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Abstract

Computer simulation is a widely used tool for analyzing many industrial and service systems. However, a major dis-
advantage of simulation is that the results are only estimates of the performance measures of interest, hence they need
careful statistical analyses. Simulation studies are often classified as either terminating or non-terminating. One of the
major problems in non-terminating simulations is the problem of initial transient. Many techniques have been proposed
in the literature to deal with this problem. There are currently a number of studies to improve the efficiency and effec-
tiveness of these techniques. However, no research has been reported yet that analyzes the behavior of the transient
period. In this paper, we investigate the factors affecting the length of the transient period for non-terminating simu-
lations, particularly for serial production lines and job-shop production systems. Factors such as the variability of pro-
cessing times, system size, existence of bottleneck, reliability of system, system load level, and buffer capacity are
investigated. Recommendations for the use of a new technique are given. A comprehensive bibliography is also
provided.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of modeling is one of the most impor-
tant ways of studying, understanding, and improv-
ing the behavior of either existing or to be built
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academics, as the complexity of the systems in-
creases (Harpell et al., 1989). Many simulation
models built today are stochastic simulation mod-
els. Two problems with stochastic simulation
output are often discussed in the literature: non-
stationarity and autocorrelation. Non-stationarity
means that the distributions of the successive
observations in the output sequence change over
time. Autocorrelation means that the observations
in the time sequence are correlated with each
other. So the classical statistical assumption of
independently and identically distributed (iid) out-
puts/observations is violated.

Simulation experiments are classified as either
terminating or non-terminating as far as the goal
of the simulation is concerned (Law and Kelton,
2000; Fishman, 2001). The above stated problems
do not exist in terminating simulations since the
underlying system explicitly determines the start-
ing and stopping conditions for the simulation
model. Hence, the method of independent replica-
tions is commonly used for these simulations,
resulting in iid observations. A non-terminating
simulation, on the other hand, aims to estimate
the steady-state parameter(s) of a system. How-
ever, the practical simulation, which starts and
ends at a user-defined state, may cause inaccurate
results if the initial conditions are not chosen from
the steady-state. This is called the initial transient,
initialization bias, or the start-up problem in the
simulation literature. Several techniques have been
proposed to remedy this problem (see, for exam-
ple, Kelton, 1989; Kelton and Law, 1983; Schru-
ben, 1982; Schruben et al., 1983; Goldsman
et al., 1994; Vassilacopoulus, 1989; Welch, 1982;
White, 1997).

The primary motivation for this study comes
from the negligence of initial transient problem
in practice. The effect of this negligence is severe,
especially when using the method of independent
replications, since the initialization bias is not af-
fected by the number of replications but by the
length of each run or by the amount of truncation
per run. The lack of objective procedures to deal
with the initial transient problem that are guaran-
teed to work well in every situation is another
motivation for this study. The common practice
is to truncate some initial portion of the output se-

quence; however, this is done in a rather informal
way. Furthermore, in system comparisons and
optimization studies, the truncation point is usu-
ally chosen by observing only one particular sce-
nario, which could be a poor sample in terms of
the transient period; and the same amount of data
is truncated from all other simulated scenarios.

Almost all of the studies in the literature either
develop methods or compare the effectiveness of
proposed techniques via their application to ana-
lytically tractable models. We have not encoun-
tered any study that explicitly investigates how
the initial transient period behaves with respect
to different system parameters. If some guidelines
could be given, then the problems discussed above
would be alleviated—if not completely eliminated.
In this paper, we are primarily interested in the
behavior of the initial transient with respect to
changes in the system parameters.

To be more specific, we focus on manufacturing
systems; particularly serial production lines and
job-shop production systems. The reason for
choosing these systems is that they are the building
blocks of most manufacturing systems, and one
can observe the simplest form of interactions
among system components, which then can be
generalized to larger systems. Additionally, these
systems are still widely used in practical manufac-
turing. Our results are meant to provide a frame-
work for simulation practitioners to validate
their model findings regarding the transient period.
Moreover, we test a relatively new truncation tech-
nique (MSER) to assess its theoretical limitations
and to give some guidelines for its successful
implementation.

The rest of the paper is organized as follows. A
comprehensive literature review is given in Section
2. This is followed by the methodology of this
study in Section 3. Section 4 presents experimental
factors and conditions. Simulation results are dis-
cussed in Section 5. Concluding remarks are given
in Section 6.

2. Literature review

The problem of initial transient has been inves-
tigated by many researchers. The literature can be



254 B. Sandikg1, I. Sabuncuoglu | European Journal of Operational Research 173 (2006) 252-267

Table 1
Summary of the literature on the initial transient problem

Type of study

Studies conducted

General

Gafarian et al. (1978), Wilson and Pritsker (1978a,b),

Chance (1993), Fishman (1972), Kleijnen (1984), Law (1984),
Nelson (1990, 1992), Cash et al. (1992), Ma and Kochhar (1993)

Intelligent initialization
Deterministic initialization

Madansky (1976), Kelton and Law (1985), Kelton (1985),

Murray and Kelton (1988a)

Stochastic initialization
Antithetic initial conditions

Truncation heuristics
Graphical techniques
Repetitive hypothesis testing

Kelton (1989), Murray (1988), Murray and Kelton (1988b)
Deligéniil (1987)

Welch (1982)
Schruben (1981, 1982), Schruben et al. (1983), Goldsman et al. (1994),

Vassilacopoulus (1989)

Analytical techniques

Kelton and Law (1983), Asmussen et al. (1992), Gallagher et al. (1996),

White (1997), Spratt (1998), White et al. (2000)

divided into three broad categories; (1) general
studies, (2) intelligent initialization methods, and
(3) truncation heuristics. Table 1 summarizes the
literature on initial transient problem, which we
discuss now in the order presented in the table.

2.1. General literature

Gafarian et al. (1978) and Wilson and Pritsker
(1978a) review various truncation heuristics, and
find that the methods available at that time are
rather unsatisfactory. Wilson and Pritsker
(1978b) state that choosing an initial state near
the mode (rather than the mean) of the steady-
state distribution produces favorable results.
Another survey is provided by Chance (1993).
Fishman (1972) uses a first-order autoregressive
scheme to demonstrate that initial data truncation
reduces bias, but increases variance. Some authors
suggest that—for special systems—retaining the
whole sequence would minimize the mean-
squared-error (MSE) (Kleijnen, 1984). Indeed,
Law (1984) proved that—for simple queuing sys-
tems—MSE is minimized by using the whole
series. Nelson (1992) suggests using fewer replica-
tions and longer runs per replication in the pres-
ence of initialization bias and a tight budget.

Cash et al. (1992) assess the tests for initial bias
detection provided by Goldsman et al. (1994) on
analytically tractable models. They report that

these tests are powerful when the bias is severe at
the beginning of the sequence, and dies out
quickly. However, if the bias decays slowly, it be-
comes harder for the tests to detect the bias. Ma
and Kochhar (1993) compare the test procedures
of Schruben (1982) and Vassilacopoulus (1989),
using sequences with known transient distribu-
tions. Their results indicate that both tests are
powerful, but they recommend Vassilacopoulus’s
test due to its ease of implementation. We refer
to Nelson (1990) for variance reduction techniques
(which is a broad area in itself) in the presence of
initialization bias.

2.2. Intelligent initialization

Intelligent initialization simply uses the idea of
starting a simulation in a state that is representa-
tive of the system’s steady-state. This approach
can be implemented in two ways. The first is called
deterministic (fixed) initialization, where the initial
conditions are chosen as constant values, such
as the mean or the mode of the steady-state distri-
bution. A second way, called stochastic (random)
initialization, tries to estimate the steady-state
probability distribution of the process, possibly
from pilot runs, and then uses this estimated distri-
bution to sample the initial conditions.

Madansky (1976) shows that initializing an
M/M/1 queue in empty and idle state, which is
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the mode of the number-in-system distribution,
minimizes the MSE of the point estimate. For
M/M]/s, M/E,,/1, M/E,,/2, and E,,/M/2 queues,
Kelton and Law (1985), Kelton (1985), and Mur-
ray and Kelton (1988a) find that initializing in a
state at least as congested as the steady-state mean
(as opposed to the mode) induces shorter transient
periods.

Kelton (1989) uses the idea of random initiali-
zation and finds that it reduces the severity and
duration of the initial transient period, compared
with starting in a fixed state. He recommends ini-
tializing simulations stochastically when having
relatively short runs. However, Murray (1988)
emphasizes the difficulties of applying this tech-
nique in many practical simulations. Also, Murray
and Kelton (1988b) use a first-order autoregressive
process to show that random initialization is effec-
tive in reducing bias. A similar approach is sug-
gested by Deligoniil (1987); however, this
approach starts with antithetic conditions rather
than random conditions.

2.3. Truncation heuristics

Truncation heuristics may be applied to any
simulation output sequence. The idea is to delete
some observations from the beginning of the se-
quence that do not represent the steady-state and
use only the remaining observations to estimate
the quantities of interest. However, truncation is
not an easy task at all. Given a biased sequence
due to initialization, deleting some initial data will
increase the accuracy of the point estimator; on the
other hand, extensive truncation would imply a
loss of precision. Therefore, users should carefully
consider the tradeoff between accuracy and preci-
sion. Nevertheless, these methods are more widely
accepted than intelligent initialization techniques,
due to their simplicity. Truncation heuristics can
further be classified as those that directly suggest
a truncation point, and those that recursively ap-
ply hypothesis testing to detect initialization bias.

One of the simplest and most widely used tech-
niques for determining a truncation point is a
graphical procedure due to Welch (1982)—sum-
marized in Law and Kelton (2000)—which is
based on making several independent replications

and averaging across replications. Further reduc-
tion in the variability of the plot can be achieved
by moving averages. When the resulting statistics
are plotted, the truncation point is chosen to be
the point where the graph flattens out.

Schruben (1982) develops a very general proce-
dure for univariate output based on standardized
time-series. This procedure is the basic building
block of techniques discussed by Schruben et al.
(1983) and Goldsman et al. (1994), which we call
repetitive hypothesis testing. Given a set of data,
the user recursively deletes some data from the
beginning, and checks for initialization bias until
the test concludes that no bias is left in the se-
quence. However, this might be a too time-
consuming task. Instead one can delete some data
via some other technique, and apply this test to
the remaining observations to determine if there
is any bias left. The theoretical framework for
the multivariate case is also given by Schruben
(1981). Furthermore, Vassilacopoulus (1989) also
proposes a hypothesis test to select the trunca-
tion point, but he uses a different test statistic,
which is easier to compute than Schruben’s
statistic.

Kelton and Law (1983) develop an algorithm
for simultaneously choosing the truncation point
and the run length. Their algorithm is based on lin-
ear regression and worked well for a wide variety
of stochastic models. However, a practical draw-
back of the algorithm is that it requires the analyst
to set several parameters. Those authors also sug-
gest to start in an undercongested state rather than
in an equally overcongested state.

Asmussen et al. (1992) propose several algo-
rithms. They also prove that there does not exist
a universally satisfactory means of detecting sta-
tionarity in a stochastic sequence—without some
restrictions on the class of simulations to be con-
sidered. Gallagher et al. (1996) use a Bayesian
technique called Multiple Model Adaptive Estima-
tion (MMAE) with three Kalman filters. They se-
lect a truncation point when the MMAE mean
estimate is within a small tolerance of the assumed
steady-state.

Recently, White (1997) proposed a truncation
heuristic named the Marginal Confidence Rule
(MCR). With almost no modification, White
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et al. (2000) renamed it the Marginal Standard
Error Rule (MSER). They compare this rule to
several other heuristics; their results indicate that
a variant of MSER (namely, MSER-5 due to
Spratt, 1998) dominates other rules. Claimed
advantages of this new rule are its ease of under-
standing and implementation, inexpensive compu-
tation, efficiency in preserving representative
simulation data, and effectiveness in mitigating
the initial bias. We use this new rule in the next
sections.

3. Model building, data collection, and
output data analysis

We program our simulation models in Auto-
Mod version 9.1 (1999). Some of our analyses have
been programmed in MATLAB version 5.3 (1995).
We selected the time-in-system statistic for our
analyses. We used five independent replications,
each replication having 30,000 observations. This
run length was determined based on pilot runs (it
is long enough to allow the rarest events to occur
at least 30 times in the most extreme case). These
observations are then batched into groups of five.

We use two truncation heuristics to determine
the length of the transient period: the cumulative
averages plot (as a graphical approach) and the
MSER (as a quantitative method). Instead of
cumulative averages plot, one can think of using
Welch’s technique due to its popularity. However,
Fig. 1 shows that these two techniques do not pro-
duce significantly different results. Besides, Welch’s
technique requires the analyst to decide on a win-

300

300

dow size (w) by trial-and-error, which makes it
practically less applicable.

We start the cumulative averages plot by calcu-
lating the cumulative average (X;):

1<
Xk:%;X,- fork=1,2,...,n,

where {X,i=1,2,...,n} is the given sequence.
Then, X, for k=1,2,...,n is plotted against k;
in our case n = 6000. A truncation point, d, is se-
lected visually such that the curve seems to become
nearly horizontal. In Fig. 1(a), we see that truncat-
ing 300 observations would be enough in either
case (the outliers issue will be discussed in more de-
tail at the end of this section).

The MSER heuristic, on the other hand, deter-
mines the truncation point by minimizing the stan-
dard error (s.c.)

2
Snfd
n—d

where S2_ is the sample variance of the remaining
sequence (n is still the number of observations in
the original sequence). The idea is to delete obser-
vations one at a time from the beginning of the
sequence, and calculate s.e. for the remaining se-
quence. Once all s.e.’s are calculated, it is suggested
to choose the end of the transient period such that
s.e. 1s minimized. Since we batch the original data
into groups of 5, we actually apply the rule called
MSER-S.

The most important advantages of the MSER
are that it provides quantitative values for the
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Fig. 1. Cumulative averages plot vs. Welch’s graph.
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truncation point; it is easy to compute—even for
very large samples. However, our experiences re-
veal two problems. The first one is theoretical, in
the sense that the method makes use of the sample
variance, S-_,, which is calculated from a corre-
lated sequence. It is well-known that autocorrela-
tion might induce significant bias in the variance
estimation, which means s.e.’s will also be biased;
see Law and Kelton (2000, pp. 530-531). At first
sight, this might provide some skepticism regard-
ing the credibility of the heuristic. However, White
(2001) states that the sole purpose in using the
sample variance is to estimate the homogeneity
of the truncated series. In other words, the MSER
tries to observe the behavior of the standard error
estimate, and detect the truncation point from this
behavior. The underlying assumption—which is
not explicitly stated by White—is that the behavior
of the s.e. will approximately remain the same—
regardless of autocorrelation in the sequence.
The second problem is a practical one: the tech-
nique is very sensitive to outliers (extreme values).
For instance, the sequence used in Fig. 1 contains
eight extreme data points among which the small-
est one is approximately 43 times larger than the
mean of the sequence. We have observed in Fig.
1(a) that cumulative averages plot was not affected
much by the existence of these outliers. However,
the MSER-5 applied to the whole sequence sug-
gests truncating 4876 observations, whereas delet-
ing these extreme values from the sequence would
change the truncation point drastically to 339.
This shows that unless extreme values are carefully

257

deleted from a sequence, MSER can display a
poor performance.

4. Experimental design

We consider two types of manufacturing sys-
tems: (1) serial production lines and (2) job-shops.
Both types are extensively studied in the literature
(see Dallery and Gershwin, 1992).

4.1. Serial production lines

Fig. 2 shows a typical serial production line.
The system consists of N serially arranged
machines M;, i=1,2,...,N, with buffers B;, i =
1,2,...,N — 1, between two consecutive machines.

This system is an asynchronous, saturated
system with machines having mutually indepen-
dent processing times. Each machine can process
at most one unit at a time, and has an internal
storage capacity for that unit. All buffers in the
system have finite storage capacities. Hence,
blockages and starvation may occur; however,
the first machine never gets starved, and the last
machine never gets blocked. Machines are subject
to random failures with independent inter-failure
and repair times. No reworks or scraps are
allowed. There is only one type of product; it
visits all the N machines in the system in the given
sequence. We assume empty and idle initial
conditions in the simulation of this system.

()

B>

—> —>{ Bmi

(D

Fig. 2. N-staged serial production line.

Fig. 3. N-machine job-shop production system.
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Table 2

Experimental factors and levels for the serial-line system

Factors Levels

System size 3,9

Load type Uniform, bottleneck (10%), bottleneck (20%), bottleneck (99%)
Load level 1,09, 0.5

Processing time coefficient of variation 0.3,2.5

Processing time variance 0.3,2.5

Machine type

No-breakdown, unreliable (90% availability, FBSR?®), unreliable (90% availability,

RBLRP), unreliable (80% availability, FBSR), unreliable (80% availability, RBLR),
unreliable (50% availability, FBSR), unreliable (50% availability, RBLR)

Buffer capacity 0, 10, 100

% FBSR: Frequent breakdown short repair time.
® RBLR: Rare breakdown long repair time.

Table 3

Experimental factors and levels for the job-shop system

Factors Levels

System size 3,9

Load type Uniform, bottleneck (5%), bottleneck (10%)
Load level 80%, 50%

Processing time coefficient of variation 0.3, 1.0

Processing time variance 0.3, 1.0

Machine type

No-breakdown, unreliable (90% availability, FBSR?),
unreliable (90% availability, RBLR)

% FBSR: Frequent breakdown short repair time.
® RBLR: Rare breakdown long repair time.

4.2. Job-shop production system

Fig. 3 shows a typical job-shop. This system
shares many characteristics with serial-lines. The
difference is that it has no intermediate storage
buffers. A part still must visit all the machines.
However, its processing sequence is not known in
advance, but is determined randomly. Each part
can visit each machine exactly once; each machine
is equally likely to be selected in the sequence. The
arrival pattern of parts to the system is a Poisson
process; hence every machine in this system is al-
lowed to starve. A newly arrived part waits in
the system, until the first machine in its processing
sequence becomes available for processing.

4.3. Experimental factors

Tables 2 and 3 present the experimental factors
and their levels for our serial-lines and job-shops.

Lognormal distribution (a continuous skewed dis-
tribution) is chosen to represent the processing
times of machines, as is often the case in practice
(Law and Kelton, 2000, p. 678). When experiment-
ing with unreliable machines, we assume the up-
time and downtime distributions to be gamma
with shape parameter 0.7 and 1.4, as suggested
by Law and Kelton (2000, pp. 681-682). The scale
parameters are then calculated as discussed in
their book. We now discuss the factors and their
levels.

System size: Number of machines in the system.
It has two levels for both systems.

Load type: Tt is the distribution of the total
workload of the system across the machines. If
we have 2n + 1 machines in our system and the to-
tal workload is K time units per job, then

o for uniform load type, every machine works
(2n + 1)/K time units on each job (on the
average),
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e for x% bottleneck load type, x% of the uniform
work times of the first and last » machines is
transferred to (n + 1)th machine, so that
(n+ 1)th machine becomes the bottleneck
machine of the system.

For instance, consider a 3-stage serial line with
a total workload of 3 minutes per job. For the uni-
form version of this system, we split the total
workload evenly between the machines, so that it
takes 1 minute in each of the three machines to
process the job. For the 10% bottleneck version
of this system, the average processing time of a
job in the first and the third machines is 0.9
(=1 —0.1 x 1) minutes, and the average process-
ing time of a job in the second machine is 1.2
(=1+0.1x1+0.1 x1) minutes.

In a way, load type also determines if there ex-
ists a bottleneck in the system. Only one machine
is allowed to be the bottleneck; it is always the ma-
chine that is in the middle of the part’s processing
sequence. The total workload of the system is kept
constant; only the distribution of loads among
machines is changed as discussed above. The
magnitude of bottleneck is also investigated by
changing its level from 10% to 20% to 99%. Since
the simulation of job-shops requires considerable
amount of runtime, the magnitude of bottleneck
is kept small (5% and 10%) for these system. This
factor has four and three levels for serial-lines and
job-shops, respectively.

Load level: Average amount of work load in the
system. For serial-lines, it has three levels, and is
adjusted by the mean processing times of ma-
chines. Smaller values indicate highly loaded sys-
tems. For job-shops, it has two levels due to the
extensive runtime requirements; it is adjusted by
the arrival rate of parts. Larger values indicate
highly loaded systems.

We distinguish between two types of variability
measures; namely, the processing time’s variance
(PV) and coefficient of variation (CV), because
problems would arise in interpreting the results
for bottleneck systems. If the PV is kept constant,
then the non-bottleneck machines will have higher
CV, whereas the bottleneck machine will have
lower CV than their uniform counterparts. Similar
arguments can be given for the constant CV case.

Processing time coefficient of variation (CV): It
has a low and high level as is usually done in re-
lated studies (see, Erel et al., 1996). The high level
for the job-shop is chosen to be 1.0 instead of 2.5
due to long runtimes.

Processing time variance (PV): It has the same
levels as CV.

Machine type: It is the reliability of each ma-
chine. Besides reliability itself, its magnitude is also
investigated; we choose three levels for the long-
run availabilities of machines for the serial-lines.
But, due to long runtimes, only one availability
level is chosen for the job-shops. A further aspect,
the type of unreliability is also studied. Hopp and
Spearman (2000) show that—given the same avail-
abilities—a system experiencing frequent break-
downs but short repair times is preferable to a
system experiencing rare breakdowns but long
repair times. Thus there are seven levels for the
serial-lines and three levels for job-shops. Table 4
lists the parameter levels used for reliability.

Buffer capacity: This factor is investigated for
serial-lines only because of the no intermediate
buffer assumption in job-shops. It has three levels,
which are chosen considering the analytical results
found in Conway et al. (1987).

5. Results of simulation experiments

We start this section by explaining the syntax
and the structure used to present a large number
of results. Only a representative set of results will
be shown here due to space considerations (for de-
tailed results, see Sandikci and Sabuncuoglu, 2004).
Both the cumulative averages plot and the MSER
output are given in a single figure. The x-axis of
each figure is the number of data truncated,
whereas the y-axis is the time-in-system statistic.
Each figure includes three different plots, corre-
sponding to the cumulative averages plots for dif-
ferent designs. Each design is indicated by a
specific name, which is written close to the associ-
ated plot. The numbers in parentheses, next to the
design names, indicate the truncation points
according to MSER.

Table 5 explains the meaning of the associated
names for the serial-lines. For instance, design
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Table 4
Breakdown scenarios
Availability MTBF* MRT® TST® Breakdown type
90% 9 1 10 Frequent breakdown short repair time
90 10 100 Rare breakdown long repair time
80% 8 10 Frequent breakdown short repair time
80 20 100 Rare breakdown long repair time
50% 5 5 10 Frequent breakdown short repair time
50 50 100 Rare breakdown long repair time
# MTBF: Mean time between failures (in hours).
® MRT: Mean repair time (in hours).
¢ TST: Total system time (in hours).
Table 5
Design codes for serial production lines with no breakdowns
System size Proc. time dist. Variability Workload Dummy
3> = 3 machines ‘1’ = Lognormal 1T =03(CV) ‘1’ = uniform(1) 1T=0
‘9> = 9 machines 2 =25(CV) 2’ = bottleneck(1, 10%) 2 =10
‘6’ = 0.3 (PV) 3’ = bottleneck(1,20%) ‘4 =100
‘T =25(PV) ‘4 = uniform(0.9)

‘5* = bottleneck(0.9, 10%)
‘6> = bottleneck(0.9, 20%)
“7’ = uniform(0.5)

‘8’ = bottleneck(0.5, 10%)
‘9’ = bottleneck(0.5, 20%)
‘a’” = bottleneck(1, 99%)
‘D’ = bottleneck(0.9, 99%)
‘c” = bottleneck(0.5, 99%)

Table 6
Unreliable design codes for both serial line and job-shop
experiments

Design Avail. Uptime dist. Downtime Breakdown
dist. type

xxxxx1221  90% Gamma Gamma FBSR*
xxxxx1222 90%  Gamma Gamma  RBLR"
xxxxx1223  80% Gamma Gamma FBSR
xxxxx1224  80% Gamma Gamma RBLR
xxxxx1227  50% Gamma Gamma FBSR
xxxxx1228  50% Gamma Gamma RBLR

# FBSR: Frequent breakdown short repair time.
® RBLR: Rare breakdown long repair time.

31224 in serial lines (see top plot in Fig. 4(b))
corresponds to the 3-machine serial-line having
lognormal processing time distributions with a
CV of 2.5, a 10% bottleneck with a workload of
3 minutes-per-job, a buffer capacity of 100, and
no breakdowns.

In Table 6, we appended 4 digits to the previous
design names to identify the unreliable versions
(systems with breakdowns). For instance, the
unreliable version of design 31224 in serial lines,
which is 90% available with frequent breakdowns
but short repair times, is named as 312241221.

5.1. Results for serial production lines

5.1.1. Buffer capacity

The results show that increasing buffer capacity
increases the length of the transient period (see Fig.
4(a), (b), and (p)). This is an interesting result since
buffers usually have positive affects on perfor-
mance measures. A system with more buffer spaces
typically needs more time to fill-up. As an exam-
ple, consider Fig. 4(b). The cumulative averages
plots suggest the transient period as the 2000,
2500, and 4000 observations for designs 31221,
31222, and 31224, respectively. The buffer
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Fig. 4. Experimental results for serial lines; the numbers in parentheses are truncation points according to MSER; the differing
parameters are indicated in italics in each figure; the three levels of these parameters represent the plots in a bottom to up fashion—e.g.,
in (a) the buffer capacity in designs 31121 (bottom plot), 31122 (middle plot), and 31124 (top plot) are 0, 10 and 100, respectively.

capacities in these designs increase from 0 to 10 to
100, respectively. The truncation points found by

MSER for these designs are 2302, 2304, and
5970, respectively, which also comply with the
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Fig. 4 (continued)

results of the cumulative averages plots. The same
observation holds for other serial-line designs (see

the many results in Sandikci and Sabuncuoglu,

2004).
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5.1.2. Variability (CV, PV)

As expected, increasing processing time variabil-
ity measured by CV or PV significantly increases
the length of the transient period. The higher this
variability, the higher the overall system variability
is, the more coupling events between machines
(i.e., interaction and interdependency between sta-
tions in terms of starvation and blocking), hence
the longer the transient period. This effect can be
viewed by comparing per row plots in Fig. 4(a)
and (b), (e) and (f), (k) and (1), (m) and (n). Con-
sider, for instance, Fig. 4(e) and (f). According to
the cumulative averages plot, the system with a
high load level in the low variable case (design
31684) reaches steady-state at the 350th observa-
tion, whereas the corresponding system in the
highly variable case (design 31784) reaches stea-
dy-state at the 1000th observation. MSER results
comply with these findings: truncate 237 and
1187 observations, respectively. The same behav-
ior is observed in all other designs.

5.1.3. System size

Increasing system size significantly increases the
length of the transient period (compare Fig. 4(a)-
(p)). The design 31122 in Fig. 4(a), for instance,
reaches steady-state at the 7th observation, whereas
its counterpart in Fig. 4(p), i.e., design 91122,
reaches steady-state at the 121st observation. The
same result is observed in all other designs.

This effect is mainly due to more coupling
events in larger systems; it can also be explained
by the following analogy. The process of achieving
steady-state can be viewed as heating a building by
several stoves. The length of the transient period is
the time required to warm-up all the stoves to heat
the entire building. The larger the building, the
more stoves, hence the more energy or time is
needed. Short lines resemble small buildings.

5.1.4. Load level
We begin this section with two observations:

Observation 1: “The buffers in a highly loaded sys-
tem fill up faster since the system processes more
parts per unit time. This causes a shorter transient
period.”

Observation 2: “The increase in load level causes
an increase in the congestion level of the system,
which results in more interactions among system
entities, more coupling events, and more variabil-
ity. And this causes a longer transient period.”

Note that MSER results are more useful in mak-
ing comparisons for this factor. The results are ana-
lyzed for two cases: low and high variability.

The results in the low variability case (either
measured by CV or PV) indicate that increasing
load level increases the length of the transient period
very slightly. For the low CV case, we observe this
effect by comparing the plots in Fig. 4(c). MSER
suggests to truncate 41, 45, and 74 observations
for designs 31134, 31164, and 31194, respec-
tively, which correspond to systems with a load le-
vel of 3, 2.7, and 1.5 minutes-per-job. The same
behavior is observed for the low PV case, as shown
in Fig. 4(e). Clearly, Observation 2 outweighs
Observation 1 in the low variability case.

The results in the high variability case differ with
respect to the type of variability measure. In the
case of high CV, the length of the transient period
decreases significantly as the load level decreases
from 3 to 2.7 to 1.5 minutes/job (see Fig. 4(d)—
truncation point decreases from 5970 to 3044 to
464, respectively). Observation 1 shows its effect
in this case. More importantly, increasing the load
level causes an increase in the variability of the sys-
tem via increased congestion, but a dominating de-
crease in the PV is attained since we kept CV
constant. This is the main cause of the decrease
of the transient period. However, in the case of
high PV, no change has been realized in the tran-
sient period with respect to load level (see Fig.
4(f)). Keeping the variance constant at its high le-
vel (2.5) dominates every other effect in the system,
so the same transient period results. Similar results
hold for other designs.

5.1.5. Load type

We start this section with an example. A no-
breakdown serial-line containing three machines
with mean processing times given as 1-1-1 min-
utes/job is to be compared with its 99% bottleneck
counterpart. To form the bottleneck, we need to
transfer 99% of the work in the Ist and 3rd
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machines to the 2nd machine, which produces a
system with mean processing times given as 0.01-
2.98-0.01 minutes/job. The processing times in
the 1st and 3rd machines are small when compared
with that of 2nd machine, so they may be ne-
glected. This leads to the following.

Observation 3: ““As the work is transferred to a sin-
gle machine from other machines, the system can
be viewed as getting smaller in size. Considering
the results of Section 5.1.3, the length of the tran-
sient period is expected to decrease as the magni-
tude of the bottleneck is increased—given a
constant workload system.”

Again, the results are analyzed for two cases:
low and high variability.

In the case of low variability (either measured by
CV or PV), the length of the transient period de-
creases with the increase in the magnitude of the bot-
tleneck (see Fig. 4(g) and (i) for low CV and low PV
cases, respectively). For the low CV case, MSER
suggest truncating 271, 41, and 21 observations as
the magnitude of the bottleneck increases from
10% to 20% to 99% in these designs. Hence, the re-
sults are consistent with Observation 3. Remember-
ing the stove analogy, we conclude that heating the
biggest stove in the building is more important
than heating the smaller ones to heat the entire
building.

The results in the high variability case differ with
respect to the type of variability measure. In the
case of high CV (see Fig. 4(h)) results indicate a
significant increase in the length of transient period
(464 to 1187 to 5999) with respect to the increase in
the magnitude of bottleneck (10% to 20% to 99%).
Note that to keep CV constant, we increase the
PV of the bottleneck machine. It was found in Sec-
tion 5.1.2 that the increase in variability signifi-
cantly increases the transient period. And it turns
out that, in the case of high CV, the effect of var-
iability dominates the effect discussed in Observa-
tion 3. However, in the case of high PV, no
change has been realized in the transient period with
respect to load type (see Fig. 4(j)). The variance
(2.5) is high enough to compensate for any change
in transient period that may be caused by the
change in system size. Similar results are observed
for other designs.

5.1.6. Machine type

Recall that this factor investigates the effect of:
(i) the existence of unreliability, (ii) the magnitude
of unreliability, and (iii) type of unreliability. The
results in each category are given for two cases:
low and high variability.

We start with the first category: existence of
unreliability. In the case of high variability (either
measured by CV or PV) length of transient period
is not affected by unreliable machines; see Fig.
4(1). The following analogy would explain this re-
sult. The variability of a system can be viewed as
the waves of a sea. A highly variable system resem-
bles as a very wavy ocean. Hence waves that are
generated by an artificial source will have no effect
in the ocean unless the source is very powerful. By
allowing the machines to breakdown, we are intro-
ducing additional variability to the system. How-
ever, the variability introduced by breakdowns is
not much compared with the original variability
of the system in the case of high CV. Hence, we
do not observe any change in the transient period
for high variability.

Fig. 4(k) shows that allowing breakdowns in-
creases the length of the transient period in the
low variability case. MSER suggests truncating
33 observations for the no-breakdown design
(31112), whereas 103 and 107 observations are
truncated for its 50% available frequent-break-
downs-short-repairs (FBSR) and rare-break-
downs-long-repairs (RBLR) counterparts (designs
311121227 and 311121228, respectively). The
same types of breakdown scenarios with 90%
availabilities for design 31134 are shown in
Fig. 4(o). This shows that the transient period
increased only for the RBLR case, whereas it de-
creased for the FBSR case. Therefore, we conclude
for the low variability case that the type and mag-
nitude of unreliability have interacting effect on
the transient period.

Next, we consider increasing the magnitude of
unreliability from 90% availability to 80% and fur-
ther to 50%. For the high variability case, the CV
of processing times is the dominant factor—as dis-
cussed earlier (see Fig. 4(n)). Hence, there is no
change in the length of the transient period. How-
ever, in the low variability case, there is an increase
in the length of transient period as we move from
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Table 7
Effect of utilization on the length of the transient period

Design Average Length of Change Change

o pr in p in T,
31121 0.753 5 - -
31124 0.814 271 Increase Increase
31181 0.864 5 Increase No change
31221 0.346 2302 Decrease Increase
31llal 0.356 2 Decrease Decrease

@ Utilization.
® Transient period.

90% available to 50% available ones, which is due
to the increase in the variability introduced by
breakdowns. That is, the more breakdown events
occur, the higher variability is.

Finally, we consider the type of breakdowns. The
results indicate that in the high variability case there
is no change in the length of the transient period for
FBSR and RBLR (designs 312121227 and
312121228 in Fig. 4(1)). However, for the low var-
iability case, the results indicate that rare but long
breakdowns attain a longer transient period than fre-
quent but short breakdowns (see Fig. 4(k) and (0)).

5.1.7. Utilization

Although not previously listed among the
experimental factors, we also studied the relation-
ship between the length of the transient period and
utilization of the system. The results indicated that
there is no direct relation between these two mea-
sures. In some cases it increases, whereas it de-
creases in other cases (Table 7).

5.2. Results for job-shops

Since many of the results comply with the
serial-line results, we will not give any figures for
these systems; we shortly state the major results
(for details see Sandikci and Sabuncuoglu, 2004):
(i) increasing variability of the processing times
significantly increases the length of the transient
period, (ii) increasing system size increases the
length of transient period, (iii) increasing load level
causes a significant increase in the length of the
transient period, (iv) introducing bottleneck ma-
chines increases the length of the transient period
provided constant workload, (v) allowing break-

downs increases the length of the transient
period, (vi) frequent but short breakdowns attain
shorter transient period than rare but long
breakdowns.

Although not listed among the experimental
factors, we also analyzed the effect of finite buffer
capacities in job-shops by relaxing the no interme-
diate buffer assumption and putting capacitated
buffers with capacities of 10. The results indicate
that systems with finite buffer capacities attain
longer transient period than those with infinite
buffer capacities.

6. Conclusions

In this paper, we studied the behavior of the
initial transient period for non-terminating simu-
lations of serial production lines and job-
shops. We present the following conclusions and
recommendations:

(1) As the variability of processing times in-
creases, the transient period also increases—
both for serial-lines and job-shops. In fact,
variability is the most significant factor. If a
particular system has highly variable process-
ing times (i.e., CV > 1), then the analyst
should make fairly long runs to obtain
enough observations from the steady-state
distribution. We recommend running simula-
tions long enough so that the ratio of the
length of the transient period to the total
run length does not exceed 25%.

(2) Increasing the system size increases the length
of transient period. In our experiments, the
system size is changed by changing the num-
ber of machines.

(3) The system load level has complicated effects
on the transient period. For job-shops,
increasing the load of the system increases
the length of the transient period. For serial-
lines, it increases the transient period only in
the case of low variability, but it does so only
slightly. However, the behavior changes for
high variability cases. The transient period
decreases in the high CV case, whereas there
is no change in the high PV case.
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(4) The load type has complicated effects. In
job-shops, forming bottleneck machines and
further increasing the magnitude of the
bottleneck simply increases the length of the
transient period. However, in serial-lines,
introducing a bottleneck increases the tran-
sient period only in the high CV case (no
change in the high PV case). In the low vari-
ability case (either low CV or low PV), the
transient period decreases with increasing the
magnitude of bottleneck, but only slightly.

(5) The existence of unreliable machines in a job-
shop increases the length of transient period.
In highly variable serial-lines, however, the
transient period is neither affected by the
existence of unreliable machines nor by
the magnitude and type of unreliability. For
the low variable serial-lines, the type and
magnitude of breakdowns turns out to be
more effective than just the existence of break-
downs. Increasing the magnitude of un-
reliability increases the transient period.
Moreover, rare but long breakdowns cause a
longer transient period than frequent but
short breakdowns.

(6) The transient period increases with increased
buffer capacities in serial lines, and with the
introduction of capacitated buffers in job-
shops.

A system having more variable output se-
quences will clearly have longer transient periods.
Thus, simulation analysts should first investigate
the change in the variability of output sequences.
If any of the system’s factors are suspected to
introduce additional variability into a system, then
a longer transient period should be expected. For
instance, including unreliable machines in a system
increases variability; however, this increase de-
pends on the magnitude and type of unreliability.
If alternative designs show similar variability but
one of them has more entities than the other
(e.g., more machines, or complicated material han-
dling systems, etc.), then the analysts should base
their decision about the length of transient period
on the system with more entities. The degree of
coupling in manufacturing simulations is an
important factor that affects the transient period.

We also observed that, in most cases, both
cumulative average plots and the MSER results
are comparable. Cumulative averages usually sug-
gest longer transient periods than MSER. Since
the MSER is an objective criterion that yields re-
sults complying with one of the most frequently
used graphical techniques, and is very simple and
computationally efficient, we recommend this heu-
ristic. However, special attention must be paid to
remove any outliers from the sequence, which
otherwise would lead the analysts to wrong con-
clusions. Moreover, it would be preferable—if
there is enough time—to use both techniques.

A possible direction for future research is the
study of the transient period in more complicated
manufacturing simulations (e.g., automated-
guided vehicles (AGVs), automated storage-retrie-
val systems (AS/RSs), etc.) and non-manufacturing
simulations. It would be very useful for simulation
practitioners if researchers could come up with an
analytical expression that asks the user to enter
system specific parameter values, which then
gives the length of transient period. However,
the authors have very little hope that this will
happen.
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