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In this paper, stochastic signaling is studied for power-constrained scalar valued binary communications
systems in the presence of uncertainties in channel state information (CSI). First, stochastic signaling
based on the available imperfect channel coefficient at the transmitter is analyzed, and it is shown
that optimal signals can be represented by a randomization between at most two distinct signal levels
for each symbol. Then, performance of stochastic signaling and conventional deterministic signaling is
compared for this scenario, and sufficient conditions are derived for improvability and nonimprovability
of deterministic signaling via stochastic signaling in the presence of CSI uncertainty. Furthermore, under
CSI uncertainty, two different stochastic signaling strategies, namely, robust stochastic signaling and
stochastic signaling with averaging, are proposed. For the robust stochastic signaling problem, sufficient
conditions are derived for reducing the problem to a simpler form. It is shown that the optimal signal
for each symbol can be expressed as a randomization between at most two distinct signal values for
stochastic signaling with averaging, as well as for robust stochastic signaling under certain conditions.
Finally, two numerical examples are presented to explore the theoretical results.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

In binary communications systems over zero-mean additive
white Gaussian noise (AWGN) channels and under average power
constraints in the form of E{|Si |2} � A for i = 0,1, the average
probability of error is minimized when deterministic antipodal sig-
nals (S0 = −S1) are used at the power limit (|S0|2 = |S1|2 = A)
and a maximum a posteriori probability (MAP) decision rule is used
at the receiver [2]. Also, for vector observations, selecting the de-
terministic signals along the eigenvector of the covariance matrix
of the Gaussian noise corresponding to the minimum eigenvalue
minimizes the average probability of error [2]. In [3], optimal bi-
nary communications over AWGN channels are investigated for
nonequal prior probabilities under an average energy per bit con-
straint, and it is shown that the optimal signaling scheme is on–off
keying (OOK) for coherent detection when the signals have non-
negative correlation (also for envelope detection for arbitrary sig-
nal correlation).
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In [4], the convexity properties of the average probability of er-
ror in terms of signal and noise power are investigated for binary-
valued scalar signals over additive noise channels under an average
power constraint. First, it is shown that randomization of signal
values (or, stochastic signaling) cannot improve the error perfor-
mance of a maximum likelihood (ML) detector at the receiver
when the average probability of error is a convex nonincreasing
function of the signal power. Then, the problem of maximizing
the average probability of error is studied for an average power-
constrained jammer, and it is shown that the optimal solution
can be obtained when the jammer randomizes its power between
at most two power levels. In [5], the results in [4] are general-
ized by exploring the convexity properties of the error rates for
constellations with arbitrary shape, order, and dimensionality for
an ML detector in AWGN with no fading and with frequency-flat
slowly fading channels. Also, the investigations in [4] for optimum
power/time sharing for a jammer to maximize the average proba-
bility of error and the optimum transmission strategy to minimize
the average probability of error are extended to arbitrary multidi-
mensional constellations for AWGN channels [5].

While the optimal signaling structures are well-known in
the presence of Gaussian noise (e.g., [2,5]), the noise can have
significantly different probability distribution from the Gaussian
distribution in some cases due to effects such as interference
and jamming [4,6,7]. When the noise is non-Gaussian, the re-
sults in [4,8–10] imply that signal randomization can provide
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performance improvements in terms of average probability of error
reduction compared to the conventional deterministic signaling.
In [10], the design of stochastic signals for each symbol is studied,
and the improvements that can be achieved via this stochas-
tic signaling approach are investigated. For a given decision rule
(detector) at the receiver, optimal stochastic signals are obtained
under second and fourth moment constraints, and it is shown that
an optimal stochastic signal can be represented by a randomization
among at most three distinct signal values for each symbol [10].
Also, sufficient conditions are obtained to specify whether stochas-
tic signaling provides improvements over deterministic signaling.
In [11], stochastic signaling is studied under an average power
constraint in the form of

∑2
i=1 πiE{|Si|2} � A, where Si denotes

the ith signal and πi denotes the prior probability of symbol i.
Sufficient conditions are presented to determine performance im-
provements. Also, [12] investigates the joint design of the optimal
stochastic signals and the detector, and proves that the optimal
solution involves randomization between at most two signal val-
ues and the use of the corresponding MAP detector. In addition,
in [13], randomization between two deterministic signal pairs and
the corresponding MAP decision rules is studied, and significant
performance improvements via power randomization are observed.
Finally, in some studies such as [14–19], time-varying or random
signal constellations are employed in order to improve error per-
formance or to achieve diversity.

Although optimal stochastic signaling for power-constrained
communications systems has been studied in [10–12], no studies
have considered the effects of imperfect channel state information
(CSI) on the performance of stochastic signaling and the design
of stochastic signals under CSI uncertainty. In this study, we first
investigate stochastic signaling based on imperfect CSI (consider-
ing generic noise probability distributions and detector structures),
and analyze the effects of imperfect CSI on stochastic signaling.
After the formulation of stochastic signaling under CSI uncertainty,
we state that an optimal stochastic signal involves randomization
between at most two distinct signal levels. Then, we derive suffi-
cient conditions to specify when the use of stochastic signaling can
or cannot provide improvements over conventional signaling in the
presence of imperfect CSI.

Secondly, we propose two different methods, namely, robust
stochastic signaling and stochastic signaling with averaging, for de-
signing stochastic signals under CSI uncertainty. In robust stochas-
tic signaling, signals are designed for the worst-case channel coef-
ficients, and the optimal signaling problem is formulated as a min-
imax problem [2,20]. Then, sufficient conditions under which the
generic minimax problem is equivalent to designing signals for
the smallest possible magnitude of the channel coefficient are ob-
tained. In the stochastic signaling with averaging approach, the
transmitter assumes a probability distribution for the channel co-
efficient, and stochastic signals are designed by averaging over
different channel coefficient values based on that probability dis-
tribution. It is shown that optimal signals obtained after this av-
eraging method and those for the equivalent form of the robust
signaling method can be represented by randomization between at
most two distinct signal levels for each symbol. Solutions for the
optimization problems can be calculated by using global optimiza-
tion techniques such as particle swarm optimization (PSO) [21],
or convex relaxation approaches can be employed as in [10,22–25].
Finally, we perform simulations and present two numerical exam-
ples to illustrate the theoretical results.

2. System model and motivation

Consider a binary communications system with scalar obser-
vations [4,26], in which the channel effect is modeled by a mul-
tiplicative term as in flat-fading channels [27], and the received
signal is given by

Y = αSi + N, i ∈ {0,1}, (1)

where S0 and S1 denote the transmitted signal values for symbol 0
and symbol 1, respectively, α is the channel coefficient, and N is
the noise component that is independent of Si and α. In addition,
the prior probabilities of the symbols, which are denoted by π0
and π1, are supposed to be known.

In (1), the noise term N is modeled to have an arbitrary prob-
ability distribution considering that it can include the combined
effects of thermal noise, interference, and jamming. Hence, the
probability distribution of the noise component is not necessarily
Gaussian [6].

A generic decision rule is considered at the receiver to deter-
mine the symbol in (1). For a given observation Y = y, the decision
rule φ(y) is expressed as

φ(y) =
{

0, y ∈ Γ0,

1, y ∈ Γ1,
(2)

where Γ0 and Γ1 are the decision regions for symbol 0 and sym-
bol 1, respectively [2].

The aim is to design signals S0 and S1 in (1) in order to min-
imize the average probability of error for a given decision rule,
which is calculated as

Pavg = π0P0(Γ1) + π1P1(Γ0), (3)

with Pi(Γ j) denoting the probability of selecting symbol j when
symbol i is transmitted. In practical systems, there exists an av-
erage power constraint on each of the signals, which can be ex-
pressed as [2]

E
{|Si|2

}
� A, (4)

for i = 0,1, where A is the average power limit. Therefore, in
the stochastic signaling approach, the aim becomes the calculation
of the optimal probability density functions (PDFs) for signals S0
and S1 that minimize the average probability of error in (3) un-
der the average power constraint in (4) [10]. In other words, in the
stochastic signal design, the signals at the transmitter are modeled
as random variables and the optimal PDFs of these random vari-
ables are obtained.

Unlike stochastic signaling, in the conventional signal design, S0
and S1 are modeled as deterministic signals and set to S0 = −√

A
and S1 = √

A [2,27]. Then, the average probability of error in (3)
becomes

Pconv = π0

∫
Γ1

pN(y + α
√

A )dy + π1

∫
Γ0

pN(y − α
√

A )dy, (5)

where pN (·) is the PDF of the noise in (1).
As investigated in [10–12], stochastic signaling results in lower

average probabilities of error than conventional deterministic sig-
naling in some cases in the presence of non-Gaussian noise. How-
ever, the common assumption in the previous studies is that the
channel coefficient α in (1) is known perfectly at the transmitter,
i.e., the CSI is available at the transmitter. In practice, the transmit-
ter can obtain CSI via feedback from the receiver, or by utilizing
the reciprocity of forward and reverse links under time-division
duplexing [28]. In both scenarios, it is realistic to model the CSI at
the transmitter to include certain errors/uncertainties. Therefore,
the main motivation behind this study is to investigate stochastic
signaling under imperfect CSI; that is, to evaluate the performance
of stochastic signaling in practical scenarios and to develop differ-
ent design methods for stochastic signaling under CSI uncertainty.
In the next section, the effects of CSI uncertainties on the perfor-
mance of stochastic signaling are examined.
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Remark 1. The use of stochastic signaling can provide perfor-
mance improvements for communications systems that operate in
the presence of non-Gaussian noise [10]. For example, stochas-
tic signaling can be employed for the downlink of a multiuser
direct-sequence spread-spectrum (DSSS) system, in which Gaus-
sian mixture noise is observed at the receiver of each user due
to the presence of multiple-access interference and Gaussian back-
ground noise [29]. For practical implementation, the transmitter
needs to know the channel condition for each user, which can be
sent via feedback to the transmitter. In addition, stochastic signal-
ing can be regarded as a signal randomization for each information
symbol [10], which can, for example, be implemented via time
sharing (i.e., sending different signal values for certain durations
of time). In that case, channel coefficients should be constant dur-
ing the randomization operation; hence, slow fading channels are
well-suited for stochastic signaling. �
3. Effects of channel uncertainties on the stochastic signaling

3.1. Stochastic signaling with imperfect channel coefficients

In the stochastic signaling approach, signals S0 and S1 in (1) are
modeled as random variables and their optimal PDFs are searched
for. Let pS0 (·) and pS1 (·) represent the PDFs of S0 and S1, respec-
tively. Also define Ŝ0 � αS0 and Ŝ1 � αS1, and denote their PDFs
as pŜ0

(·) and pŜ1
(·), respectively. Then, from (3), the average prob-

ability of error for the decision rule in (2) can be obtained as

Pstoc =
1∑

i=0

πi

∞∫
−∞

pŜi
(t)

∫
Γ1−i

pN(y − t)dy dt. (6)

Since pŜi
(t) can be obtained as pŜi

(t) = (1/|α|)pSi (t/α) for i =
0,1, (6) can be expressed, after a change of variable (t = αx), as

Pstoc =
1∑

i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − αx)dy dx. (7)

Since imperfect CSI is considered in this study, the transmitter
has a distorted version of the correct channel coefficient α. Let α̂
denote this distorted (noisy) channel coefficient at the transmit-
ter. In this section, it is assumed that the transmitter uses α̂ in
the design of stochastic signals. Then, the stochastic signal design
problem can be expressed as

min
pS0 ,pS1

1∑
i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − α̂x)dy dx

subject to E
{|Si |2

}
� A, i = 0,1. (8)

Note that there are also implicit constraints in the optimization
problem in (8) because pS0 (·) and pS1 (·) need to satisfy the condi-
tions to be valid PDFs. Similarly to [10], this optimization problem
can be expressed as two separate optimization problems for S0
and S1. Namely, the optimal signal PDF for symbol 1 can be ob-
tained from the solution of the following optimization problem:

min
pS1

∞∫
−∞

pS1(x)

∫
Γ0

pN(y − α̂x)dy dx subject to E
{|S1|2

}
� A. (9)

If G(x,k) is defined as

G(x,k) �
∫

pN(y − kx)dy, (10)
Γ0
(9) can also be written as

min
pS1

E
{

G(S1, α̂)
}

subject to E
{|S1|2

}
� A, (11)

where the expectations are taken over S1. Note that G(S1, α̂) is
only a function of S1 for a given value of α̂. In some previous
studies, such as [10], [13], and [30], the optimization problems
in the same form as that in (11) have been explored thoroughly.
If G(S1, α̂) in (11) is a continuous function of S1, and S1 takes
values in [−γ ,γ ] for some finite positive γ , then the optimal
solution of (11) can be represented by a randomization between
at most two distinct signal levels as a result of Carathéodory’s
theorem [31]. Hence, the optimal signal PDF for S1 can be ex-
pressed as

pS1(s) = λ1δ(s − s11) + (1 − λ1)δ(s − s12), λ1 ∈ [0,1]. (12)

A similar optimization problem can also be formulated for S0.
After obtaining the optimal signal PDFs for S0 and S1, the corre-
sponding average probability of error can be calculated. Since the
optimization problems are similar for S0 and S1, we focus on the
design of S1 in the remainder of this section.

3.2. Stochastic signaling versus conventional signaling

It is known that, in the presence of perfect CSI at the transmit-
ter, conventional signaling, which sets S1 = √

A [that is, pS1 (x) =
δ(x − √

A)], can or cannot be optimal under certain sufficient
conditions as discussed in [10]. In this section, we explore the
conditions under which the use of stochastic signaling instead of
deterministic signaling can or cannot result in improved average
probability of error performance in the presence of imperfect CSI.

In the presence of imperfect CSI, let the transmitter have the
channel coefficient information as α̂. Then, the transmitter obtains
the optimal stochastic signal S1 from (11). Let pα̂

S1
(·) denote the

solution of (11) for a given value of α̂. Then, the corresponding
conditional probability of error for symbol 1 is given by

Pα̂
e =

∞∫
−∞

pα̂
S1

(x)G(x,α)dx, (13)

where G(x,α) is as defined in (10). Note that G(x,α) specifies the
probability of choosing symbol 0 for a given signal value x for sym-
bol 1 when the channel coefficient is equal to α. Therefore, when
the stochastic signal for symbol 1 is specified by the PDF pα̂

S1
(x),

the corresponding conditional probability of error for symbol 1 is
obtained as in (13).

Suppose that α̂ can be modeled as a random variable with
a generic PDF pα̂(·). In order to improve the performance of con-
ventional signaling for symbol 1 via stochastic signaling, we need
to have Pe < G(

√
A,α), where G(

√
A,α) is the conditional proba-

bility of error for conventional signaling, i.e., for S1 = √
A (see (5)

and (10)), and Pe is the average conditional probability of error for
stochastic signaling based on imperfect CSI, which can be calcu-
lated as

Pe =
∞∫

−∞
pα̂(a)Pa

e da, (14)

with Pa
e being given by (13).

In order to derive sufficient conditions for the improvability and
nonimprovability of conventional signaling via stochastic signaling,
assume that the channel coefficient information at the transmit-
ter is specified as α̂ = α + η, where η is a zero-mean Gaussian
noise with standard deviation ε; that is, η ∼ N (0, ε2). Although
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the Gaussian error model is employed for the convenience of the
analysis, the results are valid also for non-Gaussian error models, as
will be discussed at the end of this section. In addition, it is as-
sumed that α is a positive number without loss of generality.1

Then, the following proposition presents sufficient conditions on
the improvability and nonimprovability of conventional signaling
via stochastic signaling.

Proposition 1. Assume that G(x,k) in (10) and Pα̂
e in (13) have the fol-

lowing properties:

• G(x,k) is a strictly decreasing function of x for any fixed positive k,
and G(x,k) = 1 − G(−x,k).

• There exist κ1 , κ2 , γth , θth , and βth such that Pα̂
e < κ1 when

α̂ > γth > 0; Pα̂
e < κ2 < κ1 when α > α̂ > θth > γth; and Pα̂

e =
G(

√
A,α) when α̂ > βth > α.

Then, stochastic signaling performs worse than conventional signaling
if the standard deviation ε of the channel coefficient error satisfies the
following inequality:
(

1

2
− κ1

)
Q

(
α + γth

ε

)
+ (κ1 − κ2)

(
Q

(
2α

ε

)
− Q

(
α + θth

ε

))

+ 1

2
Q

(
α

ε

)
+ Q

(
βth − α

ε

)
G(

√
A,α) � G(

√
A,α), (15)

and stochastic signaling performs better than conventional signaling if ε
satisfies the following inequality2:

1

2

(
κ1 + κ2 + Q

(
α

ε

))
+

(
1

2
− κ1

)
Q

(
α − γth

ε

)

− κ1 Q

(
βth − α

ε

)
+ (κ1 − κ2)Q

(
α − θth

ε

)

+
(

Q

(
βth − α

ε

)
− Q

(
α + βth

ε

))
G(

√
A,α)

� G(
√

A,α). (16)

Proof. Please see Appendix A.1. �
Although the results in Proposition 1 are presented for chan-

nel coefficient errors with a zero-mean Gaussian distribution, they
can easily be extended for any type of probability distribution as
well. For example, consider a generic PDF for the channel coef-
ficient error, which is denoted by pη(·). The corresponding cu-
mulative distribution function (CDF) Fη(·) can be expressed as
Fη(x) = ∫ x

−∞ pη(t)dt . Then, the results in Proposition 1 are valid
when Q (x/ε) in (15) and (16) are replaced by 1 − Fη(x).

As discussed before, G(x,k) can be inferred as the probability
of deciding symbol 0 instead of symbol 1, when the value of the
channel coefficient is k, and S1 = x. In general, for a specific chan-
nel coefficient, when a larger signal value is employed, a lower
probability of error can be obtained; hence, G(x,k) is usually a de-
creasing function of x in practice. Moreover, G(x,k) = 1 − G(−x,k)

can be satisfied when the channel noise has a symmetric PDF, i.e.,
pN (x) = pN (−x), and the decision regions of the detector at the
receiver are symmetric (Γ0 = −Γ1). In fact, the channel noise is
symmetric in most practical scenarios, and some receivers such

1 If it is negative, one can redefine function G in (10) by using pN (y +kx) instead
of pN (y − kx).

2 Note that the choice of parameters in the conditions of Proposition 1 is impor-
tant to satisfy the inequalities in (15) and (16). Also, the Q -function is defined as
Q (x) = (

∫ ∞
x e−t2/2 dt)/

√
2π .
as the sign detector or the optimal MAP detector for symmetric
signaling under symmetric channel noise will have symmetric de-
cision regions. All in all, the first condition in the proposition is
expected to hold in many practical scenarios. The details of how
the second condition is satisfied and how the parameters in the
proposition are selected will be investigated in Section 5.

4. Design of stochastic signals under CSI uncertainty

First, suppose that pα(·) denotes the PDF of the actual channel
coefficient α, where each instance of the channel coefficient re-
sides in a certain set Ω . In this section, we propose two different
methods for designing the stochastic signals under CSI uncertainty
in the transmitter, and evaluate the performance of each method
in Section 5.

4.1. Robust stochastic signaling

In this part, a robust design of optimal stochastic signals is pre-
sented under CSI uncertainty at the transmitter. Suppose that Ω

is given by Ω = [α0,α1], that is, the channel coefficient α takes
values in the interval of [α0,α1], where α0 < α1. It is assumed
that the transmitter has the knowledge of set Ω . Note that this
can be realized, for example, via feedback from the receiver to the
transmitter. In robust stochastic signaling, signals are designed in
such a way that they minimize the average probability of error for
the worst-case channel coefficient, that is, the one which maxi-
mizes the average probability of error for the transmitted signals.
For this design criterion, the optimal stochastic signaling problem
in (8) can be expressed as a minimax problem as follows:

min
pS0 ,pS1

max
α∈[α0,α1]

1∑
i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − αx)dy dx

subject to E
{|Si|2

}
� A. (17)

The problem in (17) can be difficult to solve in general. In the
following, it is shown that in most practical scenarios, this problem
can be reduced to a simpler form and the optimal signal PDFs can
be obtained by solving a simpler optimization problem:

Proposition 2. The minimax problem in (17) is equivalent to the
stochastic signaling problem for channel coefficient α0 , that is,

min
pS0 ,pS1

1∑
i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − α0x)dy dx

subject to E
{|Si|2

}
� A (18)

when the following conditions are satisfied:

• G(x,α) is a strictly decreasing function of x for any α ∈ [α0 α1].
• G(x,α) is a strictly decreasing (increasing) function of α for all

x > 0 (x < 0).

Proof. Please see Appendix A.2. �
Proposition 2 states that, under certain sufficient conditions,

the robust design of stochastic signals becomes equivalent to the
stochastic signal design for the smallest magnitude of the channel
coefficient in set Ω . (It is important to note that this conclusion
is not true in general if the conditions in the proposition are not
satisfied; that is, in some cases, a larger channel coefficient may
have worse performance than a smaller channel coefficient in the
presence of non-Gaussian noise.) The simplified problem in (18)
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has a well-known structure, which was investigated for example
in [10]. The problem can be solved separately for S0 and S1 by
expressing the problem as two decoupled optimization problems.
Then it can be shown that if G(Si,α0) is a continuous function
of Si and Si takes values in [−γ ,γ ] for some finite positive γ ,
then each optimal signal PDF pSi can be represented by a random-
ization between at most two signal levels as in (12) [10,31].

It is also noted that if [α0,α1] is a positive interval, then
the two conditions in Proposition 2 can be reduced to a single
condition. Suppose that u = αx. Then, G(x,α) can be written as
G(u) = ∫

Γ0
pN (y − u)dy. Therefore, if α is positive, then the con-

ditions in Proposition 2 are equivalent to that G(u) is a decreasing
function of u.

After obtaining the optimal signal PDFs pS0 and pS1 by solv-
ing (18), the conditional average probability of error for a given
α ∈ Ω can be calculated as

Pα
robu =

1∑
i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − αx)dy dx. (19)

Finally, the average probability of error for robust stochastic signal-
ing can be calculated as

Probu =
∫
Ω

pα(a)Pa
robu da. (20)

Note that while calculating the conditional average probability
of error for a given α, the same signal PDF is used for all α values,
since the optimal signal PDFs do not depend on the value of the
actual channel coefficient α, but only depend on the lower bound-
ary point of the set Ω in the robust stochastic signaling approach
under the conditions in Proposition 2.

4.2. Stochastic signaling with averaging

In robust stochastic signaling, signal PDFs are designed for the
worst-case channel coefficient, which belongs to a certain set Ω .
In this section, an alternative way of designing stochastic signals
under CSI uncertainty is discussed. In this method, the transmit-
ter assumes that the channel coefficient is distributed according
to a PDF p̂α(·).3 Then, optimal signal PDFs are designed in such a
way that the average probability of error is minimized for this as-
sumed CSI statistics under the average power constraints. This can
be formulated as follows:

min
pS0 ,pS1

∞∫
−∞

p̂α(a)

1∑
i=0

πi

∞∫
−∞

pSi (x)

∫
Γ1−i

pN(y − ax)dy dx da

subject to E
{|Si |2

}
� A. (21)

Specifically, by using the statistical information about the CSI at
the transmitter, we aim to obtain the optimal stochastic signals
that minimize the expected value of the error probability over the
distribution of the imperfect channel coefficient. As mentioned in
Remark 1, we consider slow fading channels so that the statistical
information about the CSI is constant for a number of bit dura-
tions.

It is noted that the problem in (21) is separable over S0 and S1
as well. Therefore, one can consider the optimal signals for sym-
bol 0 and symbol 1 separately. Specifically, the optimal signal PDF
for symbol 1 can be obtained by solving the following problem:

3 Note that this will not be the actual PDF of the channel coefficient in general
due to CSI uncertainty at the transmitter.
min
pS1

∞∫
−∞

p̂α(a)

∞∫
−∞

pS1(x)

∫
Γ0

pN(y − ax)dy dx da

subject to E
{|S1|2

}
� A. (22)

Changing the order of the first and the second integrals in (22),
the following formulation can be obtained:

min
pS1

∞∫
−∞

pS1(x)

∞∫
−∞

p̂α(a)G(x,a)da dx

subject to E
{|S1|2

}
� A (23)

where G(x,a) is as defined in (10). In addition, if H(x) is defined
as H(x) �

∫ ∞
−∞ p̂α(a)G(x,a)da = E{G(x,a)}, where the expectation

is over the assumed PDF of the channel coefficient, then (23) be-
comes

min
pS1

E
{

H(S1)
}

subject to E
{|S1|2

}
� A. (24)

For this problem, it can be concluded that, under most practical
scenarios, the optimal signal PDF can be characterized by a ran-
domization between at most two distinct signal levels similarly to
the previous results. Also, the optimal signal PDF for symbol 0 can
be obtained similarly.

In the stochastic signaling with averaging approach, the trans-
mitter assigns different weights to different values of the channel
coefficient and designs signals based on this averaging operation
over possible channel coefficient values. For example, instead of
directly using the distorted channel coefficient α̂ in the signal de-
sign as in Section 3.1, the transmitter may assume a legitimate PDF
around α̂ for the channel coefficient and design the stochastic sig-
nals. The performance of this approach and the other approaches
is compared in the next section.

Remark 2. In practice, the proposed approaches can be applied to
communications systems that operate in slow fading channels as
follows. First, the transmitter sends a number of training bits to
the receiver for synchronization and channel estimation purposes.
During this phase, the receiver estimates the channel coefficient α,
and sends it to the transmitter via feedback. (If there is two-way
communication via time-division multiplexing, the reciprocity of
the channel can be utilized and the transmitter can obtain the
channel coefficient information without feedback [28].) Next, the
transmitter performs stochastic signal design according to one of
the proposed approaches, and obtains the parameters of the opti-
mal stochastic signals. Then, the stochastic signaling approach can
be implemented via time sharing. For example, if symmetric sig-
naling is used (i.e., S0 = −S1) and the stochastic signal for bit 1 is
represented by pS1 (s) = 0.5δ(s − 1.2) + 0.5δ(s − 0.75), then sig-
nal amplitude 1.2 is transmitted for half of bit 1’s and 0.75 is
transmitted for the remaining half (similarly, −1.2 and −0.75 for
bit 0’s).

Depending on the previous knowledge and the channel estima-
tion technique, one of the robust stochastic signaling or stochastic
signaling with averaging approaches can be employed. When the
channel estimation error is known to be bounded, an interval of
[α0,α1] can be specified as in Section 4.1. Otherwise, a distribu-
tion can be assumed for the channel coefficient error, which is
commonly modeled by a Gaussian random variable (e.g., [32,33]),
and the approach in this section can be used. The robust stochas-
tic signaling approach takes a conservative approach and performs
the design for the worst-case channel coefficient value under the
conditions in Proposition 2. However, the stochastic signaling with
averaging approach performs the design based on the available
probability distribution of the channel coefficient. �
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Remark 3. The following observations can be made when the de-
sign techniques in Section 3.1 and Section 4 are compared. The
approach in Section 3.1 directly employs the noisy channel coeffi-
cient information at the transmitter, α̂, in the design of stochastic
signals (see (8)). On the other hand, the robust stochastic signaling
and stochastic signaling with averaging approaches in Section 4
perform the design based on the worst-case channel coefficient
value and on an average channel coefficient distribution, respec-
tively. These approaches assume that some additional information
is available about the noisy channel estimate such as bounds on
the estimation error, or its probability distribution. For cases in
which the estimation error is not expected to be higher than a cer-
tain amount, the channel coefficient can be modeled to lie in
an interval such as [α0,α1], which can be obtained by using the
channel estimate and the upper and lower bounds on the esti-
mation error. Then, robust stochastic signaling performs a design
for the worst-case channel coefficient, α0. When such upper and
lower bounds are not available or when the conservative approach
of performing a design for the worst-case channel coefficient is
not desirable, the stochastic signaling with averaging approach can
be utilized by assuming a probability distribution p̂α for the noisy
channel coefficient, such as the Gaussian distribution [32,33]. The
robust stochastic signaling and stochastic signaling with averaging
approaches in Section 4 reduce to the approach in Section 3.1 that
directly uses the noisy channel estimate in the stochastic signal de-
sign if α0 = α1 = α̂ for robust stochastic signaling (see Section 4.1)
and p̂α(a) = δ(a − α̂) for stochastic signaling with averaging (see
the beginning of this section), where α̂ is the noisy channel coef-
ficient information at the transmitter. Since the channel coefficient
information can include large errors in some cases, the design of
stochastic signals based directly on the noisy channel coefficient
can result in large errors as observed in the next section. Hence,
the approaches in Section 4 are commonly more preferable. �
5. Performance evaluation

In this section, two numerical examples are presented in or-
der to investigate the theoretical results in the previous sections.
In the first numerical example, we compare the performance of
conventional signaling and stochastic signaling in the presence of
channel coefficient errors and observe the effects of CSI uncer-
tainty on stochastic signaling. In the second example, we evaluate
the performance of the proposed design methods in Section 4.
In both of the examples, a binary communications system with
equally likely symbols are considered (π0 = π1 = 0.5), the aver-
age power limit in (4) is set to A = 1, and the decision rule at
the receiver is specified by Γ0 = (−∞,0] and Γ1 = [0,∞) (i.e., the
sign detector). Also the noise in (1) is modeled by a Gaussian mix-
ture noise [6] with its PDF being given by pN (n) = (

√
2πσ)−1 ×∑L

l=1 vl exp{−(n − μl)
2/(2σ 2)}. Gaussian mixture noise is encoun-

tered in practical systems in the presence of interference [6]. For
the channel noise and the detector structure as described above,
G(x,k) in (10) can be calculated as

G(x,k) =
L∑

l=1

vl Q

(
kx + μl

σ

)
. (25)

In the first example, the mass points μl are located at μ =
[−1.013 −0.275 −0.105 0.105 0.275 1.013] with corresponding
weights v = [0.043 0.328 0.129 0.129 0.328 0.043]. Also each
component of the Gaussian mixture noise has the same vari-
ance σ 2 and the average power of the noise can be calculated as
E{n2} = σ 2 + 0.1407.

The channel coefficient information at the transmitter is mod-
eled as α̂ = α + η, where α = 1 and η is a zero-mean Gaussian
Fig. 1. Average probability of error versus A/σ 2 for conventional signaling and
stochastic signaling with various ε values.

random variable with standard deviation ε. Due to the symme-
try of the problem, the conditional probability of error expression
in (14) also provides the average probability of error in this sce-
nario. In order to evaluate that expression, 100 realizations are
obtained for α̂. Then, the optimization problem in (11) is solved
for each realization and the optimal signal PDFs that are in the
form of (12) are obtained by using the PSO algorithm [34]. For
the details of the PSO parameters employed in this study, please
refer to [12].

In Fig. 1, the average probabilities of error are plotted versus
A/σ 2 for conventional signaling, stochastic signaling with no chan-
nel coefficient errors (ε = 0), and stochastic signaling with various
levels of channel coefficient errors (see (11)). It is noted that the
average probability of error increases as A/σ 2 increases after a cer-
tain value for conventional signaling and stochastic signaling with
channel coefficient errors. This seemingly counterintuitive result
is because of the facts that the average probabilities of error are
related to the area under the shifted noise PDFs as in (5), (13)
and (14), and that the noise has a multimodal PDF [12].4 Also,
it is observed that for high A/σ 2 values, the best performance is
obtained by stochastic signaling with perfect CSI and the perfor-
mance of stochastic signaling gets worse as the variance of the
channel coefficient error increases. Another observation is that for
low values of ε, stochastic signaling still performs better than con-
ventional signaling for high A/σ 2 values and their performance
is similar for high σ 2, i.e., when A/σ 2 is smaller than 15 dB.
In fact, one can calculate the average probability of error analyt-
ically for low A/σ 2 values for each ε, as discussed in [1]. In ad-
dition, we can apply the conditions in Proposition 1 and check
if the conventional signaling is improvable or nonimprovable via
stochastic signaling for given ε values. Firstly, we examine the
first condition in the proposition. G(x,k) is as expressed in (25)
for this example and it is a convex combination of Q functions.
Therefore, G(x,k) is a strictly decreasing function of x as Q (x) is
a monotone decreasing function. Also, since Q (x) = 1 − Q (−x)
and the components of Gaussian mixture noise are symmetric,
we have G(x,k) = 1 − G(−x,k) as well. Hence, the first condition

4 Since signals are designed according to noisy channel coefficients in stochastic
signaling with channel coefficient errors, noise PDFs may not be shifted in an op-
timal way to minimize the area under the shifted PDFs. Therefore, that area may
not be a monotonic function of A/σ 2, and can increase in some cases as A/σ 2

increases.
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Fig. 2. Pα̂
e versus α̂ for A/σ 2 = 40 dB. The second condition in Proposition 1 is

satisfied for κ1 = 0.04354, κ2 = 0.01913, γth = 0.1135, θth = 0.8, βth = 1.038, and
G(

√
A,α) = 0.03884.

in Proposition 1 is satisfied. In order to check the second condition,
the plot of Pα̂

e versus α̂ is presented in Fig. 2 for A/σ 2 = 40 dB.
It is observed that Pα̂

e does not have a monotonic structure; that is,
it increases, decreases or remains the same as α̂ increases. How-
ever, it obeys the structure specified in the second condition of
Proposition 1. Specifically, when α̂ > γth = 0.1135, Pα̂

e is less than
κ1 = 0.04354, and when θth = 0.8 < α̂ < α = 1, Pα̂

e becomes less
than κ2 = 0.01913, which is even smaller than κ1. Also, when
α̂ > βth = 1.038, Pα̂

e becomes equal to G(
√

A,α) = 0.03884, which
is the average probability of error for conventional signaling. The
values of κ1, κ2, γth , θth , and βth are illustrated in Fig. 2. Based on
the specified parameters, (15) becomes

0.45646Q

(
1.1135

ε

)
+ 0.02441

(
Q

(
2

ε

)
− Q

(
1.8

ε

))

+ 0.5Q

(
1

ε

)
+ 0.03884Q

(
0.038

ε

)
� 0.03884.

For ε = 0.6, the left-hand side of this inequality is calculated to
be 0.0568; hence, the inequality is satisfied. This means that when
A/σ 2 = 40 dB, if the standard deviation of the channel coefficient
error is equal to 0.6, we can conclude that stochastic signaling
is outperformed by conventional signaling. In fact, it can be ob-
served from Fig. 1 that for A/σ 2 = 40 dB and ε = 0.6, the per-
formance of stochastic signaling is quite worse than that of con-
ventional signaling as Proposition 1 asserts. Also note that when
ε = 0.5178 � ε∗ , (15) becomes an equality. Similarly, based on the
selected parameters, it can be shown that (16) is satisfied for ε =
0.3,0.1,0.01, meaning that conventional signaling is outperformed
by stochastic signaling as a result of Proposition 1 for these ε val-
ues [1]. This can also be observed from Fig. 1 when A/σ 2 = 40 dB
for ε = 0.3,0.1,0.01. Also, when ε = 0.3395 � ε̂, (16) turns out to
be an equality.

In order to explore the performance of stochastic signaling in
the presence of channel coefficient errors, Fig. 3 is presented.
As expected, the average probability of error for stochastic signal-
ing increases with the standard deviation of the channel coefficient
error, ε. Therefore, in the presence of large channel coefficient
errors (i.e., large ε), using conventional deterministic signaling in-
stead of stochastic signaling can be more preferable, whereas for
small channel coefficient errors, stochastic signaling can be em-
ployed to achieve smaller average probabilities of error than con-
ventional signaling. In Fig. 3, ε∗ and ε̂ are also illustrated, together
Fig. 3. Average probability of error versus ε for stochastic signaling. At εth = 0.413,
stochastic signaling has the same average probability of error as conventional sig-
naling.

with the point εth at which the performance of stochastic signaling
and conventional signaling becomes the same. It is noted that the
conditions in Proposition 1 are not necessary but only sufficient
conditions for the improvability and nonimprovability of conven-
tional signal via stochastic signaling. In addition, it is observed that
the performance of conventional deterministic signaling does not
change with ε since it always employs S1 = −S0 = √

A irrespec-
tive of the channel state information.

In the second example, the mass points μl of the Gaussian mix-
ture noise are located at μ = [−1.31 −0.275 −0.125 0.125 0.275
1.31] with corresponding weights v = [0.002 0.319 0.179 0.179
0.319 0.002]. Each component of the Gaussian mixture noise has
the same variance σ 2 and the average power of the noise can be
calculated as E{n2} = σ 2 + 0.0607. For this example, α̂ is again
modeled as α̂ = α + η, where η is a zero-mean Gaussian ran-
dom variable with variance ε2. We assume that the actual channel
coefficient α has a uniform distribution over set Ω = [0.8,1.2];
i.e., α is distributed as U [0.8,1.2].

First, we compare the average probability of error performance
of different signaling strategies:

Stochastic-perfect: It is assumed that the transmitter has the
knowledge of the actual channel coefficient, which is used in the
signal design. In the simulations, 100 realizations are generated for
a uniformly distributed α. The optimal signal PDFs and the corre-
sponding probabilities of error are calculated for each realization.
Then, by averaging over the PDF of α, the average probabilities of
error are obtained.

Conventional: The transmitter selects the signals as S1 =
−S0 = √

A = 1. For each realization of α, the corresponding proba-
bilities of error are calculated and then their average is taken over
the PDF of α.

Stochastic-distorted: The transmitter has imperfect CSI and it
uses a distorted (imperfect) channel coefficient α̂ directly in the
design of signals, as discussed in Section 3.1. In Fig. 4, average
probabilities of error are plotted for ε = 0.05 and ε = 0.1.

Stochastic-average: The transmitter assumes that the PDF of
the channel coefficient p̂α(a) is specified by N (α̂,�2). Then,
by solving (24), the optimal signal PDF pα̂

S1
for signal 1 can be

obtained for each α̂. Next, the conditional probability of error for
symbol 1 can be expressed as Paver = ∫ ∞

−∞ pα(a)
∫ ∞
−∞ pα̂|α(â)×∫ ∞

−∞ pâ
S1

(x)G(x,a)dx dâ da, where pα̂|α(·) is the conditional PDF
of α̂ for a given α. Note that, due to the symmetry, the conditional
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Fig. 4. Average probability of error versus A/σ 2 for various signaling strategies.

probability of error is equal to the average probability of error in
this example as well. In Fig. 4, the average probabilities of error
are plotted for � = 0.01, � = 0.05, and � = 0.2, where ε = 0.05
in each case.

Stochastic-robust: First, one can show that the conditions in
Proposition 2 are satisfied for this example. G(x,α) in (25) is
a convex combination of Q functions, i.e., Q (

αx+μl
σ ). Also, since α

is always positive (α ∈ [0.8,1.2]), Q (
αx+μl

σ ) is a decreasing func-
tion of x. In addition, it is a decreasing function of α if x is positive,
and it increases with α when x is negative. In fact, since [0.8,1.2]
is a positive interval, we can write u = αx and G(u) becomes a de-
creasing function of u as Q (

u+μl
σ ) decreases with u. Therefore,

we can apply the result in Proposition 2 in this example. That is,
the optimal signal PDFs are obtained by solving (17) with α0 = 0.8
since Ω = [0.8,1.2]. Then, the average probabilities of error are
calculated via (19) and (20).

In Fig. 4, the average probabilities of error are plotted versus
A/σ 2 for conventional signaling, stochastic signaling with per-
fect CSI, stochastic signaling with distorted channel coefficients,
stochastic signaling with averaging, and robust stochastic signaling.
It is observed that for high σ 2, specifically when A/σ 2 is smaller
than 15 dB, all signaling strategies perform similarly, and for high
A/σ 2 values, stochastic signaling with perfect CSI achieves the
best performance. The second best performance is obtained by the
stochastic signaling with averaging method when the parameters
are ε = � = 0.05. Although conventional signaling gives the worst
performance for medium A/σ 2 values, the worst performance is
observed for stochastic signaling with distorted channel coeffi-
cients for high A/σ 2 values. Robust stochastic signaling performs
somewhere between stochastic signaling with perfect CSI and con-
ventional signaling. Robust signaling performs better (worse) than
stochastic signaling with averaging for � = 0.2 (� = 0.05) at high
or medium A/σ 2 values. When ε = 0.05, stochastic signaling with
averaging for � = 0.01 and stochastic signaling with distorted
channel coefficients perform very similarly and they achieve bet-
ter performance than robust signaling for medium A/σ 2 values;
however, their performance is worse than robust signaling for high
A/σ 2 values.

In order to investigate the effects of � on the average probabil-
ity of error performance of the stochastic signaling with averaging
method, Fig. 5 is presented. It can be observed that setting � to
0.05 provides the best performance. This means that the average
probability of error performance is smaller when the standard de-
viation of the assumed PDF of the channel coefficient � gets closer
Fig. 5. Average probability of error versus � for stochastic signaling with averaging
when A/σ 2 = 40 dB and ε = 0.05. Stochastic signaling with averaging performs the
same as conventional signaling when � = 0.0078. It has the same average proba-
bility of error as robust stochastic signaling at � = 0.0236 and � = 0.1684.

Fig. 6. Average probability of error versus α for various signaling strategies when
A/σ 2 = 40 dB.

to the standard deviation of the channel coefficient error ε. As we
increase or decrease the value of � from 0.05, the average prob-
ability of error increases. Therefore, choosing very small or very
large � values degrades the performance of the stochastic sig-
naling with averaging strategy. Note that � = 0 corresponds to
the stochastic signaling with distorted channel coefficients method.
It can be observed from Fig. 5 that if � is less than 0.0078, con-
ventional signaling which has an average probability of error of
0.002 is better than this averaging strategy. Also, if � is less than
0.0236 or larger than 0.1684, robust stochastic signaling which
has an average probability of error of 0.00136 achieves better per-
formance than stochastic signaling with averaging, whereas the
performance of stochastic signaling with averaging is better than
robust signaling if 0.0236 < � < 0.1684. Therefore, it is concluded
that if the variance of the channel coefficient error is estimated
reasonably well, the stochastic signaling with averaging approach
outperforms the other approaches.

Furthermore, we investigate in Fig. 6 the average probability
of error performance of conventional signaling, stochastic signal-
ing with perfect CSI, robust stochastic signaling, stochastic sig-
naling with averaging when ε = 0.05 and � = 0.1 and when
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Table 1
Optimal signal PDFs [in the form of pS1 (s) = λ1δ(s − s11) + (1 − λ1)δ(s − s12)] for
symbol 1 according to stochastic signaling and robust stochastic signaling for vari-
ous α.

A/σ 2 (dB) α Stochastic

λ1 s11 s12

10 0.9 N/A 1 1
10 1.1 N/A 1 1
25 0.9 0.3254 1.5642 0.5496
25 1.1 0.5557 1.2798 0.4497
40 0.9 0.4211 1.4838 0.3546
40 1.1 0.6590 1.214 0.2901

A/σ 2 (dB) α Robust

λ1 s11 s12

10 N/A N/A 1 1
25 N/A 0.2276 1.7597 0.6183
40 N/A 0.3200 1.6693 0.3989

ε = � = 0.05, and stochastic signaling with distorted channel co-
efficients when ε = 0.05 versus the actual value of the channel
coefficient α at A/σ 2 = 40 dB. We observe that the average prob-
ability of error decreases as α increases for all strategies.5 For each
value of the channel coefficient, the lower bound for the probabil-
ity of error is obtained by stochastic signaling with perfect CSI.
For small values of α, i.e., when α < 0.894, robust stochastic sig-
naling is better than stochastic signaling with averaging even for
� = ε. However, for larger α values, such as for α > 1.107, robust
signaling performs worse than stochastic signaling with averaging
and stochastic signaling with distorted channel coefficients. This
shows that since the signals are designed for α0 = 0.8 in robust
stochastic signaling, when the actual α is close to 0.8, robust sig-
naling achieves improved performance. Performance of stochastic
signaling with averaging is better than conventional signaling and
stochastic signaling with distorted channel coefficients for every α
value. Although conventional signaling yields larger average prob-
abilities of error than stochastic signaling with distorted channel
coefficients for α > 0.9935, employing distorted channel coeffi-
cients in the signal design results in the worst average probability
of error performance when α has a smaller value.

Finally, in order to provide additional explanations of the pre-
ceding results, Table 1 and Table 2 are presented. In Table 1, the
optimal signals for robust stochastic signaling and stochastic sig-
naling for the given channel coefficient value α are presented for
various A/σ 2 values. Note that in robust signaling the actual value
of α is irrelevant since all the signals are designed for α = 0.8.
It is observed that when A/σ 2 = 10 dB, both strategies have the
same solution as the conventional signaling. However, as A/σ 2

increases, the randomization between two signal values becomes
more effective and this may help reduce the average probability
of error. For example, when A/σ 2 = 25 dB, the average probability
of error for robust signaling is 0.00155, whereas it is 0.00199 for
conventional signaling. In Table 2, the optimal signals for stochastic
signaling with averaging when A/σ 2 = 40 dB are presented. Note
that the assumed PDF of the channel coefficient in that strategy is
N (α̂,�2). It is observed that when � is very small, i.e., � = 0.01,
the optimal signal PDFs are close to the optimal signal PDFs of the
stochastic signaling case given in Table 1. Also, when α̂ = 0.9 and
� = 0.2, the optimal signal PDF is close to that for conventional
signaling since the optimal PDF has a mass point at 0.9684 with
a weight of 0.9302.

5 Although it is not very clear in Fig. 6, the average probabilities of error for
conventional signaling and robust signaling also slightly decrease as α increases.
The reason for the almost constant performance is that the designed signals for
these approaches around A/σ 2 = 40 dB cannot mitigate the effect of the largest
component of the Gaussian mixture noise, which is located at 1.31.
Table 2
Optimal signal PDFs [in the form of pS1 (s) = λ1δ(s − s11) + (1 − λ1)δ(s − s12)] for
symbol 1 according to stochastic signaling with averaging when A/σ 2 = 40 dB.

α̂ � Averaging

λ1 s11 s12

0.9 0.01 0.41 1.5016 0.3575
0.9 0.05 0.351 1.5922 0.4114
0.9 0.2 0.0698 1.3519 0.9684
1.1 0.01 0.6466 1.2247 0.2917
1.1 0.05 0.575 1.2892 0.323
1.1 0.2 0.476 1.2815 0.6453

6. Concluding remarks

In this study, the effects of imperfect CSI on stochastic signaling
and the design of stochastic signals in the presence of CSI uncer-
tainty have been investigated. Regarding the comparison between
the proposed stochastic signaling approaches, robust stochastic sig-
naling requires less amount of statistical information about the
channel coefficient error than stochastic signaling with averaging
since the former uses only the smallest channel coefficient value
in the signal design while an estimate for the PDF of the chan-
nel coefficient error is needed in the latter. However, the use of
the smallest channel coefficient value in robust stochastic signal-
ing can result in poor performance when the probability of having
very small channel coefficients is nonzero. Therefore, in practice,
it can be useful to consider only the channel coefficient values
with significant probabilities in determining the smallest channel
coefficient. In addition, the numerical examples have indicated that
the stochastic signaling with averaging approach performs better
than the other practical approaches as long as the statistics of
the channel coefficient error are estimated reasonably well. How-
ever, its computational complexity is higher than that of robust
stochastic signaling as an averaging operation is performed over
the channel coefficient.

Appendix A

A.1. Proof of Proposition 1

In the following, lower and upper bounds for the expression
in (14) are derived in order to prove the statements in the proposi-
tion. We start by noticing the fact that the sign of the channel coef-
ficient knowledge at the transmitter is important. Suppose that pα̂

S1

is the optimal PDF obtained from (11) for a given α̂. Therefore,
if −α̂ is used instead of α̂, then p−α̂

S1
will be the optimal solu-

tion of (11) and the value of p−α̂
S1

(x) will be equal to pα̂
S1

(−x). This
observation can be utilized in (13), and also using the fact that
G(x,k) = 1 − G(−x,k), Pα̂

e = 1 − P−α̂
e can be obtained as follows:

∞∫
−∞

pα̂
S1

(x)G(x,k)dx =
∞∫

−∞
p−α̂

S1
(−x)

(
1 − G(−x,k)

)
dx

=
∞∫

−∞
p−α̂

S1
(t)

(
1 − G(t,k)

)
dt

= 1 −
∞∫

−∞
p−α̂

S1
(t)G(t,k)dt = 1 − P−α̂

e . (A.1)

It is stated in the second condition of the proposition that Pα̂
e < κ1

when α̂ > γth , and Pα̂
e < κ2 < κ1 when α > α̂ > θth . Therefore,

if we insert −α̂ instead of α̂ in these conditions, we get P−α̂
e < κ1

when −α̂ > γth and P−α̂
e < κ2 < κ1 when α > −α̂ > θth . Using
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the result in (A.1) and rearranging the terms yield Pα̂
e > 1 − κ1

when α̂ < −γ th and Pα̂
e > 1 − κ2 > 1 − κ1 when −α < α̂ < −θ th .

Also, since G(x,k) is a strictly decreasing function of x when
k is positive, then G(x, α̂) is a strictly increasing function of x
if α̂ is negative. Therefore, for a given α̂ < 0, the optimal signal
PDF pα̂

S1
assigns the weights on negative numbers instead of pos-

itive ones since for each positive value of S1, its negative can be
used instead, which results in the same average power value and
a smaller E{G(S1, α̂)}. Furthermore, since G(x,α) is a strictly de-
creasing function, and G(x,α) = 1 − G(−x,α), we have G(x,α) >

G(0,α) = 0.5 for x < 0. Thus, by using these two facts and the ex-
pression in (13), we conclude that if α̂ < 0, then Pα̂

e > 0.5 [and
Pα̂

e < 0.5, if α̂ > 0]. Now, one can find a lower bound on Pe in (14)
as follows:

Pe =
∞∫

−∞
pα̂(a)Pa

e da

�
−γ th∫

−∞
pα̂(a)Pa

e da +
0∫

−γ th

pα̂(a)Pa
e da +

∞∫
βth

pα̂(a)Pa
e da

> (1 − κ1)P(α̂ < −γ th) + (κ1 − κ2)P(−α < α̂ < −θ th)

+ 1

2
P(−γ th < α̂ < 0) + P(βth < α̂)G(

√
A,α)

= (1 − κ1)P

(
η

ε
>

α + γ th

ε

)

+ (κ1 − κ2)P

(−2α

ε
<

η

ε
<

−α − θ th

ε

)

+ 1

2
P

(−α

ε
<

η

ε
<

−α − γ th

ε

)

+ P

(
η

ε
>

βth − α

ε

)
G(

√
A,α)

= (1 − κ1)Q

(
α + γth

ε

)

+ (κ1 − κ2)

(
Q

(
2α

ε

)
− Q

(
α + θth

ε

))

+ 1

2

(
Q

(
α

ε

)
− Q

(
α + γth

ε

))
+ Q

(
βth − α

ε

)
G(

√
A,α)

=
(

1

2
− κ1

)
Q

(
α + γth

ε

)

+ (κ1 − κ2)

(
Q

(
2α

ε

)
− Q

(
α + θth

ε

))

+ 1

2
Q

(
α

ε

)
+ Q

(
βth − α

ε

)
G(

√
A,α). (A.2)

Note that the first inequality follows from the fact that a pos-
itive term, namely,

∫ βth
0 pα̂(a)Pa

e da, is removed from the initial
expression

∫ ∞
−∞ pα̂(a)Pa

e da. Also, in obtaining the first and the
second terms after the second inequality, we use the fact that al-
though Pα̂

e > 1 − κ1 when α̂ < −γ th , the bound is tighter, that is,
Pα̂

e > 1 − κ2, when −α < α̂ < −θ th < −γ th . For a given ε, if the fi-
nal expression in (A.2) is greater than or equal to G(

√
A,α), then

Pe > G(
√

A,α). Therefore, under the conditions in the proposition,
if the inequality in (15) is satisfied for a given value of the stan-
dard deviation ε of the channel coefficient error, it is sufficient to
conclude that conventional signaling performs better than stochas-
tic signaling.
Next, the following upper bound on Pe in (14) can be obtained
based on a similar approach to that in obtaining (A.2) (please
see [1] for details):

Pe �
1

2

(
κ1 + κ2 + Q

(
α

ε

))
+

(
1

2
− κ1

)
Q

(
α − γth

ε

)

− κ1 Q

(
βth − α

ε

)
+ (κ1 − κ2)Q

(
α − θth

ε

)

+
(

Q

(
βth − α

ε

)
− Q

(
α + βth

ε

))
G(

√
A,α). (A.3)

For a given ε, if the expression in (A.3) is less than or equal to
G(

√
A,α), then Pe < G(

√
A,α) is obtained. Therefore, under the

conditions in the proposition, if the inequality in (16) is satisfied
for a given ε, it is sufficient to conclude that stochastic signaling
performs better than conventional signaling.

A.2. Proof of Proposition 2

The minimax problem in (17) can be expressed as follows:

min
pS0 ,pS1

max
α∈[α0,α1]π1

∞∫
−∞

pS1(x)G(x,α)dx

+ π0

∞∫
−∞

pS0(x)
(
1 − G(x,α)

)
dx subject to E

{|Si|2
}
� A.

Assume that S1 is a nonnegative and S0 is a nonpositive ran-
dom variable. First, it is shown that this assumption does not
reduce the generality of the proof. Suppose that p∗

S1
is the PDF

of S1 which is a nonnegative random variable, and p∗
S0

is the
PDF of S0 which is any random variable (that is, its instances can
take both positive or negative values). In the minimax problem,
for given p∗

S0
and p∗

S1
, we maximize π1

∫ ∞
−∞ p∗

S1
(x)G(x,α)dx +

π0
∫ ∞
−∞ p∗

S0
(x)(1 − G(x,α))dx over α ∈ [α0,α1]. Now assume

that p†
S1

is symmetric with p∗
S1

, that is, p†
S1

is a PDF for a non-

positive random variable such that p∗
S1

(−x) = p†
S1

(x). Similarly,

for a given p∗
S0

and p†
S1

, we maximize π1
∫ ∞
−∞ p†

S1
(x)G(x,α)dx +

π0
∫ ∞
−∞ p∗

S0
(x)(1− G(x,α))dx over α ∈ [α0,α1]. Because of the first

condition in the proposition, for every α ∈ [α0,α1],
∫ ∞
−∞ p∗

S1
(x)×

G(x,α)dx �
∫ ∞
−∞ p†

S1
(x)G(x,α)dx, since G(x,α) is a strictly de-

creasing function of x; hence, the value of the maximum for p∗
S1

will be less than or equal to that for p†
S1

, and both PDFs will yield
the same average power value because of the symmetry. Since it
is a minimax problem, we look for the optimal signal PDFs pS0

and pS1 that minimize the value of the maximum. Thus, by using
a nonnegative S1, we achieve a lower maximum value as com-
pared to a nonpositive S1. Similarly, a nonpositive S0 will yield
a smaller maximum value as compared to a nonnegative S0. There-
fore, instead of considering all PDFs, one can just consider the PDFs
of a nonpositive S0 and a nonnegative S1 without loss of general-
ity under the first condition in the proposition.

Based on this fact, for any given pS0 and pS1 , which are the
PDFs of a nonpositive S0 and a nonnegative S1, respectively,
we maximize V (α) = π1

∫ ∞
0 pS1 (x)G(x,α)dx + π0

∫ 0
−∞ pS0 (x)×

(1 − G(x,α))dx over α ∈ [α0,α1]. Define V 1(α) = ∫ ∞
0 pS1 (x)×

G(x,α)dx and V 0(α) = ∫ 0
−∞ pS0 (x)G(x,α)dx. Then, we maximize

V (α) = π1 V 1(α)−π0 V 0(α)+π0 over α ∈ [α0,α1]. Under the sec-
ond condition in the proposition, G(x,α) is a strictly decreasing
function of α, ∀x > 0, and a strictly increasing function of α,
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∀x < 0.6 First, assume that pSi (x) �= δ(x) for i = 0,1. Then, for ev-
ery αi > α j , G(x,αi) < G(x,α j) if x > 0, and G(x,αi) > G(x,α j) if
x < 0. Since pSi (x) is always nonnegative,

∫ ∞
0 pS1 (x)G(x,αi)dx <∫ ∞

0 pS1 (x)G(x,α j)dx; that is, V 1(αi) < V 1(α j). Hence, V 1 is a

strictly decreasing function of α. Similarly,
∫ 0
−∞ pS0 (x)G(x,αi)dx >∫ 0

−∞ pS0 (x)G(x,α j)dx; that is, V 0(αi) > V 0(α j). So, V 1 is a strictly
increasing function of α. Then, it is concluded that V (α) is
a strictly decreasing function of α. Hence, for pS0 and pS1 , un-
der the conditions in the proposition, maxα∈[α0 α1] V (α) = V (α0),
meaning that the minimax problem can be reduced to the form
in (18). Note that, when pSi (x) = δ(x), then dV i(α)/dα = 0.
If pS1 (x) = pS0 (x) = δ(x), then V (α) becomes a constant func-
tion. Also, if one of pS1 (x) or pS0 (x) is not equal to δ(x), V (α) is
still a strictly decreasing function of α. Hence maxα∈[α0 α1] V (α) =
V (α0) holds for all possible pS0 and pS1 .
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