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A new array signal processing technique is proposed to estimate the direction-of-arrivals (DOAs),
time delays, Doppler shifts and amplitudes of a known waveform impinging on an array of antennas
from several distinct paths. The proposed technique detects the presence of multipath components by
integrating cross-ambiguity functions (CAF) of array outputs, hence, it is called as the cross-ambiguity
function direction finding (CAF-DF). The performance of the CAF-DF technique is compared with the
space-alternating generalized expectation–maximization (SAGE) and the multiple signal classification
(MUSIC) techniques as well as the Cramér–Rao lower bound. The CAF-DF technique is found to be
superior in terms of root-mean-squared-error (rMSE) to the SAGE and MUSIC techniques.
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1. Introduction

The next generation mobile radio communication systems are
faced with the ever increasing demand for higher communication
rates. In order to meet this demand, the communication systems
should obtain an accurate model for the communication channel
[1]. For fuller utilization of multipath communication channels,
communication systems utilize antenna arrays and sophisticated
signal processing techniques to produce estimates for multipath
channel parameters including direction-of-arrivals (DOA), time de-
lays, Doppler shifts and amplitudes. There are a multitude of ar-
ray signal processing techniques proposed for reliable and accu-
rate estimation for these channel parameters. Multipath channel
parameter estimation techniques can be grouped into three cat-
egories [2]: spectral-based estimation, parametric subspace-based
estimation and deterministic parametric estimation. Conventional
beamformer, Capon’s beamformer [3] and MUSIC [4] can be stated
within the first category. In contrast to beamforming techniques,
MUSIC algorithm provides statistically consistent estimates and be-
came a highly popular algorithm [5–9]. The signal subspace fit-
ting (SSF) [10], weighted subspace fitting (WSF) [11], estimation
of signal parameter estimation via rotational invariance techniques
(ESPRIT) [12] and unitary ESPRIT [13] are computationally efficient
techniques and belong to the second category. In the last cate-
gory, maximum likelihood (ML) techniques should be stated [2,14].
Compared to all other estimation methods, ML has the superior
asymptotic performance. The major issue of the ML technique
is its high computational complexity associated with the direct
maximization of likelihood function. Various indirect maximization

* Corresponding author. Fax: +46(0)13 139282.
E-mail address: bguldogan@isy.liu.se (M.B. Guldogan).
1051-2004/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2011.11.002
techniques, such as, data-supported grid search [15], alternating
projection method [16], and simulated annealing algorithms [17]
are proposed to obtain the ML estimates more efficiently. However,
these approaches cannot guarantee global convergence in general.

Alternatively, a very popular method to facilitate simple imple-
mentation of likelihood function is the expectation maximization
(EM) algorithm formulated by Dempster et al. [18]. The maximiza-
tion of the original likelihood function can be replaced by simpler
maximizations in lower dimensional parameter spaces. To further
improve the performance of the EM algorithm various techniques
have been developed [19–21]. The SAGE algorithm, which was de-
veloped by Fessler and Hero [22], is a very powerful technique to
further improve the EM algorithm. It sequentially estimates the
channel parameters, whereas the EM simultaneously updates all
parameters. Main advantage of the SAGE algorithm compared to
the EM algorithm is its faster convergence resulting in a corre-
spondingly lower complexity. The SAGE algorithm has been applied
for joint channel parameter estimation and some of these efforts
are reported in [19,23–29].

In wideband communication channels with peak power limita-
tions, typically coded waveforms with the time-bandwidth prod-
ucts significantly larger than one are employed. In these systems,
pulse compression of the receiver is a necessity to provide optimal
extraction of the transmitted information. In delay only channels
with bandlimited white noise, pulse compression can be achieved
by a simple matched filter that implements correlation of the in-
coming signal with the transmitted waveform. However, in the
presence of Doppler shifts, a single matched filter cannot pro-
vide the optimal performance, rather a bank of matched filters
each matched to a specific Doppler shift should be employed [30],
providing individual Doppler slices of the CAF between the trans-
mitted and received signals. Therefore, it is of both theoretical
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and practical interest to develop array signal processing techniques
where CAF is an integrated component of the processing chain
[31]. Here we present details of the proposed technique and com-
parison results of it with commonly used the SAGE and the MUSIC
techniques, where two criterions used to quantitatively measure
the performance. The first criterion is based on the accuracy of
the obtained channel parameters. The second criterion is based on
the overall performance of a communication receiver which uti-
lizes the estimated channel parameters to form its decision on the
transmitted information bit.

The paper is organized as follows. The parametric channel
model is outlined in Section 2. Details of the CAF-DF algorithm are
presented in Section 3. Performance results of each technique are
presented in Section 4. Details of the MUSIC-based and the SAGE
algorithms are given in Appendices A and B, respectively. The CRLB
derivations are provided in Appendix C.

2. Parametric channel model

In this section, we describe a commonly used parametric model
for multipath channels. For this purpose, we will consider trans-
mitted signals that can be written as a train of modulated pulses:

s(t) =
q∑

k=1

bk p
(
t − (k − 1)T

)
, (1)

where p(t) is the modulated pulse with time-bandwidth product
is larger than 1, and bk are ±1. In a typical communication system
{bk: 1 � k � q} are set differently for different transmitters sharing
the same channel. In the following, we will assume that there is
only one transmitter in the channel with bk = 1, 1 � k � q. In this
way, we will be able to provide our main results with significantly
less notational complexity. In Fig. 1, delayed, Doppler shifted and
attenuated copies of the transmitted signal from a transmitter (TX)
impinge on M element receiver antenna array (RX) from different
paths. Under the narrowband assumption which is valid when the
reciprocal of the bandwidth is much bigger than the propagation
of the waveform across the array, passband output signal of the
mth receiving antenna can be modeled as:

xm(t) =
d∑

i=1

q∑
k=1

ζi p
(
t − τm,i − (k − 1)T

)
× e j2πνm,i(t−ξm,i(θi ,φi))e j2πνc(t−ξm,i(θi ,φi)) + nm(t), (2)

where the parameters are defined as follows:

• d: number of different multipath signals,
• q: number of coded pulses in the transmitted signal,
• ζi : complex scaling factor of the ith path containing all the

attenuation and phase terms,
• p: coded pulse signal,
• τm,i : time delay of the ith path for the mth antenna,
• T : pulse repetition interval in seconds,
• νm,i : Doppler shift of the ith path for the mth antenna,
• θi : azimuth angle in degrees,
• φi : elevation angle in degrees,
• ξm,i : relative phase of the mth antenna due to the ith imping-

ing signal with respect to the origin of the antenna array,
• νc : carrier frequency,
• nm: complex additive noise, which is assumed to be spatially

and temporally white Gaussian distributed with covariance σ 2.

DOA (θi, φi) and the speed of an impinging electromagnetic
wave on an antenna array can be defined by the vector, α =
c−1[cos(θi) cos(φi), sin(θi) cos(φi), sin(φi)], called as the slowness
Fig. 1. An illustration of the receiver antenna array (RX) intercepting multipath sig-
nals from the transmitter (TX).

vector based on the reference coordinate system in Fig. 1. Position
of the each antenna in the array is represented with the vector
rm = rm[cos(θa

m), sin(θa
m),0]T . Here, rm is the distance of the mth

antenna to the array origin, (θa
m) is the angle on the x–y-axis from

x-axis to the antenna and superscript a denotes antenna. Assuming
that the relative orientations of the antennas are known, relative
phase of the mth antenna due to the ith impinging signal with
respect to the origin of the antenna array ξm,i can be written as

ξm,i(θi, φi) = αirm

= rm

c

(
cos(θi) cos(φi) cos

(
θa

m

)
+ sin(θi) cos(φi) sin

(
θa

m

))
, (3)

where (θi, φi) is the DOA for the ith path and c is the propaga-
tion velocity in the channel. The received signal model given in
(2) can be further simplified under mild assumptions. For narrow-
band signals, the time delay appears as a pure phase delay of the
reference signal. Moreover, this phase delay depends only on the
spacing between the array elements and the DOA of the plane
wave. Therefore, the same delay can be used across the receiving
antennas which is the delay, τi , between the transmitter and the
array origin. Since the receiving antennas are closely spaced, the
Doppler shifts across the receiving antennas corresponding to an
impinging signal can be taken the same νm,i = νi . Furthermore, for
typical Doppler spreads encountered in multipath wireless com-
munications e− j2πνm,iξm,i(θi ,φi) can be safely assumed to be one [32,
33]. Hence, under these conditions, received baseband signals at
each antenna can be simplified to:

xm(t) =
d∑

i=1

q∑
k=1

ζi p
(
t − τi − (k − 1)T

)
× e j2πνi te− j2πνcξm,i(θi ,φi) + nm(t). (4)

Then by using (1), array output can also be expressed as in the
following vector-matrix form:

x(t) =
d∑

i=1

a(θi, φi)ζi s(t − τi)e j2πνi t + n(t)

= As(t) + n(t), (5)

where A = [a(θ1, φ1), . . . ,a(θd, φd)]M×d is the steering matrix,
a(θi, φi) = [a1(θi, φi), . . . ,aM(θi, φi)]T is the spatial signature of
the ith arrival, n(t) = [n1(t), . . . ,nM(t)]T is the noise vector, s(t) =
[s1(t), . . . , sd(t)]T is the vector of delayed and Doppler shifted sig-
nals: si(t) = ζi s(t − τi)e j2πνi t . Assuming N snapshots are taken,
a more compact matrix representation can be written as

X = AS + N, (6)
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where X and N are M × N matrices with each snapshot forming a
column:

X = [
x(t1), . . . ,x(tN)

]
, (7)

N = [
n(t1), . . . ,n(tN )

]
, (8)

and S is the d × N signal matrix, S = [s(t1), . . . , s(tN)]. Moreover,
spatial covariance matrix of the array output can be given as:

Rs = E
{

XXH}
(9)

= AE
{

SSH}
AH + E

{
NNH}

, (10)

where E{.} represents the statistical averaging operation. Covari-
ance matrix of the received signal is usually unavailable. Therefore,
usually sample covariance matrix is used and can be estimated as

R̂s = 1

N
XXH . (11)

Our primary aim is to accurately estimate the time delays τ1,

. . . , τd , Doppler shifts ν1, . . . , νd and DOAs (θ1, φ1), . . . , (θd, φd)

of the incoming signals from the N snapshots of the array
x(t1), . . . ,x(tN ). To solve this problem we assume that the follow-
ing conditions hold:

(A1) The number of paths d is known.
(A2) The array manifold A(θ,φ) is known.

Note that the first assumption is the most restrictive one. Although
we will not go into detail here, there are excellent techniques
to determine the number of paths [34–37]. An important perfor-
mance criterion in multipath channel parameter estimation is the
effect of the estimated channel parameters to the performance of
the communication receiver system where the estimated channel
parameters can be used to form the following decision metric:

ρ̂ =
qT∫

0

sH (t)

(
M∑

m=1

d∑
i=1

ζ̂ H
i xm(t + τ̂i)e− j2πν̂i taH

m(θ̂i, φ̂i)

)
dt (12)

where ˆ(·) represents the estimated value of the parameter inside
the parentheses and (·)H is the conjugate transpose operator. This
decision signal is very similar to the decision signal generated by a
rake receiver [38]. Here we employed a raking strategy in both de-
lay and Doppler as well as between various DOAs of the multipath
components. Eq. (12) can also be written as:

ρ̂ = ρs + ρn

=
qT∫

0

sH (t)

(
M∑

m=1

d∑
i=1

d∑
l=1

ζ̂ H
i ζls(t − τl + τ̂i)e j2π(νl−ν̂i)t

× aH
m(θ̂i, φ̂i)am(θl, φl)

)
dt

+
qT∫

0

sH (t)

(
M∑

m=1

d∑
i=1

ζ̂ H
i nm(t + τ̂i)e− j2πν̂itaH

m(θ̂i, φ̂i)

)
dt

= ρs +
M∑

m=1

d∑
i=1

ζ̂ H
i aH

m(θ̂i, φ̂i)

qT∫
0

sH (t)nm(t + τ̂i)e− j2πν̂it dt

= ρs +
M∑ d∑

ζ̂ H
i aH

m(θ̂i, φ̂i)hm,i, (13)

m=1 i=1
where hm,i are i.i.d. random variables for all m and i, with

E{hm,i} = 0, E{|hm,i|2} = σ 2
∫ qT

0 |s(t)|2 dt = σ 2 Es . Variance of the
noise in Eq. (13) is:

Var{ρn} = E

{(
M∑

m=1

d∑
i=1

ζ̂ H
i aH

m(θ̂i, φ̂i)hm,i

)

×
(

M∑
m′=1

d∑
i′=1

ζ̂i′am′(θ̂i′ , φ̂i′)h
H
m′,i′

)}

= Mσ 2 Es

d∑
i=1

|ζi|2. (14)

The estimated or decision SNR given below serves as a perfor-
mance criterion between alternative techniques:

ŜNR = |ρ̂|2
Var{ρn} = |ρ̂|2

Es Mσ 2
∑d

i=1 |ζ̂i |2
(15)

where Es is the transmitted signal energy.

3. The cross-ambiguity function domain direction finding
technique

The cross-ambiguity function domain direction finding (CAF-DF)
is an iterative technique, where at each iteration, parameters of
a single path are estimated [39]. In the rest of this section, we
present the steps of the technique in detail. The received signals
are often modeled as delayed, Doppler shifted and scaled versions
of the transmitted signal. As it is used in radar signal process-
ing, the CAF can be used in order to estimate the time delay of a
Doppler shifted signal for the received signal xm(t) and the trans-
mitted signal s(t) [30,40]. In terms of SNR, matched filtering is
the optimum solution for detection. When the Doppler shift is not
known, performance of the receiver, that makes use of a matched
filter matched to the transmitted signal, may significantly degrade.
The ambiguity function characterizes the output of a matched fil-
ter when the input signal is delayed and Doppler shifted. In the
case of one multipath component, CAF calculation is the optimal
solution for detection. If there exist two or more multipath compo-
nents separated enough in delay–Doppler domain, the CAF surface
offers a very useful detection surface by using properly chosen
waveforms for the application of interest [30,41]. Although there
exist several different representations, we prefer symmetrical ver-
sion of the CAF:

χ xm,s(τ , ν) =
∞∫

−∞
xm(t + τ/2)sH (t − τ/2)e− j2πνt dt. (16)

Starting point of the CAF-DF technique is to estimate the DOA
information which is captured in e− j2πνcξm,i(θi ,φi) of (4). This in-
formation will be gathered by collecting M complex values from
calculated CAFs on each antenna of the array. For this purpose,
CAF with the known transmitted waveform is computed on each
antenna. When the phase of each impinging signal on the array is
unknown, to detect the delay and Doppler coordinates of a multi-
path component (highest peak point on the CAF surface), absolute
value of each CAF calculated at the output of each antenna is in-
coherently integrated as:

χ incoh(τ , ν) = 1

M

M∑
m=1

∣∣χ xm,s(τ , ν)
∣∣. (17)

Coordinates of the peak of the χ incoh(τ , ν) provide us initial
delay–Doppler estimates of the path in consideration. These ini-
tial estimates are updated in the end of each iteration based on
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Fig. 2. Calculated CAF surfaces of two signal paths with parameters τ/�τ = [1.5,1.5] and ν/�ν = [1.9,0.7]. (a, b, c, d): CAF surfaces of 4 antennas, which are selected
arbitrarily from 15-element antenna array. (e): Incoherently integrated CAF surface of path-1. (f): Coherently integrated CAF surface of path-1. (g): Incoherently integrated
CAF surface of path-2. (h): Coherently integrated CAF surface of path-2.
a coherent integration process. Since antennas in the array are
closely spaced, peak location of each CAF will be nearly the same
for each antenna. This means that, after incoherent integration, de-
sired highest peak power on the incoherently integrated CAF sur-
face is not changed notably but noise power is reduced all around
the highest peak. In another words, compared to detecting highest
peak on a CAF surface, same probability of detection can be ob-
tained with less SNR if detection of the highest point is performed
on the incoherently integrated CAF surface. Detection performance
of the initial delay and Doppler coordinates (τ̂ ′

i , ν̂
′
i ) of the highest

peak that exceeds a predefined detection threshold is improved
by this way. This practical approach is widely used in radar sig-
nal processing and there are excellent references presenting details
of the procedure [30,41,42]. The incoherent integration-based peak
detection procedure is illustrated in Fig. 2, by using a 15-element
circular antenna array output. Note that the resolution of delay
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and Doppler in the CAF domain are �τ = 1/BW and �ν = 1/Tcoh ,
respectively. Here, BW corresponds to the bandwidth and Tcoh is
the duration of s(t). One important principle that should be men-
tioned at this point is the uncertainty principle [30]. Briefly, it says
that, if one narrow the peak on AF surface to increase the estima-
tor’s local accuracy, the volume removed will reappear somewhere
away from the peak and will decrease the estimator’s global ac-
curacy. This behavior of the AF indicates that there have to be
trade-offs made among the resolution, accuracy, and ambiguity.
Therefore, type of the waveform determines the accuracy in re-
solving multipath components and should be chosen based on
the interested problem. Maybe the most famous family of phase
codes are the Barker codes [30]. In this paper, as a transmitted
signal, s(t), Barker-13 phase coded pulse train is used, which pro-
vides good delay and Doppler resolution for the interested area on
the AF surface. Barker-13 phase coded waveforms yield a peak-to-
peak sidelobe ratio of 13. Fig. 2(a)–(d) are the sample CAF surfaces
calculated for four antennas and Fig. 2(e), (g) are the incoherent
integration of fifteen CAF surfaces for path-1 and path-2, respec-
tively. It is seen from the resultant normalized CAF that the noise
level is suppressed relative to the peak when compared to the
individual CAFs. In short, peak detection on the incoherently in-
tegrated CAF surface provided more accurate initial delay–Doppler
estimates (τ̂ ′

i , ν̂
′
i ) of the ith multipath component than an individ-

ually calculated CAF on one antenna, yielding more accurate DOA
estimation.

As we have pointed out previously, receiver performance is
severely degraded if Doppler effect is not an integral part of the
processing chain. Therefore, joint delay–Doppler estimation is re-
quired to have optimal detection and accurate DOA estimation.
Especially, at low SNR level, joint delay–Doppler processing using
CAF significantly improves the success in separating overlapped
(closely spaced) multipath components. By this way, accuracy in
DOA estimation is significantly increased. In order to motivate the
usage of incoherently integrated CAF processing, consider that the
initial delay and Doppler parameters are estimated using separate
optimizations:

τ̂i = arg max
τ

M∑
m=1

∣∣∣∣∣
+∞∫

−∞
sH (t − τ )xm(t)dt

∣∣∣∣∣, (18)

ν̂i = arg max
ν

M∑
m=1

∣∣∣∣∣
+∞∫

−∞
sH (t − τ̂i)e− j2πνt xm(t)dt

∣∣∣∣∣. (19)

Delay estimates in (18) are not accurate, due to not considering the
Doppler effect. Moreover, delay estimation error is propagated to
Doppler estimates in (19). Clearly, DOA estimation will include this
propagated estimation error. However, in the CAF-DF technique,
once the largest peak exceeding the detection threshold is iden-
tified, the following vector Pi is formed from the complex values
of individual CAF surfaces at the detected peak location (τ̂ ′

i , ν̂
′
i ).

Pi = [
χ x1,s

(
τ̂ ′

i , ν̂
′
i

)
, . . . ,χ xm,s

(
τ̂ ′

i , ν̂
′
i

)
, . . . ,χ xM ,s

(
τ̂ ′

i , ν̂
′
i

)]T
(20)

where

χ xm,s

(
τ̂ ′

i , ν̂
′
i

)
=

+∞∫
−∞

xm
(
t + τ̂ ′

i /2
)
sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

i t dt

=
+∞∫ [

d∑
l=1

am(θl, φl)sl
(
t + τ̂ ′

i /2
) + nm(t)

]

−∞
× sH(
t − τ̂ ′

i /2
)
e− j2πν̂ ′

i t dt

= am(θi, φi)

+∞∫
−∞

si
(
t + τ̂ ′

i /2
)
sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

i t dt

+
+∞∫

−∞

d∑
l=1, l �=i

am(θl, φl)sl
(
t + τ̂ ′

i /2
)
sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

l t dt

+
+∞∫

−∞
nm(t)sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

i t dt

= am(θi, φi)

+∞∫
−∞

si
(
t + τ̂ ′

i /2
)
sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

i t dt + βm. (21)

Here, β notates for sum of inter-path interference and noise terms.
The DOA of the detected multipath component can be estimated
from phase of each element of Pi by optimizing the following cri-
terion:

(θ̂i, φ̂i)

= arg max
θ,φ

∣∣a(θ,φ)H Pi
∣∣

=
∣∣∣∣∣a(θ,φ)H a(θi, φi)

+∞∫
−∞

si
(
t + τ̂ ′

i /2
)
sH(

t − τ̂ ′
i /2

)
e− j2πν̂ ′

i t dt

+
M∑

m=1

am(θ,φ)Hβm

∣∣∣∣∣. (22)

In this cost function, if we concentrate on the first term in the
absolute value, accuracy of the maximization procedure is directly
related with the accuracy of the integral that is calculated with
delay and Doppler estimates (τ̂ ′

i , ν̂
′
i ). Therefore, joint estimation

approach on incoherently integrated CAF surface not only provides
good initial delay and Doppler estimates but also accuracy of DOA
estimates are improved. Note that, if there were a single path in
the detected delay–Doppler cell, this criterion would have provided
highly accurate estimates. Having obtained the DOA of the ith mul-
tipath component, in order to further improve the accuracy of the
initial delay and Doppler estimates, each antenna output is coher-
ently integrated. To motivate the coherent integration, let’s write
the output of the mth antenna as:

xm(t) =
d∑

i=1

ζi s(t − τi)e j2πνitam(θi, φi) + nm(t)

=
d∑

i=1

si(t)am(θi, φi) + nm(t)

= si(t)am(θi, φi) +
d∑

l=1, l �=i

sl(t)am(θl, φl) + nm(t). (23)

Estimated θ̂i and φ̂i values enable coherent combination of indi-
vidual antenna outputs to obtain xcoh(t) as follows:

xcoh(t) = 1

M

M∑
m=1

xm(t)aH
m(θ̂i, φ̂i)

= 1

M

M∑[
d∑

si(t)am(θi, φi) + nm(t)

]
aH

m(θ̂i, φ̂i)
m=1 i=1
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= si(t) + 1

M

M∑
m=1

d∑
l=1,l �=i

sl(t)am(θl, φl)a
H
m(θ̂i, φ̂i)

+ 1

M

M∑
m=1

nm(t)aH
m(θ̂i, φ̂i)

= si(t) + βcoh(t). (24)

Here, the first term is the sum of phase corrected versions of
the ith multipath component at each antenna, second term is the
inter-path interference, and the third one is the noise term. If we
had one multipath component, inter-path interference would have
been zero. Noise power in xcoh(t) can be written as:

σ 2
coh = E

{(
1

M

M∑
m=1

nm(t)aH
m(θ̂i, φ̂i)

)(
1

M

M∑
k=1

nk(t)a
H
k (θ̂i, φ̂i)

)H}

= 1

M2

M∑
m=1

E
{
nm(t)nH

k (t)
}

= 1

M
σ 2. (25)

Therefore, after coherent integration signal power is unchanged
and noise power is reduced by the factor, 1/M , in the ideal
case. Due to the estimation errors in DOA of the ith multi-
path component and inter-path interference, reduction in noise
variance will not exactly be equal to 1/M . However, in each
iteration of the CAF-DF algorithm, DOA estimates are updated
and inter-path interferences are effectively suppressed. As a re-
sult positive effect of the coherent integration in estimation is
increased. Therefore, coherent integration process, (24), of the
antenna outputs results in an improvement in the SNR. The
phase correction procedure, with respect to the array origin,
given in (24) is illustrated in Fig. 3, where the slow-time ver-
sions (sampled version of the pulse train with pulse repeti-
tion interval) of the antenna outputs are seen. If phase shifting
with respect to the array origin occurs with the correct DOA
estimates, then output slow-time signals overlap as in Fig. 3.
As demonstrated in Fig. 2(f), (h), the CAF between the trans-
mitted signal and the signal obtained by coherent integration,
xcoh(t),

χ xcoh,s(τ , ν) =
∞∫

−∞
xcoh(t + τ/2)sH (t − τ/2)e− j2πνt dt

=
∞∫

−∞
si(t + τ/2)sH (t − τ/2)e− j2πνt dt

+
∞∫

−∞
βcoh(t + τ/2)sH (t − τ/2)e− j2πνt dt, (26)

yields more accurate detection of delay and Doppler of the de-
tected path than the initial delay and Doppler estimates. In order
to visualize the effect of the coherent integration clearly, a 1-D
delay slice of the peak point on the incoherently integrated CAF
and coherently integrated CAF surfaces, shown in Fig. 2(e)–(h), are
presented in Fig. 4. Bold line represents the 1-D slice across the
coherently integrated surface and the dashed line represents the
1-D slice across the incoherently integrated surface. Note that, in-
terference from other signal paths and the noise is less detrimental
around the peak of the coherently integrated CAF. Therefore, the
delay–Doppler estimates for the detected path become more accu-
rate. Also note that, in Fig. 4(b), peak location of the incoherently
Fig. 3. Coherent integration process in slow-time for 15-element antenna array. Real
part of the complex array output is plotted. (a): Slow-time output of array before
coherent integration. (b): Slow-time output of array after coherent integration.

integrated CAF, which is the Doppler estimate of the path-2, is
shifted left from its true value. However, peak location of the co-
herently integrated CAF points the true Doppler value clearly. As
a result, initial delay and Doppler estimates (τ̂ ′

i , ν̂
′
i ) are updated

by calculating the ambiguity function between xcoh(t) and s(t),
χ xcoh,s(τ , ν). Delay and Doppler values corresponding to peak of
χ xcoh,s(τ , ν) are considered as updated estimates, (τ̂ ′′

i , ν̂ ′′
i ). The

obtained estimates for azimuth, elevation, delay and Doppler pa-
rameters of one of the impinging paths enables to generate a copy
of the impinging signal at each antenna output as:

x̂m,i(t) = ζm,i s
(
t − τ̂ ′′

i

)
e j2πν̂ ′′

i te− j2πνcξm,i(θ̂i ,φ̂i), (27)

where i represents the ith detected signal path and ζm,i is a
complex scalar, which covers all the phase shifts and attenuation
effects and modeled as a uniformly distributed phase between 0
and 2π . Due to, calibration inaccuracies of the antenna array, ζm,i
may differ for each antenna. Under additive white Gaussian noise
model, conditional maximum likelihood estimate of the ζm,i for a
given set of estimated (τ̂ ′′

i , ν̂ ′′
i , θ̂i, φ̂i) parameters can be obtained

as the minimizer of the following cost function:

Jm(ζm,i) =
Tcoh∫ ∣∣xm(t) − x̂m,i(t)

∣∣2
dt. (28)
0
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Fig. 4. Two signal paths with parameters τ/�τ = [1.5,1.5] and ν/�ν = [1.9,0.7].
1-D peak-delay slices of CAF surfaces of Fig. 2(e)–(h). Bold and dashed lines are for
coherent and incoherent integration, respectively. (a): 1-D peak-delay slice of CAF
surface of path-1. (b): 1-D peak-delay slice of CAF surface of path-2.

The least-squares solution of the this quadratic cost function is
[43]:

ζ̂m,i =
∫ Tcoh

0 sH (t − τ̂ ′′
i )e− j2πν̂ ′′

i taH
m(θ̂i, φ̂i)xm(t)dt∫ Tcoh

0 sH (t − τ̂ ′′
i )s(t − τ̂ ′′

i )dt
. (29)

Note that, if there is negligible calibration issue between the an-
tennas, ζm,i will be approximately the same for each antenna and
can be estimated optimally as:

ζ̂i = 1

M

M∑
m=1

ζ̂m,i . (30)

Once the complex scaling parameter, ζ̂m,i is obtained, the identi-
fied path is fully characterized. Hence, a copy of the first multipath
component at each antenna output can be generated to eliminate
it from the array output to recurse on the residual for detection
of the remaining multipath components. Although it is in the class
of greedy optimization techniques, this iterative approach is highly
efficient. Note that, elimination of a multipath component from the
array outputs eliminates both its main and sidelobes from the CAF
domain. Thus, weaker paths that are buried under the sidelobes of
the detected and eliminated path might become detectable as well.
An illustration of this fact is shown in Fig. 2, where the CAF of the
Table 1
CAF-DF algorithm.

for j = 1; j � max. # iterations; j = j + 1
for i = 1; i � d; i + +
– CAF computation at each antenna output with transmitted known signal

using (16).
– Incoherent integration of M CAFs using (17).
– Detect the peak point coordinates (τ̂ ′

i , ν̂
′
i ) of the incoherently integrated

CAFs.
– Collect M complex values on each CAF surface corresponding to the coor-

dinates (τ̂ ′
i , ν̂

′
i ) and create an M-dimensional vector by (20).

– Using (22) estimate DOAs (θ̂i , φ̂i).
– Correct the phases of each antenna output with respect to the array origin

with (θ̂i , φ̂i) and add them up by (24).
– Estimate τ̂ ′′

i and ν̂ ′′
i using (26).

– Estimate complex scalar using either (29) or (30).
– Create a copy of the ith signal path with estimated parameters.
– Subtract the copy signal from each antenna output.

end
end

residual array outputs reveals the presence of a weaker path that
was partially buried under the sidelobes of the eliminated path.
This detection and elimination process is repeated until there is no
peak exceeding the detection threshold that can be set to satisfy a
constant false alarm rate or a predefined number of iterations. In
Table 1, steps of the CAF-DF algorithm are summarized.

4. Simulation results

In this section, performances of the CAF-DF, SAGE and MU-
SIC algorithms are compared on synthetic signals at different SNR
values by using Monte Carlo simulations. Implementation details
for the MUSIC-based and SAGE techniques are presented in Ap-
pendices A and B, respectively. The joint-rMSE, the basis of our
comparisons, is defined as:

rMSE =
√√√√ 1

dNr

d∑
i=1

Nr∑
l=1

[
ϕ̂ i(l) − ϕ i(l)

]2
, (31)

where Nr is the number of Monte Carlo simulations, ϕ̂ i(l) is the
parameter estimates of the ith multipath component found in the
lth simulation and ϕ i(l) is the true parameter values of the ith
path. A circular receiver array of M omnidirectional sensors at po-
sitions [r cos(m2π/M), r sin(m2π/M)], 1 � · · · � M , is synthesized.
The radius of the array r = λ/4 sin(π/M) is chosen such that the
distance between two neighboring sensors is λ/2, where λ is the
carrier wavelength. The transmitted training signal consists of 6
Barker-13 coded pulses with a duration of 13�τ where �τ is
the chip duration. The pulse repetition interval is 30�τ resulting
a total signal duration of qT = 167�τ . The SNR is defined at a
single sensor relative to the noise variance. Both the CAF-DF and
the SAGE algorithms are iterated only 4 times, which is found to
be sufficient for convergence. All simulations are conducted on a
DELL Latitude E6410 Laptop with Intel-i7 2.8 GHz processor. Single
iteration of the CAF-DF and the SAGE techniques for one multipath
component take approximately 0.73 s and 0.97 s, respectively. Pro-
posed technique is computationally efficient than the SAGE tech-
nique. The MUSIC technique is known to be computationally very
efficient technique and it takes 0.2 s for one multipath compo-
nent.

In the first experiment there exist two equal power paths
having parameters ϕ1 = [50◦,40◦,2�τ,1.7�ν, e jψ1 ] and ϕ2 =
[54◦,44◦,1.5�τ,0.8�ν, e jψ2 ], where ψ1 and ψ2 are uniformly
distributed between [0,2π ]. A uniform circular array of M = 15
sensors is used. Note that, the two paths are closely spaced in
all parameters. Time-delay and Doppler shift difference between
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Fig. 5. Joint-rMSE obtained with the CAF-DF, the SAGE and the MUSIC for two signal paths with ϕ1 = [50◦,40◦,2�τ,1.7�ν, e jψ1 ] and ϕ2 = [54◦,44◦,1.5�τ,0.8�ν, e jψ2 ]
at different SNR values. (a): azimuth, (b): elevation, (c): time-delay and (d): Doppler shift.
the two paths are 0.5�τ and 0.9�ν respectively in CAF domain.
Two paths are 4◦ separated in spatial domain. Fig. 5 presents the
rMSE obtained from 500 Monte Carlo runs at each SNR. Time-delay
and Doppler rMSEs are normalized by �τ and �ν , respectively.
Obtained results show that both the CAF-DF and the SAGE tech-
niques provide significantly better parameter estimates than the
MUSIC technique. Furthermore, the CAF-DF technique outperforms
the SAGE technique and provides more reliable estimates at all
simulated SNR values. Since in many applications low SNR perfor-
mance is a deciding factor, the superior performance of the CAF-
DF at low SNRs is a significant improvement. Delay and Doppler
parameter estimates of the CAF-DF algorithm achieved the CRLB
bound. However, for the considered SNR values in the simulation,
DOA estimates could not achieved the lower bound. We think that,
this is due to the separate and suboptimal approach used in the
iterations of the algorithm. Using the same settings of the first ex-
periment, Fig. 6 illustrates the convergence of rMSE for the CAF-DF
and the SAGE techniques at 30 dB SNR. As expected, the rMSE of
each parameter has a monotonic decrease with iterations. Both al-
gorithms converge in a few iterations.

In the second simulation study, there exist two equal power
paths with parameters ϕ1 = [50◦,40◦,1.5�τ,1.6�ν, e jψ1 ] and
ϕ2 = [54◦,44◦,1.66�τ,0.8�ν, e jψ2 ]. A uniform circular array
with M = 15 sensors is used. This time the paths are even more
closer. Time-delay and Doppler shift difference between the two
paths are 0.16�τ and 0.8�ν , respectively. Paths can now be sep-
arated only by using the difference in their Doppler shift. The
obtained results are tabulated in Table 2. As in the first experi-
ment, MUSIC is not able to separate the paths. Performances of
the CAF-DF and the SAGE are degraded slightly, as expected. In
this scenario, except the Doppler estimates at high SNRs, the CAF-
DF consistently performs better than the SAGE.
Table 2
rMSE values of MUSIC (A1), SAGE (A2) and CAF-DF (A3) algorithms for various SNR
values. CRLB (A4). Time-delay and Doppler rMSEs are normalized by �τ and �ν ,
respectively.

SNR (dB) rMSE (deg) rMSE (deg) rMSE/�τ rMSE/�ν

10 A1 15.58 15.79 11.84 1.56
A2 4.23 3.7 0.9 1.1
A3 1.73 2.45 0.07 0.46
A4 0.02 0.027 0.019 0.046

15 A1 14.48 14.24 11.62 1.42
A2 2.07 1.91 0.44 0.76
A3 0.83 0.84 0.01 0.051
A4 0.011 0.016 0.01 0.025

20 A1 12.32 14.06 11.48 1.3
A2 0.61 0.66 0.077 0.035
A3 0.41 0.49 0.0068 0.025
A4 0.006 0.0092 0.0061 0.014

25 A1 11.75 12.68 10.2 1.04
A2 0.22 0.25 0.019 0.013
A3 0.22 0.27 0.0037 0.016
A4 0.0036 0.0052 0.0034 0.008

30 A1 10.6 10.18 8.2 0.63
A2 0.12 0.12 0.011 0.006
A3 0.08 0.11 0.0024 0.012
A4 0.002 0.0026 0.0019 0.004

In the third experiment, we investigated the identification of
10 paths with a circular array of 8 sensors. The path parame-
ters are given in Table 3. The delay–Doppler domain spread of
these paths are shown in Fig. 7. Note that the number of paths
exceeds the number of sensors which would made it impossi-
ble to resolve with narrowband systems. However, in wideband
communication systems, delay–Doppler domain diversity of the
paths can be exploited to resolve the paths as long as there are
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Fig. 6. Joint-rMSE obtained with the CAF-DF and the SAGE for two signal paths with ϕ1 = [50◦,40◦,2�τ,1.7�ν, e jψ1 ] and ϕ2 = [54◦,44◦,1.5�τ,0.8�ν, e jψ2 ] for different
number of iterations. (a): azimuth, (b): elevation, (c): time-delay and (d): Doppler shift.
Table 3
10 path parameters. Time-delay, Doppler and complex scaling factor values are
normalized by �τ , �ν and e jψi , respectively. ψi ’s, i = 1, . . . ,d, are uniformly dis-
tributed between [0,2π ].

Path θ (deg) φ (deg) τ/�τ ν/�ν ζ/e jψi

1 45 30 1 1 1
2 50 35 1.66 1.5 0.9
3 55 40 1.16 2.5 0.8
4 60 45 1.83 3 0.7
5 65 50 2.5 2.7 0.6
6 70 55 3.16 3.4 0.8
7 75 38 4.16 1.6 0.8
8 57 47 4.83 1 1
9 63 43 4.66 2.8 1

10 68 33 5.5 2.1 0.7

fewer paths than the number of array elements in each resolv-
able delay–Doppler cell. The joint-rMSE of the estimated multipath
parameters by the proposed CAF-DF and the SAGE algorithms are
shown in Fig. 8. We observed that the CAF-DF technique provided
significantly better estimates at all SNR levels. The main reason
for failure of the SAGE is that, when the number of paths in-
creases, the maximum likelihood-based approach faces significant
challenges in finding the global maximum of the likelihood func-
tion. This is mainly because of the fact that likelihood maximiza-
tion is performed in time domain, where there is a considerable
overlap between the signals received from different paths. How-
ever, CAF-DF technique transforms the array signal outputs to the
CAF domain where different multipath signals are localized to their
respective delay and Doppler cell. Therefore, overlapping signals
in time domain are separated in delay–Doppler domain resulting
in the observed performance improvement. Moreover, in Fig. 9,
Fig. 7. Delay–Doppler spread of the 10 signal paths are represented with black dots
on the delay–Doppler domain.

ŜNRCAF-DF/ŜNRSAGE ratio is plotted for threshold and asymptotic
regions of estimation performance at various SNR values using
Eqs. (12) and (15). Parallel with the results shown in Fig. 8, at
all SNR levels CAF-DF combines diversity better than the SAGE
which enable detector to accurately retrieve the transmitted in-
formation.

5. Conclusions

A new array signal processing technique, called as CAF-DF, is
proposed for the estimation of multipath channel parameters in-
cluding the path amplitude, delay, Doppler shift and DOAs. The
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Fig. 8. Joint-rMSE, obtained with the CAF-DF and the SAGE for 10 signal paths at different SNR values. (a): azimuth, (b): elevation, (c): time-delay and (d): Doppler shift.
Fig. 9. Ratio of estimated SNRs of CAF-DF and SAGE techniques for threshold and
asymptotic regions of estimation performance using (12), (15).

proposed CAF-DF technique makes use of the CAF computation
for joint and reliable estimation of path parameters of individ-
ual multipath components. Extensive simulation results show that
the CAF-DF technique is superior in terms of rMSE to the SAGE
technique over a wide range of SNR levels. Furthermore, the CAF-
DF technique provides 2 to 3 dB improvement over the SAGE
technique in the SNR of diversity combined detection signal. This
improvement provided over the practical operational SNR range of
receivers is a very significant advantage of the CAF-DF technique.
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Appendix A. MUSIC-based algorithm

MUSIC (MUltiple SIgnal Classification) is a widely used signal
subspace method which finds the array manifold orthogonal to
the noise subspace. The MUSIC spectrum is computed by perform-
ing an eigenvalue analysis on the correlation matrix. The space
spanned by the eigenvectors consists of two disjoint subspaces:
signal and noise subspaces. Eigenvalue decomposition of the co-
variance matrix in (10) can be expressed as

Rs = UsΛsUH
s + UnΛnUH

n , (A.1)

where Us is the matrix whose columns are the eigenvectors cor-
responding to the d largest eigenvalues of Rs , and Un is an N ×
(N − d) matrix whose columns are rest of the eigenvectors of Rs .
Column spaces of Us and Un span the signal and noise subspaces
respectively. Columns of Un are orthogonal to Us . In order to es-
timate the DOAs, one should determine d values of (θ,φ) set that
make a(θ,φ) nearly orthogonal to (I − UsUH

s ), according to

P(θ,φ) = aH (θ,φ)a(θ,φ)

aH (θ,φ)(I − UsUH
s )a(θ,φ)

. (A.2)

Having estimated the DOAs, delay and Doppler parameters are es-
timated. For that purpose, each antenna output is correlated with
training coded pulse, p(t) as follows:

Xc = corr
(
X, p(t)

)
. (A.3)

Then, in order to compress noise a simple averaging scheme is ap-
plied. To do this, a q × 1 vector is created at each antenna output
by taking samples that are periodic with T ;

Cn
m = [

Xc(n.ts + T ), . . . ,Xc(n.ts + qT )
]T

,

m = 1,2, . . . , M, (A.4)

where ts is the sampling time and n = 1/ts, . . . , T /ts . By adding up
norm-squared Cn

m values, we simply get

κ[n] = 1

M

M∑∥∥Cn
m

∥∥2
. (A.5)
m=1
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Dominant peak points of κ[n] correspond to probable signal ar-
rival paths. By setting a threshold value, locations of the dominant
peaks are obtained. Time domain pair of the indexes are the de-
lay estimates of paths. For each peak, corresponding correlated
antenna output vectors, Cn

m , are merged to form an M × (T /ts)

matrix. Using this matrix as an input to the classical MUSIC algo-
rithm, DOAs of the each signal source are found [4]. As discussed
in coherent integration step of the CAF-DF technique, in order to
increase the SNR, with the estimated DOAs each antenna corre-
lated output is phase corrected with respect to the origin of the
array and added up. Lastly, Fourier transform of the resultant vec-
tor is evaluated to find the Doppler shift of the impinging signal
source.

A limitation of the MUSIC occurs when two or more sources are
highly correlated, which is the scenario considered in the simula-
tions. Contrary to this bottleneck, for accurate signal models and in
medium-high SNR conditions, the MUSIC is a statistically consis-
tent, computationally very efficient and well studied technique in
the literature [2]. Moreover, due to its ease of implementation and
computational efficiency, it has been used in many different real-
time applications successfully [6,7]. Therefore, since it is a very
well-known technique, we wanted to include its relative perfor-
mance to the CAF-DF and the SAGE techniques in two different
channel estimation scenarios.

Appendix B. The SAGE algorithm

One of the most popular approaches to obtain more efficient
ML estimates is the EM algorithm [18]. EM is an iterative method
for solving the ML estimation problem in situations where a part
of the observations are missing. To further improve the speed of
convergence of the EM approach, SAGE algorithm has been pro-
posed [22]. Each iteration of the algorithm contains EM iteration
phase where some of the parameters are fixed at the previous it-
eration values, while other parameters are re-estimated. Instead of
simultaneous parameter estimation, parameters are estimated se-
quentially. In order to reduce the complexity of the algorithm, sub-
optimal but faster one-dimensional optimization procedures along
each parameter are used. In Table 4, the basic form of the SAGE
algorithm is presented [25]. Formulization of the SAGE algorithm
relies on two crucial points of unobservable (complete) and ob-
servable (incomplete) data. Considering the model given in (5),
complete data can be defined as follows:

zi(t) = ζia(θi, φi)s(t − τi)e j2πνit + ni(t)

= ui(t) + ni(t), i = 1, . . . , i, . . . ,d. (B.1)

The received signal is called as incomplete data and it is related to
complete data by

x(t) =
d∑

i=1

zi(t). (B.2)

The SAGE algorithm can be divided into two parts namely: ex-
pectation and maximization phases. In the expectation phase, com-
plete data can be formed as:

ẑi(t;η) = x(t) −
d∑

γ =1,γ �=i

û
(
t;ϕi(η)

)
(B.3)

where η is the algorithm iteration index. In the first iteration,
η = 1, ẑi(t;η) is initialized as ẑi(t;η) = x(t). Once the complete in-
formation is formed, the maximization phase takes place to yield a
new set of parameter estimates for each multipath component by
using the following equations:
Table 4
Basic SAGE algorithm for reference.

Initialize the algorithm.
for j = 1; j � max. # iterations; j = j + 1

for i = 1; i � d; i + +
– Expectation step: estimate the complete (unobservable) data of ith signal

path.
– Maximization step: estimate each parameter of ith multipath component

sequentially by maximizing a properly chosen cost function.
– Create a copy of the ith multipath component with estimated parameters.
– Subtract the copy signal from each antenna output.

end
end

τ̂i(η)

= arg max
τ

{∣∣gi
(
τ , θ̂i(η − 1), φ̂i(η − 1), ν̂i(η − 1); ẑi(t;η − 1)

)∣∣},
(B.4)

ν̂i(η) = arg max
ν

{∣∣gi
(
τ̂i(η), ν, φ̂i(η − 1), θ̂i(η − 1); ẑi(t;η − 1)

)∣∣},
(B.5)

θ̂i(η), φ̂i(η) = arg max
θ,φ

{∣∣gi
(
τ̂i(η), θ,φ, ν̂i(η); ẑi(t;η − 1)

)∣∣}, (B.6)

ζ̂i(η) = gi(τ̂i(η), θ̂i(η), φ̂i(η), ν̂i(η); ẑi(t;η − 1))

s(t)H s(t)‖a(θ̂i(η), φ̂i(η))‖2
. (B.7)

In these equations, gi(τ , θ,φ, ν; zi(t)) is defined as:

gi
(
τ , θ,φ,ν; zi(t)

)
�

∞∫
−∞

sH (t − τ )aH (θ,φ)zi(t)e− j2πνt dt. (B.8)

There are various methods to initialize the algorithm. In this pa-
per, the following initialization procedure is preferred. Since, ini-
tially, phases of the complex amplitudes ζmi are not known, delays
and Doppler shifts are estimated incoherently. For this purpose, in
the initialization part, maximization procedures used for delay and
Doppler estimations given in (B.4) and (B.5) are changed with the
equations below.

τ̂i(η) = arg max
τ

{
M∑

m=1

∣∣∣∣∣
∞∫

−∞
sH (t − τ )ẑm,i(t,0)dt

∣∣∣∣∣
}

, (B.9)

ν̂i(η) = arg max
ν

{
M∑

m=1

∣∣∣∣∣
∞∫

−∞
sH(

t − τ̂i(η)
)
ẑm,i(t,0)e− j2πνt dt

∣∣∣∣∣
}

.

(B.10)

As seen from the equations above, signal estimates for the multi-
paths with initialized parameters are subtracted from the observed
data x(t). Parameter update procedure is continued until there is
no considerable improvement in the sense of rMSE between con-
secutive iterations.

Appendix C. THE Cramér–Rao bound

In this appendix, derivation of the CRLB for the joint estima-
tion problem is presented. CRLB provides a lower bound on the
variance of the parameter estimates of an unbiased estimator [43]:

E
{
(ϕ̂ − ϕ)T (ϕ̂ − ϕ)

}
� J−1, (C.1)

where ϕ is the parameter vector and J is the Fisher Information
Matrix (FIM). In our model, residual error vector e(tk) defined be-
low has a circularly symmetric i.i.d. Gaussian distribution:



286 M.B. Guldogan, O. Arikan / Digital Signal Processing 22 (2012) 275–287
e(tk) = x(tk) −
d∑

i=1

a(θi, φi)ζi s(tk − τi)e j2πνi t . (C.2)

Assuming the variance of the distribution is σ 2, the log likelihood
function can be written as

L = −N M logπσ 2 − 1

σ 2

N∑
k=1

∥∥e(tk)
∥∥2

. (C.3)

Using straight forward differentiations we obtain the following par-
tial differentials that will be used to derive the entries of the FIM:

∂L

∂τi
= 2

σ 2

N∑
k=1

�e

[
ζ H

i aH (θi, φi)e− j2πνi tk
∂sH (tk − τi)

∂t
e(tk)

]
, (C.4)

∂L

∂θi
= 2

σ 2

N∑
k=1

�e

[
ζ H

i sH (tk − τi)e− j2πνitk
∂aH (θi, φi)

∂θi
e(tk)

]
, (C.5)

∂L

∂φi
= 2

σ 2

N∑
k=1

�e

[
ζ H

i sH (tk − τi)e− j2πνitk
∂aH (θi, φi)

∂φi
e(tk)

]
, (C.6)

∂L

∂νi
= −4π

σ 2

N∑
k=1

tk	m
[
ζ H

i sH (tk − τi)e− j2πνi tk aH (θi, φi)e(tk)
]
.

(C.7)

If we define ζi = ηi + jκi , we obtain

∂L

∂ηi
= 2

σ 2

N∑
k=1

�e
[
sH (tk − τi)e− j2πνitk aH (θi, φi)e(tk)

]
, (C.8)

∂L

∂κi
= 2

σ 2

N∑
k=1

	m
[
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The following identities [44], are useful to determine the elements
of the FIM.

E
[
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c (t j)
] = δicδtkt j σ

2, (C.10)

E
[
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] = 0, (C.11)

E
[
eH

c (tk)el(t j)en(ti)
] = 0, (C.12)

E
[
e(tk)eH (tk)e(t j)eH (t j)

] = M2σ 4 + δtkt j Mσ 4, (C.13)

where ei(tk) is the ith component of the e(tk) and δ represents
Kronecker’s delta. Moreover, to make equations shorter, the follow-
ing equalities are defined:
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∂t
s(tk − τl), (C.14)

γ (k) = e− j2π(νi−νl)tk , (C.15)

Ψ
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a(θl, φl). (C.16)

Using these identities elements of the FIM matrix can be obtained
as follows:
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Similarly, other FIM elements can be obtained as:
E

[
∂L

∂θi

∂L

∂θl

]
= 2

σ 2
�e

[
ζ H

i ζlΨ
i,l

a′
θ a′

θ

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.18)

E

[
∂L

∂φi

∂L

∂φl

]
= 2

σ 2
�e

[
ζ H

i ζlΨ
i,l

a′
φa′

φ

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.19)

E

[
∂L

∂νi

∂L

∂νl

]
= 8π2

σ 2
�e

[
Ψ i,l

aa ζ H
i ζl

N∑
k=1

Ri,l
ss (k)γ (k)t2

k

]
, (C.20)

E

[
∂L

∂ηi

∂L

∂ηl

]
= 2

σ 2
�e

[
Ψ i,l

aa

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.21)

E

[
∂L

∂κi

∂L

∂κl

]
= 2

σ 2
�e

[
Ψ i,l

aa

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.22)

E

[
∂L

∂τi

∂L

∂θl

]
= 2

σ 2
�e

[
Ψ

i,l
aa′

θ

ζ H
i ζl

N∑
k=1

Ri,l
s′s(k)γ (k)

]
, (C.23)

E

[
∂L

∂τi

∂L

∂φl

]
= 2

σ 2
�e

[
Ψ

i,l
aa′

φ

ζ H
i ζl

N∑
k=1

Ri,l
s′s(k)γ (k)

]
, (C.24)

E

[
∂L

∂τi

∂L

∂νl

]
= 4π

σ 2
	m

[
Ψ i,l

aa ζiζ
H

l

N∑
k=1

Ri,l
s′s(k)γ H (k)tk

]
, (C.25)

E

[
∂L

∂τi

∂L

∂ηl

]
= 2

σ 2
�e

[
Ψ i,l

aa ζ H
i

N∑
k=1

Ri,l
s′s(k)γ (k)

]
, (C.26)

E

[
∂L

∂τi

∂L

∂κl

]
= −2

σ 2
	m

[
Ψ i,l

aa ζi

N∑
k=1

Ri,l
s′s(k)γ H (k)

]
, (C.27)

E

[
∂L

∂θi

∂L

∂φl

]
= 2

σ 2
�e

[
ζ H

i ζlΨ
i,l

a′
θ a′

φ

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.28)

E

[
∂L

∂θi

∂L

∂νl

]
= 4π

σ 2
	m

[
Ψ

i,l
aa′

θ

ζiζ
H

l

N∑
k=1

Ri,l
ss (k)γ H (k)tk

]
, (C.29)

E

[
∂L

∂θi

∂L

∂ηl

]
= 2

σ 2
�e

[
Ψ

i,l
a′
θ aζ

H
i

N∑
k=1

Ri,l
ss (k)γ (k)

]
, (C.30)

E

[
∂L

∂θi

∂L

∂κl

]
= −2

σ 2
	m

[
Ψ

i,l
a′
θ aζi

N∑
k=1

Ri,l
ss (k)γ H (k)

]
, (C.31)

E

[
∂L

∂νi

∂L

∂ηl

]
= 4π

σ 2
	m

[
Ψ i,l

aa ζ H
i

N∑
k=1

Ri,l
ss (k)γ (k)tk

]
, (C.32)

E

[
∂L

∂νi

∂L

∂κl

]
= −4π

σ 2
�e

[
Ψ i,l

aa ζ H
i

N∑
k=1

Ri,l
ss (k)γ (k)tk

]
, (C.33)

E

[
∂L

∂ηi

∂L

∂κl

]
= −2

σ 2
	m

[
Ψ i,l

aa

N∑
k=1

Ri,l
ss (k)γ H (k)

]
. (C.34)

References

[1] M.K. Ozdemir, H. Arslan, Channel estimation for wireless OFDM systems, IEEE
Commun. Surv. Tutor. 9 (2) (2007) 18–48.

[2] H. Krim, M. Viberg, Two decades of array signal processing research: the para-
metric approach, IEEE Signal Process. Mag. 13 (4) (1996) 67–94.

[3] J. Capon, High-resolution frequency-wavenumber spectrum analysis, Proc.
IEEE 57 (8) (1969) 1408–1418.

[4] R.O. Schmidt, A signal subspace approach to multiple emitter location and
spectral estimation, PhD thesis, Stanford Univ., Stanford, CA, 1981.



M.B. Guldogan, O. Arikan / Digital Signal Processing 22 (2012) 275–287 287
[5] M. Rubsamen, A.B. Gershman, Direction-of-arrival estimation for nonuniform
sensor arrays: from manifold separation to Fourier domain MUSIC methods,
IEEE Trans. Signal Process. 57 (2) (2009) 588–599.

[6] E. Ozkan, M.B. Guldogan, U. Orguner, F. Gustafsson, Ground multiple target
tracking with a network of acoustic sensor arrays using PHD and CPHD filters,
in: IEEE Int. Conf. Information Fusion (FUSION), 2011.

[7] M.R. Azimi-Sadjadi, A. Pezeshki, L. Scharf, M. Hohil, Wideband DOA estimation
algorithms for multiple target detection and tracking using unattended acoustic
sensors, Proc. SPIE (2004).

[8] J. Liu, Z. Huang, Y. Zhou, Extended 2q-MUSIC algorithm for noncircular signals,
Signal Process. 88 (6) (2008) 1327–1339.

[9] C.E. Kassis, J. Picheral, C. Mokbel, Advantages of nonuniform arrays using root-
MUSIC, Signal Process. 90 (2) (2010) 689–695.

[10] M. Viberg, B. Ottersten, Sensor array processing based on subspace fitting, IEEE
Trans. Signal Process. 39 (5) (1991) 1110–1121.

[11] M. Viberg, B. Ottersten, T. Kailath, Detection and estimation in sensor arrays
using weighted subspace fitting, IEEE Trans. Signal Process. 39 (11) (1991)
2436–2449.

[12] R. Roy, T. Kailath, Esprit-estimation of signal parameters via rotational invari-
ance techniques, IEEE Trans. Acoust., Speech, Signal Process. 37 (7) (1989)
984–995.

[13] M. Haardt, J.A. Nossek, Unitary ESPRIT how to obtain increased estimation ac-
curacy with a reduced computational burden, IEEE Trans. Signal Process. 43 (5)
(1995) 1232–1242.

[14] L.C. Godara, Application of antenna arrays to mobile communications, part II:
Beam-forming and direction-of-arrival considerations, Proc. IEEE 85 (8) (1997)
1195–1245.

[15] P. Stoica, A. Gershman, Maximum-likelihood DOA estimation by data-supported
grid search, IEEE Signal Process. Lett. 6 (10) (1999) 273–275.

[16] I. Ziskind, M. Wax, Maximum likelihood localization of multiple sources by al-
ternating projection, IEEE Trans. Acoust., Speech, Signal Process. 36 (10) (1988)
1553–1560.

[17] K.C. Sharman, Maximum likelihood parameter estimation by simulated anneal-
ing, in: IEEE Int. Conf. Acoust. Speech Sign. Processing (ICASSP), 1988.

[18] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. Roy. Statist. Soc. 39 (1) (1977) 1–38.

[19] P.J. Chung, J.F. Bohme, Recursive EM SAGE-inspired algorithms with application
to DOA estimation, IEEE Trans. Signal Process. 53 (8) (2005) 2664–2677.

[20] O. Cappe, M. Charbit, E. Moulines, EM Recursive, algorithm with applications
to DOA estimation, in: IEEE Int. Conf. Acoust. Speech Sign. Processing (ICASSP),
2006.

[21] T.Y. Al-Naffouri, An EM-based forward–backward Kalman filter for the estima-
tion of time-variant channels in OFDM, IEEE Trans. Signal Process. 55 (7) (2007)
3924–3930.

[22] J.A. Fessler, A.O. Hero, Space-alternating generalized expectation–maximization
algorithm, IEEE Trans. Signal Process. 42 (10) (1994) 2664–2677.

[23] N. Czink, X. Yin, H. Ozcelik, M. Herdin, E. Bonek, B.H. Fleury, Cluster char-
acteristics in a MIMO indoor propagation environment, IEEE Trans. Wireless
Commun. 6 (4) (2007) 1465–1475.

[24] A. Kocian, E. Panayirci, H. Poor, M. Ruggieri, A Monte Carlo implementation
of the SAGE algorithm for joint soft-multiuser decoding, channel parameter
estimation, and code acquisition, IEEE Trans. Signal Process. 58 (11) (2010)
5756–5766.

[25] B.H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, K.I. Pedersen, Channel
parameter estimation in mobile radio environments using the SAGE algorithm,
IEEE J. Sel. Areas Commun. 17 (3) (1999) 434–450.

[26] F. Yang, J. Song, Y. Zhang, C. Pan, Z. Yang, SAGE-based estimation of doubly
selective channel with an orthogonal polynomial model, Signal Process. 88 (4)
(2008) 1061–1068.
[27] K. Haneda, J.I. Takada, An application of SAGE algorithm for UWB propagation
channel estimation, in: IEEE Int. Conf. Ultra Wideband Systems and Technolo-
gies (UWBST), 2003.

[28] P.J. Chung, J.F. Bohme, DOA estimation using fast EM and SAGE algorithms, Sig-
nal Process. 82 (2002) 1753–1762.

[29] J. Verhaevert, E.V. Lil, A.V. de Capelle, Direction of arrival (DOA) parameter es-
timation with the SAGE algorithm, Signal Process. 84 (2004) 619–629.

[30] N. Levanon, E. Mozeson, Radar Signals, Wiley–IEEE Press, 2004.
[31] M.B. Guldogan, O. Arikan, Multipath channel identification by using global op-

timization in ambiguity function domain, Signal Process. 91 (11) (2011) 2647–
2660.

[32] A.J. Paulraj, C.B. Papadias, Space–time processing for wireless communications,
IEEE Signal Process. Mag. 14 (6) (1997) 49–83.

[33] T.S. Rappaport, Wireless Communications Principles and Practice, Prentice Hall,
2002.

[34] M. Wax, T. Kailath, Detection of signals by information theoretic criteria, IEEE
Trans. Acoust., Speech, Signal Process. 33 (2) (1985) 387–392.

[35] R.F. Brcich, A.M. Zoubir, P. Pelin, Detection of sources using bootstrap tech-
niques, IEEE Trans. Signal Process. 50 (2) (2002) 206–215.

[36] P.J. Chung, J.F. Bohme, C.F. Mecklenbrauker, A.O. Hero, Detection of the number
of signals using the Benjamini–Hochberg procedure, IEEE Trans. Signal Pro-
cess. 55 (6) (2007) 2497–2508.

[37] J. Liang, Joint estimation of source number and DOA using simulated annealing
algorithm, Digital Signal Process. 20 (3) (2010) 887–899.

[38] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.
[39] M.B. Guldogan, O. Arikan, Comparison of the CAF-DF and SAGE algorithms in

multipath channel parameter estimation, in: IEEE Wksp. Sensor Array and Mul-
tichannel Signal Processing (SAM), 2008.

[40] P.M. Woodward, Probability and Information Theory with Application to Radar,
Pergamon, London, 1953.

[41] B.R. Mahafza, MATLAB Simulations for Radar Systems Design, Chapman and
Hall/CRC, 2003.

[42] P.Z. Peebles, Radar Principles, Wiley, 1998.
[43] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Pren-

tice Hall, 1993.
[44] P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer–Rao bound, IEEE

Trans. Acoust., Speech, Signal Process. 37 (5) (1989) 720–741.

Mehmet Burak Guldogan received the B.S., M.S. and Ph.D. degrees
all in Electrical and Electronics Engineering from the Bilkent University,
Turkey, in 2003, 2006 and 2010, respectively. Since 2010, he has been
a postdoctoral fellow in the Automatic Control Group at the Linköping
University, Sweden. His current research interests are in statistical sig-
nal processing, time-frequency analysis, array signal processing and target
tracking.

Orhan Arikan received the B.Sc. degree in Electrical and Electronics
Engineering from the Middle East Technical University in 1986 and both
the M.S. and Ph.D. degrees in Electrical and Computer Engineering from
the University of Illinois, Urbana-Champaign, in 1988 and 1990, respec-
tively. Following his graduate studies, he worked for three years as a
Research Scientist at the Schlumberger–Doll Research, Ridgefield, CT. He
joined Bilkent University in 1993, where he is presently Professor of Elec-
trical Engineering since 2006. His current research interests are in statisti-
cal signal processing, time-frequency analysis and array signal processing.


	Cross-ambiguity function domain multipath channel parameter estimation
	1 Introduction
	2 Parametric channel model
	3 The cross-ambiguity function domain direction ﬁnding technique
	4 Simulation results
	5 Conclusions
	Acknowledgment
	Appendix A MUSIC-based algorithm
	Appendix B The SAGE algorithm
	Appendix C THE Cramér-Rao bound
	References


