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Abstract

This paper presents an improved version of a componentwise bounding algorithm for the state probability vector of

nearly completely decomposable Markov chains, and on an application it provides the first numerical results with the

type of algorithm discussed. The given two-level algorithm uses aggregation and stochastic comparison with the strong

stochastic (st) order. In order to improve accuracy, it employs reordering of states and a better componentwise

probability bounding algorithm given st upper- and lower-bounding probability vectors. Results in sparse storage show

that there are cases in which the given algorithm proves to be useful.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Nearly completely decomposable (NCD) Markov chains (MCs) [2,12,19] are irreducible stochastic

matrices that can be symmetrically permuted [4] to the block form
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in which nonzero elements of the off-diagonal blocks are small compared with those of the diagonal blocks
[19, p. 286]. Let P ¼ diagðP1;1; P2;2; . . . ; PN ;N Þ þ F . The diagonal blocks Pi;i are square, of order ni, with
n ¼

PN
i¼1 ni. The quantity kF k1 is referred to as the degree of coupling and is taken to be a measure of the

decomposability of P . When the chain is NCD, it has eigenvalues close to 1, and the poor separation of the

unit eigenvalue implies a slow rate of convergence for standard matrix iterative methods [7, p. 290]. Hence,

NCD Markov chains are said to be ill-conditioned [12, p. 258]. On the other hand, if P were reducible, we

would decompose the chain into its irreducible (i.e., isolated) and transient subclasses of states as in Eq.

(1.20) of [19, p. 26] and continue our analysis on the irreducible subclasses.

Such matrices arise in queuing network analysis, large-scale economic modeling, and computer systems
performance evaluation. The measures of interest for these systems may be obtained either from the long-

run distribution of state probabilities by solving a homogeneous system of linear equations with a singular

coefficient matrix under a normalization constraint (i.e., steady state analysis), or from the state probability

distribution at a particular time instant by solving a set of first order ordinary differential equations using

an initial state probability distribution (i.e., transient analysis).

To each NCD MC corresponds an irreducible coupling matrix [12], C, whose ði; jÞth element is given by
ci;j ¼
pi

kpik1
Pi;je 8i; j 2 f1; 2; . . . ;Ng: ð2Þ
Here e represents a column vector of all ones and the steady state probability (row) vector p is partitioned

conformally with P in Eq. (1) such that p ¼ ðp1; p2; . . . ; pNÞ, where each pi is a row vector having ni ele-
ments. The coupling matrix shows the evolution of the system when each NCD partition is treated as a

single aggregated state. In other words, C describes the coupling among NCD partitions, and its steady

state vector gives the steady state probability of being in each NCD partition. Note that one needs to know

p to compute C exactly.

For the partitioning in Eq. (1), the stochastic complement [12] of Pi;i for i 2 f1; 2; . . . ;Ng is given by
P i;i ¼ Pi;i þ Pi;:ðI � PiÞ�1P:;i;
where Pi;: is the ni � ðn� niÞ matrix composed of the ith row of blocks of P with Pi;i removed, P:;i is the

ðn� niÞ � ni matrix composed of the ith column of blocks of P with Pi;i removed, and Pi is the

ðn� niÞ � ðn� niÞ principal submatrix of P with ith row and ith column of blocks removed. The ith sto-

chastic complement is the stochastic transition probability matrix of an irreducible MC of order ni obtained
by observing the original process in the ith NCD partition. The conditional steady state probability vector

of the ith NCD partition is pi=kpik1, and it may be computed by solving for the steady state vector of P i;i

(see [12] for details). However, each stochastic complement has an embedded matrix inversion which may

require excessive computation.
Stochastic comparison is a technique by which both transient and steady state performance measures of

a MC may be bounded. There are several applications of this technique in different areas of applied

probability [17] and in practical problems of engineering [9,13,14]. The stochastic comparison of MCs is

discussed in detail in [10,11,20]. The comparison of two MCs may be established by the comparison of their

transient probability vectors at each time instant. Obviously, if steady states exist, stochastic comparison

between their steady state probability vectors is also possible.

Sufficient conditions for the existence of stochastic comparison of two time-homogeneous MCs are given

by the stochastic monotonicity and bounding properties of their one step transition probability matrices
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[10,11]. In [21], this idea is used to devise an algorithm that constructs an optimal st-monotone upper-
bounding MC. Later, this algorithm is used to compute stochastic bounds on performance measures that

are defined on a totally ordered and reduced state space [1]. Performance measures may be defined as

reward functions of the underlying MC. In [1], states having the same reward are aggregated, so the state

space size of the bounding MC is considerably reduced. However, the given algorithm may provide loose

bounds in the general case. If the state space reduction (i.e., aggregation) procedure takes into account the

dynamics of the underlying system, it is possible to provide tight stochastic bounds. Another way to provide

tight bounds is to consider specific matrix structures which are suitable to aggregation procedures.

In [22], a componentwise bounding algorithm for the state probability vector of NCD MCs is given. The
two-level algorithm of Truffet in [22] uses aggregation and stochastic comparison with the strong stochastic

(st) order. The algorithm is different from the bounded aggregation method discussed in [3,16] in that a

smaller number of linear systems of about the same order as those in [3] are solved at the cost of lower

accuracy. The algorithm of Courtois and Semal in [3] uses polyhedra theory to compute the best possible

bounds for a given NCD MC. To the best of our knowledge, the algorithm of Truffet has not been imple-

mented and tested on any applications yet. Furthermore, its theoretical analysis lacks essential components.

In this work, we present an improved and coherent version of the algorithm, and remedy the situation

regarding analysis and implementation.We remark that even though the presentation of the algorithm in this
paper is for computing the steady state probability vector of an NCD MC, it can also be used to carry out

transient analysis with somemodification. The bounding techniques in [3,22] both have tradeoffs. This work is

not intended to be a comparative study between them, but it rather aims to develop a better understanding of

stochastic comparison as a useful tool in performance analysis. In passing, we also remark that a continuous-

time MC (CTMC) can be transformed through uniformization [19, p. 24] to a discrete-time MC. Hence, the

algorithm presented in this paper may be used to compute bounds on the state probability vector of a CTMC.

In Section 2, we provide background on stochastic comparison. In Section 3, we introduce the improved

algorithm and demonstrate the effect of the improvements on a small NCDMC. A thorough analysis of the
new algorithm from the point of view of irreducibility appears in [15] and has not been included in the

paper. In Section 4, we provide numerical results in sparse storage on a current application in mobile

communications. Therein, we also discuss an application from the same research area which does not favor

the algorithm. In Section 5, we conclude.
2. Background on stochastic comparison

There are different stochastic ordering relations and the most well known is the strong stochastic

ordering (i.e., 6 st). Intuitively speaking, two random variables X and Y which take values on a totally

ordered space being comparable in the strong stochastic sense (i.e., X 6 stY ) means that it is less probable

for X to take larger values than Y (see [17,20]).

First we give the definition of st-ordering used in this paper. For further information on the stochastic

comparison method, we refer the reader to [20].

Definition 1. Let X and Y be random variables taking values on a totally ordered space. Then X is said to be
less than Y in the strong stochastic sense, that is, X 6 stY iff
E½f ðX Þ�6E½f ðY Þ�

for all nondecreasing functions f whenever the expectations exist.

Definition 2. Let X and Y be random variables taking values on the finite state space f1; 2; . . . ; ng. Let p and
q be probability vectors such that
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pi ¼ ProbðX ¼ iÞ and qi ¼ ProbðY ¼ iÞ for i 2 f1; 2; . . . ; ng:

Then X is said to be less than Y in the strong stochastic sense, that is, X 6 stY iff
Xn

i¼j

pi 6
Xn

i¼j

qi for j ¼ n; n� 1; . . . ; 1:
The comparison of MCs has been largely studied in [10,11,20]. We use the following definition (Defi-

nition 4.1.2 of [20, p. 59]) to compare MCs.

Definition 3. Let fX ðtÞ; t 2 Tg and fY ðtÞ; t 2 Tg be two time-homogeneous MCs. Then fX ðtÞ; t 2 Tg is

said to be less than fY ðtÞ; t 2 Tg in the strong stochastic sense, that is, fX ðtÞg6 stfY ðtÞg iff
X ðtÞ6 stY ðtÞ 8t 2 T:
It is shown in Theorem 3.4 of [11, p. 355] that monotonicity and comparability of the probability transition

matrices of time-homogeneous MCs yield sufficient conditions for their stochastic comparison, which is

summarized in:
Theorem 1. Let P and eP be stochastic matrices respectively characterizing time-homogeneous MCs X ðtÞ and
Y ðtÞ. Then fX ðtÞ; t 2 Tg6 stfY ðtÞ; t 2 Tg if

• X ð0Þ6 stY ð0Þ,
• st-monotonicity of at least one of the probability transition matrices holds, that is,

either Pi;� 6 stPj;� or ePi;� 6 st
ePj;� 8i; j such that i6 j;

• st-comparability of the transition matrices holds, that is,

Pi;� 6 st
ePi;� 8i:

Here Pi;� refers to row i of P .
3. Componentwise bounding algorithm

The componentwise bounding algorithm for the steady state vector of NCD MCs we present (see

Algorithm 1) is based on the two-level algorithm in [22] that uses aggregation and stochastic comparison

with the st-order.
3.1. The improved algorithm

Algorithm 1. Componentwise bounding algorithm for the steady state vector of NCD MCs:

0. Find a (balanced) NCD partitioning of P and symmetrically permute it to the form in Eq. (1). Let
fS1;S2; . . . ;SNg be the resulting state space partition.

1. For i ¼ 1; 2; . . . ;N ,

a. Choose a state from Si, say fi, make it the last state and find the ordering of the remaining states in

Si with respect to fi by the heuristic algorithm in Step 3.a of [5, p. 241]. Symmetrically permute Pi;i
according to the resulting ordering.

b. Compute the two stochastic matrices Si and Si of order ni corresponding to Pi;i by Algorithms 2 and 3,

respectively (see Remark 1).
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c. Compute the st-monotone upper-bounding matrix Qi of order ni corresponding to Si by Algorithm 5

and the st-monotone lower-bounding matrix Q
i
of order ni corresponding to Si by Algorithm 6.

d. Extract the irreducible submatrices of Qi and Q
i
and solve the corresponding systems of equations for

their steady state vectors pst
i and pst

i , respectively. Place zero steady state probabilities for transient

states in each vector.

e. Compute the componentwise bounding vectors psup
i and pinf

i on the conditional steady state probabil-

ity vector corresponding to Si from pst
i and pst

i by Algorithm 7.

2. a. Compute U and L of order N using psup
i and pinf

i , i 2 f1; 2; . . . ;Ng, by Algorithms 8 and 9, respectively.
b. Compute the two stochastic matrices S and S of order N corresponding to L and U by Algorithms 2

and 3, respectively.

c. Compute the st-monotone upper-bounding matrix Q of order N corresponding to S by Algorithm 5

and the st-monotone lower-bounding matrix Q of order N corresponding to S by Algorithm 6.

d. Extract the irreducible submatrices of Q and Q and solve the corresponding systems of equations for

their steady state vectors n
st
and nst, respectively. Place zero steady state probabilities for transient

states in each vector.

e. Compute the componentwise bounding vectors nsup and ninf on the steady state probability vector
corresponding to C from n

st
and nst by Algorithm 7.

3. Compute the componentwise steady state probability upper- and lower-bounding vectors for Si respec-

tively as nsupi psup
i and ninfi pinf

i , i 2 f1; 2; . . . ;Ng.
Remark 1.When Algorithms 2 and 3 are invoked for the substochastic matrices Pi;i, L ¼ Pi;i and U ¼ Lþ D,
where d ¼ e� Le and D ¼ ½ d d � � � d �.
Algorithm 2. Construction of stochastic matrix S corresponding to L and U of order m:

D ¼ U � L;
for i ¼ 1; 2; . . . ;m,

�
ð0Þ
i ¼ 1�

Pm
j¼1 li;j;

for i ¼ 1; 2; . . . ;m,
for j ¼ m;m� 1; . . . ; 1,

si;j ¼ li;j þminðdi;j; ð�ðm�jÞ
i ÞþÞ;

�
ðm�jþ1Þ
i ¼ �

ðm�jÞ
i � di;j;
Algorithm 3. Construction of stochastic matrix S corresponding to L and U of order m:

D ¼ U � L;
for i ¼ 1; 2; . . . ;m,

�
ð0Þ
i ¼ 1�

Pm
j¼1 li;j;

for i ¼ 1; 2; . . . ;m,
for j ¼ 1; 2; . . . ;m,

si;j ¼ li;j þminðdi;j; ð�ðj�1Þ
i ÞþÞ;

�
ðjÞ
i ¼ �

ðj�1Þ
i � di;j;
Algorithm 4. Construction of matrix B (to be used in Algorithms 5 and 6) corresponding to stochastic

matrix S of order m:
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for i ¼ 1; 2; . . . ;m,
bi;m ¼ si;m;
for j ¼ m� 1;m� 2; . . . ; 1,

bi;j ¼ bi;jþ1 þ si;j;
Algorithm 5. Construction of st-monotone upper-bounding matrix Q corresponding to stochastic matrix S
of order m:

Compute B by Algorithm 4 for S of order m.
q1;m ¼ b1;m;
for i ¼ 2; 3; . . . ;m,

qi;m ¼ maxðbi;m; qi�1;mÞ;
for l ¼ m� 1;m� 2; . . . ; 1,

q1;l ¼ b1;l � b1;lþ1;

for i ¼ 2; 3; . . . ;m,
qi;l ¼ maxðbi;l;

Pm
j¼l qi�1;jÞ �

Pm
j¼lþ1 qi;j;
Algorithm 6. Construction of st-monotone lower-bounding matrix Q corresponding to stochastic matrix S
of order m:

Compute B by Algorithm 4 for S of order m.
for l ¼ 1; 2; . . . ;m� 1,

q
m;l

¼ bm;l � bm;lþ1;

for i ¼ m� 1;m� 2; . . . ; 1,
q
i;l
¼ maxð1� bi;lþ1;

Pl
j¼1 qiþ1;j

Þ �
Pl�1

j¼1 qi;j;
q
m;m

¼ bm;m;
for i ¼ m� 1;m� 2; . . . ; 1,

q
i;m

¼ 1�
Pm�1

j¼1 q
i;j
;

Algorithm 7. Computation of componentwise probability bounding vectors vsup and vinf given st upper- and

lower-bounding probability vectors vst and vst of length m:

vsupm ¼ vstm;
vinfm ¼ vstm;
for j ¼ m� 1;m� 2; . . . ; 1,

vsupj ¼
Pm

k¼j v
st
k �

Pm
k¼jþ1 v

st
k ;

vinfj ¼ ð
Pm

k¼j v
st
k �

Pm
k¼jþ1 v

st
k Þ

þ
;

Algorithm 8. Computation of componentwise upper-bounding matrix U for C of order N using P and psup
i ,

i 2 f1; 2; . . . ;Ng:

for i ¼ 1; 2; . . . ;N ,

for j ¼ 1; 2; . . . ;N ,

ui;j ¼ minðpsup
i Pi;je;maxðPi;jeÞÞ;
Algorithm 9. Computation of componentwise lower-bounding matrix L for C of order N using P and pinf
i ,

i 2 f1; 2; . . . ;Ng:
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for i ¼ 1; 2; . . . ;N ,

for j ¼ 1; 2; . . . ;N ,

li;j ¼ maxðpinf
i Pi;je;minðPi;jeÞÞ;

The preprocessing done in Step 0 of Algorithm 1 is self-descriptive. As suggested in Section 1, it is

possible to use the algorithm in [4] to find NCD partitionings of P given a user specified decomposability

parameter. By a balanced partitioning, we mean one in which the ni, i 2 f1; 2; . . . ;Ng, in Eq. (1) do not

differ significantly from each other. We argue why it is important to use balanced NCD partitionings after
we analyze the complexity of Algorithm 1.

The ordering (i.e., numbering) of states in a MC affects the quality of bounds that may be obtained by

the stochastic comparison approach [5] due to the conditions of st-monotonicity and st-comparability in

Theorem 1. In order to obtain tighter probability bounds, Step 1.a of Algorithm 1 permutes one of the

states within each NCD partition to be the last and orders the remaining states in the same partition using

the heuristic given in [5, pp. 241–242]. The state to be permuted to the end of each NCD block is chosen as

the state which has the largest self-transition probability among the states in the same NCD partition

followed by a simple tie-breaking rule if needed. We do not reorder (aggregated) states in Step 2 of
Algorithm 1 since the resulting matrices are highly diagonally dominant due to the NCD structure implying

a small gain (if at all). Reordering of states is the first improvement over the algorithm in [22].

At the first level of Algorithm 1 (see Step 1), componentwise upper- and lower-bounds on the conditional

steady state probability vector of each NCD partition are computed for the partitioning of P in Eq. (1). This

is achieved in Steps 1.b and 1.c (see Algorithms 2–6) by computing st-monotone upper- and lower-bounding

matrices for each stochastic complement. In Step 1.b, two stochastic matrices corresponding to the par-

ticular NCD block are obtained using Algorithms 2 and 3. The former (latter) of these matrices is computed

by adding the off-diagonal block probability mass to the incoming transitions of the last (first) state in the
NCD partition thereby ensuring that the resulting stochastic matrix satisfies the st-comparability relation

greater (less) than or equal to with the stochastic complement (see Section 1) of the NCD block. The two

stochastic matrices obtained in this way for each NCD partition are input to Step 1.c. In Step 1.c, we use the

st-monotone upper-bounding matrix construction algorithm in [1] as in [22] (see Algorithm 5), but devise

and use a new st-monotone lower-bounding matrix construction algorithm (see Algorithm 6) whose opti-

mality is proved in [15]. In [22], the st lower-bounding vector on the steady state distribution of a MC is

computed by reversing the order of its states and running Algorithm 5 on the permuted MC. See [22, p. 847]

for details. The new st-monotone lower-bounding matrix construction algorithm we present eliminates the
need for a permutation vector to order the states of the input stochastic matrix in reverse.

Neither of the two st-monotone bounding matrices computed for each stochastic complement may be

irreducible [1]. However, as we prove in [15], both of these matrices have one irreducible subset of states. This

is also true for the st-monotone boundingmatrices computed for the coupling matrix,C (see Section 1), in Step

2. After identifying the transient states and removing them from each of the two st-monotone bounding

matrices, the resulting irreducible stochastic matrices are solved for their steady state vectors in Step 1.d. This

gives st upper- and lower-bounds on the conditional steady state probabilities of the particular NCD partition.

In Step 1.e, componentwise bounds on the conditional steady state probability vector of the NCD partition
are obtained from the st upper- and lower-bounding vectors using Algorithm 7. In [15], Algorithm 7 is shown

to be better than Algorithm 10 used in [22]. This is the second improvement over the algorithm in [22].

At the second level (see Step 2), st-monotone upper- and lower-bounding matrices for C corresponding to

the partitioning of P in Eq. (1) are computed using Algorithms 2–6, 8 and 9 in Steps 2.a–c. This is achieved by

using the conditional steady state probability bounding vectors obtained for each NCD partition at the first

level. Note that in Step 2.a, Algorithms 8 and 9 compute the matrices U and L which are respectively com-

ponentwise upper- and lower-bounding matrices for C. In Step 2.b, two stochastic matrices corresponding to

C are obtained by Algorithms 2 and 3 using U and L. The former (latter) of these stochastic matrices is
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computed so as to satisfy the st-comparability relation greater (less) than or equal to with C. In Step 2.c, st-
monotone bounding matrices corresponding to these two stochastic matrices are obtained. From the two st-

monotone bounding matrices, two stochastic matrices corresponding to the irreducible subsets of states are

extracted, and they are solved for their steady state vectors in Step 2.d. This gives st upper- and lower-bounds

on the steady state probabilities of C. In Step 2.e, the st-bounding vectors obtained in the previous step are

used by Algorithm 7 to compute componentwise bounds on the steady state probabilities of C.
Finally, in Step 3 of Algorithm 1, the componentwise upper-bounding (lower-bounding) vector on the

conditional steady state distribution of each NCD partition is unconditioned by the corresponding upper-

bound (lower-bound) on the steady state probability of C. Hence, we obtain componentwise bounds on the
global steady state distribution, p.

We remark that Steps 1.d and 2.d should omit the removal of transient states and replace the steady

solution process with a transient solution procedure when performing transient analysis.

The theoretical analysis of the algorithm in [22] lacks essential components. There is no mention of the

existence of a single irreducible subset of states in the st-monotone upper-bounding matrix computed by

Algorithm 5. The possibility of computing a reducible st-monotone bounding matrix for a given irreducible

Markov chain is stated in [1]. For the proposed methodology, the existence of a single irreducible subset of

states must be proved for the matrices obtained by Algorithms 5 and 6 at both levels. Furthermore, the
componentwise bounding algorithm that takes in st upper- and lower-bounding probability vectors (see

Algorithm 7) is superior to its counterpart:

Algorithm 10. Computation of componentwise probability bounding vectors wsup and winf as in [22] given st

upper- and lower-bounding probability vectors vst and vst of length m:

wsup
m ¼ vstm;

winf
m ¼ vstm;

for j ¼ m� 1;m� 2; . . . ; 1,
wsup

j ¼ minð1; ð
Pm

k¼j v
st
k �

Pm
k¼jþ1 w

inf
k ÞþÞ;

winf
j ¼ minð1; ð

Pm
k¼j v

st
k �

Pm
k¼jþ1 w

sup
k ÞþÞ;

These theoretical issues are discussed in detail in [15]. Now we proceed with the complexity analysis of

Algorithm 1.

3.2. Complexity analysis

We assume that P has nz nonzero elements distributed uniformly across the matrix. Note that nz is

considered to be OðnÞ for sparse matrices. Hence, there will be roughly k ¼ nz=n nonzero elements per row/

column of P and ki ¼ nz� ni=n2 nonzero elements per row/column of Pi;i. The uniform assumption is

neither an optimistic nor a pessimistic one. Now, assuming that Algorithm 1 is implemented in sparse

storage and a direct method is employed in solving the linear systems in Steps 1.d and 2.d, its space

complexity other than the storage set aside for P is maxfOðnzÞ;maxi fOðn2i Þ;OðN 2Þgg reals and integers

from Steps 0, 1.b, 1.c, 2.b, and 2.c. Other steps contribute as lower order terms. As for the time complexity
of the algorithm, we should account for floating-point comparisons and floating-point arithmetic opera-

tions separately. From Steps 0, 1.a–d, 2.a, and 2.d, we have maxfOðnk2Þ;
PN

i¼1 maxfOðn2i Þ;Oðnik2i Þg;
OðNnÞ;OðN 3Þg floating-point comparisons. From Steps 1.d, 2.a, and 2.d, we have maxf

PN
i¼1 Oðn3i Þ;OðnzÞ;

OðNnÞ;OðN 3Þg floating-point arithmetic operations. Other steps contribute as lower order terms. Now it is

evident why one should opt for balanced NCD partitionings (cf. Step 0).

Now, let us compare the time complexity of Algorithm 1 with that of iterative aggregation–disaggre-

gation (IAD), a method devised to compute the steady state vector of NCD MCs using successive
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approximations [19, Chapter 6]. In order to make a fair comparison, let us assume that both methods use
the same NCD partitioning and that there is space to factorize its diagonal blocks at the outset [6]. We

make the same assumption regarding sparsity as in Algorithm 1 and conclude that there are roughlyPN
i¼1 niðk � kiÞ nonzero elements in the off-diagonal blocks of P . Each iteration of IAD consists of two

steps. In the aggregation step, an approximate coupling matrix is formed and solved for its steady state

vector. In order to expedite the computation of this matrix, row sums of each block in the NCD parti-

tioning are computed and stored at the outset. In the disaggregation step, a block Gauss–Seidel (BGS)

iteration is performed. This requires the solution of N nonsingular linear systems whose coefficient matrices

are the diagonal blocks factorized at the outset and whose right hand sides are computed using the nonzero
elements in the off-diagonal blocks, the steady state vector of the approximate coupling matrix, and the

previous steady state approximation. Hence, there are maxf
PN

i¼1 Oðn3i Þ;OðnzÞg floating-point arithmetic

operations at the outset. The aggregation and disaggregation steps respectively cost maxfOðN 3Þ;OðNnÞg
and maxfOð

PN
i¼1 niðk � kiÞÞ;

PN
i¼1 Oðn2i Þg floating-point arithmetic operations per IAD iteration. The

number of iterations taken by IAD to converge to a tolerance of � is Oðlog �= log kF k1Þ since each iteration

of IAD reduces the error in the approximate solution by a factor of degree of coupling (see Theorem 6.6 in

[19, p. 340]). It is clear that Algorithm 1 runs faster than IAD as long as the coefficient matrix is dense and

the degree of coupling is not exceedingly small.
Now we show how Algorithm 1 executes on a small example.
3.3. An example

Consider the 8 · 8 Courtois matrix [2]

whose steady state vector is given by
p ¼ ½0:089283; 0:092758; 0:040488; 0:158533; 0:118938; 0:120385; 0:277795; 0:101819�:

In Step 0, we choose a degree of decomposability [4] of 0.001 and obtain the state space partitioning

fS1;S2;S3g, where S1 ¼ f1; 2; 3g, S2 ¼ f4; 5g and S3 ¼ f6; 7; 8g. This is an NCD partitioning with
kF k1 ¼ 0:001. The NCD blocks are
P1;1 ¼
0:85 0 0:149
0:1 0:65 0:249
0:1 0:8 0:0996

0@ 1A; P2;2 ¼
0:7 0:2995
0:399 0:6

� �
; P3;3 ¼

0:6 0:2499 0:15
0:1 0:8 0:0999
0:1999 0:25 0:55

0@ 1A:
In Step 1.a, states 1, 4, and 7 are chosen as the last states in their corresponding NCD blocks. Given these
last states, the heuristic algorithm in [5] returns the orderings (3,2,1), (5,4), and (6,8,7) for NCD blocks 1, 2,

and 3, respectively. When the Pi;i for i 2 f1; 2; 3g are symmetrically permuted with respect to these

orderings, they become
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P1;1 ¼
3

2

1

0:0996 0:8 0:1
0:249 0:65 0:1
0:149 0 0:85

0@ 1A; P2;2 ¼
5

4

0:6 0:399
0:2995 0:7

� �
;

P3;3 ¼
6

8

7

0:6 0:15 0:2499
0:1999 0:55 0:25
0:1 0:0999 0:8

0@ 1A:
Step 1.b computes two stochastic matrices for each of the (permuted) NCD blocks which are given by
S1 ¼
0:0996 0:8 0:1004
0:249 0:65 0:101
0:149 0 0:851

0@ 1A; S1 ¼
0:1 0:8 0:1
0:25 0:65 0:1
0:15 0 0:85

0@ 1A;

S2 ¼
0:6 0:4
0:2995 0:7005

� �
; S2 ¼

0:601 0:399
0:3 0:7

� �
;

S3 ¼
0:6 0:15 0:25
0:1999 0:55 0:2501
0:1 0:0999 0:8001

0@ 1A; S3 ¼
0:6001 0:15 0:2499
0:2 0:55 0:25
0:1001 0:0999 0:8

0@ 1A:
Using these stochastic matrices, Step 1.c computes st-monotone upper- and lower-bounding matrices for

each NCD partition which are given by
Q1 ¼
0:0996 0:8 0:1004
0:0996 0:7994 0:101
0:0996 0:0494 0:851

0@ 1A; Q
1
¼

0:25 0:65 0:1
0:25 0:65 0:1
0:15 0 0:85

0@ 1A;

Q2 ¼
0:6 0:4
0:2995 0:7005

� �
; Q

2
¼ 0:601 0:399

0:3 0:7

� �
;

Q3 ¼
0:6 0:15 0:25
0:1999 0:55 0:2501
0:1 0:0999 0:8001

0@ 1A; Q
3
¼

0:6001 0:15 0:2499
0:2 0:55 0:25
0:1001 0:0999 0:8

0@ 1A:
We remark that both st-monotone bounding matrices corresponding to each NCD partition in the Courtois

example turn out to be irreducible. In other words, they do not have any transient states.

Step 1.d solves the st-monotone bounding matrices for their steady state vectors, which are given by
pst
1 ¼ ½0:099600; 0:496639; 0:403761�; pst

1 ¼ ½0:210000; 0:390000; 0:400000�;

pst
2 ¼ ½0:428163; 0:571837�; pst

2 ¼ ½0:429185; 0:570815�;

pst
3 ¼ ½0:240679; 0:203597; 0:555724�; pst

3 ¼ ½0:240882; 0:203616; 0:555502�:

Using these vectors, Step 1.e computes componentwise bounds on the conditional steady state proba-

bilities of each NCD partition as
psup
1 ¼ ½0:210000; 0:500400; 0:403761�; pinf

1 ¼ ½0:099600; 0:386239; 0:400000�;

psup
2 ¼ ½0:429185; 0:571837�; pinf

2 ¼ ½0:428163; 0:570815�;
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psup
3 ¼ ½0:240882; 0:203819; 0:555724�; pinf

3 ¼ ½0:240679; 0:203393; 0:555502�:

Since Step 1 of Algorithm 1 is over, Step 2 starts executing. In Step 2.a, the matrices U and L of order 3

are computed using psup
i and pinf

i , i 2 f1; 2; 3g, as
U ¼
0:999600 0:000877 0:000100
0:000615 0:999500 0:000100
0:000056 0:000044 0:999900

0@ 1A; L ¼
0:999000 0:000737 0:000100
0:000614 0:999000 0:000100
0:000056 0:000044 0:999900

0@ 1A:
In Step 2.b, the stochastic matrices S and S corresponding to L and U are computed as
S ¼
0:999023 0:000877 0:000100
0:000614 0:999286 0:000100
0:000056 0:000044 0:999900

0@ 1A; S ¼
0:999163 0:000737 0:000100
0:000615 0:999285 0:000100
0:000056 0:000044 0:999900

0@ 1A:
In Step 2.c, st-monotone upper- and lower-bounding matrices for C are computed as
Q ¼
0:999023 0:000877 0:000100
0:000614 0:999286 0:000100
0:000056 0:000044 0:999900

0@ 1A; Q ¼
0:999163 0:000737 0:000100
0:000615 0:999285 0:000100
0:000056 0:000044 0:999900

0@ 1A:
These two bounding matrices are also irreducible.

In Step 2.d, the st-monotone bounding matrices are solved for their steady state vectors, which are given

by
n
st ¼ ½0:210388; 0:289612; 0:500000�; nst ¼ ½0:230836; 0:269164; 0:500000�:
Using these vectors, in Step 2.e componentwise bounds on the steady state probabilities of C are

computed as
nsup ¼ ½0:230836; 0:289612; 0:500000�; ninf ¼ ½0:210388; 0:269164; 0:500000�:

In Step 3, componentwise bounds on the steady state probabilities of each NCD partition are computed

as
nsup1 psup
1 ¼ ½0:048476; 0:115510; 0:093203�; ninf1 pinf

1 ¼ ½0:020955; 0:081260; 0:084155�;

nsup2 psup
2 ¼ ½0:124297; 0:165611�; ninf2 pinf

2 ¼ ½0:115246; 0:153643�;

nsup3 psup
3 ¼ ½0:120441; 0:101910; 0:277862�; ninf3 pinf

3 ¼ ½0:120339; 0:101697; 0:277751�:

Finally, the componentwise bounding vectors are permuted back to their original orderings, and we

obtain componentwise upper- and lower-bounding vectors on p:
psup ¼ ½0:093203; 0:115510; 0:048476; 0:165611; 0:124297; 0:120441; 0:277862; 0:101910�;

pinf ¼ ½0:084155; 0:081260; 0:020955; 0:153643; 0:115246; 0:120339; 0:277751; 0:101697�:

Compare the result of the improved algorithm with those of the following three cases:

(i) First improvement turned off (i.e., no reorderings used):

psup ¼ ½0:093817; 0:116272; 0:048795; 0:166606; 0:125044; 0:166694; 0:309165; 0:125083�;

pinf ¼ ½0:083459; 0:080588; 0:020781; 0:152774; 0:114594; 0:100000; 0:208222; 0:090835�:
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(ii) Second improvement turned off (i.e., Algorithm 10 used instead of Algorithm 7):

psup ¼ ½0:093277; 0:115602; 0:049383; 0:165698; 0:124363; 0:120552; 0:277862; 0:101910�;

pinf ¼ ½0:084094; 0:081201; 0:020149; 0:153538; 0:115168; 0:120228; 0:277751; 0:101697�:
(iii) Both improvements turned off (i.e., basic algorithm):

psup ¼ ½0:128242; 0:124810; 0:052378; 0:168326; 0:126335; 0:200943; 0:309165; 0:125083�;

pinf ¼ ½0:059553; 0:079426; 0:020482; 0:143034; 0:107289; 0:065751; 0:208222; 0:090835�:

After assessing the quality of the bounds, we conclude that the performance of Algorithm 1 on the

Courtois example is extremely good, and it is superior to each of the three cases. However, the Courtois
problem is small, and to have a better understanding of Algorithm 1, we must apply it to larger examples.
4. Numerical results

The implementation of the algorithms in Section 3 is done in compact sparse row (CSR) Harwell–Boeing

format which requires for each coefficient matrix of order m one real and one integer array of size nzm (i.e.,

number of nonzero elements in the coefficient matrix), one integer array of size ðmþ 1Þ, and temporary
workspace to accommodate fill-in during factorization. All code is written in Fortran/C and compiled in

double precision with g77=gcc on a SUN UltraSparcstation 10 with 128 MB of RAM running Solaris 2.6.

The numerical experiments are timed using a C function that reports CPU time. Since the resulting NCD

MCs are of moderate order (i.e., thousands of states) and sparsity (i.e., tens of nonzeros per row), we

consider the direct solution method of Grassmann–Taksar–Heyman (GTH) [8] at each level of Algorithm

1. This method is a more robust version of Gaussian elimination (GE) in which arithmetic with only po-

sitive numbers is performed [7].

We compare the run-time of Algorithm 1 with that of GTH and IAD [19] which are both geared towards
NCD MCs. In order to make a fair comparison, with IAD we use the same partitionings as in Algorithm 1.

For all combinations of the integer parameters we considered, there is sufficient space to factorize in sparse

format (that is, to apply sparse GE to) the diagonal blocks in IAD. Furthermore, we use BGS in the

disaggregation step and employ a stopping tolerance of 10�15 on the infinity norm of the residual vector at

each iteration. We remark that for each problem solved, the relative backward error in IAD turns out to be

less than 10�16. See [6] for recent results on the computation of the steady state vector of Markov chains.

The first application that we consider arises in wireless asynchronous transfer mode (ATM) networks. In

[23], a multiservices resource allocation policy (MRAP) is developed to integrate two types of service over
time division multiple access (TDMA) frames in a mobile communication environment. These are the

constant bit rate (CBR) service for two types of voice calls (i.e., handover calls from neighboring cells and

new calls) and the available bit rate (ABR) service for data transfer. A single cell and single carrier fre-

quency is modeled. However, the arrival process of data and the service process of calls we consider is quite

general and subsumes the model in [23].

The TDMA frame is assumed to have C slots. Handover requests have priority over new call arrivals and

they respectively arrive with probabilities ph and pn. Each voice call takes up a single slot of a TDMA frame

but may span multiple TDMA frames whereas each data packet is served in a single slot of a single TDMA
frame. When all the slots are full, incoming voice calls are rejected. The number of voice calls that may

terminate in a given TDMA frame depends on the number of active calls and is modeled as a binomial

process with parameter ps. The parameters of the model are ph ¼ C � 10�5, pn ¼ C � 5� 10�6, and

ps ¼ C � 5� 10�6.
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Data is queued in a FIFO buffer of size B and has the least priority. The arrival of data packets is
modeled as an on–off process. The process moves from the on state to the off state with probability a and

from the off state to the on state with probability b. The load offered to the system is defined as

L ¼ b=ðaþ bÞ. Assuming that the time interval between two consecutive on periods is t, the burstiness of

such an on–off process is described by the square coefficient of variation, SC ¼ VarðtÞ=½EðtÞ�2. In terms of L
and SC, we have b ¼ 2Lð1� LÞ=ðSC þ 1� LÞ and a ¼ bð1� LÞ=L. When the on–off process is in the on state,

we assume that i 2 f0; 1; 2; 3g data packets may arrive with probability pdi. The mean arrival rate of data

packets in the on state is defined as R ¼
P3

i¼1 i� pdi. Hence, the global mean arrival rate of data packets is

given by G ¼ L� R. We set ðpd0; pd1; pd2; pd3Þ ¼ ð0:4; 0:3; 0:2; 0:1Þ implying R ¼ 1:0. When the buffer is full,
any excess packet is dropped. We do not consider the arrival of multiple handovers or multiple new calls

during a TDMA frame duration. Observe that there is orders of magnitude between the average interarrival

time of voice calls and the average interarrival time of data packets, which makes this problem NCD. In

fact, the smallest degree of coupling values we computed for this problem are in the order of 10�4.

The performance measures of interest are the blocking probability of voice calls and the dropping

probability of data packets. If the underlying MC is represented by a three-component state descriptor

ða; b; cÞ, where a denotes the state of the data arrival process, b denotes the number of data packets in the

buffer and c denotes the number of active voice calls, then the blocking probability of voice calls is given by
pblock ¼
"
ðpnð1� phÞ þ ð1� pnÞph þ 2pnphÞð1� psÞC

X1

i¼0

XB
j¼0

pi;j;C þ pnphCð1� psÞC�1ps
X1

i¼0

XB
j¼0

pi;j;C

þ pnphð1� psÞC�1
X1

i¼0

XB
j¼0

pi;j;C�1

#,
½pnð1� phÞ þ ð1� pnÞph þ 2pnph�;
and the dropping probability of data packets is given by
pdrop ¼
"
ðpd1 þ 2pd2 þ 3pd3Þ

XC
i¼0

p1;B;i þ ðpd2 þ 2pd3Þ
XC
i¼0

p1;B�1;i þ pd3
XC
i¼0

p1;B�2;i

#,
½pd1 þ 2pd2 þ 3pd3�:
We remark that the above formulae is defined on the product state space having 2ðBþ 1ÞðC þ 1Þ states of
which some are unreachable.

Using Algorithm 1, we tabulate the difference between upper and lower bounds on the blocking

probability of voice calls and the dropping probability of data packets in the system when ðB;CÞ ¼ ð30; 10Þ
and ðB;CÞ ¼ ð60; 30Þ. We remark that it is the tightness of the upper and lower bounds and the time it takes

to compute them that matter. Detailed results and plots appear in [15].
For the smaller problem in Table 1, the underlying MC that has 572 states and 20,198 nonzero elements

takes 0.3 seconds to solve when SC ¼ 1 and 0.2 seconds to solve when SC ¼ 10 using Algorithm 1. Steps 0

and 1.a take a total of about 0 s. It takes 2.6 seconds to solve the same MC by GTH. It takes at least 1.5

seconds (5 iterations) to solve when SC ¼ 1 and at least 1.8 seconds (9 iterations) to solve when SC ¼ 10

using IAD. The NCD partitionings considered for SC ¼ 1 all have 11 blocks with orders between 42 and 62,

and a degree of coupling 6 · 10�4. The NCD partitionings considered for SC ¼ 10 all have 22 blocks with

orders between 21 and 31, and degree of coupling values between 1 · 10�1 (for L ¼ 0:1) and 2 · 10�2 (for

L ¼ 0:9).
For the larger problem in Table 2, the underlying MC that has 2,852 states and 217,778 nonzero ele-

ments takes 3.3 seconds (Step 0: 0.3 s; Step 1.a: 0.3 s) to solve when SC ¼ 1 and 2.5 s (Step 0: 0.3 s; Step 1.a:

0.2 s) to solve when SC ¼ 10 using Algorithm 1. It takes 260.0 seconds to solve the same MC by GTH. It

takes at least 64.2 seconds (3 iterations) to solve when SC ¼ 1 and at least 75.4 seconds (4 iterations) to solve

when SC ¼ 10 using IAD. The NCD partitionings considered for SC ¼ 1 all have 31 blocks with orders



Table 1

Sample results of experiments with ðB;CÞ ¼ ð30; 10Þ
L SC psupblock � pinfblock psupdrop � pinfdrop

0.6 1 2· 10�3 2· 10�4

10 2· 10�2 7· 10�4

0.7 1 1· 10�3 1· 10�4

10 1· 10�2 6· 10�4

0.8 1 1· 10�3 1· 10�4

10 8· 10�3 4· 10�4

Table 2

Sample results of experiments with ðB;CÞ ¼ ð60; 30Þ
L SC psupblock � pinfblock psupdrop � pinfdrop

0.6 1 1· 10�18 3· 10�20

10 2· 10�18 8· 10�20

0.7 1 1· 10�18 3· 10�20

10 2· 10�18 7· 10�20

0.8 1 9· 10�19 3· 10�20

10 1· 10�18 6· 10�20
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between 62 and 122, and a degree of coupling 5 · 10�3. The NCD partitionings considered for SC ¼ 10 all
have 62 blocks with orders between 31 and 61, and degree of coupling values between 2 · 10�1 (for L ¼ 0:1)
and 2 · 10�2 (for L ¼ 0:9).

The time spent to compute bounds using Algorithm 1 is very promising compared to solving the NCD

MCs using GTH or IAD. This is understandable since Algorithm 1 solves multiple smaller systems (i.e.,

two systems corresponding to each NCD block i with order at most ni) and two aggregated systems of order

at most N whereas GTH solves the global system of order n and IAD performs a number of aggregation–

disaggregation iterations. The bounds computed on pblock and pdrop using Algorithm 1 are highly acceptable;

the bounds on pdrop are tighter. Furthermore, the upper-bounds on pblock computed by Algorithm 1 are
mostly better than those computed by the basic algorithm (see [15]). Note that the 4ðBþ 1Þ steady state

probabilities used in computing pblock comprise those 3ðC þ 1Þ used in computing pdrop. If we remove the

unreachable states from the two formulae, there happens to be exactly 4ðBþ 1Þ � 2 steady state proba-

bilities that contribute to pblock and 6 that contribute to pdrop. We remark that st-comparison is expected to

provide better componentwise bounds for states placed towards the end of the underlying MC. When we

compare the values of 4ðBþ 1Þ � 2 with N , it is clear that not all states contributing to pblock can be placed

as such. This is an intuitive explanation for having tighter bounds on pdrop compared to those on pblock. We

believe this to be also the reason behind obtaining better bounds on pblock with Algorithm 1 compared to the
basic algorithm. Due to the reordering of states in Step 1.a of Algorithm 1, we expect more improvement on

performance measures computed using a large number of states than those that depend on a few states.

There are other factors that influence the quality of the computed bounds such as the NCD partitioning

employed, the ordering chosen by our heuristic within each NCD block, and the irreducibility structure of

the computed st-monotone matrices.

Regarding the time it takes to compute bounds with Algorithm 1, the most important factor is the

nonzero structure of the underlying MC. Consider, for instance, the application in [18] which also happens

to be in the area of communications. It introduces an MMPPjEkj1jK continuous-time queueing model for a
video source that is fed to an ATM multiplexer. When the number of stages in the Erlang (E) process

approximating the deterministic service distribution is k ¼ 5, the buffer size of the multiplexer is K ¼ 74, the
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Markov Modulated Poisson Process (MMPP) modeling the arrival distribution has 8 states with a different
arrival rate in each state, and the real parameters in the paper are used, we have a CTMC with

n ¼ 8kðK þ 1Þ ¼ 3000 states. The corresponding DTMC obtained through uniformization is highly NCD

with a partitioning that has 8 blocks induced by the states of the MMPP. Each block is of order 375 and the

degree of coupling is in the order of 10�5. However, in each of its rows, this NCDMC has a maximum of 10

nonzero elements 7 of which are in the off-diagonal blocks. The diagonal blocks which are in the form of a

quasi-birth-and-death (QBD) process have a maximum of 3 nonzero elements and lend themselves to

relatively sparse factorizations. Hence, IAD is able to compute the steady state vector rapidly, and

Algorithm 1, which favors relatively dense NCD MCs, cannot be recommended in this case.
5. Conclusion

In this paper, we have given the first numerical results on an application with (an improved version of) a

componentwise bounding algorithm for the state probability vector of nearly completely decomposable

Markov chains. The given two-level algorithm uses aggregation and stochastic comparison with the strong

stochastic (st) order. In order to improve accuracy, it employs reordering of the states and a better com-
ponentwise probability bounding algorithm given st upper- and lower-bounding probability vectors. A

thorough analysis of the algorithm from the point of view of irreducibility has been done. The run-time of

the algorithm is much better than that of GTH and iterative aggregation–disaggregation in sparse storage,

and the quality of the computed bounds on steady state probabilities are highly acceptable for the chosen

application. It is difficult to make strong generalizations, but it is our experience that this algorithm will be

useful in relatively dense nearly completely decomposable Markov chains with highly unbalanced steady

state probabilities, a small number of states accumulating a large probability mass, and a small degree of

coupling. Future work should focus on utilizing the algorithm in computing transient performance mea-
sures.
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