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An M-ary communication system is considered in which the transmitter and the receiver are connected
via multiple additive (possibly non-Gaussian) noise channels, any one of which can be utilized for the
transmission of a given symbol. Contrary to deterministic signaling (i.e., employing a fixed constellation),
a stochastic signaling approach is adopted by treating the signal values transmitted for each information
symbol over each channel as random variables. In particular, the joint optimization of the channel
switching (i.e., time sharing among different channels) strategy, stochastic signals, and decision rules
at the receiver is performed in order to minimize the average probability of error under an average
transmit power constraint. It is proved that the solution to this problem involves either one of the
following: (i) deterministic signaling over a single channel, (ii) randomizing (time sharing) between
two different signal constellations over a single channel, or (iii) switching (time sharing) between two
channels with deterministic signaling over each channel. For all cases, the optimal strategies are shown to
employ corresponding maximum a posteriori probability (MAP) decision rules at the receiver. In addition,
sufficient conditions are derived in order to specify whether the proposed strategy can or cannot improve
the error performance over the conventional approach, in which a single channel is employed with
deterministic signaling at the average power limit. Finally, numerical examples are presented to illustrate
the theoretical results.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In recent studies, the benefits of randomization (time sharing)
have been analyzed for various detection problems in an environ-
ment of additive and non-varying but otherwise arbitrarily dis-
tributed noise [1–16]. In the context of noise enhanced detection,
an additive “noise” component that is realized by a randomiza-
tion between at most two different signal levels can be injected
into the input of a suboptimal detector in order to improve its
detection performance under a false alarm constraint [1–3]. Sim-
ilar noise benefits are investigated for detection problems in the
Bayesian, minimax, and restricted Bayesian frameworks as well,
and it is shown that the optimal additive noise can be character-
ized by a randomization among a certain number of signal values
in each scenario [2,4,5].
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Due to the irrelevance theorem of optimal detection [17], it is
known that the performance of an optimal receiver cannot be im-
proved if the injected noise is independent of the received signal
and the hypotheses. On the other hand, if the signal values trans-
mitted for each information symbol are designed by taking into ac-
count the probability density function (PDF) of channel noise, some
performance improvement can be obtained even if the receiver is
optimal. For example, it is well known that the performance of op-
timal binary detection in Gaussian noise is improved by selecting
deterministic antipodal signals along the eigenvector of the noise
covariance matrix corresponding to the minimum eigenvalue [17].
In stochastic signaling, a more general approach is adopted by treat-
ing the signal values transmitted for each information symbol as
random variables, and the optimal signal distribution is obtained
by maximizing some performance criterion under certain system
constraints [8,9,11,18]. For communication systems that operate
over channels with multimodal noise distributions, it is shown in
[8] that transmitting a stochastic signal for each symbol instead of
a deterministic signal can improve performance of a given receiver
in terms of error probability. In particular, it is proved that an opti-
mal stochastic signal can be represented by a randomization of no
more than three different signal values under second and fourth
moment constraints. In [9], joint optimal design of stochastic
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Fig. 1. Illustrative example demonstrating the benefits of switching between two
channels under an average power constraint.

signals and a detector is considered under an average transmit
power constraint. It is shown that the solution results in a random-
ization between at most two distinct signal constellations with the
corresponding maximum a posteriori probability (MAP) detector at
the receiver. A similar analysis is conducted under the Neyman–
Pearson criterion in [11]. Stochastic signaling in the presence of
imperfect channel state information at the transmitter is studied in
[18], and various stochastic signal design approaches are proposed
for that scenario. In addition, in other studies such as [19–24],
time-varying or random signal constellations are utilized in order
to enhance error performance or to achieve diversity.

Error performance of some communication systems that op-
erate over an additive time-invariant noise channel can also be
improved via detector randomization, which involves the use of
multiple detectors at the receiver with certain probabilities [2,3,
12,13,25]. In other words, a receiver can randomize among mul-
tiple detectors in order to achieve a lower average probability of
error. In [3], an average power constrained binary communication
system is considered, and randomization between two antipodal
signal pairs and the corresponding MAP detectors is studied. Sig-
nificant performance improvements are reported as a result of de-
tector randomization in the presence of symmetric Gaussian mix-
ture noise over a range of average power constraint values. In [13],
the results in [3] and [9] are generalized by considering an average
power constrained M-ary communication system that can employ
both detector randomization and stochastic signaling over an addi-
tive noise channel with some known distribution. It is shown that
the joint optimization of the transmitted signals and the detectors
at the receiver results in a randomization between at most two
MAP detectors corresponding to two deterministic signal constel-
lations. In a related study, the form of the optimal additive noise is
determined for variable detectors in the context of noise enhanced
detection under both Neyman–Pearson and Bayesian criteria [2].

When multiple channels are available between a transmitter
and a receiver, it may be advantageous to perform channel switch-
ing; that is, to transmit over one channel for a certain fraction of
time, and then switch to another channel during the next trans-
mission period even if the channel statistics are not varying with
time [6,26,27]. Fig. 1 illustrates this fact for an average power con-
strained binary communication system which employs antipodal
signaling with {−√

S,
√

S} for a given signal power S. It is seen that
the average probability of error can be reduced by switching (time
sharing) between channel 1 and channel 2 with respective power
levels S1 and S2 in comparison to the constant power transmission
scheme that employs power Savg exclusively over channel 1. More
precisely, time sharing exploits the nonconvexity of the plot for the
minimum of the error probabilities over both channels as a func-
tion of the signal power. The resulting strategy yields the convex
hull of the individual error probability functions. This observation
is first noted in [6] while studying the convexity properties of error
probability with respect to the transmit signal power for the opti-
mal detection of antipodal signals corrupted by additive unimodal
noise. It is shown that the optimum performance under an aver-
age power constraint can be achieved by time sharing between at
most two channels and power levels.

In this manuscript, we study the optimal channel switching,
signaling and detection strategy that minimizes the average prob-
ability of error for an average power constrained M-ary communi-
cation system in which the transmitter and the receiver are con-
nected via multiple additive noise channels. Although the channel
switching problem is treated in some studies, such as [6], for uni-
modal noise distributions and deterministic binary antipodal sig-
nals, no previous work has considered this problem for generic
noise PDFs (i.e., including non-Gaussian or multimodal cases) and
in the presence of stochastic signaling (i.e., when the transmit-
ter can perform signal randomization for each information symbol
sent over any one of the channels) for M-ary communication sys-
tems. More specifically, we investigate the joint optimization of the
channel switching strategy, stochastic signals (employed for the
transmission of each symbol over each channel), and decision rules
(used for each channel at the receiver) in order to minimize the
average probability of error under an average transmit power con-
straint.

The main contributions of this study can be summarized as fol-
lows:

• A novel problem formulation is proposed for the optimal sig-
naling and detection problem in the presence of multiple ad-
ditive noise channels by considering the joint optimization of
the channel switching strategy, stochastic signals, and detec-
tors without imposing any restrictions except the continuity
of the probability distributions of the channel noise.

• It is proved that the solution to this generic problem corre-
sponds to either (i) deterministic signaling (i.e., employing a
fixed constellation) over a single channel with the correspond-
ing MAP detector, (ii) randomizing (time sharing) between two
different signal constellations over a single channel with the
corresponding MAP detector, or (iii) switching (time sharing)
between the MAP detectors of two channels with determinis-
tic signaling over each channel.

• Various sufficient conditions are derived in order to spec-
ify whether or not the proposed channel switching strategy
can improve the error performance over the conventional ap-
proach, in which a single channel is employed with determin-
istic signaling at the average power limit.

In addition, numerical examples are provided to illustrate the im-
provements that can be achieved via the optimal signaling and
detection strategy. The results in this manuscript generalize some
of the previous studies in the literature and cover them as special
cases. For example, in the absence of channel switching (i.e., in the
presence of a single channel between the transmitter and the re-
ceiver) and for binary communications, the results reduce to those
in [9]. In addition, in the absence of stochastic signaling and when
the channel noise is assumed to have a unimodal differential PDF
for a binary communication system, the problem considered in this
study covers the one in [6] as a special case.

In a recent conference paper [28], we have presented the opti-
mal channel switching, signaling and detection problem, and pro-
vided its solution. The current paper presents a more detailed
derivation of this solution. In addition, a number of sufficient con-
ditions, which are presented in Propositions 2–6, are obtained for
the improvability and non-improvability of the correct decision
performance via stochastic signaling or channel switching over
a fixed power transmission scheme that employs MAP detection
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Fig. 2. M-ary communication system that employs stochastic signaling and channel switching.
using the most favorable channel. Since a set of possibly noncon-
vex optimization problems has to solved in order to obtain the
optimal signaling strategy, these conditions can be checked be-
forehand to determine whether an improvement via stochastic sig-
naling or channel switching is even possible. Numerical examples
are also presented to corroborate these results. More specifically,
both distinct and identical noise channels are considered, and var-
ious performance graphs are presented to explain the benefits of
stochastic signaling and channel switching.

The remainder of the manuscript is organized as follows. In Sec-
tion 2, the optimal signaling and detection problem is formulated
in the presence of multiple additive noise channels under an av-
erage transmit power constraint, and the form of the solution to
this optimization problem is obtained. In Section 3, improvability
and non-improvability conditions are provided in order to specify
when the proposed channel switching strategy can improve per-
formance over the conventional approach. Numerical examples are
presented in Section 4, which is followed by some concluding re-
marks in Section 5.

2. Stochastic signaling and channel switching

Consider an M-ary communication system, in which the infor-
mation can be conveyed from the transmitter to the receiver over
K additive non-varying and independent noise channels as illus-
trated in Fig. 2. The transmitter is allowed to switch or time share
among these K channels to improve the correct decision perfor-
mance at the receiver. A relay at the transmitter controls access
to the channels so that only one of the channels can be used for
symbol transmission at any given time. Furthermore, a stochastic
signaling approach is adopted by treating the signal transmitted
from each channel for each information symbol as a random vector
instead of a constant value [8,13]. In other words, the transmitter
can perform randomization of signal values for each information
symbol, which also corresponds to a form of constellation random-
ization [9,19,20]. The transmitter and the receiver are assumed to
be synchronized so that the receiver knows which channel is cur-
rently in use, and employs the optimal decision rule for the corre-
sponding channel and the stochastic signaling scheme. In practice,
this assumption can be realized by employing a communications
protocol that allocates the first Ns,1 symbols in the payload for
channel 1, the next Ns,2 symbols in the payload for channel 2,
and so on. The information on the number of symbols for differ-
ent channels can be included in the header of a communications
packet [13].
Multiple channels can be available between a transmitter and
a receiver, for example, in cognitive radio systems, where sec-
ondary users sense the spectrum in order to determine available
frequency bands for communications [29,30]. In the presence of
multiple available frequency bands between a transmitter-receiver
pair in a cognitive radio system (see, e.g., [31]), channel switching
can be performed in order to improve the error performance of
the secondary system. Therefore, one application of the scenario in
Fig. 2 can be the communications of secondary users in a cognitive
radio system.

As pointed out in [6], for a binary-valued scalar communication
system that employs antipodal signaling and the corresponding
optimal MAP detector at the receiver, error probability is a non-
increasing convex function of the signal-to-noise ratio (SNR) when
the channel has a continuously differentiable unimodal noise PDF
with a finite variance. The more general case of arbitrary signal
constellations is investigated in [7] by concentrating on the maxi-
mum likelihood (ML) detection over additive white Gaussian noise
(AWGN) channels. The symbol error rate (SER) is shown to be al-
ways convex in SNR for 1-D and 2-D constellations, and also for
higher dimensional constellations in high SNR regimes. As a result,
it is impossible to improve the error performance of an optimal
detector via stochastic signaling under an average transmit power
constraint in the above mentioned cases due to the convexity of
the error probability. On the other hand, nonconvexity can be ob-
served at low to intermediate SNRs in the presence of multimodal
noise and even unimodal (including Gaussian) noise for high di-
mensional constellations.1 As an example, it is reported in [8] and
[9] that employing stochastic signaling; that is, modeling signals
for different symbols as random variables instead of determinis-
tic quantities, can provide significant performance improvement
under Gaussian mixture noise. Motivated by this observation, we
consider additive noise channels with generic PDFs and aim to ob-
tain the optimal signaling and detection strategy when multiple
channels are available for symbol transmission and stochastic sig-
naling can be performed over each channel. In this scenario, the
noisy observation vector Y received by the detector corresponding
to the ith channel can be modeled as follows.

Y = S(i)
j + N(i), j ∈ {0,1, . . . , M − 1} and i ∈ {1, . . . , K }, (1)

1 Non-Gaussian and multimodal noise distributions are observed in some practi-
cal systems due to effects such as interference and jamming [32–34].
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where S(i)
j represents the N-dimensional signal vector transmitted

for symbol j over channel i, and N(i) is the noise in channel i
with a continuous PDF pN(i) . N(i) is assumed to be independent

of S(i)
j and all the noise components of the remaining channels.

It should be emphasized that S(i)
j is modeled as a random vector

to employ stochastic signaling. Also, the prior probabilities of the
symbols, denoted by π0,π1, . . . ,πM−1, are assumed to be known.
The vector channel model given above provides the discrete-time
equivalent representation of a continuous-time system that pro-
cesses the received signal by an orthonormal set of linear filters,
samples the output of each filter once per symbol interval and con-
catenates the sampled values into a vector, thereby capturing the
effects of modulator, additive noise channel and receiver front-end
processing on the noisy observation signal. The resulting digital
signal vector is fed to the designated detector to carry out the de-
modulation task. In addition, although the signal model in (1) is
in the form of a simple additive noise channel, it is sufficient to
incorporate various effects such as thermal noise, multiple-access
interference, and jamming [6]. It is also valid in the case of flat-
fading channels assuming perfect channel estimation [8]. Note that
the probability distribution of the noise component in (1) is not
necessarily Gaussian since it is modeled to include the effects of
interference and jamming as well. Hence, the noise component
can have a significantly different probability distribution from the
Gaussian distribution [32–34].

The receiver uses the observation in (1) in order to determine
the transmitted information symbol. For that purpose, a generic
decision rule (detector) is considered for each channel making a
total of K detectors getting utilized at the receiver. That is, for
a given observation vector Y = y, the detector of the ith channel
φ(i)(y) can be characterized as

φ(i)(y) = j, if y ∈ Γ
(i)
j , (2)

for j ∈ {0,1, . . . , M − 1}, where Γ
(i)

0 ,Γ
(i)

1 , . . . ,Γ
(i)
M−1 are the deci-

sion regions (i.e., a partition of the observation space R
N ) for the

detector of the ith channel [17]. The transmitter and the receiver
can switch between these K channels in any manner in order to
optimize the probability of error performance. Let vi denote the
probability that channel i is selected for a given symbol trans-
mission by the communication system. In the remainder of this
paper, vi is called the channel switching factor for channel i, where∑K

i=1 vi = 1 and vi � 0 for i = 1, . . . , K . In the context of time
sharing, the transmitter and the receiver communicate over chan-
nel i for 100vi percent of the time.

The aim of this study is to jointly optimize the channel switch-
ing strategy (v1, . . . , v K ), stochastic signals, and detectors in order
to achieve the minimum average probability of error, or equiva-
lently, the maximum average probability of correct decision. The
average probability of correct decision can be expressed as Pc =∑K

i=1 viP
(i)
c , where P(i)

c represents the corresponding probability of
correct decision for channel i under M-ary signaling; that is

P(i)
c =

M−1∑
j=0

π j

∫
Γ

(i)
j

p(i)
j (y)dy (3)

for i = 1,2, . . . , K , with p(i)
j (y) denoting the conditional PDF of the

observation when the jth symbol is transmitted over the ith chan-
nel. Since stochastic signaling is considered, S(i)

j in (1) is modeled
as a random vector. Recalling that the signals and the noise are in-
dependent, the conditional PDF of the observation can be obtained
as p(i)

j (y) = ∫
RN p

S(i) (x)pN(i) (y−x)dx = E{pN(i) (y−S(i)
j )}, where the
j

expectation is over the PDF of S(i)
j . Then, the average probability of

correct decision can be expressed as

Pc =
K∑

i=1

vi

(
M−1∑
j=0

∫
Γ

(i)
j

π jE
{

pN(i)

(
y − S(i)

j

)}
dy

)
. (4)

In practical systems, there is a constraint on the average power
emitted from the transmitter. Under the framework of stochastic
signaling and channel switching, this constraint on the average
power can be expressed in the following form [17].

K∑
i=1

vi

(
M−1∑
j=0

π jE
{∥∥S(i)

j

∥∥2
2

})
� A, (5)

where A denotes the average power limit.
In this study, we primarily concentrate on obtaining the optimal

signaling and detection strategy in terms of the correct decision
probability for an M-ary communication system in the presence
of multiple channels. The novelty of the problem introduced here
arises from the following two aspects: (i) signals transmitted over
each channel corresponding to different symbols are modeled as
random vectors subject to an average power constraint, (ii) the
only restriction is the continuity of the noise PDFs of the chan-
nels available for switching, and (iii) optimal detectors are de-
signed jointly with the optimal signaling and switching strategies.
This formulation, in turn translates into a design problem over
the channel switching factors {vi}K

i=1, channel specific signal PDFs
employed at the transmitter {p

S(i)
0

, p
S(i)

1
, . . . , p

S(i)
M−1

}K
i=1, and the cor-

responding optimal detectors used at the receiver {φ(i)}K
i=1. Stated

more formally, the aim is to solve the following optimization prob-
lem.

max
{φ(i),vi ,p

S(i)
0

,p
S(i)

1
,...,p

S(i)
M−1

}K
i=1

K∑
i=1

vi

(
M−1∑
j=0

∫
Γ

(i)
j

π j E
{

pN(i)

(
y − S(i)

j

)}
dy

)

subject to
K∑

i=1

vi

(
M−1∑
j=0

π j E
{∥∥S(i)

j

∥∥2
2

})
� A,

K∑
i=1

vi = 1, vi � 0, ∀i ∈ {1,2, . . . , K }. (6)

Included in the above statement are the implicit assumptions stat-
ing that each p

S(i)
j
(·) should represent a PDF. Therefore, p

S(i)
j
(x) � 0,

∀x ∈R
N , and

∫
RN p

S(i)
j
(x)dx = 1 are required ∀ j ∈ {0,1, . . . , M − 1}

and ∀i ∈ {1, . . . , K }.
The signals for all the M symbols that are transmitted over

channel i can be expressed as the elements of a random vec-
tor as follows: S(i) � [S(i)

0 S(i)
1 · · · S(i)

M−1] ∈ R
MN , where S(i)

j ’s are
N-dimensional row vectors ∀ j ∈ {0,1, . . . , M − 1}. More explicitly,
each realization of S(i) represents a signal constellation for M-ary
symbol transmission in an N-dimensional space. Then, the opti-
mization problem in (6) can be expressed in a more compact form
as follows:
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max
{φ(i),vi ,pS(i) }K

i=1

K∑
i=1

viE
{

Gi
(
S(i))}

subject to
K∑

i=1

viE
{

H
(
S(i))} � A,

K∑
i=1

vi = 1, vi � 0, ∀i ∈ {1,2, . . . , K }, (7)

where

Gi
(
S(i)) =

M−1∑
j=0

∫
Γ

(i)
j

π j pN(i)

(
y − S(i)

j

)
dy,

H
(
S(i)) =

M−1∑
j=0

π j
∥∥S(i)

j

∥∥2
2,

and each expectation is taken with respect to pS(i) (·), which de-
notes the PDF of the signal constellation employed for symbol
transmission over channel i. Specifically, Gi(s(i)) represents the
probability of correct decision when the signal constellation rep-
resented by the deterministic vector s(i) is used for the trans-
mission of M symbols over the additive noise channel i and the
corresponding detector φ(i) is employed at the receiver. Then,
E{Gi(S(i))} can be interpreted as the probability of correct deci-
sion for a generic stochastic signaling scheme over channel i. The
exact number of signal constellations employed by this scheme is
determined by the number of distinct values that the random vec-
tor S(i) can take. The expression for H(·) is the same irrespective
of which channel is used, and an explicit reference to the channel
number as in the subscript of Gi(·) is not necessary.

Let P†
c denote the maximum average probability of correct de-

cision obtained as the solution of the optimization problem in (7).
To provide a simpler formulation of this problem, an upper bound
on P†

c will be derived first, and then the achievability of that bound
will be investigated.

Suppose that G(x) denotes the maximum of the probabili-
ties of correct decision when the deterministic signal constella-
tion x is used for the transmission of M symbols over the ad-
ditive noise channels i = 1,2, . . . , K and the corresponding de-
tectors for all K channels are employed at the receiver. That is,
G(x) � maxi∈{1,2,...,K } Gi(x), from which G(x) � Gi(x) follows ∀i ∈
{1,2, . . . , K } and ∀x ∈ R

MN . This inequality can be applied to the
objective function in (7) to obtain a new optimization problem that
provides an upper bound on the solution of the optimization prob-
lem in (7) as follows.

max
{φ(i),vi ,pS(i) }K

i=1

K∑
i=1

viE
{

G
(
S(i))}

subject to
K∑

i=1

viE
{

H
(
S(i))} � A,

K∑
i=1

vi = 1, vi � 0, ∀i ∈ {1,2, . . . , K }, (8)

where the expectations are taken with respect to pS(i) (·)’s. Note
that by replacing Gi(S(i)) with G(S(i)), the reference to individ-
ual channels inside the expectation operator is dropped which will
prove useful in the foregoing analysis.

Let P�
c denote the maximum average probability of correct de-

cision obtained as the solution to the optimization problem in (8).
From the definition of function G(·), P�

c � P†
c is always satisfied.
In order to achieve further simplification of the problem in (8), de-
fine pS(s) �

∑K
i=1 vi pS(i) (s), where s � [s0 s1 · · · sM−1] ∈ R

MN , and
s j ’s are N-dimensional row vectors ∀ j ∈ {0,1, . . . , M − 1}. Since∑K

i=1 vi = 1, vi � 0∀i, and pS(i) (·)’s are valid PDFs on R
MN , pS(s)

satisfies the conditions to be a PDF. Then, the optimization prob-
lem in (8) can be written in the following equivalent form.

max
pS,{φ(i)}K

i=1

E
{

G(S)
}

subject to E
{

H(S)
}

� A, (9)

where G(s) = maxi∈{1,2,...,K } Gi(s) for all s ∈ R
MN , and the expec-

tations are taken with respect to pS(·), which denotes the PDF
of the signal constellation employed for transmission of symbols
{0,1, . . . , M − 1}.

In (9), G(s) represents the maximum of the probabilities of cor-
rect decision when the deterministic signal constellation s is used
for the transmission of M symbols over the additive noise channels
i = 1,2, . . . , K and the corresponding detectors are employed at
the receiver. Then, E{G(S)} can be interpreted as a randomization
among channels with respect to the PDF pS(·), where the probabil-
ity of correct decision corresponding to each component of pS (i.e.,
for each signal constellation s in the support of pS) is maximized
by transmitting it over the most favorable channel (i.e., the chan-
nel with the highest probability of correct decision for the given
signal constellation s), and altogether they maximize the average
probability of correct decision.

Optimization problems in the form of (9) have been investi-
gated in various studies in the literature [1,5,13]. Assuming that
the signal values specified by the signal constellation s ∈ R

MN are
bounded, i.e., a � s � b where a and b are finite real vectors in
R

MN , and � denotes element-wise inequality; an optimal solution
to (9) can be represented by a randomization of at most two sig-
nal constellations, that is, pS(s) = λδ(s − s1) + (1 − λ)δ(s − s2),
where λ ∈ [0,1] and δ(·) is the Dirac delta function. This result fol-
lows from Carathéodory’s theorem [35], and can be derived using
a similar approach to those in [1, Theorem 3] and [5, Theorem 4].
Substituting this result in (9), the following optimization problem
is obtained:

max
{λ,s1,s2,{φ(i)}K

i=1}
λG(s1) + (1 − λ)G(s2)

subject to λH(s1) + (1 − λ)H(s2) � A, λ ∈ [0,1], (10)

where

G(sk) = max
i∈{1,2,...,K }

Gi(sk),

Gi(sk) =
M−1∑
j=0

∫
Γ

(i)
j

π j pN(i) (y − sk, j)dy ∀i ∈ {1,2, . . . , K },

H(sk) =
M−1∑
j=0

π j
∥∥sk, j

∥∥2
2, and

sk = [sk,0 sk,1 · · · sk,M−1] ∈ R
MN

with sk, j denoting the N-dimensional vector representing the jth
symbol in constellation sk . Therefore, the solution to the optimiza-
tion problem given in (9), which is an upper bound on the solution
of the original problem presented in (6), is achieved by randomiz-
ing between at most two signal constellations, s1 and s2.

In order to understand the possible implications of the repre-
sentation given in (10), we consider the following scenario. Let
λ, s1 and s2 be the optimal parameters obtained from the so-
lution of (10). Evidently, if either λ = 0 or s1 = s2, this would
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imply that the optimal performance under the average power con-
straint is achieved by transmitting over a single channel with de-
terministic signaling. Next, we investigate the possible cases for
λ �= 0 and s1 �= s2. By construction, G(sk) selects the channel with
the largest average probability of correct decision for the trans-
mission of the symbols in the constellation sk . Therefore, it may
either be that s1 and s2 are transmitted over the same chan-
nel (i.e., stochastic signaling over a single channel) or over dis-
tinct channels (i.e., channel switching with deterministic signals
over each channel). It should be noted that channel switching
between two channels while stochastic signaling over each chan-
nel is overruled by the form of the optimization problem given
in (10). Nevertheless, an intuitive explanation for this fact can
be given as follows. Suppose that the optimal strategy results in
switching between channels 1 and 2 with probability λ, and it
is found that randomization between two signal constellations,
represented with s(i)

1 and s(i)
2 , is optimal with probability αi for

channel i ∈ {1,2}, where λ,α1,α2 ∈ (0,1). Let (g(i)
1 ,h(i)

1 ) denote
the point for the average probability of correct decision and av-
erage signal power corresponding to the signal constellation s(i)

1 .

Similarly, let (g(i)
2 ,h(i)

2 ) denote the corresponding point for the sig-

nal constellation s(i)
2 . It is easy to see that the assumed strategy

results in a convex combination of the four points in the following
set S � {(g(1)

1 ,h(1)
1 ), (g(1)

2 ,h(1)
2 ), (g(2)

1 ,h(2)
1 ), (g(2)

2 ,h(2)
2 )}. This convex

combination is determined by the parameters λ,α1 and α2. For
different values of these parameters, any point in the convex hull
of the set S can be attained. However, since an optimal strategy
should maximize the average probability of correct decision under
the average transmit power constraint, the optimal point should lie
on the boundary of the convex hull of the set S. But any point on
the boundary of the convex hull can be represented by a convex
combination of at most two points in the set S, which implies that
the optimal strategy is, in fact, either stochastic signaling over a
single channel or switching between two channels with determin-
istic signals over each channel. All in all, it is concluded that the
objective function in (10) is maximized under the specified con-
straints by either one of the following strategies:

1. transmitting exclusively over a single channel via deterministic
signaling, i.e., λ ∈ {0,1},

2. randomizing (time sharing) between two signal constel-
lations over a single channel, i.e., λ ∈ (0,1) and
arg maxi∈{1,2,...,K } Gi(s1) = arg maxi∈{1,2,...,K } Gi(s2),

3. switching (time sharing) between two channels and de-
terministic signaling over each channel, i.e., λ ∈ (0,1) and
arg maxi∈{1,2,...,K } Gi(s1) �= arg maxi∈{1,2,...,K } Gi(s2).

Three distinct cases mentioned above can also be grouped under
two overlapping cases as follows:

1. randomizing between at most two signal constellations over a
single channel,

2. switching between at most two channels and deterministic sig-
naling over each channel.

It is noted that randomizing between at most two signal constella-
tions over a single channel covers deterministic signaling since the
former reduces to the latter for λ ∈ {0,1}. Similarly, switching be-
tween at most two channels and deterministic signaling over each
channel also reduces to deterministic signaling over a single chan-
nel when λ ∈ {0,1}. This form is introduced because it provides an
ease of notation in the following analysis.

The last step in the simplification of the optimization problem
in (10) comes from an observation about the structure of optimal
detectors. For a given channel i and the corresponding signaling
scheme over the channel (deterministic or randomization between
two signal constellations), the conditional probability of the obser-
vation y given that symbol j is transmitted can be expressed as

p(i)
j (y) = E

{
pN(i)

(
y − S(i)

j

)}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pN(i) (y − s(i)
j ),

if deterministic,

λpN(i) (y − s(i)
1, j) + (1 − λ)pN(i) (y − s(i)

2, j),

if randomized.

(11)

When deciding among M symbols based on observation y at
detector i, the MAP decision rule selects symbol j if j =
arg maxl∈{0,1,...,M−1} πl p(i)

l (y), and it maximizes the probability of
correct decision [17]. Therefore, it is not necessary to search over
all decision rules in (10); only the MAP decision rule should be
determined for the detector of each channel and its corresponding
probability of correct decision should be considered. The probabil-
ity of correct decision for a generic decision rule is given in (3).
Using the decision regions corresponding to the MAP detector, i.e.,
Γ

(i)
j = {y ∈ R

N | π j p(i)
j (y) � πl p(i)

l (y),∀l �= j}, the average probabil-
ity of correct decision for ith channel becomes

P(i)
c,MAP =

∫
RN

max
j∈{0,1,...,M−1}

{
π j p(i)

j (y)
}

dy, (12)

where p(i)
j (y) is as in (11).

Below, more explicit forms of the optimization problem stated
in (10) are given for all possible scenarios mentioned previously.

(i) Case 1. Transmitting exclusively over a single channel via deter-
ministic signaling:

In this case, a single channel is utilized exclusively, and the
transmitted signal for each symbol is deterministic, i.e., a fixed
signal constellation is employed for symbol transmission over the
channel. Without loss of generality, channel i is considered. The
optimization problem in (10) becomes

max
{s(i),φ(i)}

M−1∑
j=0

∫
Γ

(i)
j

π j pN(i)

(
y − s(i)

j

)
dy

subject to
M−1∑
j=0

π j
∥∥s(i)

j

∥∥2
2 � A. (13)

Using the result given in (12) for the deterministic case, the equiv-
alent optimization problem can be written as follows.

max
s(i)

∫
RN

max
j∈{0,1,...,M−1}

{
π j pN(i)

(
y − s(i)

j

)}
dy

subject to
M−1∑
j=0

π j
∥∥s(i)

j

∥∥2
2 � A. (14)

(ii) Case 2. Randomizing (time sharing) between at most two sig-
nal constellations over a single channel:

Similarly to the previous case, the transmission occurs over a
single channel exclusively, but in this case the transmitted signal
for each symbol is a randomization between at most two different
signal vectors. Without loss of generality, channel i is considered.
The optimization problem in (10) is expressed as follows.

max
{λ,s(i)

1 ,s(i)
2 ,φ(i)}

λGi
(
s(i)

1

) + (1 − λ)Gi
(
s(i)

2

)
subject to λH

(
s(i)) + (1 − λ)H

(
s(i)) � A, λ ∈ [0,1] (15)
1 2
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where

Gi
(
s(i)

k

) =
M−1∑
j=0

∫
Γ

(i)
j

π j pN(i)

(
y − s(i)

k, j

)
dy,

H(sk) =
M−1∑
j=0

π j
∥∥s(i)

k, j

∥∥2
2,

and k ∈ {1,2}. As stated earlier, it is assumed that a single detector
is employed for each channel at the receiver. Using the result for
randomized signaling case given in (12), the equivalent optimiza-
tion problem can be written as

max
{λ,s(i)

1 ,s(i)
2 }

∫
RN

max
j∈{0,1,...,M−1}

{
π j p(i)

j (y)
}

dy

subject to λ

(
M−1∑
j=0

π j
∥∥s(i)

1, j

∥∥2
2

)
+ (1 − λ)

(
M−1∑
j=0

π j
∥∥s(i)

2, j

∥∥2
2

)

� A, λ ∈ [0,1] (16)

where p(i)
j (y) = λpN(i) (y − s(i)

1, j)+ (1 −λ)pN(i) (y − s(i)
2, j). It is recalled

that the optimization problem in (16) reduces to that of (14) when
λ ∈ {0,1}.

(iii) Case 3. Switching (time sharing) between at most two chan-
nels and deterministic signaling over each channel:

In this case, optimum performance is investigated while trans-
mitting over at most two channels and the transmission over each
channel is deterministic, i.e., a fixed signal constellation is em-
ployed for symbol transmission over each channel but the channels
are switched in time. Without loss of generality, channels i and
l are considered (i �= l and i, l ∈ {1,2, . . . , K }). The optimization
problem in (10) takes the following form.

max
{λ,s(i),s(l),φ(i),φ(l)}

λGi
(
s(i)) + (1 − λ)Gl

(
s(l))

subject to λH
(
s(i)) + (1 − λ)H

(
s(l)) � A,

λ ∈ [0,1] (17)

where

Gi
(
s(i)) =

M−1∑
j=0

∫
Γ

(i)
j

π j pN(i)

(
y − s(i)

j

)
dy,

H
(
s(i)) =

M−1∑
j=0

π j
∥∥s(i)

j

∥∥2
2,

Gl(s(l)) and H(s(l)) are defined similarly by replacing i with l in
the preceding equations. Since deterministic signaling is employed
in each channel, the result given in (12) for the deterministic case
should be applied for each channel. Then, an equivalent optimiza-
tion problem can be written as

max
{λ,s(i),s(l)}

λGi,MAP
(
s(i)) + (1 − λ)Gl,MAP

(
s(l))

subject to λH
(
s(i)) + (1 − λ)H

(
s(l)) � A, λ ∈ [0,1 ] (18)

where

Gi,MAP
(
s(i)) =

∫
RN

max
j∈{0,1,...,M−1}

{
π j pN(i)

(
y − s(i)

j

)}
dy,

H
(
s(i)) =

M−1∑
π j

∥∥s(i)
j

∥∥2
2,
j=0
Gl(s(l)) and H(s(l)) are defined similarly by replacing i with l in
the respective equations.

It is noted that the optimization space is considerably reduced
in (14), (16) and (18) compared to those in (13), (15) and (17),
respectively since there is no need to search over the detectors in
(14), (16) and (18).

In the rest of the analysis, only the second and third cases will
be investigated since they cover deterministic signaling over a sin-
gle channel as a special case. In view of the above analysis, the
solution of the optimization problem in (10) can be decomposed
into two parts. First, randomizing between at most two signal con-
stellations over a single channel is considered. Let P(i)

c,Opt be the
solution of the optimization problem in (16) for ith channel; that
is, P(i)

c,Opt denotes the maximum average probability of correct deci-
sion that can be achieved by stochastic signaling over channel i un-
der the average power constraint. Secondly, switching between at
most two channels with deterministic signaling over each channel
is considered. Let P(i,l)

c,Opt be the solution of the optimization prob-

lem in (18) for channels i and l; that is, P(i,l)
c,Opt denotes the maxi-

mum average probability of correct decision that can be achieved
by switching between channels i and l under the average power
constraint. Then, the solution of the optimization problem in (10)
can be obtained by solving the following set of optimization prob-
lems and computing their maximum.

PStoc
c = max

i∈{1,2,...,K }
P(i)

c,Opt, (19)

PCS
c = max

i,l∈{1,2,...,K } and i<l
P(i,l)

c,Opt, (20)

P�
c = max

{
PStoc

c ,PCS
c

}
(21)

where the superscript Stoc denotes stochastic signaling over a sin-
gle channel and CS abbreviates channel switching. When the noise
PDFs on all the channels are different, the solution of the optimiza-
tion problem is given by (21) without any further simplifications.
In order to calculate PStoc

c in (19), the optimal stochastic signal-
ing strategy described by the optimization problem given in (16)
should be obtained for all K channels. Likewise, PCS

c in (20) re-
quires that the optimal channel switching strategy characterized by
the optimization problem given in (18) should be computed for all
channels pairs. Since there are K distinct channels and K (K − 1)/2
distinct channel pairs, a total of K (K + 1)/2 optimization problems
must be solved to obtain the corresponding performance scores,
among which the maximum is selected according to (21) to iden-
tify the optimum strategy. In the cases where some channels share
the same noise PDF, the results are still valid but the optimization
sets given in (19) and (20) over which the maximum values are
computed can be refined to avoid repeated computations of the
same expressions.2

The following proposition states that the expressions in
(19)–(21) provides the solution of the generic problem in (7).

Proposition 1. The maximum average probabilities of correct decision
achieved by the solutions of the optimization problems in (7) and (21)
are equal, i.e., P†

c = P�
c .

Proof. First, consider the optimization problem in (7) when K = 2
channels are used, and deterministic signaling is employed for each
channel, i.e., pS(1) (s(1)) = δ(s(1) − s1) and pS(2) (s(2)) = δ(s(2) − s2).

2 Detector randomization as discussed in [3,13] can also be analyzed using our
framework. Specifically, it can be modeled by assuming that some channels have
identical noise distributions. That is, each channel appears in the system model with
a certain multiplicity.
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Suppose also that the symbols transmitted over each channel are
decoded using the MAP detector corresponding to that channel. In
that case, (7) reduces to the optimization problem in (18); hence,
(7) covers (18) as a special case. Secondly, consider the optimiza-
tion problem in (7) when K = 1 channel is used, and a random-
ization between at most two signal constellations is employed, i.e.,
pS(s) = λδ(s−s1)+(1−λ)δ(s−s2). Suppose also that a single MAP
detector is employed at the receiver. Then, (7) reduces to the opti-
mization problem in (16); hence, (7) covers (16) as a special case.
Since both (16) and (18) are special cases of (7) for any choice of
the channels i ∈ {1,2, . . . , K }, l ∈ {1,2, . . . , K } and i �= l, the maxi-
mum value of the objective function in (7) should be larger than
or equal to the maximum given by (21). This, in turn, implies that
P†

c � P�
c . On the other hand, the optimization problem in (7) has

been replaced with the upper bound given in (8), the solution of
which is shown to reduce to that given in (21); that is, P†

c � P�
c .

Therefore, it is concluded that P†
c = P�

c . �
Proposition 1 implies that the solution of the original optimiza-

tion problem stated in (7), which considers the joint optimization
of switching factors among channels, channel specific signal PDFs
employed at the transmitter and the corresponding detectors used
at the receiver, can be obtained as the solution of the much sim-
pler optimization problem specified in (21). Formally, when multi-
ple channels are available for signal transmission (i.e., K � 2), it is
sufficient to either employ switching between two channels with
deterministic signaling over each channel (i.e., there is no need to
employ stochastic signaling over a channel to achieve the optimal
solution while switching channels); or randomize between at most
two signal constellations over a single channel, whichever results
in the highest average probability of correct decision.

The solution of the optimization problem in (21) can be ob-
tained via global optimization techniques (since it is a nonlinear
nonconvex optimization problem in general due to arbitrary noise
PDFs), or a convex relaxation approach as in [5] can be employed
to obtain approximate solutions in polynomial time.

3. Improvability and non-improvability conditions

Although the solution given in (19)–(21) has simplified the
search over all possible channel switching factors, signal PDFs and
decision rules (see (7)) to a search over a few variables (see (16)
and (18)), it is still computationally intensive. Specifically, for the
optimal stochastic signaling strategy given in (19), the maximum
correct decision probabilities should be computed for all K chan-
nels. Similarly, for the optimal channel switching strategy given in
(20), the maximum correct decision probabilities should be com-
puted for all K (K − 1)/2 distinct pairs of channels. In total, it is
required to solve K (K + 1)/2 optimization problems, and there are
2MN +1 optimization variables in each problem (i.e., s1 and s2 are
two signal constellations employed for M-ary communications in
an N-dimensional signal space and λ is a scalar parameter). There-
fore, it is very important to know, before attempting to solve the
overall optimization problem, whether channel switching in the
presence of stochastic signaling can help improve the performance
of the communication system under an average power constraint.

Remark. From this point on, the terms channel switching and
stochastic signaling are used to refer to “switching between two
channels with deterministic signaling over each channel” and “ran-
domization between at most two signal constellations over a single
channel”, respectively.

In order to define improvability and non-improvability, we refer
to a conventional communications scenario, in which the trans-
mitter employs a fixed constellation with average signal power A
(e.g., antipodal signaling with {−√
A,

√
A} for binary communica-

tions) over the channel that results in the highest correct decision
probability and the receiver uses the corresponding MAP detector.
Then, the system is called improvable if either stochastic signaling
or channel switching3 can improve the average probability of cor-
rect decision over the conventional signaling method. Otherwise,
the system is called nonimprovable.

Before writing down the expression for the average correct de-
cision probability of the conventional system, we need to introduce
more notation. Recall from (18) that Gi,MAP(s) represents the aver-
age probability of correct decision when the deterministic signal
constellation s is used for the transmission of M symbols over the
additive noise channel i and the corresponding MAP detector is
employed at the receiver for the same channel. Next, GMAP(s) is
defined as the maximum of these correct decision probabilities for
the given signal constellation s over all K additive noise channels.
Namely,

GMAP(s) � max
i∈{1,2,...,K }

Gi,MAP(s) for all s, (22)

where Gi,MAP(s) = ∫
RN max j∈{0,1,...,M−1}{π j pN(i) (y − s j)}dy. It is

also recalled that H(s) denotes the average power of the signal
constellation s over the prior probabilities (see its definition af-
ter (10)). With this notation, the probability of correct decision
for the conventional system can be expressed as Pcv

c = GMAP(scv),
where scv represents the conventional deterministic signal constel-
lation employed for the transmission of all the M symbols, and
H(scv) = A is satisfied. The max operator in (22) ensures that scv
is transmitted over the channel with the highest correct decision
probability. It is also sensible to assume that the components of
the constellation vector scv, i.e., the signal vectors employed for
symbol transmission, are designed to maximize the correct de-
cision probability under the average power constraint, but some
popular choices can also be assumed such as M-PAM or M-QAM
[36]. The aim is to improve upon Pcv

c under the average power
constraint. Next, Gi,φ(s) is defined as the probability of correct de-
cision when the signal constellation s is transmitted over channel
i and decoded using a given fixed decision rule φ. Similar to the
above discussion, Gφ(s) is defined as the maximum of these cor-
rect decision probabilities over all the additive noise channels.

Gφ(s) � max
i∈{1,2,...,K }

Gi,φ(s) for all s, (23)

where Gi,φ(s) = ∑M−1
j=0

∫
Γ j

π j pN(i) (y − s j)dy. In (22), each channel

is allowed to employ its own MAP detector that is tuned according
to the channel noise and signal constellation, whereas in (23), the
same decision rule is used for all the channels.

Suppose that the conventional system transmits over a specific
channel î using the signal constellation scv and decoding is per-
formed using the corresponding MAP detector φ̂, thereby achieving
the highest correct decision probability Pcv

c via deterministic sig-
naling with scv over a single channel. That is, Pcv

c = GMAP(scv) =
Gî,MAP(scv) = Gî,φ̂ (scv) = G

φ̂
(scv). Let Sh = {s: H(s) = h}. For a

given value h of H , we have s = H−1(h), where H−1 is the inverse
mapping of H . Since H is not a one-to-one function, there exists
a set of values s which satisfy H(s) = h. A new function J

φ̂
(h) is

defined as

J
φ̂
(h) � max

s∈Sh

G
φ̂
(s), (24)

which specifies the maximum probability of correct decision that
can be attained for a given value of the average signal power h us-

3 Together, they constitute the solution for the optimal signaling and detector de-
sign problem in the presence of multiple additive noise channels.
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ing the detector of the conventional system φ̂ [1,37].4 More clearly,
the maximum is computed over the performances of the individual
channels for the set of signal vectors with the given average power
value h when deterministic signaling is performed over each chan-
nel and decoding is accomplished at the receiver via the detector φ̂

of the conventional system. In other words, an equivalent represen-
tation for J

φ̂
(h) can be given as J

φ̂
(h) = maxs∈Sh,i∈{1,2,...,K } Gi,φ̂ (s).

Lastly, it should be noted that J
φ̂
(A) � Pcv

c by definition. Based
on these preliminaries, the following improvability condition is ob-
tained first.

Proposition 2. If J
φ̂
(h) is second-order continuously differentiable

around A and satisfies J ′′
φ̂
(A) > 0, then the communication system is

improvable.

Proof. When J ′′
φ̂
(A) > 0 and J

φ̂
(h) in (24) is second-order con-

tinuously differentiable around h = A, there exists ε > 0 such that
J

φ̂
(h) is convex on the interval (A − ε,A + ε). Consider a signal-

ing scheme with PDF pS(s) = 0.5δ(s − s1) + 0.5δ(s − s2) where
H(s1) = A − ε and H(s2) = A + ε. Since H(s) is a continuous
mapping from R

MN to [0,∞), the existence of s1 and s2 is as-
sured. First, it is observed that the average transmit power under
the proposed signaling scheme does not violate the power con-
straint. Formally, 0.5H(s1)+0.5H(s2) = 0.5(A−ε)+0.5(A+ε) = A.
Next, due to the strict convexity of J

φ̂
around h = A, we have

0.5J
φ̂
(A − ε) + 0.5J

φ̂
(A + ε) > J

φ̂
(A) � Pcv

c . From the definition
of J

φ̂
(h), it is also observed that there exist channels m and n

such that 0.5Gm,φ̂
(s1)+ 0.5Gn,φ̂

(s2) > Pcv
c . Depending on the chan-

nel PDFs, the performance scores Gm,φ̂
(s1) and Gn,φ̂

(s2) can be
attained by either transmitting over the same channel (m = n)
or on distinct channels (m �= n), and employing the detector φ̂

of the conventional system. In the case of transmitting over the
same channel, the performance can further be increased by design-
ing the optimal MAP detector corresponding to the PDF pS(s) =
0.5δ(s−s1)+0.5δ(s−s2) instead of using the detector φ̂. Similarly,
in the case of different channels, each channel can employ its own
optimal MAP detector resulting in a better performance score, that
is 0.5Gm,MAP(s1)+0.5Gn,MAP(s2) � 0.5Gm,φ̂

(s1)+0.5Gn,φ̂
(s2) > Pcv

c .
Hence, it is concluded that under the assumptions in the proposi-
tion, the correct decision probability can be improved using either
stochastic signaling or channel switching depending on the chan-
nel noise PDFs. �

In order to evaluate the improvability condition in Proposi-
tion 2, explicit knowledge about the behavior of J

φ̂
(h) around

h = A is required. This could be a difficult task since H(s) is not an
injective function and the exact form of G

φ̂
(s) can be hard to com-

pute. In such cases, the relationship between G
φ̂
(s) and H(s) can

be learned by Monte Carlo simulation using importance sampling
[1]. Once this is accomplished, the check for the improvability
condition stated in Proposition 2 can be carried out in the single-
dimensional domain of J

φ̂
(h) instead of the multi-dimensional

domain of G
φ̂
(s). In the following, we present improvability con-

ditions that can be evaluated in a more direct manner without
relying on auxiliary functions like J

φ̂
(h).

Proposition 3. The average probability of correct decision can be im-
proved if there exists signal constellations s1 and s2 such that

4 The average signal power is considered because it is recalled that the expecta-
tion is taken over the prior probabilities of all M symbols.
• H(s1) > A > H(s2), and
• (A − H(s2))(G

φ̂
(s1) − G

φ̂
(s2)) > (H(s1) − H(s2))(Pcv

c − G
φ̂
(s2))

are satisfied.

Proof. Consider a signaling scheme with PDF pS(s) = λδ(s − s1) +
(1 − λ)δ(s − s2), which utilizes all the average power, i.e. λH(s1) +
(1 − λ)H(s2) = A. From this equality, λ can be expressed as λ =
(A − H(s2))/(H(s1) − H(s2)). Since λ ∈ (0,1) must be satisfied
for physically realizable configurations, the first condition follows.
Secondly, observe that the expression λG

φ̂
(s1)+ (1−λ)G

φ̂
(s2) pro-

vides a lower bound on the performance of optimal design given
in (21). Then, λG

φ̂
(s1) + (1 − λ)G

φ̂
(s2) > Pcv

c is sufficient for im-
provability of the conventional system. The second condition in the
proposition can be obtained by substituting the expression for λ

into the preceding inequality. �
The following corollary follows from Proposition 3 by focusing

on the improvements due to channel switching only.

Corollary 1. The average probability of correct decision can be improved
if there exists different channels i1 and i2 , and signal constellations s1
and s2 that satisfy

• H(s1) > A > H(s2), and
• (A − H(s2))(Gi1,MAP(s1) − Gi2,MAP(s2)) > (H(s1) − H(s2))(Pcv

c −
Gi2,MAP(s2)).

If a pair of signal constellations that satisfy the conditions in
Proposition 3 and Corollary 1 is found, one can continue to solve
for the optimal set of parameters using the approach given in (21).
Next, some alternative improvability conditions are stated.

Proposition 4. Suppose that G
φ̂
(s) is second-order continuously dif-

ferentiable around s = scv . Define g(1)(s,x) � JG(s)x, g(2)(s,x) �
xT HG(s)x, h(1)(s,x) � 2sT Πx, and h(2)(x) � 2xT Πx, where JG(s) de-
notes the Jacobian (gradient) of G

φ̂
evaluated at s, HG(s) denotes the

Hessian of G
φ̂

evaluated at s, and Π is a diagonal matrix of prior prob-
abilities obtained by repeating each prior N times consecutively along
the diagonal.5 Then, the probability of correct decision can be improved
if there exists a signal constellation x such that

• g(1)(s,x)h(1)(s,x) < 0 is satisfied at s = scv , or
• g(1)(s,x) > 0, h(1)(s,x) > 0, and g(2)(s,x)h(1)(s,x) >

h(2)(x)g(1)(s,x) are satisfied at s = scv .

Proof. Please see Appendix A. �
Proposition 4 presents a sufficient condition for improvability

that is based solely on the first and second derivatives of the
functions G

φ̂
and H . In the following, sufficient conditions for non-

improvability of the correct decision performance over the con-
ventional system are derived. Similar to the previous discussion,
we present two approaches, the first one is based on an auxiliary
function and the latter facilitates direct evaluation.

In light of the definitions of GMAP and H given at the beginning
of Section 3, we note the following observations. We recall that Sh
is defined as Sh = {s: H(s) = h}. A set of values g of GMAP can
be obtained correspondingly by g = GMAP(s) = GMAP(H−1(h)). By
introducing the joint PDF pS,h(·) for the signal distribution in the

5 Π = diag(π1, . . . ,π1︸ ︷︷ ︸,π2, . . . ,π2︸ ︷︷ ︸, . . . ,πM , . . . ,πM︸ ︷︷ ︸).
N times N times N times
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h domain, the upper bound for the original optimization problem
given in (9) can be equivalently expressed as

max
pS,h

∞∫
0

gpS,h(h)dh subject to

∞∫
0

hpS,h(h)dh � A. (25)

In fact, a finite upper limit can be used in the integrals instead
of infinity in practical scenarios [1]. Next, an auxiliary function is
defined as follows.

F(h) = max
s∈Sh

GMAP(s) (26)

where F(h) represents the maximum probability of correct deci-
sion over all the channels when a deterministic signal constellation
with average power h is employed for symbol transmission and de-
coding is performed using the corresponding optimal MAP detector
for each channel.

Proposition 5. If there exists a non-decreasing concave function Υ (h)

that satisfies Υ (h) � F(h), ∀h and Υ (A) = F(A) = Pcv
c , then neither

channel switching nor stochastic signaling can improve the probability
of correct decision.

Proof. Consider the optimization problem given in (25), which is
an upper bound on the original optimization problem as men-
tioned before. Suppose that a signaling scheme characterized with
a PDF pS,h(h) is employed. Let the corresponding average prob-
ability of correct decision be denoted by Pc(pS,h). Similar to [1,
Theorem 2], we have

Pc(pS,h) =
∞∫

0

gpS,h(h)dh

�
∫
0

o∞F(h)pS,h(h)dh,

from (26)

�
∞∫

0

Υ (h)pS,h(h)dh,

from the assumption in the proposition

� Υ

( ∞∫
0

hpS,h(h)dh

)
,

due to the concavity of Υ (h)

� Υ (A) = Pcv
c ,

Υ (h) is non-decreasing. (27)

Since the above inequality holds for all possible signal distributions
satisfying the average power constraint, it is also valid for the opti-
mal signal PDF that maximizes the optimization problem given in
(25). Hence, (27) is an upper bound on the original optimization
problem given in (6), and it is concluded that the communication
system is nonimprovable. �

Although the sufficient condition for non-improvability sug-
gested in Proposition 5 relies on single-variable functions Υ (h) and
F(h), they are not easy to obtain in general. The following condi-
tion depends directly on GMAP(s) and H(s).
Proposition 6. Let C denote the convex hull of the set of all possible
values for the signal constellation vector s. Suppose also that H(s) � A
implies GMAP(s) � Pcv

c for all s ∈ C . If GMAP(s) is a concave function over
C , then the communications system is nonimprovable.

Proof. Please see Appendix B. �
In this section, sufficient conditions are provided for the im-

provability and non-improvability of the correct decision perfor-
mance via stochastic signaling or channel switching over a conven-
tional communications scenario, in which the transmitter employs
a fixed constellation at the average transmit signal power over
the channel that results in the highest correct decision probabil-
ity while the receiver employs the corresponding MAP detector. At
this point, it should be recalled that a total of K (K + 1)/2 opti-
mization problems, each having 2MN + 1 optimization variables,
are needed to be solved to obtain the optimal signaling strategy,
where K is the number of available channels, M is the number
of signals in the constellation, and N is the constellation dimen-
sionality. Therefore, before attempting to solve these optimization
problems, which are not necessarily convex, it would be helpful to
know in advance whether an improvement via stochastic signal-
ing or channel switching is possible. The sufficient conditions pre-
sented in Propositions 2–6 are derived mainly for this reason. If an
improvability condition is satisfied, we can start searching for the
optimal strategy by solving the proposed optimization problems.
On the contrary, if a non-improvability condition is satisfied, it in-
dicates that the correct decision performance cannot be improved
via stochastic signaling or channel switching. In this case, the suffi-
cient condition lets us know beforehand that the optimal strategy
is to employ deterministic signaling over a single channel at the
average transmit signal power. Therefore, no performance improve-
ment is possible via stochastic signaling or channel switching, and
there is no reason to solve the proposed optimization problems.
In summary, by checking the sufficient conditions, it may be possi-
ble to identify whether an optimal solution that involves stochastic
signaling or channel switching exists or not. However, if such a
solution exists (i.e., one of the improvability conditions is satis-
fied), it is necessary to solve the proposed optimization problem
to find that solution. Compared with the computational complex-
ity of obtaining the optimal solution, the sufficient conditions can
be much easier to check depending on the exact form of the chan-
nel noise PDFs. For example, in Propositions 3 and 4, it is sufficient
to find a feasible point that satisfies the given conditions in order
to conclude that the performance is improvable. On the contrary,
Proposition 5 relies on the existence of a non-decreasing concave
function that satisfies a certain condition, which may be relatively
harder to find.

4. Numerical results

In this section, numerical examples are presented to illustrate
the performance of the proposed signaling strategies in the pres-
ence of multiple channels. A scalar binary communication system
with equiprobable information symbols is considered and the aver-
age power limit is set to A = 1. It is assumed that K � 2 channels
are available between the transmitter and the receiver, and only
one of them can be used for transmission at any given time. The
following four strategies are considered for performance compari-
son.

Gaussian solution over the best channel: In this approach, an-
tipodal signals {−√

A,
√

A} are transmitted for binary information
symbols over the most favorable channel, i.e., the one that yields
the highest probability of correct decision, and the corresponding
MAP detector is employed at the receiver. Since deterministic an-
tipodal signaling is optimal in the presence of Gaussian noise (not



B. Dulek et al. / Digital Signal Processing 26 (2014) 153–168 163
Fig. 3. Average probability of error versus A/σ 2 for various strategies, where L = 3 and μ = [−0.9 0 0.9] for the Gaussian mixture noise.
necessarily optimal for other types of noise), this approach is called
Gaussian solution over the best channel.

Optimal deterministic solution over the best channel: In this
scheme, the optimal deterministic signal constellation and the cor-
responding MAP decision rule are obtained to maximize the proba-
bility of correct decision in the absence of stochastic signaling and
channel switching. K optimization problems in the form of (14)
are solved and the most favorable channel is employed for symbol
transmission.

Optimal stochastic solution over the best channel: This scheme
employs a single MAP detector at the receiver and randomizes be-
tween at most two signal constellations. The optimization problem
in (16) is solved for all K channels and the most favorable channel
is selected for symbol transmission as shown in (19).

Optimal channel switching with deterministic signaling: In
this scheme, switching is performed between at most two chan-
nels with deterministic signaling over each channel. K (K − 1)/2
optimization problems in the form of (18) are solved and the most
favorable channel pair is selected as shown in (20).

It should be noted that the maximum of the last two strategies
constitute the solution to the optimal signaling and detector design
problem in the presence of multiple channels, as stated in (21).

In the following numerical examples, it is assumed that the
channel noise is modeled by a Gaussian mixture distribution [1,
5,32,34], which is represented by

pN(i) (n) = 1√
2πσi Li

Li∑
l=1

exp

{
− (n − μ

(i)
l )2

2σ 2
i

}
(28)

for i ∈ {1, . . . , K }, where Li is the number of components in the
mixture for channel i. As noted from (28), the components of the
Gaussian mixture noise have the same weight 1/Li and the same
variance σ 2

i . For notational simplicity, the component means of the
Gaussian mixture for channel i are collected in the vector μ(i) =
[μ(i)

1 . . . μ
(i)
Li

]. Based on (28), the average noise power of the ith

channel can be calculated as E{|N(i)|2} = σ 2
i + 1

Li
‖μ(i)‖2

2, where

‖μ(i)‖2 denotes the L2 norm of vector μ(i) .
First, we consider a scenario in which K � 2 identical channels

(i.e., channels with the same noise PDF) are available; i.e., σi = σ ,
Li = L, and μ(i) = μ, ∀i ∈ {1, . . . , K }, where μ = [μ1 . . . μL]. Since
identical channels are considered and at most two channels are re-
quired for the optimum solution as discussed in Section 2, K can
be any number that is larger than or equal to 2. Hence, the results
in this part are valid for all K � 2. In Fig. 3, the average probabil-
ities of error corresponding to the four strategies discussed above
are plotted versus A/σ 2 for L = 3 and μ = [−0.9 0 0.9]. From
the figure, it is observed that the Gaussian solution has the worst
performance among all the approaches as expected since it is op-
timized for Gaussian noise and is not expected to achieve good
performance in the presence of multimodal channel noise. When
optimal deterministic signaling is employed, significant gains can
be achieved over the Gaussian solution in this example. In addi-
tion, further improvements are possible when stochastic signaling
is used instead of deterministic signaling. As A/σ 2 increases, the
overlap between the class conditional PDFs corresponding to bi-
nary symbols decreases and there is more room in the signal space
for performance improvement via randomized approaches. Over-
all, the best performance is achieved when switching is performed
between two MAP detectors corresponding to two signal constel-
lations. Since identical channels are considered in this example,
channel switching can also be regarded as detector randomization
via time-sharing for this scenario [13]. Furthermore, the perfor-
mance of detector randomization is guaranteed to exceed that of
stochastic signaling in the case of identical channels, which is also
evident from Fig. 3.6

In order to further investigate the results in Fig. 3, the parame-
ters for the proposed strategies are presented in Table 1 for some
values of A/σ 2. Due to the symmetry of the Gaussian mixture
noise, antipodal signaling is employed for binary communications.
More explicitly, for optimal deterministic signaling, s0 and s1 de-
note the signals transmitted for information symbols 0 and 1, re-
spectively, and we have s0 = −s1. For optimal stochastic signaling,
the optimal signal for information symbol i ∈ {0,1} is expressed in
the form of pSi (s) = λδ(s−s1,i)+(1−λ)δ(s−s2,i) with s1,0 = −s1,1
and s2,0 = −s2,1. Finally, the optimal channel switching solution

employs the signal pair {−s(1)
1 , s(1)

1 } and the corresponding MAP

6 Additional results were obtained for μ = [−0.9 −0.2 0.2 0.9], μ =
[−0.9 −0.2 0 0.2 0.9], and μ = [−1.2 −0.6 −0.1 0.1 0.6 1.2] as well, and similar
observations to those for Fig. 3 were made. The resulting figures are not presented
since they are quite similar to Fig. 3.
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Table 1
Optimal signal parameters for the scenario in Fig. 3.

A/σ 2 (dB) Deterministic signaling Stochastic signaling Channel switching

s1 λ s1,1 s2,1 λ s(1)
1 s(2)

1

10 1 N/A 1 1 0.1533 0.7271 1.0418
15 0.7239 0.7885 0.7160 1.6783 0.4492 0.7060 1.1870
20 0.6904 0.7650 0.6894 1.6456 0.4254 0.6880 1.1790
25 0.6799 0.7482 0.6798 1.6120 0.3843 0.6796 1.1558

Fig. 4. Error probability versus signal power s2 for the channel characterized by the parameters L = 3 and μ = [−0.9 0 0.9] and A/σ 2 = 15 dB (cf. Fig. 3 and Table 1). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
detector with probability λ, and the signal pair {−s(2)
1 , s(2)

1 } and
the corresponding MAP detector with probability 1 − λ. From Ta-
ble 1, it is observed that all the solutions converge to the Gaussian
solution as the noise variance increases. This is due to the fact that
the Gaussian mixture noise approximates a unimodal PDF at high
values of the variance for which the Gaussian solution is optimal.
However, as the noise variance decreases (i.e., A/σ 2 increases), the
multimodal nature of the noise PDF prevails and the best perfor-
mance is achieved by the optimal channel switching solution.

The results depicted in Fig. 3 and Table 1 can also be ver-
ified by plotting the error probability of the optimal MAP de-
tector as a function of the signal power in the presence of de-
terministic antipodal signaling, i.e., s1 = −s0 = s. This is shown
in Fig. 4 for the channel characterized by the parameters L = 3,
μ = [−0.9 0 0.9] and A/σ 2 = 15 dB, where A = 1 as specified
before. Due to multimodal noise, the error probability is a non-
monotonic and nonconvex function of the signal power [3,9]. From
Fig. 4, it is seen that the optimal deterministic solution is obtained
as s1 = −s0 = √

0.524 = 0.7239, which corresponds to the mini-
mum value (0.0948) of the error probability curve for s2 � 1. The
best performance is achieved by switching between two power
levels 0.4984 and 1.409 using the corresponding antipodal sig-
nal pairs {−0.7060,0.7060} and {−1.1870,1.1870}, which are in
compliance with Table 1. Also, the switching factor λ can be
calculated based on the average power limit, A = 1, as follows:
0.4984λ + 1.409(1 − λ) = 1, which yields λ = 0.4492 as in Table 1.
It is observed from Fig. 4 that switching between two MAP de-
tectors can reduce the average probability of error down to nearly
0.05, which is indicated by the red circle in the figure.

Next, we consider a scenario in which all the channels have dis-
tinct noise PDFs. In this case, the best performance can be achieved
by either the optimal channel switching with deterministic sig-
naling approach or the optimal stochastic solution over the best
channel approach. For the Gaussian mixture noise model in (28),
it is assumed that σi = σ and Li = L, ∀i ∈ {1, . . . , K }, and that the
component means of the Gaussian mixture are chosen as

μ(i) = √
E

vi

‖vi‖2
(29)

for i = 1, . . . , K , where E is a constant and vi ’s are L-dimensional
distinct vectors. It is noted that ‖μ(i)‖2

2 = E . Hence, the average
noise power is the same for all the channels. Namely, E{|N(i)|2} =
σ 2 + E

L , ∀i ∈ {1, . . . , K }. In Fig. 5, the average probabilities of er-
ror for the four strategies are plotted versus A/σ 2 for K = 3,
v1 = [−3 −2 0 2 3], v2 = [−4 −3 0 3 4], v3 = [−5 −3 0 3 5], and
E = 3. From Fig. 5, it is concluded that the optimal channel switch-
ing strategy achieves the lowest average probability of error and
the Gaussian solution has the worst performance over the whole
range of A/σ 2 values.

The optimal parameters of the strategies in Fig. 5 are shown
for some values of A/σ 2 in Table 2. For the Gaussian solution and
the optimal deterministic solution, the channel that results in the
lowest probability of error is indicated in the first column of the
respective area in the table and the second column specifies the
scalar signal value employed for the transmission of information
symbol 1. Again, antipodal signals are considered for symbol 0
and symbol 1. It is observed that either channel 2 or channel 3
is employed for these solutions depending on the noise level. For
the optimal stochastic solution, the same notation is employed as
in Table 1 together with the channel index employed for com-
munications. In the case of optimal channel switching, Table 2
shows the two channels between which switching is performed
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Fig. 5. Average probability of error versus A/σ 2 for various approaches, where K = 3, v1 = [−3 −2 0 2 3], v2 = [−4 −3 0 3 4], v3 = [−5 −3 0 3 5], and E = 3 (see (29)).

Table 2
Optimal signal parameters for the scenario in Fig. 5.

A/σ 2 (dB) Gaussian solution Deterministic signaling Stochastic signaling Channel switching

Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s(1)
1 s(2)

1 s(3)
1

10 2 1 2 1 2 N/A 1 1 0.8450 1.0601 0.5697 X
15 2 1 2 1 2 0.0502 1.0078 0.9996 0.5642 1.202 0.6509 X
20 3 1 2 0.6405 2 0.7547 0.6381 1.6805 0.5614 1.2108 0.6353 X
25 3 1 2 0.6213 2 0.7348 0.6210 1.6439 0.6023 1.1848 0.6206 X
30 3 1 2 0.6152 2 0.7222 0.6152 1.6174 0.6369 1.1638 0.6151 X
(the “X” mark indicates that the corresponding channel is not uti-
lized). As an example, for A/σ 2 = 20 dB in Fig. 5, the optimal
channel switching strategy transmits over channel 1 using the con-
stellation {−1.2108,1.2108} with probability 0.5614 (i.e., 56.14%
of the time), and transmits over channel 2 using the constella-
tion {−0.6353,0.6353} with probability 0.4386. Since the average
noise power is the same for all channels, the optimal parameters
for each strategy are determined by the variance and the means of
the Gaussian mixture components. In order to determine the im-
provability in this scenario, the conditions in Proposition 3 can be
evaluated. For example, at A/σ 2 = 25 dB, the calculations show
that the improvability conditions in Proposition 3 are satisfied for
s1 = 1.45 and s2 = 0.95.

In order to illustrate the improvements via channel switching,
Fig. 6 presents the error probabilities of the three channels con-
sidered in Fig. 5 and Table 2 as a function of the signal power
in the presence of antipodal signaling when A/σ 2 = 15 dB. As
shown in the figure, the optimal channel switching strategy per-
forms time sharing between Channel 1 and Channel 2 with power
levels 1.445 and 0.4238 (i.e., signal constellations {−1.202,1.202}
and {−0.6509,0.6509}), respectively. The results are in compliance
with Table 2, as expected. It should also be noted that a lower
average probability of error can be achieved for the scenario in
Fig. 6 if detector randomization is allowed for each channel; that
is, if multiple detectors can be implemented and time shared for
the detection of symbols acquired over each channel. In that case,
a randomization between two constellations and the correspond-
ing MAP detectors over Channel 2 can result in a lower average
probability of error. Fortunately, as previously stated in footnote 2,
such scenarios can be covered using the proposed framework in
this study by considering multiple channels with identical distri-
butions.

Finally, a scenario with just two channels is considered. The pa-
rameters of the first channel are given by v1 = [−6 −3 −2 2 3 6],
L1 = 6, and E = 4 (see (29)). The second channel is modeled to
have zero-mean Gaussian noise with the same average power as
the first one; i.e., L2 = 1, μ(2) = 0, and σ 2

2 = σ 2
1 + E

L1
in (28). The

average probabilities of error for the proposed strategies are plot-
ted versus A/σ 2

1 in Fig. 7. Unlike the cases in Fig. 3 and Fig. 5, the
best performance is achieved by stochastic signaling over the best
channel in this scenario. It should be emphasized that the pos-
sibility of an optimal solution in the form of stochastic signaling
is stated in Section 2 (see (19)–(21)). It is also observed that the
optimal channel switching strategy performs very closely to the
optimal deterministic signaling approach over the best channel. In
other words, channel switching does not provide significant perfor-
mance improvements in this scenario. The optimal parameters of
the strategies depicted in Fig. 7 are presented for some values of
A/σ 2

1 in Table 3.

5. Concluding remarks

Optimal signaling and detector design have been studied un-
der an average transmit power constraint for generic noise dis-
tributions in the presence of multiple channels and stochastic
signaling. It has been shown that the optimal solution to the
joint channel switching, stochastic signaling, and detector design
problem corresponds to one of the following strategies: (i) de-
terministic signaling over a single channel, (ii) randomizing (time
sharing) between at most two signal constellations over a single
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Fig. 6. Error probability versus signal power s2 for the three channels when A/σ 2 = 15 dB (cf. Fig. 5 and Table 2).

Fig. 7. Average probability of error versus A/σ 2
1 for various approaches, where the first channel is characterized by the parameters K = 2, v1 = [−6 −3 −2 2 3 6], E = 4 (see

(29)), and the second channel has zero-mean Gaussian noise with the same average power as the first channel.

Table 3
Optimal signal parameters for the scenario in Fig. 7.

A/σ 2
1 (dB) Gaussian solution Deterministic signaling Stochastic signaling Channel switching

Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s(1)
1 s(2)

1

15 2 1 2 1 2 N/A 1 1 0.1823 0.6683 1.0599
20 1 1 1 1 1 0.0857 0.2068 1.0439 0.9134 1.0266 0.6576
25 1 1 1 0.6963 1 0.6725 0.6964 1.4344 0.8810 0.6961 2.1951
30 1 1 1 0.7037 1 0.6378 0.7037 1.3743 0.9495 0.7037 3.2388
channel, or (iii) switching (time sharing) between at most two
channels with deterministic signaling over each channel. For all
cases, the optimal strategies employ the corresponding MAP de-
tectors at the receiver. Optimization problems have been for-
mulated to obtain the parameters of the proposed strategies.
In addition, sufficient conditions have been provided to specify
whether or not the proposed strategy can improve the error per-
formance over the conventional approach, in which a single chan-
nel is employed with deterministic signaling at the average power
limit. Various numerical examples have been presented to illus-
trate the theoretical results. It has been observed that significant
performance improvements can be achieved in some cases via
the proposed optimal approach in the presence of multimodal
noise.
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Appendix A. Proof of Proposition 4

Consider a signaling scheme with infinitesimally small per-
turbations around the conventional signal constellation, pS(s) =
λδ(s − (scv + �1)) + (1 − λ)δ(s − (scv + �2)). A sufficient set of
conditions for improvability can then be expressed as

λG
φ̂
(scv + �1) + (1 − λ)G

φ̂
(scv + �2) > Pcv

c ,

λH(scv + �1) + (1 − λ)H(scv + �2) � A. (A.1)

A second-order approximation for G
φ̂
(scv + �k) and H(scv + �k)

can be obtained using the Taylor series expansion as G
φ̂
(scv +

�k) ≈ G
φ̂
(scv) + JG(scv)�k + 0.5�T

k HG(scv)�k and H(scv + �k) ≈
H(scv) + JH (scv)�k + 0.5�T

k HH (scv)�k respectively, where JG(scv)

and HG(scv) (similarly JH (scv) and HH (scv)) are the gradient and
Hessian of G

φ̂
(s) (H(s)) evaluated at s = scv, respectively. From

(A.1),

λ�T
1 HG(scv)�1 + (1 − λ)�T

2 HG(scv)�2

+ 2JG(scv)
[
λ�1 + (1 − λ)�2

]
> 0, (A.2)

λ�T
1 HH (scv)�1 + (1 − λ)�T

2 HH (scv)�2

+ 2JH (scv)
[
λ�1 + (1 − λ)�2

]
� 0. (A.3)

Let �1 = νx and �2 = ωx, where ν and ω are infinitesimal real
numbers, and x is an MN-dimensional real vector. Using the def-
initions from the statement of the proposition, the conditions in
(A.2) can be expressed, after some manipulation7 as(

g(2)(s,x) + � · g(1)(s,x)
)∣∣

s=scv
> 0, (A.4)(

h(2)(x) + � · h(1)(s,x)
)∣∣

s=scv
� 0, (A.5)

where � � 2(λ(ν − ω) + ω)/(λ(ν2 − ω2) + ω2). By varying λ in
the interval (0,1) and choosing appropriate values for infinitesi-
mal quantities ν and ω, any real value can be assigned to �. The
first part of the proposition states g(1)(s,x)h(1)(s,x) < 0 at s = scv,
meaning that g(1)(scv,x) and h(1)(scv,x) must have different signs.
Under this condition, it is easy to see that a suitable choice of
� satisfies the requirements given in (A.4) and (A.5). Namely, any
choice of � with a sufficiently high absolute value and the cor-
rect sign is adequate. In the second part of the proposition, it is
assumed that g(1)(s,x) and h(1)(s,x) are positive at s = scv. Multi-
plying both terms in (A.4) with h(1)(s,x), and similarly multiplying
both terms in (A.5) with g(1)(s,x), an equivalent condition for the
improvability can be written as(

g(2)(s,x)h(1)(s,x) + � · h(1)(s,x)g(1)(s,x)
)∣∣

s=scv
> 0, (A.6)(

h(2)(x)g(1)(s,x) + � · h(1)(s,x)g(1)(s,x)
)∣∣

s=scv
� 0. (A.7)

Notice that the second terms in (A.6) and (A.7) are the same. Un-
der the condition of g(2)(s,x)h(1)(s,x) > h(2)(x)g(1)(s,x) at s = scv,
meaning that the first term in (A.6) is greater than the first term
in (A.7), an appropriate value of � can always be found such that
the improvability conditions in (A.6) and (A.7) are satisfied. �

7 Recall that H(s) = ∑M−1
j=0 π j‖s j‖2

2 where s j represents the signal vector trans-
mitted for the jth symbol. Then, the gradient and the Hessian are given as JH (s) =
2sT Π and HH (s) = 2Π , respectively. Since the only nonzero entries of Π are the
prior probabilities on the diagonal, the Hessian of H(s) is a constant and positive
definite matrix that is independent of s.
Appendix B. Proof of Proposition 6

Since H(s) is a convex function for all values of s, Jensen’s in-
equality implies that for any given signal distribution pS ,
E{H(S)} � H(E{S}), which in turn implies that H(E{S}) � A due
to the average power constraint. Since C is convex, E{S} ∈ C . Then,
from the assumption in the proposition, H(E{S}) � A implies that
GMAP(E{S}) � Pcv

c . Since GMAP(s) is a concave function over C ,
E{GMAP(S)} � GMAP(E{S}) � Pcv

c for any given distribution pS . Con-
sequently, the previous inequality also holds for the optimal signal
distribution obtained as the solution of the optimization problem
given in (9), which is itself an upper bound on the solution of the
original optimization problem given in (6). Hence, it is concluded
that under the conditions in the proposition, the communication
system is nonimprovable.
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