to know the allocation of operations to the two machines. The following methodology will help us
in 8nding the cycle times of the robot move cycles.

As the above example suggests, with process and operational $exibility, the processing times on the 8rst and the
second machines may diAer from repetition to repetition of the robot move cycle. It is not known how many such
diAerent repetitions are required to get the minimum cycle time for each robot move cycle. Thus, let us assume that we
have k such diAerent repetitions, called k-allocation type cyclic production. A k-allocation type cyclic production is simply
a repetition of identical k-unit move cycles. In each k-unit move cycle, each one of the k parts has a diAering processing
time on the 8rst and hence the second machine. Consider any one of these repeated k-unit move cycles. There are exactly
k parts produced. More formally, let O = {1; : : : ; p} be the index set of the operations of each part to be produced. For
the processing of the jth part within any k-unit move cycle, where j6 k, assume that the operation set is partitioned into
Oj ⊆ O and O − Oj where Oj (O − Oj) is the set of operations that is allocated to the 8rst (second) machine for this
part. Thus, the processing time of the jth part on the 8rst machine is Pkj =

∑
i∈Oj ti. Fig. 3 schematizes these concepts.

One can easily conclude that, since we have p operations to be allocated for each part type and the order of the
operations is not important, there are exactly 2p diAerent possible allocation types.

More formally we can de8ne the k-allocation type cyclic production which will be used to 8nd the long run average
cycle time of the robot move cycles as follows:

De�nition 3. We say that a given robot move cycle uses k-allocation types if there is a total of k distinct partitions of
the operations to the two machines. In a cyclic manner, the 8rst k parts in the queue have diAering allocation types and
after the kth one the cycle returns to the beginning and the next k parts have the same allocation types as the previous k.

According to this de8nition we can conclude that the problems considered in the literature so far are robotic cell
scheduling problems with one-allocation type move cycles where the partition of operations is 8xed.

We shall now proceed to present the cycle times of 1-unit robot move cycles S1 and S2 in our notation. Let TS1(k) be
the long run average cycle time (to produce one part) of S1 using k-allocation types. Let TS2(k) be de8ned in a similar
fashion for move cycle S2. Then, with our notation, the cycle time of robot move cycle S1 found by Sethi et al. [12]
becomes:

TS1(1) = 6	 + 6
+ P:

However, since the cycle time of S1 does not depend on Pkj but instead on P, we conclude that there is no allocation
problem for S1 and TS1(k) = TS1(1) ∀k ¿ 1 as well.

The cycle time of S2 provided by Sethi et al. [12] is for one-allocation type and with our notation it becomes:

TS2(1) = 6	 + 8
+ max{0; P11 − (2	 + 4
); (P − P11) − (2	 + 4
)}:
For two-allocation types, the cycle time is computed as follows:
Let wij be de8ned as the waiting time of the robot in front of machine j for the part which has ith allocation type to

be processed. Since we have two-allocation types, it is enough to consider the 8rst and the second part production only.
Initially, the robot is in front of the input buAer just starting to unload part 2; machine 1 (M1) is empty and machine 2
(M2) is loaded with part 1 (the start of the 8rst repetition of S2). Robot unloads a part from the input buAer, transfers to
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Fig. 3. DiAerent allocation of k parts to the machines.

M1 and loads it (	 + 
 + 	), moves to M2 (
), waits if necessary for the machine to 8nish the operation (w12), unloads
M2, transfers the part to output buAer, drops the part and returns back to M1 (	 + 
+ 	 + 2
), waits if necessary (w21),
unloads the part from M1, transfers it to M2 and loads M2 (	 + 
 + 	), and returns back to input buAer (2
) (the end
of the 8rst repetition and the start of the second repetition of S2). The operations that the robot make in the second
repetition are exactly the same as the 8rst one, the only diAerence being in the processing times of the machines. Thus,
we have w11 instead of w21 and w22 instead of w12 in the second repetition. The average cycle time for two-allocation S2
is simply found by summing up these values and dividing by 2:

12	 + 16
+ w11 + w12 + w21 + w22

2
;

where

w11 = max{0; P21 − (2	 + 4
+ w22)};
w22 = max{0; P − P22 − (2	 + 4
)};
w21 = max{0; P22 − (2	 + 4
+ w12)};
w12 = max{0; P − P21 − (2	 + 4
)}:

Then,

w11 + w22 = max{0; (P − P22) − (2	 + 4
); P21 − (2	 + 4
)}; and

w12 + w21 = max{0; (P − P21) − (2	 + 4
); P22 − (2	 + 4
)}:
Thus, the cycle time for two-allocation S2 is

TS2(2) = 6	 + 8
+ (max{0; (P − P22) − (2	 + 4
); P21 − (2	 + 4
)})=2
+(max{0; (P − P21) − (2	 + 4
); P22 − (2	 + 4
)})=2: (1)

Let us now proceed to 8nd the cycle time for k-allocation type S2. Consider the lth repetition of the robot move cycle
within a k-allocation cyclic production S2, where l6 k. Initially, the second machine is loaded with a part which has
(l−1)th allocation type. The robot activity sequence is A0A2A1. Thus, the cycle time can be found as: 6	+8
+w(l−1)2+wl1
where

w(l−1)2 = max{0; (P − Pk(l−1)) − (2	 + 4
)} and wl1 = max{0; Pkl − (2	 + 4
+ w(l−1)2)}:
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After a few manipulations the cycle time for the lth repetition can be simpli8ed as:

6	 + 8
+ max{0; (P − Pk(l−1)) − (2	 + 4
); Pkl − (2	 + 4
)}:

If l = 1, then (l − 1)th allocation is the kth allocation type due to the cyclic nature of cycles. Thus, if we add up the
cycle times for all repetitions of the cycles in a k-allocation type S2, the total time to complete all cycles becomes:

6(k)	 + 8(k)
+ max{0; Pk1 − (2	 + 4
); (P − Pkk) − (2	 + 4
)}
+max{0; Pk2 − (2	 + 4
); (P − Pk1) − (2	 + 4
)}
+max{0; Pk3 − (2	 + 4
); (P − Pk2) − (2	 + 4
)}

...

+max{0; Pkk − (2	 + 4
); (P − Pk(k−1)) − (2	 + 4
)}: (2)

Then we get the cycle time to produce one part by dividing this cycle time by k:

TS2(k) = 6	 + 8
+ ( 1k )max{0; Pk1 − (2	 + 4
); (P − Pkk) − (2	 + 4
)}
+( 1k )max{0; Pk2 − (2	 + 4
); (P − Pk1) − (2	 + 4
)}
+( 1k )max{0; Pk3 − (2	 + 4
); (P − Pk2) − (2	 + 4
)}

...

+( 1k )max{0; Pkk − (2	 + 4
); (P − Pk(k−1)) − (2	 + 4
)}: (3)

In addition to the 1-unit robot move cycles, S1 and S2, Hall et al. [8] de8ne two more robot move sequences. They are
not feasible robot move cycles by themselves, since, the starting and the ending states depend on the preceding and the
following robot movements and unless we know the preceding and the following robot movements, we cannot represent
these cycles by the help of robot activities.

S12 ≡ The transition movement of the robot from performing cycle S1 to S2. The robot uses cycle S1 during processing
of part i on the 8rst machine, and cycle S2 during processing on the second machine.

S21 ≡ The transition movement of the robot from performing cycle S2 to S1, in which, the robot uses cycle S2 during
processing of part i on the 8rst machine, and cycle S1 during processing on the second machine.

Hall et al. [8] show that we can represent any robot move cycle by the four robot move sequences: S1, S2, S12 and
S21. For example, a 3-unit robot move cycle can be represented as S1S12S21 and in terms of the robot activities this is
equivalent to the sequence A0A1A2A0A1A0A2A1A2. The same cycle can also be represented as S12S21S1. The diAerence is
the starting and the ending points of the cycle but both give the same cycle time. However, we are not entirely free in
representing robot move cycles by these four sequences. For example, S1 cannot be followed by S2 since at the end of
cycle S1, both machines are empty and the robot is in front of the input buAer in order to take a part and load machine
1. If S1 is followed by S2 then, while performing S2 the robot will try to unload machine 2 which is already empty and
this violates the basic assumption of Crama et al. [6]. We can represent the set of all allowable moves by the transition
graph shown in Fig. 4. Thus, we conclude that, S1 can be followed by either S1 or S12, S2 can be followed by either S2
or S21, S12 can be followed by either S21 or S2 and lastly, S21 can be followed by either S12 or S1.

Lemma 4 (Hall et al. [8]). In any feasible robot move cycle the number of S12 sequences is equal to the number of S21
sequences.

Proof. In Fig. 3, we see that robot move sequence S12 must be preceded by S1 or S21, and followed by S2 or S21. Since
the schedule is cyclic, it follows that the number of transitions from S1 into S2 (using S12) must be equal to the number
of transitions from S2 into S1 (using S21).

Before proceeding with the next lemma, let us note that though neither S12 nor S21 are complete cycles, both se-
quences S12S21 and S21S12 are 2-unit complete robot move cycles resulting from the robot activity sequence A0A1A0A2A1A2.
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S1 S12

S21 S2

Fig. 4. Transition graph.

Lemma 5. The cycle time of any n-unit robot move cycle is the summation of the cycle times of three robot move
cycles S1; S2 and S12S21 in corresponding numbers that form the n-unit robot move cycle.

Proof. As previously stated, any n-unit robot move cycle is a repetitive sequence of S1, S2, S12 and S21. Let us 8rst
analyze S1. The four possible sequences of S1 with the preceding and following robot move cycles with corresponding
activity sequences are:

S1S1S1 : : : : A2(A0A1A2)A0 : : : ;

S1S1S12 : : : : A2(A0A1A2)A0 : : : ;

S21S1S1 : : : : A2(A0A1A2)A0 : : : ;

S21S1S12 : : : : A2(A0A1A2)A0 : : : :

In all the cases the preceding activity of cycle S1 is A2 and the following one is A0. Then the initial and the 8nal states
of the system before and after performing cycle S1 are the same. Thus, if we remove the activities of S1; (A0A1A2), the
remaining sequence will still correspond to a valid cycle. So we can remove the activities of all S1 cycles and consider
the cycle time of the remaining activities and add the total cycle time of the removed S1 cycles at the end to 8nd the
cycle time of the n-unit robot move cycle.

By following a similar sequence of arguments, the same result can be achieved for cycle S2 also. Thus, we can remove
cycles S1 and S2, consider the rest, and add up the cycle times of the removed cycles at the end. After we remove cycles
S1 and S2, we are left with an alternating sequence of S12 and S21. Then the cycle time of the n-unit robot move cycle
can be found by the summation of the cycle times of S1, S2 and S12S21 cycles that form the n-unit robot move cycle.

Lemma 6. At least one of the cycles S1, S2 or S12S21 has a cycle time that is less than or equal to the cycle time of
any given n-unit robot move cycle.

Proof. Let us consider any n-unit robot move cycle. This cycle can be expressed as a vector (b1; b2; b3), where b1
(respectively, b2, b3) is the number of S1 (respectively, S2, S12S21) cycles used to form the n-unit robot move cycle.
Note that S1 and S2 are 1-unit robot move cycles and S12S21 is a 2-unit robot move cycle. Suppose that Tn is the total
cycle time of the n-unit robot move cycle to produce n parts. So the average cycle time to produce one part with this
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robot move cycle is (Tn=n). Using Lemma 5 we have:

Tn

n
=

(b1)(TS1(k)) + (b2)(TS2(k)) + (b3)(TS12S21(k))
b1 + b2 + b3

;

where TS12S21(k) is the long run average cycle time to produce one part with S12S21 using k-allocation types. From this
equation we conclude that, the cycle time of any n-unit robot move cycle is a convex combination of the cycle times of S1,
S2 and S12S21. Thus, the cycle time of any n-unit robot move cycle cannot be less than min{TS1(k); TS2(k); TS12S21(k)}.

Lemmas 5 and 6 together state that the solution to IRC2 | k = 1; 
i = 
; 	i = 	 | T is one of the three robot move cycles:
S1, S2 or S12S21. In Theorem 10, we will extend this result and present regions of optimality for each of these three
cycles. Prior to that, we shall prove Theorems 7 and 9 together which will help us in 8nding the optimal number of
allocation types to be used along with S2 and S12S21 cycles, respectively.

3. Solution procedure for operation allocation problem

With Theorems 7 and 9 we shall 8nd the optimal number of allocation types for robot move cycles S2 and S12S21. The
main result of the paper will be provided with Theorem 10 stating that the optimal solution to the problem of robotic cell
scheduling with operational $exibility is one of the three robot move cycles and this theorem will provide intervals where
each of the robot move cycles are optimal. Also in this section we show that 8nding the optimal allocation of operations
with even a 8xed number of allocation types is not an easy task.

Before proceeding with Theorem 7 which 8nds the optimal number of allocation types to be used with robot move
cycle S2, let us present an observation about the optimal allocations to be used with S2.

Let us recall that:

TS2(k) = 6	 + 8
+ ( 1k )max{0; Pk1 − (2	 + 4
); (P − Pkk) − (2	 + 4
)}
+( 1k )max{0; Pk2 − (2	 + 4
); (P − Pk1) − (2	 + 4
)}
+( 1k )max{0; Pk3 − (2	 + 4
); (P − Pk2) − (2	 + 4
)}

...

+( 1k )max{0; Pkk − (2	 + 4
); (P − Pk(k−1)) − (2	 + 4
)}: (4)

De8ne Maxi as the ith max term in this equation. In the ideal situation, it is possible to allocate the operations to
the two machines such that the sum of the operation times that are allocated to the 8rst machine is equal to the sum
of the operation times allocated to second machine. In other words, we can assign Pki = P=2; ∀i∈ [1 : : : k]. In this case,
independent of the number of allocation types used, this partitioning gives the minimum cycle time which simpli8es to:

TS2(k) =




6	 + 8
 if
P
2
6 2	 + 4
;

4	 + 4
+
P
2

if
P
2
¿ 2	 + 4
:

If such a partitioning is not attainable, another situation in which the cycle time does not depend on the number of
allocation types occurs when we can partition the tasks so that each machine has a total operation time of at most 2	+4
,
i.e. it is possible to have Pki6 2	 + 4
 and P − Pki6 2	 + 4
 for all i, then each Maxi term vanishes in (4). Thus for
this case also, independent of the number of allocation types the cycle time is

TS2(k) = 6	 + 8
:

If the previously mentioned situations are not attainable, we have:

Theorem 7. Under the robot move cycle S2, using two allocation types is better than using any number of allocation
types. That is TS2(2)6 TS2(k) ∀k 
= 2.

Proof. Observe that since in Eq. (4) Pki appears in Maxi while P−Pki appears in Maxi+1, there is a cross relation between
Maxi and Maxi+1 which will be used frequently in the following case analysis.
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We need to analyze the following sub-cases comparing each partition against the value of 2	 + 4
.

1. If there is a possible partition such that both Pki¿ 2	+4
 and P−Pki¿ 2	+4
 for all i∈ [1 : : : k], then analyzing the
cross relation between Maxi and Maxi+1 in (4), the best allocation would simply be to set Pki=P−Pk(i−1) ∀i∈ [2 : : : k]
and Pk1 = P − Pkk . The reasoning is simple. Let us consider Maxi and Maxi+1 and assume the opposite so that
Pki 
= P − Pk(i−1). Assume w.l.o.g that Pki¿P − Pk(i−1). Also we assumed at the beginning that Pki 
= P − Pki. Then,
either Pki¿P=2 or P−Pki¿P=2. Assume w.l.o.g that Pki¿P=2. Then, Maxi=Pki − (2	+4
) and Maxi+1, depending
on Pk(i+1), is at least P − Pki − (2	 + 4
). Thus Maxi + Maxi+1¿P − (2	 + 4
). But on the other hand, by setting
Pki = P − Pk(i−1) we have Maxi +Maxi+1 = P − (2	 + 4
). Summing up for all i and dividing by k to 8nd the cycle
time to produce one part does not change the result. This completes the proof.
Note that this is readily attained by letting the set (O − Oi) be equal to the set Oi+1. But then in Maxi+2 we have
P − Pk(i+1) and Pk(i+2) and minimum is attained when Pk(i+2) = P − Pk(i+1) = P − P + Pki = Pki. Thus the minimum
cycle time is attained when Pki = Pk(i+2) ∀i and Pk(i+1) = P− Pki ∀i=0; : : : ; k − 1 where Pk0 = Pkk . This is nothing but
using a two-allocation S2 and the long run average cycle time to produce one part with this allocation can be found
as follows:
Let Pki = � for i=1; 3; 5; : : : ; k − 1. Therefore, Pk2 = Pk4 = · · ·= Pkk = P− �. In other words, what we have is actually
a two-allocation type cycle with P21 = � and P22 = P − �.

Maxi =

{
�− (2	 + 4
) for i odd;

(P − �) − (2	 + 4
) for i even;
16 i6 k:

The total time to produce k parts is

6(k)	 + 8(k)
+
k=2∑
i=1

(�− (2	 + 4
)) +
k=2∑
i=1

(P − �− (2	 + 4
))

=6(k)	 + 8(k)
+
k
2
(�− (2	 + 4
)) +

k
2
(P − �− (2	 + 4
)):

Dividing by k to 8nd the cycle time to produce one part we obtain:

TS2(k) = TS2(2) = 6	 + 8
+
P − (4	 + 8
)

2
:

2. Else if the only possibility is one partition having a total operation time of at least 2	+ 4
 and the other one at most
2	+4
, a similar analysis yields the same allocation as in the previous case optimum, i.e., Pki=P−Pk(i−1) ∀i∈ [2 : : : k]
and Pk1=P−Pkk . In order to 8nd the cycle time again let Pki=�, for i=1; 3; : : : ; k−1 and Pk2=Pk4= · · ·=Pkk=P−�.
This is actually two-allocation type S2 with P21 =� and P22 =P−�. Assume without loss of generality that �¿ 2	+4

and (P − �)6 2	 + 4
, then each max term in (2) becomes:

Maxi =

{
�− (2	 + 4
) for i odd;

0 for i even;
16 i6 k:

The total time to produce k parts is 6(k)	 + 8(k)
+
∑k=2

i=1 (�− (2	 + 4
)). Dividing by k we obtain:

TS2(k) = TS2(2) = 6	 + 8
+
�− (2	 + 4
)

2
:

Though, we manage to 8nd the optimal allocation type in a cyclic production S2 using Theorem 7, 8nding the optimal
allocation of operations to the two machines for S2 is not an easy job even when there is a 8xed allocation type. More
formally, we shall now show that the following decision problem is NP-complete.

S2 Operation Allocation for One-Allocation Type Decision Problem (Problem S2TAP).
Instance: A set of operations O such that |O|=p with respective integer processing times {t1; : : : ; tp}, loading=unloading

time 	, transportation time 
, P =
∑
ti and a real number K .

Question: Can we allocate operations to the two machines in such a way that the long run average cycle time TS2(1)6K?

Theorem 8. Problem S2TAP is NP-complete.

Proof. S2TAP is in NP since whenever we are given a speci8c allocation of operations, we can readily 8nd the corre-
sponding long run average cycle time and hence decide if it is less than or equal to K .
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We will show that S2TAP is NP-complete by reducing the 2-Partition problem to it. As a reminder the 2-Partition
problem can be stated as (see [7]):
Instance: Given A= {a1; : : : ; ar}, ai integer and s(ai)∈ Z+ size of item i.
Question: Is there a partition of A into A′ and A \ A′(A′ ⊆ A) such that

∑
i∈A′ s(i) =

∑
i∈A\A′ s(i)?

Say we have an arbitrary instance of 2-Partition. From this we are going to construct a speci8c instance of S2TAP and
show that S2TAP has a solution if and only if 2-Partition instance has a solution. Let A= a1; : : : ; ar ; s(ai) i∈ [1; : : : ; r] be
the given instance of 2-Partition. We shall have r operations in our set O each corresponding to an item from the given
set A. Each ti will have processing time s(ai). Let 	 = (

∑
i∈[1; :::; r] s(ai))=8 and 
= (

∑
i∈[1; :::; r] s(ai))=16.

Claim. S2TAP has a solution with these speci6cations and K=7
4

∑
i∈[1;:::;r] s(ai)⇔2-Partition instance has a yes

answer.

For one-allocation type, TS2(1)=6	+8
+max{0; P11−(2	+4
); P−P11−(2	+4
)} and TS2(1)¿ 6	+8
= 7
4

∑
i∈[1; :::; r] s(ai).

With given 	 and 
 values, the cycle time for a one-allocation S2 becomes TS2(1)=6	+8
+max{0; P11−P=2; P−P11−P=2}.
Thus, the minimum cycle time 7=4P is attained if and only if P11 = P − P11 = P=2, if and only if 2-Partition has a yes
answer.

Now we can give the best allocation type for the robot move cycle, S12S21.

Theorem 9. For 2-unit robot move cycle S12S21 using two allocation types is better than using any number of allocation
types.

Proof. The cycle time derivations of S12S21 for one and two allocation types and the proof of equality of the optimal
cycle time for a k-allocation type S12S21 with the optimal cycle time for a two-allocation type S12S21 is given in the
appendix. Then, in order to prove this theorem we will compare the cycle times of one-allocation type S12S21 with the
cycle time of two-allocation type S12S21. Eq. (A.1) in the appendix gives the cycle time for one-allocation type S12S21.
For this assume without loss of generality that P11¿ (P − P11). So we have two cases:

1. If the operations can be partitioned such that P116 2	 + 4
 then the cycle time is TS12S21(1) = 6	 + 7
+ P=2.
2. Else, if P11¿ 2	 + 4
 then the cycle time is

TS12S21(1) = 6	 + 7
+ P=2 +
P11 − (2	 + 4
)

2
:

Note that this cycle time is at least 6	 + 7
+ P=2.

For two-allocation type S12S21, the cycle time is given in Eq. (A.2) in the appendix. The trivial solution for the allocation
problem is found by letting P21 = (P−P22)=P thus, (P−P21)=P22 = 0. In words, in the 8rst cycle all of the operations
are allocated to the 8rst machine and in the second cycle all of the operations are allocated to the second machine. The
cycle time for this solution is

TS12S21(2) =




6	 + 7
; P6 2	 + 4
;

5	 + 5
+ P=2; P¿ 2	 + 4
:

Comparing using one-allocation type with using two-allocation types, one can easily verify that TS12S21(1)¿ 6	+7
+P=2 and
TS12S21(2)6 6	+7
+P=2. Thus, we say that using two-allocation type always gives better results than using one-allocation
type.

Now we can present the main results of this paper, but 8rst recall that, in Theorem 7 we achieved the optimal number
of allocation types for S2 as two and the optimal allocation was reached by letting P21 = P − P22 and P − P21 = P22.

Theorem 10. For IRC2 | k = 1; 
i = 
; 	i = 	 | T with the assumption of operational 0exibility, either S1 or S2 or S12S21
gives the minimum cycle time among the robot move cycles that are reported in the literature and the following holds:

1. If 06P6 
 then S1 gives the minimum cycle time
2. If 
6P6 2	 + 6
 then S12S21 gives the minimum cycle time
3. If P¿ 2	 + 6
 then
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3.1. If (P21¿ 2	 + 4
) ∧ ((P − P21)6 2	 + 4
) then
3.1.1. If P6P21 + 2
 then S12S21 gives the minimum cycle time
3.1.2. Else S2 gives the minimum cycle time

3.2. Else S2 gives the minimum cycle time.

Proof. Lemmas 5 and 6 jointly prove that for IRC2 | k = 1; 
i = 
; 	i = 	 | T with the assumption of operational $exibility,
either S1 or S2 or S12S21 gives the minimum cycle time. Now let us consider each region given in the theorem separately.
For S2 and S12S21, it is proved in Theorems 7 and 9, respectively, that using two allocation types is optimal.

1. If 06P6 
, the cycle times of S1, S2 and S12S21 (to produce one part) are as follows:

TS1(1) = 6	 + 6
+ P;

TS2(2) = 6	 + 8
;

TS12S21(2) = 6	 + 7
:

In this region P6 
, therefore TS1(1)6 6	+ 7
. Thus we conclude that in this region S1 gives the minimum cycle time.
2. If 
6P6 2	 + 6
 then the cycle times are:

TS1(1) = 6	 + 6
+ P;

TS2(2) =

{
6	 + 8
 if (P216 2	 + 4
) ∧ ((P − P21)6 2	 + 4
)

6	 + 8
+ P21 − (2	 + 4
) if P21¿ 2	 + 4


TS12S21(2) =




6	 + 7
 if P6 2	 + 4
;

5	 + 5
+
P
2

if P¿ 2	 + 4
:

A simple comparison reveals that TS12S21(2) is the minimum for this range.
3. If P¿ 2	 + 6
 then the cycle times are:

TS1(1) = 6	 + 6
+ P;

TS2(2) =




6	 + 8
 if (P216 2	 + 4
) ∧ ((P − P21)6 2	 + 4
);

4	 + 4
+
P
2

if (P21¿ 2	 + 4
) ∧ ((P − P21)¿ 2	 + 4
);

5	 + 6
+
P21

2
if (P21¿ 2	 + 4
) ∧ ((P − P21)¡ 2	 + 4
);

TS12S21(2) = 5	 + 5
+
P
2
:

Thus, in this region, if (P21¿ 2	+4
)∧ ((P−P21)¡ 2	+4
); S12S21 is better than S2 if and only if P6P21 + 2
. For
all other cases, S2 is better than S12S21.

This completes the proof.

In the next section, we will present sensitivity analysis on parameters and show how these regions behave for diAerent
parameter values 	 and 
.

4. Sensitivity analysis

In this section we will try to 8gure out how the changes in the values of parameters such as loading=unloading time, 	,
and transportation time, 
, aAect the regions of optimality presented in Theorem 10. The following example is intended
to depict the results obtained so far.

Example. Since there is no allocation problem for S1 and S12S21, their cycle times can be represented graphically as
shown in Fig. 5. On the other hand, the best allocation for S2 was to let P21 = (P − P22) and (P − P21) = P22.

1. If P6 2	 + 4
, then (P216 2	 + 4
) ∧ ((P − P21)6 2	 + 4
), thus the cycle time is 6	 + 8
.
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Fig. 5. Change of cycle times according to P.

2. If P¿ 2	 + 4
, the cycle time of S2 depends on the allocation, but we can still 8nd upper and lower bounds
for it. In the worst case we have only one task to allocate with processing time P and we cannot divide this into
two machines. Thus, the upper bound is obtained by letting P21 = (P − P22) = P and thus P22 = (P − P21) = 0, so
the cycle time is 5	 + 5
 + P=2. On the other hand, in the best case the tasks can be partitioned equally, that is
P21 =(P−P22)=P=2 and P22 =(P−P21)=P=2. Thus, if P6 4	+8
 then TS2(2) =6	+8
. Otherwise, if P¿ 4	+8
 then
TS2(2) = 4	 + 4
+ P=2.

In summary, Fig. 5 shows how the cycle times of the three robot move cycles change with respect to total processing
time. The boldly dashed lower envelope shows the optimal solution to the problem. As we can see, for P¿ 2	 + 4
 the
cycle time of S2 may take any value between the upper and lower bounds shown as the dashed region depending on
the allocation of operations. Thus, the solution changes according to the allocation of operations after the point where
the cycle times of S12S21 and S2 intersect, that is, for P¿ 2	+ 6
 the solution can be anywhere between the two boldly
dashed lines in the graph depending on the allocation of the operations. For P6 2	+6
, we know the exact solution and
there is no allocation problem in this region.

Now let us consider how a change in the value of 
 aAects these regions. Let us 8rst analyze the case where 
 = 0.
This can be assumed when the transportation time is negligible with respect to processing times of the operations and
loading=unloading times. For this setting the regions of Theorem 10 become:

1. If 06P6 2	 then S2 and S12S21 give the same cycle time
2. If P¿ 2	 then

2.1. If (P21¿ 2	) ∧ ((P − P21)6 2	) then
2.1.1. If P21 = P then S2 and S12S21 give the same cycle time
2.1.2. Else S2 gives the minimum cycle time

2.2. Else S2 gives the minimum cycle time.

Fig. 6 shows the regions of optimality for this case. Thus, we can conclude that, although in some regions S2 and
S12S21 give the same cycle time, S2 gives the minimum cycle time in all cases. Also we may state that the cycle time
of S12S21 constitutes an upper bound for the cycle time of S2. These results are quite logical since in cycle S2, instead
of waiting in front of the machine to 8nish the operation of a part, the robot makes other operations and tries to 8ll this
waiting time. Transportation times constitute a great deal of these operations and if they are small enough, the ability to
balance the time of these extra operations with the processing time on the machine increases. On the other hand, in cycle
S1 robot always waits in front of the machines. Thus, the total amount of transportation time of S1 is less than S2 but
on the other hand, the waiting time in front of the machines is higher than S2. Cycle S12S21 is in between S1 and S2
in these perspectives. Thus, increasing the transportation time is in favor of S1 and S12S21 since in that case the robot is
more likely to wait in front of the machine rather than go and make other operations.

Now let us analyze the loading=unloading time 	. Since in all of the cycles, there is equivalent loading and unloading
operations, any change in 	 does not change the general view of the graph in Fig. 5. However, one can easily observe
that when 	 is increased, this is in favor of S12S21 since it gives the minimum cycle time for 
6P6 2	 + 6
 and as 	
increases this region also increases.
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5. Conclusion

In this paper, we considered the two machine identical parts robotic cell scheduling problem with operational $exibility.
With this de8nition of the problem, each part has a number of operations to be processed and the problem is to allocate
these operations to the machines and is to 8nd the corresponding robot move cycle that jointly minimize the cycle time.
The main result of the paper is given in Theorem 10 in which we proved that the optimal robot move cycle is not
necessarily a 1-unit cycle as Sethi et al. [12] prescribes, but a 2-unit robot move cycle may also be optimal for some
parameter inputs and we provided the regions of optimality for each robot move cycle. We also made sensitivity analysis
on parameters of the problem such as loading=unloading time and transportation time in order to show how these regions
of optimality change.

Possible topics for future research include the extension of this study to three machine robotic cells. Proving or disproving
the validity of the conjecture about 1-unit cycles being optimal in three machine case with operational $exibility is
important. Another topic is to consider the technological restrictions of CNC machines such as limited tool magazine
sizes. Thus, a single CNC machine may not be capable of performing all of the required operations due to unavailability
of the necessary cutting tools on the tool magazine. Consequently, certain operations must be processed on a speci8c
CNC machine while others can be processed on both machines.

Appendix

Here we will make the cycle time derivations of the 2-unit robot move cycle S12S21.
The long run average cycle time for one-allocation type S12S21 can be derived as:

TS12S21(1) =
12	 + 14
+ P11 + (P − P11) + w11 + w12

2
;

where w11 = max{0; P11 − (2	 + 4
+ w12)} and w12 = max{0; (P − P11) − (2	 + 4
)}. In other words,

TS12S21(1) =
12	 + 14
+ P + max{0; P11 − (2	 + 4
); (P − P11) − (2	 + 4
)}

2
: (A.1)

We divided the cycle time by 2 since S12S21 is a 2-unit robot move cycle and one repetition of the cycle produces two
parts.

Now consider the case when we have two diAerent allocation types and the parts are processed according to these two
types in turn:

TS12S21(2) =
12	 + 14
+ P22 + (P − P21) + w11 + w22

2
;

where w11 = max{0; P21 − (2	 + 4
+ w22)} and w22 = max{0; (P − P22) − (2	 + 4
)}. In other words,

TS12S21(2) =
12	 + 14
+ P22 + (P − P21) + max{0; P21 − (2	 + 4
); (P − P22) − (2	 + 4
)}

2
: (A.2)
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Now let us consider the cycle time for k-allocation type S12S21. Observe that, in a two-allocation type S12S21, initially,
the machines are empty and the robot is waiting in front of the input buAer. Since this is a 2-unit cycle, exactly two parts
are loaded and unloaded to each machine and at the end, identical to the initial state, the machines are again empty and
the robot is waiting in front of the input buAer. Then, in a k-allocation type S12S21, this 2-unit cycle is repeated exactly
k=2 times to produce all k parts with diAerent allocation types. The objective is to 8nd the optimal allocation for these
parts to the machines. However, the optimal allocation at each repetition of the cycle must be the same as the optimal
allocation of the tasks for a two-allocation type S12S21. This is because, a k-allocation type is a concatenation of k=2
two-allocation type S12S21. Thus, we conclude that the optimal cycle time for a k-allocation type S12S21 is the same as
the optimal cycle time for a two-allocation type S12S21.
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