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Abstract

Despite a growing interest in channel coordination, no detailed analytical or numerical results measuring its impact on
system performance have been reported in the literature. Hence, this paper aims to develop analytical and numerical results
documenting the system-wide cost improvement rates that are due to coordination. To this end, we revisit the classical
buyer–vendor coordination problem introduced by Goyal [S.K. Goyal, An integrated inventory model for a single-supplier
single-customer problem. International Journal of Production Research 15 (1976) 107–111] and extended by Toptal et al.
[A. Toptal, S. Çetinkaya, C.-Y. Lee, The buyer–vendor coordination problem: modeling inbound and outbound cargo
capacity and costs, IIE Transactions on Logistics and Scheduling 35 (2003) 987–1002] to consider generalized replenish-
ment costs under centralized decision making. We analyze (i) how the counterpart centralized and decentralized solutions
differ from each other, (ii) under what circumstances their implications are similar, and (iii) the effect of generalized replen-
ishment costs on the system-wide cost improvement rates that are due to coordination. First, considering Goyal’s basic
setting, we show that the improvement rate depends on cost parameters. We characterize this dependency analytically,
develop analytical bounds on the improvement rate, and identify the problem instances in which considerable savings
can be achieved through coordination. Next, we analyze Toptal et al.’s [A. Toptal, S. Çetinkaya, C.-Y. Lee, The
buyer–vendor coordination problem: modeling inbound and outbound cargo capacity and costs, IIE Transactions on
Logistics and Scheduling 35 (2003) 987–1002] extended setting that considers generalized replenishment costs representing
inbound and outbound transportation considerations, and we present detailed numerical results quantifying the value of
coordination. We report significant improvement rates with and without explicit transportation considerations, and we
present numerical evidence which suggests that larger rates are more likely in the former case.
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786 A. Toptal, S. Çetinkaya / European Journal of Operational Research 187 (2008) 785–805
1. Introduction and related literature

The buyer–vendor coordination problem is one of the classical research areas in the multi-echelon inven-
tory literature. A fundamental stream of research in this area, known as centralized modeling, recommends
integrating and solving the decision problems of the buyer and the vendor together, e.g., [2,4–6,8]. Although
this approach provides the best result in terms of total system-wide profit/cost, it may not be feasible or desir-
able in many practical cases due to incentive conflicts. The alternative approach, known as decentralized mod-

eling, suggests that the buyer and the vendor solve their decision problems independently of each other.
However, the total system profits resulting from the centralized approach are superior to those resulting from
the corresponding decentralized approach.

In other words, decentralized models often result in lost profits for the system when compared to centralized
models. As a remedy, another line of research in the literature proposes an alternative approach that relies on
using the profit/cost gap between the centralized and decentralized approaches as an inducement to improve
decentralized solutions, e.g., [9,10,12]. This alternative approach, known as channel coordination, requires the
decentralized solution to be improved in a way that (i) it results in the same values for the decision variables
as the centralized solution, and (ii) it suggests a mutually agreeable way of sharing the resulting profits. The shar-
ing can be done by means of quantity discounts, rebates, refunds, and fixed payments between the parties, or
some combination of these. All of these methods represent different forms of incentive schemes, or so-called coor-

dination mechanisms, whose terms can be made explicit under a contract. Consequently, the output of channel
coordination, i.e., the coordinated solution, combines the benefits of both centralized and decentralized solutions.

Despite a growing interest in channel coordination over the past few decades [1,4,9,10,15,12,14], no detailed
analytical or numerical results measuring its impact on system performance have been reported in the literature.
For this reason, we revisit the classical buyer–vendor coordination problem introduced by Goyal [4] (called
Goyal’s Problem from now on) and extended by Toptal et al. [13]. Goyal’s basic setting assumes that both the
buyer and the vendor operate under the assumptions of the deterministic constant demand EOQ model with
the traditional inventory holding and fixed replenishment costs. Toptal et al. [13] take a broader view of this set-
ting to consider generalized replenishment cost structures representing inbound and outbound transportation
considerations. More specifically, Toptal et al. [13] first consider the case where the vendor’s replenishment cost
includes a stepwise inbound transportation cost component, representing the cargo cost (called Problem I from
now on). They then extend the problem setting to consider the case where both the vendor and the buyer are subject
to stepwise transportation costs (called Problem II from now on). Clearly, Goyal’s Problem is a special case of
Problems I and II, and the current paper is aimed at providing analytical and numerical results documenting the
system-wide cost improvement rates that are due to coordination in all of these three problem settings . Since
Toptal et al. [13] focus on centralized models only and Goyal [4] does not investigate channel coordination mech-
anisms, here we investigate the counterpart decentralized models, develop effective channel coordination mech-
anisms, and quantify the value of channel coordination through a comparison of the counterpart centralized and
decentralized solutions of Problems I and II as well as Goyal’s Problem.

Making an analytical comparison of the centralized and decentralized solutions for Goyal’s Problem for
certain parameter ranges, we are able to develop analytical results1 representing the improvement rates result-
ing from channel coordination. These analytical results are useful in characterizing the relationship between
the improvement rates and the underlying model parameters that have a direct impact on the magnitude of
these improvements. Our analytical results reveal two important insights. First, the value of coordination
depends on two important ratios that can be expressed in terms of the critical cost parameters. Secondly,
the value of coordination does not depend on the demand rate, i.e., the demand rate is not a critical model
parameter for our purposes. Furthermore, by developing bounds on the improvement rates, we identify the
problem instances for which considerable savings can be achieved through coordination. However, unlike
Goyal’s Problem, insightful analytical results, representing the improvement rates due to channel coordina-
tion, cannot be obtained for Problems I and II, i.e., under generalized replenishment costs. Hence, in these
cases, we rely on a detailed numerical study for quantifying the value of coordination.
1 See Corollary 1 and Proposition 5.
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In summary, by analyzing (i) how the centralized and decentralized solutions differ from each other, and (ii)
under what circumstances their implications are similar, we quantify the value of coordination both analyti-

cally and numerically, with and without explicit transportation considerations. We report that the maximum
achievable improvement rates under coordination are greater under explicit transportation considerations,
i.e., under generalized replenishment costs, and we document that our analytical results for Goyal’s Problem,
i.e., the case without generalized replenishment costs, prove to be useful for a careful numerical investigation.

The remainder of the paper is organized as follows. The general problem setting is discussed next in Section
2 where a summary of the notation is also presented. Section 3 revisits Goyal’s Problem and provides an in-
depth analysis in the context of quantifying the value of coordination. Section 4 concentrates on the extended
setting with generalized replenishment cost structures, and develops specific results for quantifying the value of
coordination. Section 5 presents our numerical results and a summary of their interpretation and implications.
Section 6 concludes the paper.
2. General problem setting and notation

We use the index ‘‘w’’ to represent the parameters and decision variables of the vendor (warehouse) and ‘‘r’’
to represent the parameters and decision variables of the buyer (retailer). The buyer faces a constant demand
rate, denoted by D, over an infinite horizon; and, given the costs of inventory replenishment and holding for
both parties, the problem is to compute the minimum cost replenishment order quantities for the vendor and
the buyer so that the demand can be satisfied. The vendor’s and the buyer’s replenishment order quantities are
denoted by Qw and Qr, respectively. In this context, Qw represents the size of an inbound shipment for the
buyer–vendor pair whereas Qr represents the size of an outbound shipment. The buyer’s replenishment cycle
length, denoted Tr, is given by Qr/D. The vendor’s replenishment cycle length, denoted Tw, is given by
Tw = nTr where n is a positive integer denoting the number of buyer replenishments within a replenishment
cycle of the vendor. It follows that Qw = nQr. Notation associated with the cost parameters is introduced
in Table 1 which also includes a summary of the notation introduced so far and that will be used throughout
the rest of the paper.

Since the focus of the paper is on different replenishment cost structures, we denote the replenishment cost
of party j, where j = w,r, by CjðQjÞ which, naturally, is a function of Qj, the order quantity of party j. In gen-
eral terms, this function can be represented by
Table
Notati

i

j

n

n�i
Q�i
Gw(Qr,
Gr(Qr)
G(Qr,n

CjðQjÞ
Kj

Rj

Pj

hj

h 0

Qj

Tj

D

c

CjðQjÞ ¼ Kj þ
Qj

P j

� �
Rj; ð1Þ
1
on

Index referring to the modeling approach. i = d: decentralized, i = c: centralized
Index referring to the parties in the system. j = w: vendor, j = r: retailer
Number of buyer replenishments within a vendor replenishment cycle
(Tw = nTr, and thus Qr = Qw/n)
Optimum value of n using Modeling Approach i

Buyer’s optimum order quantity using Modeling Approach i

n) Vendor’s average annual cost function
Buyer’s average annual cost function

) System-wide cost function G(Qr,n) = Gw(Qr,n) + Gr(Qr)
Replenishment cost function of party j as a function of Qj

Fixed replenishment cost of party j

Per cargo/truck cost of party j

Per cargo/truck capacity of party j

Holding cost per-unit per-unit-time of party j

Echelon holding cost (h0 = hr � hw > 0)
Order quantity of party j

Replenishment cycle length of party j

Buyer’s/retailer’s demand rate
Vendor’s unit price without channel coordination
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where Kj, Rj, and Pj denote the fixed replenishment cost, per cargo/truck cost, and per cargo/truck capacity of
party j, respectively. Hence, the three settings of interest in this paper, i.e., Goyal’s Problem and Problems I
and II, can be represented by setting the parameters of functions CjðQjÞ, j = w, r, as follows:

• In Goyal’s Problem, both the buyer’s and vendor’s cargo costs are ignored, i.e., Rj = 0, j = w, r, or, equiv-
alently, Pj!1, j = w,r, so that each party incurs only a fixed cost given by Kj + Rj, j = w,r.

• In Problem I, the buyer’s cargo costs are ignored whereas the vendor’s cargo costs are modeled explicitly,
i.e., Rr = 0 (or, equivalently, Pr!1 so that the buyer incurs only a fixed cost given by Kr + Rr) whereas
Rw = R > 0 and Pw = P <1.

• In Problem II, both the buyer’s and vendor’s cargo costs are modeled explicitly under the assumption that
the per cargo costs and capacities of the individual parties are identical, i.e., Pj = P <1 and Rj = R > 0,
j = w, r.

Recalling that Qw = nQr, it is easy to show that the vendor’s, buyer’s, and system-wide average annual cost
functions can be expressed as
Table
Decen

Decen

Buyer’

min
s.t.
GwðQr; nÞ ¼ CwðnQrÞ
D

nQr

þ hw

ðn� 1ÞQr

2
; ð2Þ

GrðQrÞ ¼ CrðQrÞ
D
Qr

þ hr

Qr

2
; and ð3Þ

GðQr; nÞ ¼ CwðnQrÞ
D

nQr

þ hw

ðn� 1ÞQr

2
þ CrðQrÞ

D
Qr

þ hr

Qr

2
; ð4Þ
respectively. In the tradition of the classical channel coordination papers, e.g., [10,15], for our decentralized
models, we focus on the case where the buyer’s economic order quantity problem, i.e., the buyer’s subproblem,
is solved first. The formulations of the corresponding decentralized and centralized models are given in Table 2
where Q�d is the optimal solution of the Buyer’s Subproblem, as defined in Table 1.

As we have already mentioned, our analysis builds on an investigation of Goyal’s Problem which is dis-
cussed in detail below. Before concluding this section, we define
IR ¼ Total decentralized costs� Total centralized costs

Total decentralized costs

� �
� 100%; ð5Þ
so that IR represents the improvement rate resulting from channel coordination, and, hence, we use it for
quantifying the value of coordination for the problems considered in this paper.
3. Analysis of Goyal’s problem: Rw = Rr = 0

In this case, Expressions (2)–(4) reduce to
GrðQrÞ ¼
KrD
Qr

þ hrQr

2
and ð6Þ
2
tralized and centralized formulations

tralized model Centralized model

s subproblem Vendor’s subproblem

Gr(Qr) min GwðQ�d; nÞ min G(Qr,n)
Qr P 0 s.t. n: a positive integer s.t. Qr P 0

n: a positive integer
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GwðQr; nÞ ¼
KwD
nQr

þ hwðn� 1ÞQr

2
; and ð7Þ

GðQr; nÞ ¼
ðKw þ nKrÞD

nQr

þ ðnhw þ h0ÞQr

2
ð8Þ
and Goyal [4] provides the following solutions for the corresponding centralized and decentralized
formulations:

Solution to the Decentralized model
n�dðn�d � 1Þ 6 Kwhr

Krhw

6 n�dðn�d þ 1Þ; ð9Þ

Q�d ¼

ffiffiffiffiffiffiffiffiffiffiffi
2KrD

hr

s
: ð10Þ
Solution to the Centralized model
n�cðn�c � 1Þ 6 Kwh0

Krhw

6 n�cðn�c þ 1Þ: ð11Þ

Q�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðKr þ Kw=n�cÞ

n�chw þ h0

s
: ð12Þ
Using these earlier results, we first discuss the benefits due to coordination in this simplistic setting. We assume
that cD� GwðQ�d; n�dÞ > 0 so that the decentralized transactional setting makes economical sense for the ven-
dor, and the vendor seeks to improve his/her profit using the centralized transactional setting as a benchmark.

Utilizing Expressions 9,11,10,12, the following two propositions compare the optimum values of n and Qr

in the decentralized and centralized solutions of Goyal’s Problem. This comparison is important in developing
the analytical results for IR given by Expression (5) in which the centralized transactional setting is used as a
benchmark.

Proposition 1. The buyer’s optimum order quantity in the decentralized solution of Goyal’s Problem is less than

the buyer’s optimum order quantity in the counterpart centralized solution, i.e., Q�c > Q�d.

Proof. All proofs are presented in the Appendix. h

Proposition 1 implies that when cargo cost and capacity are ignored, the vendor should always encourage
the buyer to order more to coordinate the channel.

Proposition 2. The optimum value of n in the decentralized solution of Goyal’s Problem is greater than, or equal

to, the optimum value of n in the counterpart centralized solution, i.e., n�d P n�c .

Proposition 2 indicates that when cargo cost and capacity are ignored, the decentralized solution results in
more frequent dispatches to the buyer during the vendor’s replenishment cycle than does the centralized
solution.

The results presented in Propositions 1 and 2 can be interpreted as follows. The buyer prefers smaller, and,
hence, more frequent replenishments in the decentralized setting, probably because inventory holding at the
buyer is costly, i.e., hr > hw. Examining Expression (8) and using its similarity to the average annual cost func-
tion under the classical EOQ model, we can interpret (Kw/n) + Kr and nhw + h 0 as the ‘‘setup’’ and ‘‘per unit
per unit time holding’’ costs of the centralized decision maker, respectively. The centralized decision maker
prefers less frequent buyer replenishments, i.e., n�c 6 n�d, and, hence, we have ðKw=n�cÞ þ Kr P ðKw=n�dÞ þ Kr

and n�chw þ h0 6 n�dhw þ h0. This implies that the ‘‘setup’’ cost is larger whereas the ‘‘holding’’ cost is smaller
for the centralized decision maker so that a larger order quantity is preferable under n�c . That is, the discrep-
ancy between the preferable order frequencies of the centralized decision maker and the buyer, and the impact
of this discrepancy on the ‘‘setup’’ and holding’’ costs of the centralized decision maker lead to Q�c > Q�d.
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As we show later in the paper, Propositions 1 and 2 do not necessarily hold for Problems I and II. More
specifically, when the stepwise transportation costs are considered explicitly, it may be more cost effective to
replenish the buyer in full cargoes so that Q�c is an integer multiple of P whereas Q�d is not so that Q�c < Q�d, i.e.,
a full-truck-load (FTL) shipment may be preferable to a larger order quantity that constitutes a less-than-
truck-load (LTL) shipment. This is simply due to the fact that the underlying cost functions are discontinuous
under the general replenishment cost functions.

Based on Proposition 1, the channel coordination mechanism, i.e., the coordinated solution, outlined below
in Proposition 3 builds on the idea of wholesale price discounts that discourage the buyer from ordering small
quantities. More specifically, under this coordinated solution, the buyer is motivated to order the centralized
order quantity Q�c without exceeding the cost of his/her decentralized solution.

Proposition 3. Considering Goyal’s Problem, let
D ¼ GrðQ�cÞ � GrðQ�dÞ
D

:

Under a unit discount of D offered by the vendor for order sizes greater than or equal to Q�c , ordering Q�c units

minimizes the buyer’s average annual cost. Under this new pricing scheme, the buyer’s average annual cost does

not exceed GrðQ�dÞ, the vendor’s average annual profit is improved relative to the decentralized setting, and D < c.

We note that the efficiency of similar coordination mechanisms has been investigated in the literature for
Goyal’s Problem, e.g., see [9,11], and its variants, e.g., the case where the inventory holding costs are ignored
[10], the case where the vendor’s production rate is finite [1], the case of price sensitive demand [15], and the
case where information asymmetry considerations are taken into account [3]. With the exception of the results
in [9], the previous work concentrates on lot-for-lot replenishment policies for the buyer–vendor pair, i.e., the
case where n = 1, ignoring the impact of the vendor’s replenishment decisions on coordination, whereas, here,
we consider n as a decision variable. As we demonstrate in the following development, this consideration is
particularly important for an analytical quantification of the value of coordination. We also note that the
coordination mechanism in Proposition 3 is presented here for the sake of completeness, i.e., for comparing
the coordination issues in Goyal’s Problem with those in Problems I and II. More specifically, as we show later
in the paper, Proposition 1 does not hold for Problems I and II for which some nontraditional observations
are reported in Section 4. As a result, when cargo cost and capacity are considered explicitly, in some cases
smaller orders from the buyer are more desirable for the vendor, and, unlike under the mechanism in Prop-
osition 3, we need to discourage the buyer from ordering more.

Next, utilizing the results about the decentralized and coordinated solutions for Goyal’s Problem, we pro-
vide an in-depth analysis of our main focus: the improvement rate due to coordination. Recalling Expression
(5), we have
IR ¼ 1� GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

� �
� 100%: ð13Þ
We begin our analysis with Proposition 4 which provides an analytical expression of IR in terms of the crit-
ical model parameters and optimal n values under the decentralized and centralized solutions of Goyal’s Prob-
lem. In Corollary 1, we present a simplified closed form expression of IR over a certain parameter range that
can be characterized analytically.

Proposition 4. For Goyal’s Problem, the improvement rate due to coordination is given by
IR ¼ 1�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n�c

Kw

Kr

� �
ðn�c � 1Þ hw

hr
þ 1

� �r
2þ 1

n�
d

Kw

Kr
þ ðn�d � 1Þ hw

hr

� �
0
BB@

1
CCA� 100%: ð14Þ
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Corollary 1. For Goyal’s Problem,
if 0 6
Kwhr

Krhw

6 2 then IR ¼ 1�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kw

Kr

q
2þ Kw

Kr

0
@

1
A� 100%:
It is important to note that under the conditions of Corollary 1, the lot-for-lot policy is, in fact, optimal
under both decentralized and centralized control, i.e., n�d ¼ n�c ¼ 1 (see the proof of Corollary 1 in the Appen-
dix.) Hence, for those problem instances where the lot-for-lot policy is optimal under both decentralized and
centralized control, the resulting IR value does not depend on the holding costs, hw and hr, or the demand rate
D. In fact, for all parameter settings, we can easily prove that IR depends only on the ratios Kw/Kr and hr/hw

and that it does not depend on D because all of the demand has to be satisfied. The following lemma provides
a foundation for this proof.

Lemma 1. For a given ðKw

Kr
; hw

hr
Þ pair, the corresponding Kwhr

Krhw
; Kwh0

Krhw

� �
pair is unique and can be obtained using the

transformation
f ½ðx; yÞ� ¼ ðf1½ðx; yÞ�; f2½ðx; yÞ�Þ; where
f1½ðx; yÞ� ¼ x=y; and
f2½ðx; yÞ� ¼ ðx=yÞ � x:
Similarly, for a given Kwhr

Krhw
; Kwh0

Krhw

� �
pair, the corresponding Kw

Kr
; hw

hr

� �
pair is unique and can be obtained using the

transformation
g½ðx; yÞ� ¼ ðg1½ðx; yÞ�; g2½ðx; yÞ�Þ; where

g1½ðx; yÞ� ¼ x� y; and

g2½ðx; yÞ� ¼ ðx� yÞ=x:
The above lemma implies that knowing the ratios Kw/Kr and hr/hw is sufficient for calculating the corre-
sponding unique values of Kwhr

Krhw
and Kwh0

Krhw
, and vice versa. Recalling Inequalities (9) and (11), we know that

the optimum n value under the decentralized and centralized models of Goyal’s Problem are specified by
Kwhr

Krhw
and Kwh0

Krhw
values. Therefore, for both models, vendors of two different systems having the same Kw/Kr

and hr/hw ratios send an equal number of buyer replenishments during one replenishment cycle. Hence, we
have the following corollary.

Corollary 2. Under the assumptions of Goyal’s model, the improvement rates in different systems with the same

Kw/Kr and hr/hw ratios are equal.

Using the formal results we have developed so far, we proceed to provide numerical lower and upper
bounds on the improvement rate.

Proposition 5. For Goyal’s problem,

• If 0 < Kwhr

Krhw
6 2, then 0 < IR < 1�

ffiffi
3
p

2

� �
� 100%. Furthermore, if Kw/Kr > 1, then 1� 2

ffiffi
2
p

3

� �
� 100% <

IR < 1�
ffiffi
3
p

2

� �
� 100%.

• If Kwhr

Krhw
> 2 and Kwh0

Krhw
P 2, then 0 < IR 6 ð1

3
Þ � 100%. Furthermore, if Kw/Kr > 1, then 0 < IR <

1� 2
ffiffi
3
p

5

� �
� 100%.

• When Kwhr

Krhw
> 2 and Kwh0

Krhw
< 2, the value of coordination can be very high such that the improvement rate IR is

almost 100%.
Proposition 5 provides important practical results characterizing the improvement rate IR. That is, by
simply computing the Kwhr

Krhw
and Kwh0

Krhw
ratios, we can obtain immediate numerical bounds quantifying the value

of coordination without computing the corresponding decentralized, centralized, and coordinated solutions.
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These bounds can be used by managers as practical guidelines for preliminary analysis. For a given problem
instance, if the condition of Corollary 1 is satisfied, then the exact value of IR can also be computed without
computing the corresponding decentralized, centralized, and coordinated solutions. For other problem
instances, e.g., where the condition of the second or the third item in Proposition 5 is satisfied, then the exact
value of coordination should be computed numerically. Hence, we report detailed numerical results later in
Section 5. Next, in Section 4, we extend the problem setting by analyzing Problems I and II.

4. Analysis of Problems I and II: Generalized replenishment cost problems

As we have noted earlier, by studying the decentralized models for Problems I and II and developing effec-
tive channel coordination mechanisms, we extend [13] where the counterpart centralized solutions for these
two problems were first developed. According to the results in [13], obtaining the centralized solutions for
Problems I and II is a challenging task. As we show in this section, a comparison of the centralized and decen-
tralized solutions for Problem I and II reveals important analytical properties of the coordinated solutions and
these properties offer new insights.

Before proceeding with a detailed analysis, we examine the properties of a specific function denoted by w(n)
and given by
wðnÞ ¼ KD
nQ
þ nQ=Pd eRD

nQ
þ hðn� 1ÞQ

2
: ð15Þ
Observe that w(n) is a piecewise function, and, in turn, it is not differentiable. Computing the minimizer of this
function for fixed and positive values of K, R, P, h and Q is important for our purposes. Let
nmin ¼ max 1;
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 2KDh
p

hQ

$ % !
; and

nmax ¼
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 2KDh
p

hQ

& ’
; where

B ¼ ðK þ RÞD
Q

þ hQ
2
:

Also, let n* denote the minimizer of w(n). The following proposition presents lower and upper bounds for n*.

Proposition 6. nmin 6 n* 6 nmax.

Next, recalling the formulations in Table 2 and using Proposition 6, we present the decentralized and coor-
dinated solutions for Problems I and II.

4.1. Decentralized and coordinated solutions for Problem I

In Problem I, the buyer’s individual cost is still given by Expression (6), and hence, his/her optimal decen-
tralized order quantity is Q�d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KrD=hr

p
. Along with the usual set-up and holding costs, now the vendor also

incurs a cost of $R for each cargo with capacity P so the vendor’s cost function is given
GwðQr; nÞ ¼
ðKw þ dnQr=PeRÞD

nQr

þ hwðn� 1ÞQr

2
: ð16Þ
Consequently, given Q�d, the vendor’s subproblem in the Decentralized Model I is to find the optimal num-
ber of buyer replenishments within one vendor replenishment cycle, i.e., the optimum value of n that mini-
mizes GwðQ�d; nÞ where Gw(Æ, Æ) is given by Expression (16). Observe that GwðQ�d; nÞ has the same form as
w(n) given by Expression (15) so that its minimizer can be computed using a finite enumeration algorithm
based on Proposition 6. Letting K = Kw, Q ¼ Q�d and h = hw and using the result in Proposition 6, the mini-
mizer n�d of GwðQ�d; nÞ is then given by argminfGwðQ�d; nÞ : n ¼ nmin; . . . ; nmaxg. As a result, the decentralized
solution of Problem I is specified by ðQ�d; n�dÞ.



A. Toptal, S. Çetinkaya / European Journal of Operational Research 187 (2008) 785–805 793
In order to develop an effective coordination mechanism for Problem I, we need to consider two cases:
Q�d > Q�c and Q�d < Q�c . This is simply because, unlike in Goyal’s Problem, there are problem instances where
Q�d > Q�c . Hence, instead of the coordination mechanism in Proposition 3 that discourages the buyer from
ordering small quantities, a more sophisticated mechanism is needed. The proposed coordination mechanism
for Problem I is presented in Proposition 7, and, when appropriate, this mechanism discourages the buyer
from ordering large quantities. This nontraditional result is due to cargo cost and capacity considerations
under which smaller orders from the buyer may be more desirable for efficient cargo space utilization.

Proposition 7. Considering Problem I, let
D ¼ GrðQ�cÞ � GrðQ�dÞ
D

:

• If Q�d < Q�c , under a unit discount of D offered by the vendor for order sizes greater than, or equal to, Q�c ,
ordering Q�c minimizes the buyer’s average annual cost. Under this new pricing scheme, the buyer’s average
annual cost does not exceed GrðQ�dÞ, the vendor’s average annual profit is improved relative to the decen-
tralized setting, and D < c.

• If Q�d > Q�c , under a unit discount of D offered by the vendor for order sizes less than, or equal to, Q�c , order-
ing Q�c minimizes the buyer’s average annual cost. Under this new pricing scheme, the buyer’s average
annual cost does not exceed GrðQ�dÞ, the vendor’s average annual profit is improved relative to the decen-
tralized setting, and D < c.

For the case Q�d < Q�c , since the discount is valid on all items for order sizes greater than, or equal to, Q�c , we
call the corresponding price schedule all-units quantity pricing with economies of scale. When Q�d < Q�c , since the
discount is valid on all items for order sizes less than, or equal to, Q�c , we call the corresponding price schedule
all-units quantity pricing with diseconomies of scale.

We note that the coordination mechanism proposed above can also be used for Goyal’s Problem. Recall
that the only difference between Goyal’s Problem and the case considered in Problem I is the consideration
of cargo cost and capacity associated with vendor’s replenishments. As stated in Proposition 1, without this
consideration, the optimal order quantity in the centralized solution is always greater than, or equal to, the
optimal order quantity in the decentralized solution. Therefore, to coordinate the system without cargo cost
and capacity, we do not need to consider the second item in Proposition 7, in which case Proposition 7 reduces
to Proposition 3.

For general parameter settings, closed form expressions and analytical bounds representing the improve-
ment rates due to channel coordination cannot be obtained for either Problem I or Problem II; however, a
detailed numerical study follows in Section 5. Also, if the cargo capacity is sufficiently large so that inbound
replenishments do not require more than one truck (i.e., for P!1, we have dQ/Pe = 1, "0 < Q <1), then
Proposition 5 can be used for computing lower and upper bounds on the improvement rate by substituting
Kw + R for Kw.

4.2. Decentralized and coordinated solutions for problem II

In Problem II, along with the usual set-up and holding costs, both the buyer and the vendor incur a cost of
$R for each cargo with capacity P. The buyer’s individual cost is given by
GrðQrÞ ¼
DKr

Qr

þ hrQr

2
þ D Qr=Pd eR

Qr

ð17Þ
and his/her optimal decentralized order quantity, i.e., Q�d, is the minimizer associated with this cost function.
An algorithmic approach for computing Q�d is presented in [13] (see Algorithm 1 on p. 991 in [13]), and, hence,
the details are omitted here. Consequently, given Q�d, the vendor’s subproblem in the Decentralized Model II
is, again, to find the optimal number of buyer replenishments within one vendor replenishment cycle, i.e., the
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optimum value of n that minimizes GwðQ�d; nÞ where Gw(Æ, Æ) is given by Expression (16). Now, letting K = Kw,
Q ¼ Q�d and h = hw and using the result in Proposition 6, the minimizer n�d of GwðQ�d; nÞ is
n�d ¼ argminfGwðQ�d; nÞ : n ¼ nmin; . . . ; nmaxg, and the decentralized solution of Problem II is ðQ�d; n�dÞ.

As for Problem I, in order to develop an effective coordination mechanism for Problem II, we need to con-
sider two cases: Q�d > Q�c and Q�d < Q�c . However, unlike the coordination mechanism in Proposition 7, the idea
of wholesale pricing, with or without economies of scale, does not work in this case due to the additional dif-
ficulties for the buyer that are associated with cargo cost and capacity considerations. The proposed coordi-
nation mechanism for Problem II is presented in Proposition 8, and, when appropriate, this mechanism
discourages the buyer from ordering large quantities using side payments. Again, this nontraditional result
is due to cargo cost and capacity considerations under which smaller or larger orders from the buyer may

be more desirable for efficient cargo space utilization.

Proposition 8. Considering Problem II, let
l1 ¼
Q�c
P

	 

;

l2 ¼
Q�c
P

� �
; and

Ql2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðKr þ l2RÞD

hr

s
;

so that Ql2
is the economic order quantity when l2 trucks are used and l2 is the number of trucks needed for ship-

ping Q�c units. Under the following coordination mechanism, ordering Q�c units minimizes the buyer’s average an-
nual cost in such a way that it does not exceed GrðQ�dÞ whereas the vendor’s average annual profit is improved

relative to the decentralized setting.

• If Q�d < Q�c :

– If Q�c P Ql2
, a fixed payment of GrðQ�cÞ � GrðQ�dÞ is paid by the vendor to the buyer for order sizes larger

than or equal to Q�c .

– If Q�c < Ql2
, a fixed payment of GrðQ�cÞ � GrðQ�dÞ is paid by the vendor to the buyer for order sizes in the

range ðl1P ;Q�c �.
• If Q�d > Q�c , a fixed payment of GrðQ�cÞ � GrðQ�dÞ is paid by the vendor to the buyer for order sizes in the range

ðl1P ;Q�c �.

Under the coordination mechanism described in Proposition 8, the vendor pays fixed rewards to the buyer,
which is called a vendor-managed incentive scheme with fixed rewards to the buyer.

Finally, we note that if the cargo capacity is sufficiently large so that inbound and outbound replenishments
do not require more than one truck, then Proposition 5 can be used for computing lower and upper bounds on
the improvement rate by substituting Kw + R for Kw, and Kr + R for Kr.

5. Numerical results

Our numerical results are based on two data sets; namely, Data Sets 1 and 2. Since the current paper is an
extension of [13], Data Set 1 includes the problem instances provided therein. That is, in Data Set 1, we have
Kw = 175, 350, 700; Kr = 50, 100, 150; R = 60, 120, 240; P = 5, 10, 20; D = 2, 4, 8; hw = 0.5, 1, 2; and hr = 4, 8,
16. Hence, Data Set 1 includes 37 = 2187 problem instances. Data Set 2 includes 40,000 problem instances. In
generating this new data set, we have focused on having a variety of values for the ratios Kwhr

Krhw
and Kwh0

Krhw
, and

cargo cost parameters P and R. More specifically, for fixed values of D, Kr and hw (i.e., D = 10, Kr = 160,
hw = 10), we have generated different Kw/Kr and h 0/hw ratios over [1.01,3), and [0.01,2), respectively, using
a step size of 0.1. Also, in this larger data set, we have considered ten different cargo cost values, starting
at 2.5 and increasing to 1280 by multiples of 2. Similarly, we have considered ten different cargo capacity val-
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ues, starting at 1 and increasing to 512 by multiples of 2. Most of the results we comment on in the following
discussion are based on Data Set 2; however, the same comments apply to Data Set 1 as well. Also, for illus-
trative purposes, we refer to some problem instances from Data Set 1, along with a couple of additional exam-
ples that do not belong to either of the data sets.

All three problem settings discussed in the paper (i.e., Goyal’s Problem, Problem I, and Problem II) have
been analyzed using both data sets. In examining our numerical results, we pay specific attention to the param-
eter ranges characterized in Proposition 5 for Goyal’s Problem. These parameter ranges are:

Range 1: 0 < Kwhr

Krhw
6 2,

Range 2: Kwhr

Krhw
> 2 and Kwh0

Krhw
P 2, and

Range 3: Kwhr

Krhw
> 2 and Kwh0

Krhw
< 2.

For each problem setting, the average, maximum, and minimum improvement rates over Ranges 1–3 are
reported in Table 3.

We proceed with a discussion of important observations based on our numerical results. As expected, our
numerical results indicate that, for Goyal’s Problem,

• Maximum IR over Range 3 > Maximum IR over Range 1, and
• Maximum IR over Range 1 > Maximum IR over Range 2.

On the other hand, according to Table 3, for Problems I and II,

• Maximum IR over Range 1 > Maximum IR over Range 3, and
• Maximum IR over Range 3 > Maximum IR over Range 2.

Also, for Goyal’s Problem, the maximum and minimum IR values in Table 3 provide a strong indication
that the theoretical bounds of IR over Range 1 (given by Proposition 5) are fairly tight for Data Set 2. How-
ever, the corresponding upper bound over Range 2 is not tight for Data Set 2.
Table 3
Average, maximum, and minimum IR values for different ranges of the Data Set 2

Range Goyal’s Problem Problem I Problem II

Average IR values

1 7.951 6.939 4.337
2 1.592 2.136 1.088
3 5.198 4.416 3.216

Maximum IR values

1 12.743 23.454 15.467
2 2.979 13.130 9.688
3 13.147 21.055 13.938

Minimum IR values

1 5.798 0.107 0
2 0.234 0.012 0
3 0.448 0.012 0

Table 4
Tightness of the bounds in Proposition 5

E.g. Kw Kr hr hw D IR (%)

1 100 50.051 1 0.999 "D 13.383
2 100 99.98 1 0.8 "D 5.721
3 180 10 1 0.9 "D 5.243
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Table 4 provides three numerical examples for Goyal’s Problem. These examples do not correspond to
problem instances of the two data sets and are included as additional numerical evidence for our discussion
of the tightness of the theoretical bounds of IR presented in Proposition 5. The first and second examples in
Table 4 demonstrate that the theoretical upper and lower bounds over Region I are, in fact, tight. The third
example in Table 4 corresponds to the problem instance representing the maximum IR value we have
observed over Region II after extensive numerical experimentation with several problem instances including
those in Data Sets 1 and 2. That is, although we have constructed a numerical example demonstrating that IR
could be as high as 100% (see Proposition 5), we have not observed such an extreme case in our numerical
study. In fact, according to Table 3, for all three problems considered in the paper, we have:

• Average IR over Range 1 > Average IR over Range 3, and
• Average IR over Range 3 > Average IR over Range 2.

Examining the maximum IR values in Table 3, we further conclude that maximum potential savings are
particularly significant for Problems I and II. For example, the maximum IR values over Range I can be as
high as 23.454% and 15.467% for Problems I and II, respectively, both of which exceed the 13.397% upper
bound over this range for Goyal’s Problem. On the other hand, the 5.719% lower bound of Goyal’s Problem
does not apply to Problems I and II, as the minimum IR values over Range I can be as small as 0% for these
problems. Table 5 illustrates the specific problem instances corresponding to the maximum savings reported in
Table 3 and obtained in Data Set 1.

In fact, regardless of the parameter range, i.e., Ranges 1, 2, or 3, the maximum potential impact of coor-
dination is substantial for Problems I and II, varying between approximately 9% and 23%. Our numerical
results also indicate that, although substantial savings might be achievable, they are not guaranteed in all
cases. Hence, a careful analysis building on the techniques presented in the paper should be undertaken for
all practical purposes.

Tables 6 and 7 illustrate the dependence of IR on P and R for Problem I and II, respectively, and reveal
some interesting observations as discussed in the remainder of this section.

For any given P value, as R approaches 0, the impact of both R and P on IR diminishes. That is, for
R = 0, the corresponding IR values remain constant for all P over Ranges 1, 2, and 3, for both Problems
I and II. Secondly, considering Problem I, for any given R value, as P approaches 512, the impact of P on
IR diminishes. That is, for any given R value, there exists a threshold P value after which the corresponding
IR values remain constant. For example, in Table 6, over Range 1, the threshold P value is between 64 and
128 for R 6 80, and it is between 128 and 256 for R P 160. In fact, for Problem I, over all three ranges, if
P P 256 then the corresponding IR values are constant for all R. The results in Table 7 indicate that similar
observations are also true for Problem II as well.
Table 5
Examples illustrating high IR values

E.g. # Problem Kw Kr hr hw D P R IR (%)

Examples from Data Set 1

1 Goyal 175 150 4 2 "D – – 4.522
2 I 175 50 4 2 2 20 240 12.947
3 II 175 50 4 2 2 20 120 10.844

Examples from Data Set 2

4 Goyal 465.6 160 20.1 10 "D – – 2.979
5 Goyal 305.6 160 10.1 10 "D – – 12.743
6 Goyal 321.6 160 10.1 10 "D – – 13.147
7 I 177.6 160 1.455 0.5 10 128 1280 13.130
8 I 321.6 160 0.505 0.5 10 128 320 21.055
9 I 161.6 160 0.505 0.5 10 128 640 23.454
10 II 353.6 160 0.955 0.5 10 128 160 9.688
11 II 321.6 160 0.505 0.5 10 64 20 13.938
12 II 209.6 160 0.505 0.5 10 64 20 15.467



Table 6
The impact of P and R on IR: Problem I

P R=0 R = 2.5 R = 5 R = 10 R = 20 R = 40 R = 80 R = 160 R = 320 R = 640 Avg IR

Range 1: 1 6 Kwhr
Krhw
¼ 1:0121 6 2;Kr ¼ 160;Kw ¼ 161:6; hr ¼ 10:1; hw ¼ 10; h0 ¼ 0:1;D ¼ 10

2 5.798 4.884 4.240 3.391 2.487 1.722 1.189 0.867 0.688 0.594 2.586
4 5.798 5.297 4.884 4.240 3.391 2.487 1.722 1.189 0.867 0.688 3.056
8 5.798 5.533 5.297 4.884 4.240 3.391 2.487 1.722 1.189 0.867 3.541
16 5.798 5.661 5.533 5.297 4.884 4.240 3.391 2.487 1.722 1.189 4.020
32 5.798 5.811 5.845 5.968 6.393 7.450 9.051 10.834 7.792 5.089 7.003
64 5.798 6.044 6.290 6.784 7.771 9.727 13.220 17.884 17.698 17.503 10.872
128 5.798 5.921 6.044 6.290 6.784 7.771 9.727 13.220 18.128 23.454 10.314
256 5.798 5.921 6.044 6.290 6.784 7.771 9.727 13.147 10.903 10.774 8.316
512 5.798 5.921 6.044 6.290 6.784 7.771 9.727 13.147 10.903 10.774 8.316

Avg IR 5.798 5.524 5.361 5.192 5.124 5.352 6.111 7.519 7.048 7.147 6.018

Range 2: Kwhr
Kr hw
¼ 5:8491 > 2; Kwh0

Krhw
¼ 3:8391 P 2;Kr ¼ 160;Kw ¼ 321:6; hr ¼ 29:1; hw ¼ 10; h0 ¼ 19:1;D ¼ 10

R = 2.5

2 1.970 1.796 1.654 1.435 1.151 0.854 0.607 0.438 0.336 0.280 1.052
4 1.970 1.980 1.996 2.024 2.066 2.121 2.178 1.808 1.117 0.700 1.796
8 1.970 1.954 1.963 1.980 2.009 2.054 2.112 2.172 2.221 2.255 2.069
16 1.970 1.949 1.954 1.963 1.980 2.009 2.054 2.112 2.172 2.221 2.038
32 1.970 1.895 1.828 1.712 1.550 1.461 1.538 1.655 1.807 1.965 1.738
64 1.970 2.046 2.122 2.277 2.596 3.260 4.662 5.785 5.266 4.584 3.457
128 1.970 2.008 2.046 2.122 2.277 2.596 3.260 4.662 7.198 10.849 3.899
256 1.970 2.008 2.046 2.071 1.927 1.661 1.210 0.579 1.311 0.689 1.547
512 1.970 2.008 2.046 2.071 1.927 1.661 1.210 0.579 1.311 0.689 1.547

Avg IR 1.970 1.930 1.909 1.881 1.834 1.829 1.927 2.013 2.302 2.448 2.004

Range 3: Kwhr
Kr hw
¼ 2:0301 > 2; Kwh0

Krhw
¼ 0:0201 < 2;Kr ¼ 160;Kw ¼ 321:6; hr ¼ 10:1; hw ¼ 10; h0 ¼ 0:1;D ¼ 10

R = 2.5

2 13.147 11.435 10.132 8.278 6.115 4.108 2.603 1.645 1.098 0.804 5.937
4 13.147 12.222 11.429 10.126 8.273 6.111 4.105 2.601 1.644 1.098 7.076
8 13.147 12.661 12.220 11.427 10.124 8.271 6.110 4.105 2.601 1.644 8.231
16 13.147 12.845 12.598 12.159 11.370 10.074 8.231 6.081 4.086 2.590 9.318
32 13.147 12.879 12.658 12.429 11.996 11.219 9.941 8.123 6.003 4.036 10.243
64 13.147 12.984 12.944 12.992 13.084 13.255 13.557 14.038 14.690 15.310 13.600
128 13.147 13.037 13.089 13.280 13.652 14.363 15.667 17.884 21.055 18.442 15.362
256 13.147 13.092 13.037 12.931 12.727 12.354 11.734 10.903 10.380 11.502 12.181
512 13.147 13.092 13.037 12.931 12.727 12.354 11.734 10.903 10.380 11.502 12.181

Avg IR 13.147 12.438 11.942 11.267 10.418 9.471 8.533 7.738 7.273 6.737 9.896
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In fact, the threshold P values mentioned above represent cases in which Problems I and II reduce to
Goyal’s Problem. That is, once these threshold values are reached, the truck capacity is sufficiently large so
that IR does not depend on the capacity at all. In order to illustrate how this observation enables us to
use our analytical results on Goyal’s Problem, let us consider a specific instance of Problem II in Table 7,
i.e., the problem instance where R = 2.5 and the other model parameters are in Range 3 so that the corre-
sponding IR value remains constant at 13.203% over P P 256. As we have noted at the end of Section
4.2, when the truck capacity is sufficiently large, we can use Proposition 4 to compute IR by adding the
per truck cost R to fixed replenishment costs, i.e., by substituting Kw = 312.6 + 2.5 = 324.1 and
Kr = 160 + 2.5 = 162.5 in Expression (14). It follows from Expressions (9) and (11) that n�d ¼ 2 and n�c ¼ 1,
and hence, Expression (14) leads to IR ¼ 13:203%, which is the same as our experimental result in Table 7.

For Problem I, over Range 1, considering a fixed value of P such that P 6 16, we observe that as R

increases, IR decreases (see Table 6.) However, this is no longer true for fixed values of P such that
P P 32. In fact, there exist threshold values of P up to which, as R increases, IR decreases, not only for
Range 1 but also for Ranges 2 and 3 for both Problems I and II. For Problem 2, over Range 1, considering



Table 7
The impact of P and R on IR: Problem II

P R = 0 R = 2.5 R = 5 R = 10 R = 20 R = 40 R = 80 R = 160 R = 320 R = 640 Avg IR

Range 1: 1 6 Kwhr
Krhw
¼ 1:0121 6 2;Kr ¼ 160;Kw ¼ 161:6; hr ¼ 10:1; hw ¼ 10; h0 ¼ 0:1;D ¼ 10

2 5.798 3.988 3.085 2.123 1.308 0.740 0.396 0.205 0.104 0.053 1.780
4 5.798 4.672 3.988 3.085 2.123 1.308 0.740 0.396 0.205 0.104 2.242
8 5.798 5.110 4.672 3.988 3.085 2.123 1.308 0.740 0.396 0.205 2.743
16 5.798 5.361 5.110 4.672 3.988 3.085 2.123 1.308 0.740 0.396 3.258
32 5.798 5.097 4.461 3.348 1.317 0.357 0.274 0.187 0.114 0.064 2.102
64 5.798 5.795 5.793 5.789 12.348 11.361 9.807 7.701 5.387 3.365 7.314
128 5.798 5.796 5.795 5.793 5.789 5.782 5.499 3.481 0.000 0.000 4.373
256 5.798 5.796 5.795 5.793 5.789 5.782 5.771 5.758 5.745 5.735 5.776
512 5.798 5.796 5.795 5.793 5.789 5.782 5.771 5.758 5.745 5.735 5.776

Avg IR 5.798 5.050 4.662 4.169 4.228 3.672 3.189 2.564 1.849 1.568 3.675

Range 2: Kwhr
Krhw
¼ 5:8491 > 2; Kwh0

Krhw
¼ 3:8391 P 2;Kr ¼ 160;Kw ¼ 321:6; hr ¼ 29:1; hw ¼ 10; h0 ¼ 19:1;D ¼ 10

R = 0

2 1.970 1.825 1.548 1.187 0.810 0.495 0.278 0.149 0.077 0.039 0.838
4 1.970 1.368 1.245 1.055 0.808 0.551 0.336 0.189 0.101 0.052 0.768
8 1.970 1.440 1.368 1.245 1.055 0.808 0.551 0.336 0.189 0.101 0.906
16 1.970 1.294 1.068 0.846 0.770 0.652 0.500 0.341 0.208 0.117 0.777
32 1.970 1.747 1.968 1.967 1.965 1.551 0.000 0.000 0.000 0.000 1.117
64 1.970 1.969 1.969 1.968 1.967 1.965 1.551 0.000 0.000 0.000 1.336
128 1.970 1.932 1.896 1.828 1.704 1.500 1.095 6.977 8.375 5.540 3.282
256 1.970 1.932 1.896 1.828 1.704 1.500 1.209 0.876 0.583 0.383 1.388
512 1.970 1.932 1.896 1.828 1.704 1.500 1.209 0.876 0.583 0.383 1.388

Avg IR 1.970 1.678 1.588 1.445 1.292 1.076 0.686 0.981 1.015 0.663 1.239

Range 3: Kwhr
Krhw
¼ 2:0301 > 2; Kwh0

Krhw
¼ 0:0201 < 2;Kr ¼ 160;Kw ¼ 321:6; hr ¼ 10:1; hw ¼ 10; h0 ¼ 0:1;D ¼ 10

R = 2.5

2 13.147 10.025 8.102 5.855 3.766 2.198 1.199 0.628 0.322 0.163 4.541
4 13.147 11.369 10.019 8.097 5.851 3.764 2.197 1.198 0.628 0.322 5.659
8 13.147 12.187 11.367 10.017 8.095 5.850 3.763 2.196 1.198 0.628 6.845
16 13.147 12.581 12.127 11.310 9.967 8.055 5.821 3.744 2.185 1.192 8.013
32 13.147 12.301 11.402 9.656 6.333 4.488 3.586 2.558 1.626 0.940 6.604
64 13.147 12.925 12.636 12.066 13.938 13.019 11.502 9.328 6.770 4.371 10.970
128 13.147 13.072 12.925 12.636 12.066 10.960 8.827 4.703 0.000 0.000 8.834
256 13.147 13.203 13.248 13.039 12.654 11.990 10.978 9.688 8.375 7.268 11.359
512 13.147 13.203 13.248 13.039 12.654 11.990 10.978 9.688 8.375 7.313 11.364

Avg IR 13.147 11.897 11.093 9.948 8.752 7.351 5.948 4.405 2.964 2.228 7.773
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a fixed value of R such that R 6 10, we observe that as P increases, IR increases, i.e., does not decrease (see
Table 7.) However, this is no longer true for fixed values of R such that R P 20. In fact, there exist threshold
values of R up to which, as P increases, IR increases, not only for Range 1 but also for Ranges 2 and 3 for
both Problems I and II.

We note that some of the most significant IR values in Tables 6 and 7 are observed after the threshold P

and R values2 mentioned above are exceeded. Finally, we also note that the impact of P and R on IR is dif-
ficult to characterize in general, especially once these threshold values are exceeded.
6. Conclusions and future research

Our results demonstrate that significant cost savings can be achieved through coordination; however, these
savings are not guaranteed in general, i.e., for all parameter settings, and, hence, for all practical purposes.
These results provide simple practical rules characterizing the cost improvement rates for different parameter
settings for problems with and without explicit transportation considerations, and such rules are useful for
managers to use as practical guidelines in preliminary analysis. Overall, we conclude that although the poten-
tial maximum savings are more significant under explicit transportation considerations, i.e., for Problems I
and II, it is difficult to predict the actual savings without a careful investigation. Hence, for these problems,
there is a need to use the technical development in Section 4 to compare the centralized and decentralized solu-
tions for the parameter set of interest. Also, the decentralized analysis provided in this paper for the models
with transportation considerations is important for the following additional reason. Classical methods pro-
posed in the literature for achieving channel coordination assume that it is always to the vendor’s advantage
to influence the ordering behavior of the buyer in such a way that he/she orders more. For this reason, coor-
dination mechanisms such as quantity discounts, rebate policies, buyback policies, and fixed payments aim to
increase the order quantity of the buyer. However, when the vendor’s profit function is not an increasing func-
tion of the buyer’s order quantity, a larger order from the buyer can actually be disadvantageous to the ven-
dor. One such practical case is when the parties incur stepwise transportation costs as in this paper. Careful
investigation of other practical settings where similar nontraditional results apply and significant cost savings
are achievable through coordination remains an area for future research.

It is also important to reiterate that our analytical and numerical results for Goyal’s problem indicate that
the value of coordination depends only on two important ratios that can be expressed in terms of the critical
cost parameters whereas it does not depend on the demand rate. However, these results do not hold under
general replenishment costs. In fact, when the demand is stochastic, the value of coordination would depend
on the demand process even under simpler replenishment cost structures. A careful investigation of the value
of coordination under stochastic demand with or without stepwise transportation costs remains another
area for future investigation. Additional important avenues for future research include quantifying the value
of coordination under information asymmetry considerations and in multi-buyer and/or multi-vendor
settings.

Appendix A

Proof of Proposition 1. Suppose that Q�c 6 Q�d. Then, using Expressions (10) and (12), it is easy to show that
2 Th
Krhr þ
Kwhr

n�c
6 n�cKrhw þ Krh

0:
Substituting h 0 = hr � hw in the above inequality, and rearranging the terms we have
n�cðn�c � 1ÞP Kwhr

Krhw

:

ese threshold values are indicated by bold characters for each of the regions illustrated in Tables 6 and 7 for Problems I and II.
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Since hr > h 0, the above inequality implies that n�cðn�c � 1Þ > Kwh0

Krhw
. This contradicts Expression (11), and, hence,

Q�c > Q�d. h

Proof of Proposition 2. Suppose that n�d < n�c . Then, since n�d and n�c are both positive integers, ðn�c � n�dÞP 1.

Multiplying both sides of this inequality by n�c þ n�d, we obtain ðn�cÞ
2 � ðn�dÞ

2 P n�c þ n�d which, in turn, implies
that n�cðn�c � 1ÞP n�dðn�d þ 1Þ. Using Expression (9), we also have
n�dðn�d þ 1ÞKrhw

Kw

P hr;
and, hence,
n�cðn�c � 1ÞKrhw

Kw

P n�dðn�d þ 1ÞKrhw

Kw

P hr:
Noting that hr > h 0, by definition, the above inequality implies that
n�cðn�c � 1Þ > Kwh0

Krhw

;

which, in turn, contradicts Expression (11). Therefore, n�d P n�c . h

Proof of Proposition 3. Under the coordinated solution, the buyer’s cost is Gr(Q) for Q < Q�c and
Gr(Q) � D · D for Q P Q�c where Gr(Æ) is given by Expression (6). Since Q�c > Q�d and Q�d is the minimizer of
Gr(Q), we have GrðQ�dÞ < GrðQÞ, 8Q < Q�c and Q 6¼ Q�d. For Q P Q�c , the cost function Gr(Q) � D · D is
increasing in Q, and, therefore, GrðQ�cÞ < GrðQÞ, 8Q > Q�c . At order quantity Q�c , the buyer’s cost is given
by GrðQ�cÞ � D� D ¼ GrðQ�dÞ so that the buyer stays in a no-worse situation under the coordinated solution
Also, under the coordinated solution, the vendor’s profit is
ðc� DÞD� GwðQ�c ; n�cÞ ¼ cD� ðGrðQ�cÞ � GrðQ�dÞÞ � GwðQ�c ; n�cÞ;

where Gw(Æ, Æ) is given by Expression (7). Since ðQ�c ; n�cÞ is the minimizer of Gw(Q,n) + Gr(Qr), we have
GrðQ�cÞ � GrðQ�dÞ < GwðQ�d; n�dÞ � GwðQ�c ; n�cÞ; and it follows that
ðc� DÞD� GwðQ�c ; n�cÞ > cD� GwðQ�d; n�dÞ � GwðQ�c ; n�cÞ
� �

� GwðQ�c ; n�cÞ > cD� GwðQ�d; n�dÞ:
Consequently, the vendor’s profit under the coordinated solution, given by ðc� DÞD� GwðQ�c ; n�cÞ, is improved
relative to his/her profit in the decentralized setting, i.e., cD� GwðQ�d; n�dÞ. Recall that we concentrate on the
case where the decentralized transactional setting makes economical sense for the vendor, i.e.,
cD� GwðQ�d; n�dÞ > 0. Then, ðc� DÞD� GwðQ�c ; n�cÞ > 0 so that c > D. h

Proof of Proposition 4. Utilizing Expressions (10) and (12) in Expression (13), and performing algebraic
manipulations result in Expression (14). h

Proof of Corollary 1. It follows from Expression (9) that if
0 6
Kwhr

Krhw

6 2; ð18Þ
then n�d ¼ 1. If n�d ¼ 1, then Proposition 2 implies that n�c ¼ 1. The result follows from substituting n�d ¼ 1 and
n�c ¼ 1 in Expression (14). h

Proof of Lemma 1. Clearly, f[(x,y)] is a relation from the set of possible Kw

Kr
; hw

hr

� �
pairs to the set of ðKwhr

Krhw
; Kwh0

Krhw
Þ

pairs. The uniqueness of the output of this relation is based on the fact that f1[(x,y)] and f2[(x,y)] are real-val-
ued functions. The same argument can be extended for the second part of the lemma. h

Proof of Corollary 2. The corollary is a direct result of Expression (14), Lemma 1, and Inequalities (9) and
(11). h
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Proof of Proposition 5. First, we consider the case 0 < Kwhr

Krhw
6 2. It follows from Corollary 1 that
IR ¼ 1�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kw

Kr

q
2þ Kw

Kr

0
@

1
A� 100%:
Letting
x ¼ Kw

Kr

and f ðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

2þ x
for the first part of the proposition it is sufficient to show that
f ðxÞ >
ffiffiffi
3
p

2
when 0 < x ¼ Kw

Kr

6 2;
and that
ffiffiffi
3
p

2
< f ðxÞ < 2

ffiffiffi
2
p

3
when we additionally have Kw=Kr > 1:
Letting f 0(x) denote the first derivative of f(x), we have
f 0ðxÞ ¼ �xffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

ðxþ 2Þ2
:

Observe that f 0(x) < 0 for x > 0 so that f(x) is decreasing in x. Now, recall that hr

hw
> 1, and we consider the case

Kwhr

Krhw
6 2. It follows that we are interested in f(x) where x ¼ Kw

Kr
< 2. Using the fact that f(x) is decreasing in x,

this implies f ðxÞ > limx!2f ðxÞ ¼
ffiffi
3
p

2
, "x such that 0 < x 6 2. Similarly, when Kw/Kr > 1, we can easily show

that f ðxÞ < limx!1f ðxÞ ¼ 2
ffiffi
2
p

3
.

Next, we consider the case Kwhr

Krhw
> 2, and, similar to the proof of the first part of the proposition, we show

that
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
2

3
:

Simultaneously, we also extend the proof to consider the case where we additionally have Kw/Kr > 1 in which
case it suffices to show
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

>
2
ffiffiffi
3
p

5
;

where Gw(Æ, Æ) and Gr(Æ) are given by Expressions (7) and (6), respectively.
Since, by definition, GrðQ�dÞ 6 GrðQ�cÞ and GwðQ�c ; n�cÞ 6 GwðQ�d; n�dÞ, we can write
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
GrðQ�dÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
GwðQ�c ; n�cÞ
GwðQ�d; n�dÞ

: ð19Þ
For a fixed value of n, it is easy to show that Gw(Qr,n) is minimized at
Q�r ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KwD
nðn� 1Þhw

s
:

Therefore,
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�cðn�c � 1Þhw

s
; n�c

 !
6 GwðQ�c ; n�cÞ; ð20Þ
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and combining Inequalities (19) and (20) leads to
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

:

Substituting in Q�d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KrD=hr

p
in the above expression and rearranging its terms, we have
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kwhwðn�c�1Þ

n�c

q
Kw

n�
d

ffiffiffiffiffiffi
hr

2Kr

q
þ hwðn�d�1Þ

2

ffiffiffiffiffiffi
2Kr

hr

q P
2
ffiffiffiffiffiffiffiffiffiffi
ðn�c�1Þ

n�c

q
ffiffiffiffiffiffiffi
Kwhr
Krhw

p
n�

d
þ n�

dffiffiffiffiffiffiffi
Kwhr
Krhw

p :
Since we now consider the case Kwh0

Krhw
P 2, Expression (11) implies that n�c P 2. Consequently
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n�c � 1

n�c

s
P

1ffiffiffi
2
p ;
and we can write
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

P

ffiffiffi
2
pffiffiffiffiffiffiffi

Kwhr
Krhw

p
n�

d
þ n�

dffiffiffiffiffiffiffi
Kwhr
Krhw

p : ð21Þ
In order to complete this part of the proof, we analyze the following two cases:

Case 1: n�d 6
ffiffiffiffiffiffiffi
Kwhr

Krhw

q
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�dðn�d þ 1Þ

p
. In this case,
ffiffiffiffiffiffiffi

Kwhr

Krhw

q
n�d
þ n�dffiffiffiffiffiffiffi

Kwhr

Krhw

q ð22Þ
reaches its maximum value at
ffiffiffiffiffiffiffiffiffiffi
Kwhr

Krhw

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�dðn�d þ 1Þ

q
:

As a result,
ffiffiffiffiffiffiffi
Kwhr

Krhw

q
n�d
þ n�dffiffiffiffiffiffiffi

Kwhr

Krhw

q 6
2n�d þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�dðn�d þ 1Þ

p : ð23Þ
Using Inequalities (21) and (23), we conclude that
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�dðn�d þ 1Þ

p
2n�d þ 1

:

Since we consider the case Kwhr

Krhw
> 2, we know that n�d P 2, and, hence,
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

P
2
ffiffiffi
3
p

5
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �

p ffiffiffiffiffiffiffi
Kwhr

q
�
Case 2: ndðnd � 1Þ 6 Krhw

< nd. In this case, Expression (22) reaches its maximum at
ffiffiffiffiffiffiffiffiffiffi
Kwhr

Krhw

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�dðn�d � 1Þ

q
;
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and, hence,
ffiffiffiffiffiffiffi
Kwhr

Krhw

q
n�d
þ n�dffiffiffiffiffiffiffi

Kwhr

Krhw

q 6
2n�d � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�dðn�d � 1Þ

p : ð24Þ
In order to complete the proof, we analyze Case 2 considering two possibilities. Namely, n�d P 3 and n�d ¼ 2.
d d d

and combining Inequalities (21) and (24) leads to

Case 2.1: n� P 3. Considering n� P 3, the right hand side of Inequality (24) reaches its maximum at n� ¼ 3,
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�dðn�d � 1Þ

p
2n�d � 1

P
2
ffiffiffi
3
p

5
:

Case 2.2: n�d ¼ 2.

If we do not have the constraint that Kw/Kr > 1, under the general assumptions of Case 2, the proof of Case
2.2 is similar to that of Case 2.1, so using Inequalities (21) and (24) results in
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�dðn�d � 1Þ

p
2n�d � 1

¼ 2

3
:

If we additionally have Kw/Kr > 1, it follows from Kwh0

Krhw
P 2 that Kwhr

Krhw
> 3. Recalling the original assumptions

of Case 2 and using n�d ¼ 2, we have
ffiffiffi
3
p

<
ffiffiffiffiffiffiffi
Kwhr

Krhw

q
< 2. Then, utilizing Inequality (21), it suffices to analyze

Expression (22). Observe that, within the parameter range of interest, this ratio reaches its maximum atffiffiffiffiffiffiffi
Kwhr

Krhw

q
¼

ffiffiffi
3
p

so that we can write
ffiffiffiffiffiffiffi
Kwhr

Krhw

q
n�d
þ n�dffiffiffiffiffiffiffi

Kwhr

Krhw

q
0
B@

1
CA <

7

2
ffiffiffi
3
p :
As a result, it follows from Inequality (21) that
Gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KwD

n�c ðn�c�1Þhw

q
; n�c

� �
GwðQ�d; n�dÞ

>
2
ffiffiffi
6
p

7
:

Combining our results for Case 2.1 and Case 2.2, we conclude that if Kwhr

Krhw
> 2 and Kwh0

Krhw
P 2, then
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

P
2

3
;

so that IR 6 1
3

� �
� 100%. Also, if we additionally have Kw/Kr > 1, then
GrðQ�cÞ þ GwðQ�c ; n�cÞ
GrðQ�dÞ þ GwðQ�d; n�dÞ

>
2
ffiffiffi
3
p

5
;

and hence, IR < ð1� 2
ffiffi
3
p

5
Þ � 100%. This completes the proof for the second part of the proposition.

Finally, the following example proves that when Kwhr

Krhw
> 2 and Kwh0

Krhw
< 2, IR can be very high. Let Kw = 10k,

Kr = 1, hr = 1, hw = (1 � 10�k) where k is a very large integer. Then, we have Kwhr

Krhw
ffi 10k þ 1þ 1

10k�1
and

Kwh0

Krhw
ffi 1þ 10�k

1�10�k. Therefore, n�d ¼ 10k þ 1 and n�c ¼ 1. For general demand rate, we have Q�d ¼
ffiffiffiffiffiffi
2D
p

and

Q�c ¼
ffiffiffiffiffiffi
2D
p

10k=2. Now consider the ratio of decentralized total costs over the centralized total costs. It follows that
GrðQ�dÞ þ GwðQ�d; n�dÞ
GrðQ�cÞ þ GwðQ�c ; n�cÞ

¼
1þ 10k þ 10k

10kþ1

2� 10k=2 þ 1
10k=2



!k!1 1:
Hence, using Expression (13), it is easy to see that the improvement rate in this case is almost 100%. h
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Proof of Proposition 6. Recalling Expression (15), observe that
wðnÞP /ðnÞ ¼ KD
nQ
þ ðnQ=P ÞRD

nQ
þ hðn� 1ÞQ

2
; 8n P 1: ð25Þ
Treating n as a continuous variable, it is straightforward to show that /(n) is a strictly convex function of n with a
minimizer, denoted by no, where no ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KD=h

p
=Q. By definition, w(1) = KD/Q + dQ/PeRD/Q P w(n*). Hence,

noting that dQ/Pe < Q/P + 1, we can write (K + R)D/Q + RD/P > w(1) P w(n*). Letting A = (K + R)D/
Q + RD/P, and using Expression (25) in the above inequality we have A > w(n*) > /(n*). Since A > w(n*) > /
(n*) and /(n) is a strictly convex function of n, /(n) � A has two roots leading to nmin and nmax. h

Proof of Proposition 7. Since the buyer’s cost function in Problem I (given by Expression (6)) has the same
structure as in Goyal’s Problem, the pricing mechanism described in this proposition is similar to the one
in Proposition 5, so the proof is also similar to the proof of Proposition 5. However, we need to take into
account the additional case where Q�d > Q�c . First, we show that, under the coordinated solution, the buyer
stays in a no-worse situation as far as his/her cost is concerned.

If Q�d < Q�c then the buyer’s cost is given by Gr(Q) for Q < Q�c and by Gr(Q) � D · D for Q P Q�c , where
Gr(Æ) is given by Expression (6). Since Q�c > Q�d and Q�d is the minimizer of Gr(Q), we have GrðQ�dÞ < GrðQÞ for
Q < Q�c and Q 6¼ Q�d. For Q P Q�c , the cost function Gr(Q) � D · D is increasing in Q, and, therefore,
GrðQ�cÞ < GrðQÞ for Q > Q�c . At order quantity Q�c , the buyer’s cost is given by GrðQ�cÞ � D� D ¼ GrðQ�dÞ, and,
as a result, the buyer stays in a no-worse situation by ordering Q�c units.

Similarly, if Q�d > Q�c then the buyer’s cost is given by Gr(Q) for Q > Q�c and by Gr(Q) � D · D for Q 6 Q�c .
For Q 6 Q�c , the cost function Gr(Q) � D · D is decreasing in Q, and, therefore, GrðQ�cÞ < GrðQÞ for Q < Q�c .
For Q > Q�c , we have GrðQ�dÞ < GrðQÞ where Q 6¼ Q�d. Consequently, Q�c minimizes the buyer’s cost under the
coordinated solution, and, at this order quantity, the buyer’s cost is given by GrðQ�cÞ � D� D ¼ GrðQ�dÞ.

In both cases, i.e., when Q�d < Q�c or Q�d > Q�c , under the coordinated solution, the vendor’s profit is
ðc� DÞD� GwðQ�c ; n�cÞ ¼ cD� GrðQ�cÞ � GrðQ�dÞ
� �

� GwðQ�c ; n�cÞ;

where Gr(Æ) and Gw(Æ, Æ) are given by Expressions (6) and (16), respectively.

Since ðQ�c ; n�cÞ is the minimizer of Gw(Q,n) + Gr(Qr), we have
GrðQ�cÞ � GrðQ�dÞ < GwðQ�d; n�dÞ � GwðQ�c ; n�cÞ;

and it follows that
ðc� DÞD� GwðQ�c ; n�cÞ > cD� ðGwðQ�d; n�dÞ � GwðQ�c ; n�cÞÞ � GwðQ�c ; n�cÞ > cD� GwðQ�d; n�dÞ:

Consequently, the vendor’s profit under the coordinated solution, i.e., ðc� DÞD� GwðQ�c ; n�cÞ, is improved rel-
ative to his/her profit in the decentralized setting, i.e., cD� GwðQ�d; n�dÞ. Since we concentrate on the case where
the decentralized transactional setting makes economical sense for the vendor, i.e., cD� GwðQ�d; n�dÞ > 0, we
also have ðc� DÞD� GwðQ�c ; n�cÞ > 0 so c > D. h

Proof of Proposition 8. First, we show that, under the coordinated solution, Q�c minimizes the buyer’s cost
function in such a way that by ordering this quantity his/her cost does not exceed GrðQ�dÞ, where Gr(Æ) is given
by Expression (17), leaving the buyer in a no-worse situation relative to the decentralized setting.

• Q�d < Q�c :
– If Q�d < Q�c and Q�c P Ql2

, under the coordinated solution, the buyer’s cost is given by Gr(Q) for Q < Q�c
and by GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ for Q P Q�c . Since Q�d < Q�c and Q�d is the minimizer of Gr(Q), we have
GrðQ�dÞ < GrðQÞ for Q < Q�c and Q 6¼ Q�d. Let us examine the region Q P Q�c in two parts; namely,
Q�c 6 Q 6 l2P and Q > l2P.
Q�c 6 Q 6 l2P : Since Ql2
is the economic order quantity when l2 trucks are used and Q�c P Ql2

, we
have GrðQ�cÞ 6 GrðQÞ for Q�c 6 Q 6 l2P . Subtracting GrðQ�cÞ � GrðQ�dÞ from both sides of this inequal-
ity results in GrðQ�dÞ 6 GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ. Note that the right hand side of this final inequality
is the buyer’s cost under the coordinated solution for Q P Q�c , and, GrðQ�dÞ is the buyer’s cost when
Q ¼ Q�c .
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Q > l2P: Using Property 3 in [13], we know that Gr(Q) > Gr(l2P) for Q > l2P. Since Grðl2P ÞP GrðQ�cÞ,
it follows that GrðQÞ > GrðQ�cÞ for Q > l2P. Again, subtracting GrðQ�cÞ � GrðQ�dÞ from both sides of
this inequality results in GrðQ�dÞ < GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ.

– Considering the case Q�d < Q�c and Q�c < Ql2
, we analyze the buyer’s cost function under the coordinated

solution over three regions; namely, Q 6 l1P, l1P < Q 6 Q�c , and Q > Q�c . The buyer’s cost is given by
Gr(Q) for Q 6 l1P and Q > Q�c , and it is given by GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ for l1P < Q 6 Q�c . Since
Q�d is the minimizer of Gr(Q), we have GrðQ�dÞ < GrðQÞ for Q 6¼ Q�d over Q 6 l1P and Q > Q�c . Now, let
us consider those Q such that l1P < Q 6 Q�c . Since Q�c < Ql2

and Ql2
is the economic order quantity when

l2 trucks are used, Gr(Q) is decreasing over l1P < Q 6 Q�c , and, hence, GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ is
decreasing. This implies that the cost at Q ¼ Q�c , given by GrðQ�dÞ, is less than GrðQÞ � GrðQ�cÞ þ GrðQ�dÞ
over l1P < Q < Q�c . It follows that Q�c is the minimizer over Q�c < Ql2

.
• Q�d > Q�c : It is easy to show that Gr(Q) is decreasing in Q over l1P < Q 6 Q�c (see [7] where some specific

properties of the cost function in Expression (17) are examined). The remainder of the proof builds on this
result and is similar to the previous case, and, hence, the details are omitted here.

In all cases of the proposition, the vendor’s average annual profit is improved relative to the decentralized
setting. This is because, Q�c is the minimizer of Gw(Qr,n) + Gr(Q) and GrðQ�dÞ 6 GrðQ�cÞ where Gw(Æ, Æ) and Gr(Æ)
are given by Expressions (16) and (17), respectively. It follows that
0 6 GrðQ�cÞ � GrðQ�dÞ < GwðQ�d; n�dÞ � GwðQ�c ; n�cÞ;

and, therefore, GwðQ�d; n�dÞ > GwðQ�c ; n�cÞ. h
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