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Abstract

Let � be a partition. BG-rank(�) is defined as an alternating sum of parities of parts of � [A. Berkovich, F.G. Garvan, On the
Andrews-Stanley refinement of Ramanujan’s partition congruence modulo 5 and generalizations, Trans. Amer. Math. Soc. 358
(2006) 703–726. [1]]. Berkovich and Garvan [The BG-rank of a partition and its applications, Adv. in Appl. Math., to appear in
〈http://arxiv.org/abs/math/0602362〉] found theta series representations for the t-core generating functions

∑
n�0 at,j (n)qn, where

at,j (n) denotes the number of t-cores of n with BG-rank = j . In addition, they found positive eta-quotient representations for odd
t-core generating functions with extreme values of BG-rank. In this paper we discuss representations of this type for all 7-cores with
prescribed BG-rank. We make an essential use of the Ramanujan modular equations of degree seven [B.C. Berndt, Ramanujan’s
Notebooks, Part III, Springer, New York, 1991] to prove a variety of new formulas for the 7-core generating function∏

j �1

(1 − q7j )7

(1 − qj )
.

These formulas enable us to establish a number of striking inequalities for a7,j (n) with j = −1, 0, 1, 2 and a7(n), such as

a7(2n + 2)�2a7(n), a7(4n + 6)�10a7(n).

Here a7(n) denotes a number of unrestricted 7-cores of n. Our techniques are elementary and require creative imagination only.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

‘Behind every inequality there lies an identity.’ Basil Gordon

A partition � = (�1, �2, . . . , �r ) of n is a nonincreasing sequence of positive integers that sum to n. The BG-rank of �
is defined as

BG-rank(�) :=
r∑

j=1

(−1)j+1par(�j ), (1.1)
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where

par(�j ) :=
{1 if �j ≡ 1 (mod 2),

0 if �j ≡ 0 (mod 2).

If t is a positive integer, then a partition is a t-core if it has no rim hooks of length t [8]. Let �t-core denote a t-core
partition. It is shown in [2, Eq. (1.9)] that if t is odd, then

−
⌊

t − 1

4

⌋
�BG-rank(�t-core)�

⌊
t + 1

4

⌋
. (1.2)

Let at (n) be the number of t-core partitions of n. It is well known that [9,5]∑
n�0

at (n)qn =
∑

−→n ∈Zt ,
−→n .

−→
1t =0

q(t/2)‖−→n ‖2+−→
bt .

−→n = (qt ; qt )t∞
(q; q)∞

= Et(qt )

E(q)
, (1.3)

where
−→
bt := (0, 1, 2, . . . , t − 1),

−→
1t := (1, 1, . . . , 1),

(a; q)n = (a)n := (1 − a)(1 − aq) . . . (1 − aqn−1),

(a; q)∞ :=
∞∏

n=0

(1 − aqn), |q| < 1,

E(q) := (q; q)∞. (1.4)

The product
∏

i>0E
�i (qi) with �i ∈ Z will be referred to as an eta-quotient.

Next, we recall Ramanujan’s definition for a general theta function. Let

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (1.5)

The function f (a, b) satisfies the well-known Jacobi triple product identity [3, p. 35, Entry 19]

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.6)

Two important special cases of (1.5) are

�(q) := f (q, q) =
∞∑

n=−∞
qn2 = (−q; q2)2∞(q2; q2)∞ = E5(q2)

E2(q4)E2(q)
, (1.7)

and

�(q) := f (q, q3) =
∞∑

n=−∞
q2n2−n = (−q; q4)∞(−q3; q4)∞(q4; q4)∞ = E2(q2)

E(q)
. (1.8)

The product representations in (1.7)–(1.8) are special cases of (1.6). Also, after Ramanujan, we define

�(q) := (−q; q2)∞. (1.9)

Let at,j (n) be the number of t-core partitions of n with BG-rank = j and define their generating function by

Ct,j (q) :=
∑
n�0

at,j (n)qn. (1.10)

In this paper, we find representations for C7,0(q) and C7,1(q) in terms of sums of positive eta-quotients. Such repre-
sentations for C7,2(q) and C7,−1(q) are known (see (1.31)–(1.32)). Here and throughout the manuscript we say that
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a q-series is positive if its power series coefficients are nonnegative. We define P [q] to be the set of all such series.
Obviously, �(q), �(q) and E7(q7)/E(q) ∈ P [q]. In fact, Granville and Ono showed that [6] if t �4, then at (n) > 0
for all n�0. Our proofs naturally lead us to inequalities that relate the coefficients of C7,j (q), j = 0, 1, −1, 2, and to
equalities and inequalities for the number of 7-cores. The main results of this paper are organized into two theorems
whose proofs are given in Sections 4 and 5.

Theorem 1.1. For all n�0, we have

a7(2n + 2)�2a7(n), (1.11)

a7(4n + 6)�10a7(n), (1.12)

a7,0(n)�9a7,2(n), (1.13)

a7,1(n)�2a7,−1(n), (1.14)

a7(28n + 4r) = 5a7(14n + 2r − 1), r = 1, 2, 6, (1.15)

a7(28n + 4r + 2) + 4a7(7n + r − 1) = 5a7(14n + 2r), r = 2, 4, 5. (1.16)

By Eq. (1.35), we see that (1.12) and (1.13) are equivalent.

Theorem 1.2.

C7,1(q) = q
E(q28)E3(q14)E(q4)

E(q2)
{�(q4) + q2�(q2)�(q14)}, (1.17)

C7,0(q) = 	(q2)

{
�2(q4)�2(q14) + q6�2(q28)�2(q2) + q2 E(q28)E3(q14)E(q4)

E(q2)

}
+ q2�(q4)�2(q14)�3(q14) + 2q4�3(q2)�3(q14) + 4q12�2(q14)�3(q28)�(q2), (1.18)

where

	(q) := �(q4)�(q14) + q3�(q28)�(q2) and �(q) := �(q)�(q7) + 4q2�(q2)�(q14). (1.19)

Observe, by (1.6), that

E(q28)E3(q14)E(q4)

E(q2)
= f (q2, q12)f (q4, q10)f (q6, q8)�(q14). (1.20)

Therefore, each term in (1.17) and (1.18) is a product of six theta functions which are in P [q]. It is instructive to
compare these representations with those given in (1.27)–(1.28) where for example C7,1 is expressed as a sum of 21
multi-theta functions.

Our proofs employ the theory of modular equations. The starting point in our proofs is one of Ramanujan’s modular
equations of degree seven from which we obtained the identity

E7(q7)

E(q)
= f (q, q13)f (q3, q11)f (q5, q9)�(q7)�(q2) + 8q6 E7(q28)

E(q4)
. (1.21)

Using several results from Ramanujan’s notebooks we obtained the following new analog of (1.21):

E7(q7)

E(q)
= f (q, q6)f (q2, q5)f (q3, q4)�(q7)	(q) + q2 E7(q14)

E(q2)
. (1.22)

The identity (1.22) provided a complement to (1.21) and was essential to our proofs. For proofs of (1.21) and
(1.22) see (4.4) and (3.23). From (1.21) and (1.22), we will deduce the following interesting manifestly positive
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eta-quotient representation for the generating function of 7-cores:

E7(q7)

E(q)
= �(q4)f (q, q13)f (q3, q11)f (q5, q9)�(q7)

+ 2q3 E3(q28)E2(q14)E3(q4)

E2(q2)
+ 6q6 E7(q28)

E(q4)
+ 2q2 E7(q14)

E(q2)
. (1.23)

Observe, by (1.6), that

E3(q28)E2(q14)E3(q4)

E2(q2)
= f (q2, q12)f (q6, q8)f (q4, q10)�(q2)�2(q14), (1.24)

f (q, q13)f (q3, q11)f (q5, q9)�(q7) = �(q)�(q7)E4(q14)

E(q4)E(q28)
. (1.25)

The proof of (1.23) is given at the end of Section 5.
In [2], it is shown that the generating functions Ct,j (q), t odd, can be written as sums of multi-theta functions. We

record them here for the case t = 7. Let

B = (0, 1, 0, 1, 0, 1, 0),

B̃ = (1, 0, 1, 0, 1, 0, 1)

and for 0� i�6 let −→e i be the standard unit vector in Z7. Then

C7,−1(q) =
6∑

i=0

∑
−→n ∈Z7,

−→n .
−→
17 =0−→n ≡B+−→e i (mod 2Z7)

q(7/2)‖−→n ‖2+−→
b7 .

−→n , (1.26)

C7,0(q) =
∑

0� i0<i1<i2 �6

∑
−→n ∈Z7,

−→n .
−→
17 =0−→n ≡B+−→e i0

+−→e i1
+−→e i2

(mod 2Z7)

q(7/2)‖−→n ‖2+−→
b7 .

−→n , (1.27)

C7,1(q) =
∑

0� i0<i1 �6

∑
−→n ∈Z7,

−→n .
−→
17 =0−→n ≡B̃+−→e i0

+−→e i1
(mod 2Z7)

q(7/2)‖−→n ‖2+−→
b7 .

−→n , (1.28)

C7,2(q) =
∑

−→n ∈Z7,
−→n .

−→
17 =0−→n ≡B̃(mod 2Z7)

q(7/2)‖−→n ‖2+−→
b7 .

−→n . (1.29)

Eta-quotient representations for

Ct,(−1)(t−1)/2	t/4
(q) and Ct,(−1)(t+1)/2	(t+1)/4
(q) (1.30)

are obtained in [2, Eq. (1.10)–(1.11)]. For t = 7, they are as follows:

C7,−1(q) = q3 E3(q28)E2(q14)E3(q4)

E2(q2)
, (1.31)

C7,2(q) = q6 E7(q28)

E(q4)
. (1.32)
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As we shall see next, it is easy to find eta-quotient representations for C7,0(q) and C7,1(q) but these representations
are not manifestly positive. Observe that if � is a partition of n, then, by definition (1.1),

BG-rank(�) ≡ n (mod 2). (1.33)

Therefore, Ct,j (q) is either an odd or an even function of q with parity determined by the parity of j. In particular,
C7,0(q) and C7,2(q) are even functions of q and C7,1(q) and C7,−1(q) are odd functions of q. Moreover,

∑
n�0

a7(n)qn = E7(q7)

E(q)
= C7,−1(q) + C7,0(q) + C7,1(q) + C7,2(q). (1.34)

Therefore, by (1.32),

C7,0(q) = even part of

{
E7(q7)

E(q)

}
− C7,2(q)

= 1

2

{
E7(q7)

E(q)
+ E7(−q7)

E(−q)

}
− q6 E7(q28)

E(q4)
(1.35)

and, by (1.31),

C7,1(q) = odd part of

{
E7(q7)

E(q)

}
− C7,−1(q)

= 1

2

{
E7(q7)

E(q)
− E7(−q7)

E(−q)

}
− q3 E3(q28)E2(q14)E3(q4)

E2(q2)
. (1.36)

The rest of this paper is organized as follows. In the next section, we give a brief introduction to modular equations.
Then, we prove three lemmas. In Lemma 3.1, we give several identities for �(q) and 	(q), which were defined in
(1.19). The identity (1.22) in its equivalent form is proved in Lemma 3.2 (see (3.14), (1.20) and (3.23)). These three
lemmas are then used in Sections 4 and 5 where we prove Theorems 1.1 and 1.2.

2. Modular equations

In this section, we give background information on modular equations. For 0 < k < 1, the complete elliptic integral
of the first kind K(k), associated with the modulus k, is defined by

K(k) :=
∫ �/2

0

d
√
1 − k2 sin2 


.

The number k′ := √
1 − k2 is called the complementary modulus. Let K, K ′, L, and L′ denote complete elliptic

integrals of the first kind associated with the moduli k, k′, �, and �′, respectively. Suppose that

n
K ′

K
= L′

L
(2.1)

for some positive rational integer n. A relation between k and � induced by (2.1) is called a modular equation of degree
n. There are several definitions of a modular equation in the literature. For example, see the books by Rankin [10,
p. 76] and Schoeneberg [11, pp. 141–142]. Following Ramanujan, set

� = k2 and � = �2.

We often say that � has degree n over �. If

q = exp(−�K ′/K), (2.2)
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two of the most fundamental relations in the theory of elliptic functions are given by the formulas [3, pp. 101–102],

�2(q) = 2

�
K(k) and � = k2 = 1 − �4(−q)

�4(q)
. (2.3)

Eq. (2.3) and elementary theta function identities make it possible to write each modular equation as a theta function
identity. Ramanujan derived an extensive “catalogue” of formulas [3, pp. 122–124] giving the “evaluations” of E(q),
�(q), �(q), and �(q) at various powers of the arguments in terms of

z := z1 := 2

�
K(k), �, and q.

The evaluations that will be needed in this paper are as follows:

�(q) = √
z, (2.4)

�(−q) = √
z(1 − �)1/4, (2.5)

�(−q2) = √
z(1 − �)1/8, (2.6)

�(q) = q−1/8
√

1
2z�1/8, (2.7)

�(−q) = q−1/8
√

1
2z{�(1 − �)}1/8, (2.8)

�(q2) = 2−1q−1/4√z�1/4, (2.9)

E(−q) = 2−1/6q−1/24√z{�(1 − �)}1/24, (2.10)

E(q2) = 2−1/3q−1/12√z{�(1 − �)}1/12, (2.11)

�(−q2) = 21/3q1/12�−1/12(1 − �)1/24. (2.12)

We should remark that in the notation of [3], E(q) = f (−q). If q is replaced by qn, then the evaluations are given in
terms of

zn := 2

�
K(l), �, and qn,

where � has degree n over �.
Lastly, the multiplier m of degree n is defined by

m = �2(q)

�2(qn)
= z

zn

. (2.13)

The proofs of the following modular equations of degree seven can be found in [3, p. 314, Entry 19(i),(iii)],

(��)1/8 + {(1 − �)(1 − �)}1/8 = 1, (2.14)

( 1
2 (1 + (��)1/8 + {(1 − �)(1 − �)}1/8))1/2 = 1 − {��(1 − �)(1 − �)}1/8, (2.15)(
(1 − �)7

(1 − �)

)1/8

−
(

�7

�

)1/8

= m( 1
2 (1 + (��)1/8 + {(1 − �)(1 − �)}1/8))1/2, (2.16)

m =
1 − 4

(
�7(1 − �)7

�(1 − �)

)1/24

{(1 − �)(1 − �)}1/8 − (��)1/8
,

7

m
= −

1 − 4

(
�7(1 − �)7

�(1 − �)

)1/24

{(1 − �)(1 − �)}1/8 − (��)1/8
, (2.17)

(
(1 − �)7

(1 − �)

)1/8

+
(

�7

�

)1/8

+ 2

(
�7(1 − �)7

�(1 − �)

)1/24

= 3 + m2

4
. (2.18)
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3. Three lemmas

Lemma 3.1. If �(q) and 	(q) are defined by (1.19), then

�(q2) = �(q)�(q7) − 2q�(−q)�(−q7), (3.1)

�(q) = �(q2) + 2q�(q)�(q7), (3.2)

	2(q) = �(q)�(q7)(�(q2) − q�(q)�(q7)), (3.3)

�2(q2) = 4q	2(q) + �2(−q)�2(−q7). (3.4)

Proof. We start with two identities from [3, pp. 304, 315, Eq. (19.1)],

�(−q2)�(−q14) = �(−q)�(−q7) + 2q�(−q)�(−q7), (3.5)

�(q)�(q7) = �(q8)�(q28) + q6�(q56)�(q4) + q�(q2)�(q14). (3.6)

We will frequently use (3.6) in the form

�(q)�(q7) = 	(q2) + q�(q2)�(q14). (3.7)

Using the well-known identity, [3, p. 40, Entry 25 9(i),(ii)]

�(q) = �(q4) + 2q�(q8),

it is easily verified that

�(q)�(q7) = �(q4)�(q28) + 4q8�(q8)�(q56) + 2q{�(q8)�(q28) + q6�(q56)�(q4)}
= �(q4) + 2q	(q2). (3.8)

Using (3.7) and (3.8) in (3.5), we find that

�(−q2)�(−q14) = �(q4) − 2q	(q2) + 2q	(q2) − 2q2�(q2)�(q14). (3.9)

Replacing −q2 by q, we conclude that

�(q2) = �(q)�(q7) − 2q�(−q)�(−q7), (3.10)

which is (3.1). Similarly, using (3.7) and (3.8) in (3.10), we arrive at

�(q2) = �(q)�(q7) − 2q�(−q)�(−q7)

= �(q4) + 2q	(q2) − 2q	(q2) + 2q2�(q2)�(q14)

= �(q4) + 2q2�(q2)�(q14), (3.11)

which is (3.2) with q replaced by q2. Lastly, by (3.7), (3.8), and by the trivial identity �2(q) = �(q2)�(q), we find that

4	2(q2) = (�(q)�(q7) + �(−q)�(−q7))2

= �2(q)�2(q7) + �2(−q)�2(−q7) + 2�(q)�(q7)�(−q)�(−q7)

= �(q2)�(q14)(�(q)�(q7) + �(−q)�(−q7))

+ 2(	(q2) + q�(q2)�(q14))(	(q2) − q�(q2)�(q14))

= 2�(q2)�(q14)�(q4) + 2	2(q2) − 2q2�2(q2)�2(q14), (3.12)

from which (3.3) immediately follows.
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The identity (3.4), which is not employed in this manuscript, was first proven in [4]. Here we provide a short new
proof. By (3.1) with q replaced by −q, we find that

�2(q2) − �2(−q)�2(−q7) = (�(q2) − �(−q)�(−q7))(�(q2) + �(−q)�(−q7))

= 2q�(q)�(q7)(�(q2) + �(−q)�(−q7)). (3.13)

Now, by (3.13), (3.3), and (3.1) with q replaced by −q, we deduce that

�2(q2) − �2(−q)�2(−q7) − 4q	2(q)

= 2q�(q)�(q7)(�(q2) + �(−q)�(−q7) − 2�(q2) + 2q�(q)�(q7))

= 0,

which is (3.4). �

Lemma 3.2. With 	(q) defined by (1.19),

f (q, q6)f (q2, q5)f (q3, q4) = q2�3(q7) + �(q)	(q). (3.14)

Proof. By (1.6), we find that

f (q, q6)f (q2, q5)f (q3, q4) = (−q; q)∞
(−q7; q7)∞

E3(q7) = �(−q7)

�(−q)
E3(q7). (3.15)

In (3.14), if we replace q by q2, and use (3.7), and (3.15) with q replaced by q2, we are led to prove

�(−q14)

�(−q2)
E3(q14) = q4�3(q14) + �(q2){�(q)�(q7) − q�(q2)�(q14)}. (3.16)

Transforming (3.16) by means of the evaluations given by (2.12), (2.11), (2.9) and (2.7), we find that

1

2
q−5/4

√
z3

7
�1/12�1/6(1 − �)7/4

(1 − �)1/24

= 1

8
q−5/4

√
z3

7�
3/4 + 1

2
q−1/4√z1�

1/4
{

1

2
q−1√z1z7(��)1/8 − 1

4
q−1√z1z7(��)1/4

}
.

Simplifying and using (2.13), we arrive at

4

(
�7(1 − �)7

�(1 − �)

)1/24

=
(

�7

�

)1/8

+ m(��)1/8{2(��)1/8 − (��)1/4}. (3.17)

Set t := (��)1/8. Then, by (2.14), we have

{(1 − �)(1 − �)}1/8 = 1 − t . (3.18)

Eq. (3.17) now takes the form

4

{
�(1 − �)

t (1 − t)

}1/3

= �

t
+ mt(2t − t2). (3.19)

It is shown in [3, pp. 319–320, (19.19), (19.21)] that

m = t − �

t (1 − t)(1 − t + t2)
(3.20)
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and

(1 − 2t)m = 1 − 4

(
�(1 − �)

t (1 − t)

)1/3

. (3.21)

Using (3.21) in the left-hand side of (3.19) and solving for m, we obtain (3.20). Hence, the proof of (3.14) is
complete. �

We now make several observations which will be used later. By (3.14) and by (1.20) with q2 replaced by q, we find
that

E(q14)E3(q7)E(q2)

E(q)
= q2�4(q7) + �(q)�(q7)	(q). (3.22)

Multiplying both sides of (3.22) by E4(q7)/E(q2)E(q14), we conclude that

E7(q7)

E(q)
= q2 E7(q14)

E(q2)
+ E(q14)E3(q7)E(q2)

E(q)
	(q), (3.23)

which, by (1.20), is equivalent to (1.22).
We should remark that if � has degree seven over �, then �, � and the multiplier m can be written as rational functions

of the parameter t=(��)1/8 [3, pp. 316–319]. This parametrization is a very efficient tool in verifying modular equations
of degree seven.

Lemma 3.3.

1

2

{
E7(q7)

E(q)
+ E7(−q7)

E(−q)

}
= 5q2 E7(q14)

E(q2)
− 4q6 E7(q28)

E(q4)
+ E3(q2)E3(q14). (3.24)

Proof. From (2.17), we find that

7

(
�7(1 − �)7

�(1 − �)

)1/24

+ m2

(
�7(1 − �)7

�(1 − �)

)1/24

= m2 + 7

4
. (3.25)

Upon comparison with (2.18), we conclude that

5

(
�7(1 − �)7

�(1 − �)

)1/24

+ m2

(
�7(1 − �)7

�(1 − �)

)1/24

=
(

(1 − �)7

(1 − �)

)1/8

+
(

�7

�

)1/8

+ 1. (3.26)

Transforming (3.26) by means of the evaluations given by (2.10), (2.6) and (2.7), we find that

10q2
√

z√
z7

7

E7(−q7)

E(−q)
+ 2m2

√
z7√
z

7

E7(−q)

E(−q7)
=

√
z√

z7
7

�7(−q14)

�(−q2)
+ 8q6

√
z√

z7
7

�7(q7)

�(q)
+ 1. (3.27)

Multiplying both sides of (3.27) by (
√

z/
√

z7
7
)(−q, q2)∞/(−q7, q14)7∞ and using (2.13), we obtain (3.24). �

An interesting corollary of (3.24) will be given at the end of the next section. We should add that (3.24) can be
rewritten as

T2

(
q2 E7(q7)

E(q)

)
= 5q2 E7(q7)

E(q)
+ qE3(q)E3(q7), (3.28)

where the Hecke operator T2 is defined by

T2(
∑

a(n)qn) =
∑

(a(2n) + 4a(n/2))qn, (3.29)

with a(n/2) = 0 if n is odd.
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4. Proof of Theorem 1.1

By (2.15) and (2.16), we have(
(1 − �)7

(1 − �)

)1/8

−
(

�7

�

)1/8

= m(1 − {��(1 − �)(1 − �)}1/8). (4.1)

Transforming (4.1) by means of the evaluations given by (2.6)–(2.8), we find that
√

z√
z7

7

�7(−q14)

�(−q2)
− 8

√
z√

z7
7 q6 �7(q7)

�(q)
= z

z7

(
1 − 2√

z
√

z7
q�(−q)�(−q7)

)
. (4.2)

Simplifying, and using (2.4) and (3.1), we conclude that

�7(−q14)

�(−q2)
− 8q6 �7(q7)

�(q)
= �4(q7){�(q)�(q7) − 2q�(−q)�(−q7)} = �4(q7)�(q2). (4.3)

Multiplying both sides of (4.3) by (−q, q2)∞/(−q7, q14)7∞, we find that

E7(q7)

E(q)
− 8q6 E7(q28)

E(q4)
= �(q)�(q7)E4(q14)

E(q4)E(q28)
�(q2), (4.4)

which, by (1.25), is equivalent to (1.21).
Next, by (3.7), (3.2), and by (3.23), we see that

even part of

{
E7(q7)

E(q)

}

= E4(q14)

E(q4)E(q28)
	(q2)�(q2) + 8q6 E7(q28)

E(q4)

= E4(q14)

E(q4)E(q28)
	(q2)(�(q4) + 2q2�(q2)�(q14)) + 8q6 E7(q28)

E(q4)

= E4(q14)

E(q4)E(q28)
	(q2)�(q4) + 2q2 E(q28)E3(q14)E(q4)

E(q2)
	(q2) + 8q6 E7(q28)

E(q4)

= E4(q14)

E(q4)E(q28)
	(q2)�(q4) + 2q2

{
E7(q14)

E(q2)
− q4 E7(q28)

E(q4)

}
+ 8q6 E7(q28)

E(q4)

= 2q2 E7(q14)

E(q2)
+ 6q6 E7(q28)

E(q4)
+ E4(q14)

E(q4)E(q28)
	(q2)�(q4). (4.5)

Recall that we defined P [q] to be the set of all q-series with nonnegative coefficients. Now, by (3.7) and (1.25),

E4(q14)

E(q4)E(q28)
	(q2) = even part of

{
�(q)�(q7)E4(q14)

E(q4)E(q28)

}
∈ P [q]. (4.6)

Therefore, we conclude

E7(q7)

E(q)
− 2q2 E7(q14)

E(q2)
∈ P [q], (4.7)

which is clearly equivalent to (1.11). Alternatively, one can directly establish that

E4(q14)

E(q4)E(q28)
	(q2) = f (q4, q24)f 3(q12, q16) + q6f (q10, q18)f 3(q2, q26) ∈ P [q]. (4.8)

We will not use (4.8), and so we forgo its proof.
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From (4.5), we have

E7(q7)

E(q)
= 2q2 E7(q14)

E(q2)
+ 6q6 E7(q28)

E(q4)
+ s(q), (4.9)

where s(q) ∈ P [q]. Iterating (4.9), we find that

E7(q7)

E(q)
= 2q2

(
2q4 E7(q28)

E(q4)
+ 6q12 E7(q56)

E(q8)
+ s(q2)

)
+ 6q6 E7(q28)

E(q4)
+ s(q)

= 10q6 E7(q28)

E(q4)
+ s1(q), (4.10)

where s1(q) ∈ P [q]. This last identity clearly implies (1.12). We already remarked that, Eq. (1.35), (1.12) and (1.13)
are equivalent.

To prove (1.14) we return to (4.4). We have by (3.7), (1.31), (3.2) and by (3.3)

odd part of

{
E7(q7)

E(q)

}
− 3C7,−1(q) = q

�(q2)�(q14)E4(q14)

E(q4)E(q28)
�(q2) − 3q3 E3(q28)E2(q14)E3(q4)

E2(q2)

= q
E(q4)E(q28)E3(q14)

E(q2)
{�(q2) − 3q2�(q2)�(q14)}

= q
E(q4)E(q28)E3(q14)

E(q2)
{�(q4) − q2�(q2)�(q14)}

= q	2(q2)
E4(q14)

E(q4)E(q28)
. (4.11)

By (4.6), we see that

odd part of

{
E7(q7)

E(q)

}
− 3C7,−1(q) ∈ P [q], (4.12)

which, by (1.36), is clearly equivalent to (1.14).
Lastly, we prove (1.15) and (1.16). Let b(n) be defined by∑

n�0

b(n)qn = E3(q)E3(q7). (4.13)

From (3.24) with q2 replaced by q, we find that∑
a7(2n)qn = 5q

∑
a7(n)qn − 4q3

∑
a7(n)q2n +

∑
b(n)qn. (4.14)

Equating the even indexed terms in both sides of (4.14), we arrive at

a7(4n) − 5a7(2n − 1) = b(2n). (4.15)

Using Jacobi’s well-known identity for E3(q) [7, Theorem 357], namely,

E3(q) =
∞∑

k=1

(−1)k−1(2k − 1)qk(k−1)/2, (4.16)

we easily conclude that b(n)=0 if n ≡ 2, 4, 5 (mod 7). This observation together with (4.14) implies (1.15). Eq. (1.16)
is proved similarly by equating the odd indexed terms in both sides (4.14).
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Corollary 4.1.

3a7(n − 1) + b(n)�0 for all n > 0. (4.17)

Proof. By (4.5), we can write (3.24) in its equivalent form

3q
E7(q7)

E(q)
+ E3(q)E3(q7) = 10q3 E7(q14)

E(q2)
+ �(q2)	(q)

E4(q7)

E(q2)E(q14)
. (4.18)

By (4.6), we see that the right-hand side of (4.18) is in P [q], from which (4.17) is immediate. �

5. Proof of Theorem 1.2 and (1.23)

By (1.36), (4.4), (3.7), (1.31) and by (3.2), we have that

C7,1(q) = odd part of

{
E7(q7)

E(q)

}
− C7,−1(q)

= q
�(q2)�(q14)E4(q14)

E(q4)E(q28)
�(q2) − q3 E3(q28)E2(q14)E3(q4)

E2(q2)

= q
E(q28)E3(q14)E(q4)

E(q2)
{�(q2) − q2�(q2)�(q14)}

= q
E(q28)E3(q14)E(q4)

E(q2)
{�(q4) + q2�(q2)�(q14)}. (5.1)

This completes the proof of (1.17).
Next, we prove (1.18). Combining (3.22) and (3.23), we have

E7(q7)

E(q)
= q2 E7(q14)

E(q2)
+ q2�4(q7)	(q) + �(q)�(q7)	2(q). (5.2)

Using (3.23) with q replaced by q2 in (5.2), we find that

E7(q7)

E(q)
= q2

{
q4 E7(q28)

E(q4)
+ E(q28)E3(q14)E(q4)

E(q2)
	(q2)

}
+ q2�4(q7)	(q) + �(q)�(q7)	2(q)

= q6 E7(q28)

E(q4)
+ q2 E(q28)E3(q14)E(q4)

E(q2)
	(q2) + q2�4(q7)	(q) + �(q)�(q7)	2(q). (5.3)

It now remains to find the even part of the last two terms on the right side of (5.3). This is easily done with the even–odd
dissections of 	(q) and �(q)�(q7) given by (1.19) and (3.7) and the formula (see [3, p. 40, Entry 25 (iv)–(vii)])

�4(q) = �2(q2)(�2(q2) + 4q�2(q4)) (5.4)

with q replaced by q7.
Lastly, we prove (1.23). Arguing as in (4.11), we find that

odd part of

{
E7(q7)

E(q)

}
− 2C7,−1(q) = q

E(q28)E3(q14)E(q4)

E(q2)
{�(q2) − 2q2�(q2)�(q14)}

= q
E(q28)E3(q14)E(q4)

E(q2)
�(q4), (5.5)
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where in the last step, we used (3.2). Using (5.5) together with (4.5), and by (3.7) and (1.25), we arrive at

E7(q7)

E(q)
= q

E(q28)E3(q14)E(q4)

E(q2)
�(q4) + 2C7,−1(q) + 2q2 E7(q14)

E(q2)

+ 6q6 E7(q28)

E(q4)
+ E4(q14)

E(q4)E(q28)
	(q2)�(q4)

= 2C7,−1(q) + 2q2 E7(q14)

E(q2)
+ 6q6 E7(q28)

E(q4)
+ E4(q14)

E(q4)E(q28)
�(q4){	(q2) + q�(q2)�(q14)}

= 2C7,−1(q) + 2q2 E7(q14)

E(q2)
+ 6q6 E7(q28)

E(q4)
+ E4(q14)

E(q4)E(q28)
�(q4)�(q)�(q7)

= 2C7,−1(q) + 2q2 E7(q14)

E(q2)
+ 6q6 E7(q28)

E(q4)
+ �(q4)f (q, q13)f (q3, q11)f (q5, q9)�(q7), (5.6)

which, by (1.31), is equal to the right-hand side of (1.23).

6. Concluding remarks

The inequalities, (1.11) and (1.12) (or equivalently (1.13)), of Theorem 1.1 are not optimal. Numerical evidence
suggest that

a7(2n + 2)�3a7(n) for all n�1,

a7(4n + 6)�15a7(n) for all n�1,

a7(4n + 6)�11a7(n) for all n�0.

Our attempts to improve Theorems 1.1 and 1.2 led us to the following interesting conjectures:

�(q)(�2(q) − �2(q7)) ∈ P [q], (6.1)

�(q)(�2(q) − �2(q7)) ∈ P [q], (6.2)

�(q)(�2(q) − �2(q7)) ∈ P [q], (6.3)

and

�(q)(�2(q) − �2(q7)) ∈ P [q]. (6.4)

The referee pointed out that (1.15) and (1.16) extend easily using our arguments to a few other arithmetic progressions;
for example,

a7(196n + 4r) = 5a7(98n + 2r − 1) for r = 10, 17, 45.
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