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Abstract

We study a problem faced by a major beverage producer. The company produces and distributes several brands to var-
ious customers from its regional distributors. For some of these brands, most customers do not have enough demand to
justify full pallet shipments. Therefore, the company decided to design a number of mixed or ‘‘rainbow’’ pallets so that its
customers can order these unpopular brands without deviating too much from what they initially need. We formally state
the company’s problem as determining the contents of a pre-determined number of mixed pallets so as to minimize the
total inventory holding and backlogging costs of its customers over a finite horizon. We first show that the problem is
NP-hard. We then formulate the problem as a mixed integer linear program, and incorporate valid inequalities to
strengthen the formulation. Finally, we use company data to conduct a computational study to investigate the efficiency
of the formulation and the impact of mixed pallets on customers’ total costs.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The main motivation behind this research is our experience with a leading Turkish beverage producer. The
company dominates the Turkish market in its category with a single brand. Recently, the company introduced
a number of new brands, two of them produced under license agreements with international companies. These
marginal products are only produced and packaged in a facility in Istanbul and are shipped to five regional
distribution centers in full pallets. The regional distribution centers then distribute these products to major
vendors or redistributors in their own regions. These new brands, however, have not established sufficient
demand in many vendors and redistributors to justify full pallet shipments (a full pallet may include as many
as 1728 units) from the regional distribution centers. For some vendors, a full pallet of a particular brand
would even exceed the total demand in six months. Worrying about inventory costs and potential perishability
issues, the vendors are not willing to order these brands in full pallets. If given flexibility, a vendor would dic-
tate a particular custom pallet each time she orders and would specify the number of cases of each brand in the
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.02.007

* Corresponding author.
E-mail addresses: hyaman@bilkent.edu.tr (H. Yaman), alpersen@bilkent.edu.tr (A. S�en).

mailto:hyaman@bilkent.edu.tr
mailto:alpersen@bilkent.edu.tr


H. Yaman, A. S�en / European Journal of Operational Research 186 (2008) 826–840 827
pallet depending on her consumption and future needs. Not surprisingly, this kind of operation is very costly
and complicated for the beverage company. The company does not have the technology to design and create
mixed pallets in the regional distribution centers. Workers need to break up full pallets, pick individual prod-
ucts and load mixed pallets manually. All of these operations take substantial amount of time and are subject
to mistakes and accidents. For these reasons, the distribution division initially resisted the idea to create cus-
tom pallets per each customer order. After receiving a lot of push–back from the customers and sales depart-
ment, the distribution division asked our help to design standard mixed pallets that would be created in the
production facility in Istanbul. Since the product mix can vary among different customers, the idea is to come
up with a sufficient number of standard mixed pallets that would enable the customers to order these marginal
products without ordering too little or too much of what they initially need.

Like many aspects of business, product proliferation has a substantial impact on materials handling, espe-
cially in food and beverage industries (Modern Materials Handling, 2001). As the just-in-time (JIT) or efficient
consumer response (ECR) strategies become more dominant, the retailers no longer accept bulk shipments
from their suppliers. The industry is moving from shipping products in uniform pallets in truckloads once
a week to shipping products in mixed pallet loads (or ‘‘rainbow pallets’’) delivered less-than-truckload
(LTL), two or three times per week (Andel, 1998). Mixed pallets also allow the manufacturers to penetrate
the small size retailer market. For example, Pennsylvania based New World Pasta offers a mixed pallet that
consists of a variety of items, such as thin spaghetti, linguini, fetuccini and angel hair to attract retailers that
otherwise cannot take a full pallet of the same item (Barrese, 2002).

In addition to providing purchasing and inventory efficiencies, mixed pallets are also used to display mer-
chandise in stores. The mixed pallets that are created in manufacturing facilities or warehouses with all cartons
facing out, toward the customer, are directly moved into the stores (Witt, 1995). For example, a paper prod-
ucts company featuring picnic supplies collected data on relative demand of each product and developed a
picnic display that had the right number of each item on the pallet (Grocery Marketing, 1996). Store ready
mixed pallets are effectively used also for ice creams, canned and frozen goods from Campbell/Swanson
and Sara Lee pies (Redman, 1996). Using these mixed pallets, retailers are able to replenish the merchandise
right off the store floor replacing one pallet with another.

Despite undisputable benefits at the retailer side, offering mixed pallets may complicate the logistics. First,
the manufacturer or the warehouse needs to decide how many of each product should be placed in the pallet.
For the case where the warehouse is capable of designing and creating a mixed pallet per customer require-
ment, this decision is taken each time a customer order is placed. For the case where the warehouse does
not have such capability, the manufacturer needs to design standard mixed pallets and create these mixed pal-
lets upfront. The customers pick among these standard mixed pallets when they order. While deciding the con-
tents of the standard mixed pallets, the manufacturer needs to consider different demand mixes of its many
customers and make sure that what they order does not deviate too much from what they originally need. This
is in fact the problem we consider in this research.

Even when the contents or the product mix is determined, the physical design of a mixed pallet can still be
challenging because of the differences in product dimensions and weight. The design should enable efficient use
of pallet space and ensure a stable load. When mixed pallets are used for store display, the physical design
should also consider the sales impact. Therefore, designing mixed pallets manually could be an expensive
and time consuming task. A number of software companies provide solutions that support decision making
in the physical design of mixed pallets. Two such palletizing solutions are Cape Pack from Cape Systems,
and TOPS Pro from Tops Engineering Corp. (Food & Drug Packaging, 2000).

Creating mixed pallets physically is labor intensive and costly because of damages and mistakes. Labor
safety is also at risk, as full pallets need to be depalletized and individual product cases need to be picked
and loaded onto the mixed pallets. For the case of customized mixed pallets, warehouses either need to employ
a vast number of operators in the loading area, or need to have the technology to automate the palletizing;
former increases operating costs substantially and latter needs substantial investment. A number of automated
equipment can be used to create mixed pallets. Robotic palletizers can pick random box sizes and build effi-
cient mixed pallets. Two examples are robotics palletizing/depalletizing systems from Fanuc Robotics and
FKI Logistex (Aichlmayr, 2002). Another alternative is the use of automated storage and retrieval systems
(AS/RS) which could release a full pallet of product, depalletize it and use the individual cases to form mixed
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pallets. An example for such systems is Modular Storage System (MSS II) from Daifuku (formerly Eskay)
(Beverage Industry, 2001).

Academic literature on constructing pallets mainly focused on physical arrangement of the cases in pallets
in such a way that the maximum use of the pallet space is achieved. Research in this area initially is concerned
with the arrangement of identical cases on a pallet, which has been termed as the ‘‘Manufacturer’s Pallet Pack-
ing Problem’’ (Bischoff and Ratcliff, 1995). The assumption here is that the manufacturer is constructing a
pallet of a single item (or different items with cases of same dimensions). The problem is a specialized version
of the three dimensional cutting stock problem (Gilmore and Gomory, 1965). We refer the reader to Hifi
(2004) for a review of literature and algorithms for solving the three dimensional cutting stock problem. A
related problem, which has been termed as the ‘‘Distributor’s Pallet Packing Problem’’ is concerned with
the arrangement of cases of different sizes on multiple pallets. The assumption in this problem is that the dis-
tributor is constructing multiple pallets to meet a particular demand of different items packed in cases of dif-
ferent sizes. This problem also can be modeled as a three dimensional cutting stock problem, which is
NP-hard, but for which many solution methods have been suggested (Hifi, 2004). We should note that the
Manufacturer’s Pallet Packing Problem needs to be solved only once and when a particular pattern of the
cases is determined, the same pattern is used for all pallets. Distributor’s Pallet Packing Problem, on the other
hand, is a tactical problem that needs to be solved each time the distributor needs to ship items to a retailer
and requires the formation of multiple pallets with different patterns. We finally note that the structures of
these two problems apply to a number of different problem areas such as container loading, loading containers
into ships or loading trucks.

In this study, we are not concerned with the physical arrangement of the cases in pallets, as all cases in our
application are of identical dimensions regardless of the beverage they contain. The arrangement of the cases
in the pallet are also pre-determined, i.e., each pallet has a fixed number of rows and each row can take a fixed
number of cases. However, different from the Manufacturer’s and Distributor’s Pallet Packing Problems, our
problem is to determine the number of cases of each product to be loaded onto a pre-determined number of
standard mixed pallets. Unlike the Distributor’s Pallet Packing Problem, our problem is not a tactical one, as
we are not designing mixed pallets per customer order. The mixed pallets are standard and the customers are
to choose among the available mixed pallets when they order. We assume that the customers determine the
number of mixed and full pallets to order in each period so as to minimize their inventory holding and back-
logging costs over a finite horizon.

The remainder of the paper is organized as follows. In Section 2, we formally introduce our problem and
show that it is NP-hard. In Section 3, we formulate the problem as a mixed integer linear programming prob-
lem and derive valid inequalities that strengthen the formulation. In Section 4, we conduct a numerical study
to test the efficiency of the formulation and the valid inequalities and to assess the impact of mixed pallets on
the customer inventory holding and backlogging costs. We conclude the paper and state the avenues for future
research in Section 5.

2. Problem definition and complexity

We are given a set of customers C and a set of products N. Let T ¼ f1; 2; . . . ; sg be the set of periods. Each
customer c has a demand of dcit P 0 for product i in period t. Products are of identical dimensions and are
sold in pallets. Each pallet has Q1 units of capacity (rows). In each row, there are Q2 units of a product. There
is a pre-determined set of potential mixed pallet designs P (later in Proposition 1, we determine the maximum
cardinality of this set). Pallet design j in set P has qij rows of product i and

P
i2N qij ¼ Q1 for all j 2 P . In addi-

tion, the manufacturer offers full pallets for each product i, which consists of Q1Q2 units of product i.
Retailers have linear inventory holding and backlogging costs. The cost of holding one unit of inventory for

product i at the end of period t for customer c is hcit. Likewise, the cost of backlogging one unit of demand for
product i at the end of period t for customer c is pcit. No backlogging is permitted at the end of period s (i.e.,
all demands should be satisfied by the end of s).

Given a set of available mixed pallet designs, each customer’s problem is to determine the number of full
pallets from each product and the number of mixed pallets from each design to buy in each period so as to
minimize its own total inventory holding and backlogging costs in periods 1; 2; . . . ; s. Assuming that each
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customer is making its decision optimally, the manufacturer’s problem is to select at most m mixed pallet
designs from set P so as to minimize the sum of customers’ inventory holding and backlogging costs in periods
1; 2; . . . ; s. We call the manufacturer’s problem mixed pallet design problem.

In Fig. 1, we explain the problem using a simple example. In this example, there are two products ðjN j ¼ 2Þ,
two customers ðjCj ¼ 2Þ and a single period ðs ¼ 1Þ. Pallets have six rows ðQ1 ¼ 6Þ and each row contains one
unit of a product ðQ2 ¼ 1Þ. There are potentially five different mixed pallet designs ðjP j ¼ 5Þ, and mixed pallet i

contains i rows of product 2 and 6� i rows of product 1. Customer 1 has (38, 40) units of demand for product
1 and product 2. Customer 2 has (22, 13) units of demand for product 1 and product 2. Assume that hci1 ¼ 1
for all c 2 C and i 2 N . If only full pallets are used, these customers have to purchase (42,42) and (24,18) units
of product 1 and product 2, incuring a total cost of 13. The problem of the manufacturer is to find the specific
mixed pallet designs to be used given a maximum number of mixed pallet designs so that the total of inventory
holding and backlogging costs are minimized. For example, using a single standard mixed pallet (design 4),
these customers will be able to purchase (38,40) and (22, 14), incuring a total cost of 1.

We next show that the mixed pallet design problem is NP-hard. The proof in fact shows that even a simple
one customer, two product, one period instance of the general mixed pallet design problem is NP-hard.

Theorem 1. The mixed pallet design problem is NP-hard.

Proof. Clearly, the decision version of the mixed pallet design problem is in class NP. Consider the integer
knapsack problem. Given a set U, a size su 2 Zþ and a value vu 2 Zþ for each u 2 U and positive integers
B and K, does there exist cu 2 Zþ for each u 2 U , such that

P
u2U sucu 6 B and

P
u2U vucu P K? This problem

is NP-complete even when su ¼ vu for all u 2 U (see Garey and Johnson (1979), problem [MP10]).
Consider an instance of the integer knapsack problem where su ¼ vu for all u 2 U . We reduce this to an

instance of the decision version of the mixed pallet design problem. Suppose that there is one customer, one
period and two products. Let Q2 ¼ 1 and Q1 ¼ maxu2U su. We take P ¼ U , m ¼ jU j, q1u ¼ su and q2u ¼ Q1 � su

for all u 2 U . Hence every item u of the knapsack problem corresponds to a pallet design u, which has su units
of product 1 and Q1 � su units of product 2. The demand of the customer for product 1 is K and for product 2
is 0. The customer should decide how many pallets to buy of each type in order to satisfy the demand. Let
cu 2 Zþ be the number of pallets of type u 2 U that the customer buys. Since the customer has to satisfy its
38 x
40 x

42 x
42 x7 x +7 x =

Full pallets Mixed pallets

Original customer demand

22 x
13 x

24 x
18 x =4 x +3 x

22 x
14 x 3 x +2 x=

38 x
40 x3 x +10 x = +1 x

Demand satisfied by full pallets only

Demand satisfied by full pallets and mixed pallet 4

1 32 54

Customer A Customer B

Fig. 1. Example for the use of mixed pallets.
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demand, we should have
P

u2U sucu P K and there is no possibility of backlogging. The inventory cost for
product 1 is 1 and for product 2 is 0. Since the inventory cost for product 2 is 0, the total cost for the customer
is equal to the inventory holding cost for product 1, i.e.,

P
u2U sucu � K. So there exists a decision for the

customer with cost less than or equal to B� K if and only if there exists a solution to the integer knapsack
problem with

P
u2U sucu P K and

P
u2U sucu 6 B. h

Now, we discuss various assumptions regarding our problem. First, we assume that each customer is of
equal importance to the manufacturer. This can be easily relaxed by incorporating weights to each customer.
We also assume that the choice of m is external considering various factors including complexity in operations
and impact on pallet inventories. Clearly, larger m values provide better service to the customers, as the com-
pany is better able to match the demand of each customer.

We also assume that the manufacturer has a pre-determined set P of potential mixed pallet designs to
choose from. In the event that the manufacturer does not have a pre-determined set, we work with the set
of all possible mixed pallet designs. Next, we derive the cardinality of the set of all possible mixed pallet
designs.

Let Nðn;Q1Þ be the number of possible mixed pallet designs (including the designs that has only one color,
i.e., full pallets) if there are n products and Q1 rows in a mixed pallet. By definition Nð1;Q1Þ ¼ 1 for any Q1. In
order to calculate the number of designs for general n > 1, we use the following proposition.

Proposition 1
pj ¼
Nðn; rÞ ¼
Xr

x¼1

Nðn� 1; xÞ þ 1:
Proof. Assume that at every stage, we are deciding on the number of rows to be used for a single product.
Assume that we start a particular stage with r rows and n products. If the next product is used in r � x rows
ð1 6 x 6 rÞ at that stage, then the remaining problem is one with n� 1 products and x rows. We have an addi-
tional 1 in the equation since the product can be assigned to all remaining r rows which corresponds to a single
design, regardless of how many products are left. h

In order to find Nðn;Q1Þ for any n, we need to calculate the sum of power series recursively. The results for
n 6 4 are given below:
Nð1;Q1Þ ¼ 1;

Nð2;Q1Þ ¼
XQ1

x¼1

Nð1; xÞ þ 1 ¼
XQ1

x¼1

1þ 1 ¼ Q1 þ 1;

Nð3;Q1Þ ¼
XQ1

x¼1

Nð2; xÞ þ 1 ¼
XQ1

x¼1

ðxþ 1Þ þ 1 ¼ Q2
1 þ 3Q1 þ 2

2
;

Nð4;Q1Þ ¼
XQ1

x¼1

Nð3; xÞ þ 1 ¼
XQ1

x¼1

x2 þ 3xþ 2

2

� �
þ 1 ¼ Q3

1 þ 6Q2
1 þ 11Q1 þ 6

6
:

We note that Nðn;Q1Þ also includes the full pallets, therefore jP j ¼ Nðn;Q1Þ � n.

3. Problem formulation

In this section, we provide a mathematical programming formulation of the mixed pallet design problem.
We define the following decision variables for our formulation.
1; if pallet design j is offered

0; otherwise

�

ycjt number of pallets of type j that customer c buys in period t

fcit number of full pallets of product type i that customer c buys in period t
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Icit amount of inventory of product i that customer c has at the end of period t

Bcit amount of product i that is backlogged at the end of period t for customer c

In addition, let P denote the set of mixed pallets that customer c can buy. Let M be a very large number.
c

Using the variables above, it is possible to obtain a linear mixed integer programming formulation. This for-
mulation, called MPD, is as follows:
ðMPDÞ min
X
c2C

X
i2N

X
t2T

ðpcitBcit þ hcitIcitÞ ð1Þ

s:t:
X
j2P

pj 6 m; ð2Þ

Icit�1 � Bcit�1 þ Q1Q2fcit þ
X
j2P c

Q2qijycjt ¼ dcit þ Icit � Bcit 8c 2 C; i 2 N ; t 2 T ; ð3Þ

ycjt 6 Mpj 8c 2 C; j 2 P c; t 2 T ; ð4Þ
Ici0 ¼ Bci0 ¼ Bcis ¼ 0 8c 2 C; i 2 N ; ð5Þ
Icit;Bcit P 0 8c 2 C; i 2 N ; t 2 T ; ð6Þ
f cit P 0 and integer 8c 2 C; i 2 N ; t 2 T ; ð7Þ
ycjt P 0 and integer 8c 2 C; j 2 P c; t 2 T ; ð8Þ
pj 2 f0; 1g 8j 2 P : ð9Þ
Constraint (2) limits the number of mixed pallet designs to be used to m. Constraints (3) are the balance equa-
tions where the number of product type i that customer c receives in period t is Q1Q2fcit þ

P
j2P c

Q2qijycjt. Con-

straints (4) forbid any customer to buy a certain pallet design if this design is not offered. Constraints (5)
impose beginning and ending conditions. Constraints (6)–(9) state the types of decision variables. Objective
function (1) is the sum of inventory holding and backlogging costs over all periods. The aim is to minimize
this total cost.

The advantage of this formulation is that constraints forbidding some mixed pallet designs for some or all
customers can be incorporated very easily. However, it has the disadvantage that, if jP j is large, then the num-
ber of variables is large. For the application we consider, since the number of products is small, jP j is relatively
small and LP relaxations are solved efficiently.

Another concern is the strength of the formulation. The above formulation has a very weak LP relaxation.
Indeed, solution of the LP relaxation only gives a trivial bound.

Proposition 2. The optimal value of the LP relaxation of MPD is equal to zero.
Proof. Clearly, the optimal value of the LP relaxation is non-negative. Consider the solution given by pj ¼ 0
for all j 2 P , ycjt ¼ 0 for all c 2 C, j 2 P c and t 2 T , fcit ¼ dcit

Q1Q2
for all c 2 C, i 2 N and t 2 T , Icit ¼ Bcit ¼ 0 for

all c 2 C, i 2 N and t 2 T . As this solution is feasible for the LP relaxation and it has objective function value
of zero, it is optimal. h

It is important to improve this lower bound to be able to solve the problem to optimality. In the remainder
of this section, we try to improve this formulation by choosing a good value of M and by adding valid
inequalities.

3.1. Choice of M and aggregation of constraints (4)

The number of constraints (4) can be large since there is a constraint per pallet design, customer and period.
It may be important to decrease the number of these constraints to improve the solution time. A common
technique is aggregation. These constraints can be aggregated in the following ways:
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X
c2C:j2P c

ycjt 6 Mpj 8j 2 P ; t 2 T ð10Þ
or
 X
t2T

ycjt 6 Mpj 8c 2 C; j 2 P c ð11Þ
or
 X
c2C:j2P c

X
t2T

ycjt 6 Mpj 8j 2 P : ð12Þ
Each aggregation leads to a valid formulation of MPD. The relative strengths of these aggregated inequalities
depend on the value of M. For the same M, inequality (12) is stronger than inequalities (10) and (11), and they
are stronger than inequality (4). But it may be possible to choose better M values for disaggregated inequalities.

Given the pallet designs to be used, all customers behave independently. So if inequality (12) is valid with
M, then there exist M1;M2; . . . ;M jCj such that

P
t2T ycjt 6 Mcpj is valid for each c 2 C such that j 2 P c andP

c2CMc ¼ M . So inequality (12) cannot dominate inequalities (11) if the upper bounds are tight.
Next, we present tight upper bounds to use in inequalities (11).

Proposition 3. There exists an optimal solution which satisfies& ’
X
t2T

ycjt 6 max
i2N :qij>0

P
t2T dcit

qijQ2

pj ð13Þ
for all c 2 C and j 2 P c.

Proof. As backlogging is allowed, a customer can buy all the demand of a product in any period. By feasibil-

ity, we can say that in a given period, customer c can buy maxi2N :qij>0

P
t2T

dcit

qijQ2

� �
pallets of type j. There exists a

feasible solution where the bound is attained. But it is also true that, by optimality, customer c does not buy
more than this quantity over all periods. h

In our formulation, we replace constraints (4) with inequalities (13) for all c 2 C and j 2 P c. This way, we
decrease the number of constraints (4) by an order of jT j without sacrificing from the strength of the formu-
lation. In fact, the LP bound is still zero as the solution given in the proof of Proposition 2 is still feasible. To
improve the LP bound, we derive valid inequalities.

3.2. Valid inequalities

In this section, we derive valid inequalities using relaxations of the problem and mixed integer rounding
(Marchand and Wolsey, 2001; Nemhauser and Wolsey, 1988). Similar ideas have often been used to solve dif-
ferent production planning problems (see e.g. Belvaux and Wolsey, 2000; Miller and Wolsey, 2003; Pochet and
Wolsey, 2006).

The valid inequalities we obtain are based on the following idea. Consider customer c 2 C and a subset of
mixed pallets P 0 � P c. If none of the mixed pallets in the set P c n P 0 is offered, then customer c has to satisfy
his/her demand using full pallets and mixed pallets of the set P 0.

Proposition 4. Let c 2 C, i 2 N , t1; t2 2 T such that t1 6 t2, a 2 Zþ and Dciðt1; t2; aÞ ¼
Pt2

t¼t1
dcit=a with

Dciðt1; t2; aÞ not integer and P 0 � P c. The inequality !
Xt2

t¼t1

min
Q1Q2

a

� �
;

� �
Dciðt1; t2; aÞefcit þ

X
j2P 0

min
qijQ2

a

� �
; Dciðt1; t2; aÞd e

� �
ycjt

þ Icit1�1 þ Bcit2

aðDciðt1; t2; aÞ � bDciðt1; t2; aÞcÞ
P dDciðt1; t2; aÞe 1�

X
j2P cnP 0 :qij>0

pj

0
@

1
A ð14Þ
is a valid inequality.
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Proof. If
P

j2P cnP 0 :qij>0pj P 1, the right hand side of inequality (14) is non-positive. If
P

j2P cnP 0:qij>0pj ¼ 0, then
we need to prove that the left hand side should be at least dDciðt1; t2; aÞe. Summing inequality (3) over
t ¼ t1; . . . ; t2 yields
Icit1�1 � Bcit1�1 þ
Xt2

t¼t1

Q1Q2fcit þ
X
j2P c

Q2qijycjt

 !
¼
Xt2

t¼t1

dcit þ Icit2
� Bcit2

:

Since Bcit1�1 and Icit2
are non-negative and pj ¼ 0 for all j 2 P c n P 0 such that qij > 0, we have
Xt2

t¼t1

Q1Q2fcit þ
X
j2P 0

qijQ2ycjt

 !
þ Icit1�1 þ Bcit2

P
Xt2

t¼t1

dcit;
which implies
Xt2

t¼t1

Q1Q2

a

� �
fcit þ

X
j2P 0

qijQ2

a

� �
ycjt

 !
þ Icit1�1 þ Bcit2

a
P Dciðt1; t2; aÞ:
Now the mixed integer rounding inequality is
Xt2

t¼t1

Q1Q2

a

� �
fcit þ

X
j2P 0

qijQ2

a

� �
ycjt

 !
þ Icit1�1 þ Bcit2

aðDciðt1; t2; aÞ � bDciðt1; t2; aÞcÞ
P dDciðt1; t2; aÞe
and is valid. Finally, using the non-negativity of
Icit1�1þBcit2

aðDciðt1;t2;aÞ�bDciðt1;t2;aÞcÞ, we can apply coefficient reduction and
obtain
Xt2

t¼t1

min
Q1Q2

a

� �
; dDciðt1; t2; aÞe

� �
fcit þ

X
j2P 0

min
qijQ2

a

� �
; dDciðt1; t2; aÞe

� �
ycjt

 !

þ Icit1�1 þ Bcit2

aðDciðt1; t2; aÞ � bDciðt1; t2; aÞcÞ
P dDciðt1; t2; aÞe:
This proves that inequality (14) is also satisfied when
P

j2P cnP 0 :qij>0pj ¼ 0. h

Further valid inequalities can be generated using some special cases of inequalities (14). First consider the
case with t1 ¼ 1, t2 ¼ s, a ¼ Q2 and P 0 ¼ P c. In this case, inequality (14) simplifies to
X
t2T

minfQ1;D
0
cigfcit þ

X
j2P c

minfqij;D
0
cigycjt

 !
P D0ci; ð15Þ
where D0ci ¼ dDcið1; s;Q2Þe. Let F ¼
P

t2T fcit, Y j ¼
P

t2T ycjt and D ¼ D0ci. We can rewrite inequality (15) as
XQ1�1

l¼1

X
j2P c:qij¼l

minfl;DgY j þminfQ1;DgF P D:
Now, let al ¼
P

j2P c:qij¼lY j for l ¼ 1; 2; . . . ;Q1 � 1 and aQ1
¼ F . Then the above inequality simplifies to
XQ1

l¼1

minfl;Dgal P D;
where al is a non-negative integer for l ¼ 1; 2; . . . ;Q1. This is a knapsack cover inequality. See Mazur (1999)
and Yaman (2005) for polyhedral properties of the integer knapsack cover polyhedron and Pochet and Wolsey
(1995) for the special case where the coefficients of al’s are integer multiples of each other.

Here we use the lifted rounding inequalities given in Yaman (2005). For k 2 Zþþ and a 2 R, define
ukðaÞ ¼ a� a

k

� 	
k. For k 2 f1; . . . ;Q1g, the inequality
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XQ1

l¼1

min ukðDÞ
D
k

� �
; ukðDÞ

l
k


 �
þminfukðlÞ; ukðDÞg

� �� �
al P ukðDÞ

D
k

� �
is valid when ukðDÞ > 0.
The equivalent inequality for MPD is given in the following proposition.

Proposition 5. For c 2 C, i 2 N and k 2 f1; . . . ;Q1g with ukðD0ciÞ > 0, inequality
X
t2T

min ukðD0ciÞ
D0ci

k

� �
; ukðD0ciÞ

Q1

k


 �
þminfukðQ1Þ; ukðD0ciÞg

� �� �
fcit

�

þ
X

j2P c:qij>0

min ukðD0ciÞ
D0ci

k

� �
; ukðD0ciÞ

qij

k

j k
þminfukðqijÞ; ukðD0ciÞg

� 
� �
ycjt

1
A P ukðD0ciÞ

D0ci

k

� �
ð16Þ
is valid.

Note that the optimal solution of the LP relaxation does not necessarily satisfy these inequalities. If there

exists c 2 C and i 2 N such that
D0ci
Q1

l m
>
P

t2T
dcit

Q1Q2
, then the fractional solution of the LP relaxation given in the

proof of Proposition 2 is cut off by inequality (16) for k ¼ Q1. In the other case, this solution is integer and so
is optimal for MPD.

Another special case that we consider is the following: Let a ¼ Q2, k 2 f1; . . . ;Q1g such that
k 6 dDciðt1; t2;Q2Þe and P 0 ¼ fj 2 P c : qij ¼ kg. In this case, inequality (14) simplifies to
Xt2

t¼t1

minfQ1; dDciðt1; t2;Q2Þegfcit þ
X

j2P c:qij¼k

kycjt

0
@

1
Aþ Icit1�1 þ Bcit2

Q2ðDciðt1; t2;Q2Þ � bDciðt1; t2;Q2ÞcÞ

P dDciðt1; t2;Q2Þe 1�
X

j2P c :0<qij ;qij 6¼k

pj

0
@

1
A: ð17Þ
Proposition 6. For c 2 C, i 2 N , t1; t2 2 T such that t1 6 t2 and k 2 f1; . . . ;Q1g such that k 6 dDciðt1; t2;Q2Þe, let

x ¼ dDciðt1;t2;Q2Þe
k � dDciðt1;t2;Q2Þe

k

j k
. If

dDciðt1;t2;Q2Þe
k is not integer, inequality
Xt2

t¼t1

min
Q1

k

� �
;
dDciðt1; t2;Q2Þe

k

� �� �
fcit þ

X
j2P c:qij¼k

ycjt

0
@

1
Aþ Icit1�1 þ Bcit2

xQ2ðDciðt1; t2;Q2Þ � bDciðt1; t2;Q2ÞcÞ

P
dDciðt1; t2;Q2Þe

k

� �
1�

X
j2P c:0<qij ;qij 6¼k

pj

0
@

1
A ð18Þ
is a valid inequality.

Proof. The mixed integer rounding inequality for (17) divided by k is (18). h
4. Computational results

In this section, we report the outcomes of two experiments. In the first experiment, we want to see if the
valid inequalities help in solving the MPD. In the second experiment, the aim is to see the effect of using mixed
pallets on the total cost.

In both experiments, we use a dataset provided by the beverage producer that was discussed in Section 1. In
this dataset, we have a total of three products and seven customers. The customer demand data is taken from a
quarterly (with monthly buckets) sales plan agreed upon by the customers. The demand data is in cases which
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consist of 24 units of 50 cl beverages. The maximum monthly demand for any product for any customer is
2408 cases. The minimum monthly demand is 0 cases. The average is 237.82 cases. The beverage company uses
pallets with six rows ðQ1 ¼ 6Þ and each row can take 12 cases of beverages ðQ2 ¼ 12Þ. Inventory holding cost
per case per month is calculated by multiplying the sales price of each brand with the average monthly interest
rate of 1%. The inventory holding cost per case per month for three products are 0.7, 0.6, and 0.625. Back-
logging cost per case per month is taken as 3.5, 3, and 3.625 for these products. The set P includes all possible
mixed pallet designs. A customer does not buy a mixed pallet if the total demand of the customer for any prod-
uct in the pallet is zero, i.e., P c ¼ j 2 P :

P
t2T dcit > 0 8i 2 N : qij > 0

� �
for each customer c.

The computation is carried out on a personal computer with a 1.6 GHz Pentium M processor and 512 MB
RAM. We use ILOG OPL 4.2.0.1/CPLEX 10.0.0 with its default settings except the branching priority. In
branching we give priority to pj variables. There are two reasons for this: unlike other integer variables of
the formulation, pj variables can take only two values and when they are fixed, it is possible to fix many other
variables.

In our first experiment, we use twelve instances from the dataset provided by the beverage producer as well
as four random instances (available at http://www.bilkent.edu.tr/~alpersen/Mixed_Pallet). We want to see the
use of adding valid inequalities (14), (16) and (18). To see the effect of each family of valid inequalities, we do
the following experiment. We solve each problem instance first without any valid inequalities and then with
the family of valid inequalities that we test and compute the improvement in percentage root gap (the percent-
age root gap is equal to opt�root

opt
� 100 where opt is the optimal value and root is the lower bound before branch-

ing), number of nodes and cpu time. In Table 1, we report the results without valid inequalities. For every
instance, we report the name of the instance (the name starts with ‘‘e’’ for the instances provided by the com-
pany and with ‘‘r’’ for the random instances, followed by jCj, jNj, m and s), the number of rows and the num-
ber of columns of the integer program after it is reduced by the presolve function of the solver, the optimal
value, the percentage root gap, the cpu time and the number of nodes in the branch and cut tree. Remark that
even though the LP bound is always zero, as the solver generates its own cuts, the percentage root gap is dif-
ferent from 100%.

We first test the use of inequalities (14). We add these inequalities for all customers c 2 C, all products i 2 N
and for all possible choices of t1 and t2. There remains the choice of a and P 0. Here, we consider three classes.
The first class corresponds to the choice a ¼ Q2 and P 0 ¼ ;. In the second class, we take a ¼ Q2 and P 0 ¼ P c for
all c 2 C. Finally, in the third class, we take for every k 2 f1; . . . ;Q1g such that k 6

Pt2

t¼t1
dcit
Q2

, a ¼ kQ2 and
P 0 ¼ fj 2 P c : qij ¼ kg for c 2 C. The results are reported in Tables 2–4. For every instance and every class
of inequalities, we report the number of rows and the percentage improvements in the percentage root gap,
the cpu time and the number of nodes when we add this class of inequalities.
Table 1
The results without valid inequalities

Problem name Number of rows Number of columns Optimal value % Root gap Cpu (in seconds) Number of nodes

e, 3, 2, 1, 3 34 98 271.9 62.73 5.51 11251
e, 4, 2, 1, 3 45 129 359.8 68.11 196.53 374018
e, 5, 2, 1, 3 56 160 437.5 64.84 251.51 446624
e, 6, 2, 1, 3 67 191 499.5 65.57 1532.42 2376055
e, 7, 2, 1, 3 70 199 530.3 61.79 941.24 1411451
e, 3, 2, 2, 3 34 98 226.3 58.82 59.62 149236
e, 4, 2, 2, 3 45 129 311.8 65.78 19528.23 35807408
e, 3, 3, 1, 3 80 254 321.9 60.32 12.07 7098
e, 4, 3, 1, 3 113 350 405.45 61.44 20.43 11785
e, 5, 3, 1, 3 147 449 549.95 58.21 138.09 94986
e, 6, 3, 1, 3 158 480 659.95 62.03 288.21 199684
e, 7, 3, 1, 3 161 488 690.75 59.77 323.27 231074
r, 5, 2, 1, 3 48 137 386 56.42 537.72 1052917
r, 3, 3, 1, 3 80 254 559.9 73.78 2204.69 3183175
r, 4, 2, 2, 3 29 83 346.7 27.58 1415.32 3081664
r, 3, 2, 1, 4 31 100 415 46.37 256.15 511755

http://www.bilkent.edu.tr/~alpersen/Mixed_Pallet


Table 2
The results with inequalities (14) for a ¼ Q2 and P 0 ¼ ;
Problem name Number of rows % Imp. in % root gap % Imp. in cpu % Imp. in nodes

e, 3, 2, 1, 3 40 �0.66 �63.09 �51.92
e, 4, 2, 1, 3 54 1.31 �16.10 �10.93
e, 5, 2, 1, 3 66 �0.11 �69.10 �71.05
e, 6, 2, 1, 3 79 0.20 �52.72 �51.40
e, 7, 2, 1, 3 88 0.92 �90.81 �84.68
e, 3, 2, 2, 3 66 �1.25 �16.53 3.06
e, 4, 2, 2, 3 86 �0.52 �33.41 �20.85
e, 3, 3, 1, 3 121 7.68 13.61 13.93
e, 4, 3, 1, 3 169 14.47 30.54 37.45
e, 5, 3, 1, 3 221 6.52 �20.64 �12.55
e, 6, 3, 1, 3 243 12.56 19.19 28.43
e, 7, 3, 1, 3 252 14.01 39.54 41.25
r, 5, 2, 1, 3 89 1.08 �261.45 �211.83
r, 3, 3, 1, 3 126 �0.94 �86.92 �81.35
r, 4, 2, 2, 3 64 13.23 69.37 70.57
r, 3, 2, 1, 4 74 3.86 �16.10 �8.16

Table 3
The results with inequalities (14) for a ¼ Q2 and P 0 ¼ P c

Problem name Number of rows % Imp. in % root gap % Imp. in cpu % Imp. in nodes

e, 3, 2, 1, 3 66 4.91 26.18 45.20
e, 4, 2, 1, 3 86 3.23 28.98 29.13
e, 5, 2, 1, 3 109 2.75 35.27 41.65
e, 6, 2, 1, 3 131 6.48 37.76 45.35
e, 7, 2, 1, 3 140 6.02 55.75 59.92
e, 3, 2, 2, 3 66 3.09 39.39 46.90
e, 4, 2, 2, 3 86 1.17 46.40 52.36
e, 3, 3, 1, 3 121 �2.83 30.21 �1.90
e, 4, 3, 1, 3 169 1.15 20.05 27.61
e, 5, 3, 1, 3 221 2.62 18.79 29.55
e, 6, 3, 1, 3 243 4.74 �42.48 10.68
e, 7, 3, 1, 3 252 4.16 38.79 46.76
r, 5, 2, 1, 3 97 2.29 84.62 84.77
r, 3, 3, 1, 3 126 2.15 69.77 64.98
r, 4, 2, 2, 3 64 24.69 76.70 77.91
r, 3, 2, 1, 4 79 10.77 �22.14 �15.03

836 H. Yaman, A. S�en / European Journal of Operational Research 186 (2008) 826–840
We observe that the first class of inequalities are not useful in general to decrease the cpu time and the num-
ber of nodes. On the average, there is an increase of 34.66% in cpu time and 25.63% in the number of nodes.
The second class of inequalities is useful except for two instances where the difference is not so extreme. On the
average, this class improves the percentage root gap by 4.84%, the cpu time by 34% and the number of nodes
by 40.36%. The third class of inequalities is useful for all instances except for two. On the average, this class
improves the percentage root gap by 0.66%, the cpu time by 26.25% and the number of nodes by 53.50%.

Next, we repeat the same test for inequalities (16) and (18). Here we add all possible inequalities as their
number is polynomial. The results are given in Tables 5 and 6.

Here, we observe that the first family of inequalities (16) improve the cpu time and the number of nodes for
all problems except one. The average improvements in the percentage root gap, the cpu time and the number
of nodes are 1.53%, 42.65% and 46.11%, respectively. For the second family of inequalities (18), we observe
that the cpu time increased for four problems and the number of nodes increased for three problems. The aver-
age improvements in the percentage root gap, the cpu time, and the number of nodes are 0.55%, 25.70%, and
47.38%.



Table 4
The results with inequalities (14) for a ¼ kQ2 and P 0 ¼ fj 2 P c : qij ¼ kg
Problem name Number of rows % Imp. in % root gap % Imp. in cpu % Imp. in nodes

e, 3, 2, 1, 3 147 �0.89 15.63 54.53
e, 4, 2, 1, 3 203 0.54 69.41 80.21
e, 5, 2, 1, 3 257 0.42 47.14 66.51
e, 6, 2, 1, 3 317 1.32 59.90 68.50
e, 7, 2, 1, 3 349 1.40 57.75 70.92
e, 3, 2, 2, 3 163 �1.50 �122.21 �32.44
e, 4, 2, 2, 3 228 �1.47 3.10 30.83
e, 3, 3, 1, 3 262 2.08 23.57 75.18
e, 4, 3, 1, 3 352 �5.26 39.80 66.04
e, 5, 3, 1, 3 449 4.42 75.36 94.56
e, 6, 3, 1, 3 514 7.27 87.86 94.74
e, 7, 3, 1, 3 546 7.69 87.01 95.38
r, 5, 2, 1, 3 288 1.08 23.02 49.83
r, 3, 3, 1, 3 335 �4.81 91.23 94.23
r, 4, 2, 2, 3 202 �3.11 �174.75 �108.19
r, 3, 2, 1, 4 261 1.44 36.21 55.13

Table 5
The results with inequalities (16)

Problem name Number of rows % Imp. in % root gap % Imp. in cpu % Imp. in nodes

e, 3, 2, 1, 3 40 2.17 25.27 49.93
e, 4, 2, 1, 3 53 2.84 77.27 77.95
e, 5, 2, 1, 3 66 1.40 27.66 37.07
e, 6, 2, 1, 3 79 0.48 58.42 57.96
e, 7, 2, 1, 3 83 0.54 51.22 51.01
e, 3, 2, 2, 3 40 �2.38 �67.12 �49.65
e, 4, 2, 2, 3 53 �4.05 44.12 44.92
e, 3, 3, 1, 3 88 �1.37 7.22 18.16
e, 4, 3, 1, 3 124 �0.34 45.98 42.77
e, 5, 3, 1, 3 161 �2.94 56.01 52.05
e, 6, 3, 1, 3 174 3.42 42.74 44.20
e, 7, 3, 1, 3 178 6.11 73.11 73.92
r, 5, 2, 1, 3 57 1.31 72.62 75.52
r, 3, 3, 1, 3 88 4.47 93.89 94.99
r, 4, 2, 2, 3 35 13.18 71.57 64.52
r, 3, 2, 1, 4 36 �0.28 2.44 2.43
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Based on these results, we decided to use the valid inequalities (14) with a ¼ Q2 and P 0 ¼ P c, the valid
inequalities (14) with a ¼ kQ2 and P 0 ¼ fj 2 P c : qij ¼ kg and the valid inequalities (16). We report results with
these three families of valid inequalities in Table 7.

These inequalities together decrease the root gap, the number of nodes in the branch and cut tree and the
cpu time for all instances. The average, minimum, and maximum improvements in the cpu time are 59.1%,
14.3%, and 92.97%, respectively.

In the final part of our first experiment, we investigate the effect of our valid inequalities in solving other
random instances (available at http://www.bilkent.edu.tr/~alpersen/Mixed_Pallet) with larger number of cus-
tomers or periods. The results are tabulated in Tables 8 and 9. For most problem instances, the solver termi-
nated running out of memory. We report, for both cases, with and without valid inequalities, the size of the
formulations, the percentage root gap (computed using the best upper bound of the two cases), the cpu time,
the best upper bound at termination and the remaining percentage gap (i.e., ub�lb

ub
� 100 where ub is the final

upper bound and lb is the final lower bound).
The final % gaps and the final upper bounds are smaller with valid inequalities for all of the instances except

for one. For that single instance, the difference in final % gap is quite small. With valid inequalities, the solver

http://www.bilkent.edu.tr/~alpersen/Mixed_Pallet


Table 6
The results with inequalities (18)

Problem name Number of rows % Imp. in % root gap % Imp. in cpu % Imp. in nodes

e, 3, 2, 1, 3 98 �0.36 13.82 44.61
e, 4, 2, 1, 3 133 0.48 59.13 67.53
e, 5, 2, 1, 3 166 �0.53 26.50 44.05
e, 6, 2, 1, 3 198 �0.45 �11.09 13.62
e, 7, 2, 1, 3 216 0.03 �36.36 �6.92
e, 3, 2, 2, 3 114 0.00 6.38 39.02
e, 4, 2, 2, 3 157 0.03 �48.10 �11.13
e, 3, 3, 1, 3 188 5.14 35.85 67.96
e, 4, 3, 1, 3 253 �6.87 48.58 70.05
e, 5, 3, 1, 3 322 0.39 61.04 78.75
e, 6, 3, 1, 3 358 3.58 73.88 85.43
e, 7, 3, 1, 3 376 7.13 80.45 89.21
r, 5, 2, 1, 3 184 1.08 43.31 57.20
r, 3, 3, 1, 3 216 �4.28 82.24 86.19
r, 4, 2, 2, 3 125 6.28 37.52 47.67
r, 3, 2, 1, 4 145 �2.87 �61.91 �15.15

Table 7
The results with inequalities (14) with a ¼ Q2 and P 0 ¼ P c, inequalities (14) with a ¼ kQ2 and P 0 ¼ fj 2 P c : qij ¼ kg and inequalities (16)

Problem
name

Number of
rows

% Root
gap

Cpu
(in seconds)

Number of
nodes

% Imp. in % root
gap

% Imp. in
cpu

% Imp. in
nodes

e, 3, 2, 1, 3 179 61.57 4.39 3469 1.85 20.37 69.17
e, 4, 2, 1, 3 244 66.46 46.15 52432 2.43 76.52 85.98
e, 5, 2, 1, 3 66 63.93 79.62 79096 1.40 68.34 82.29
e, 6, 2, 1, 3 381 62.33 407.28 388649 4.93 73.42 83.64
e, 7, 2, 1, 3 413 58.07 299.01 283087 6.02 68.23 79.94
e, 3, 2, 2, 3 195 56.67 51.09 64666 3.64 14.30 56.67
e, 4, 2, 2, 3 269 64.23 12982.43 15251520 2.36 33.52 57.41
e, 3, 3, 1, 3 303 53.99 9.83 2612 10.49 18.51 63.20
e, 4, 3, 1, 3 407 56.16 15.52 4265 8.59 24.02 63.81
e, 5, 3, 1, 3 522 55.84 41.94 12303 4.07 69.63 87.05
e, 6, 3, 1, 3 598 55.56 36.80 11903 10.44 87.23 94.04
e, 7, 3, 1, 3 630 52.46 33.81 7632 12.24 89.54 96.70
r, 5, 2, 1, 3 332 54.95 76.93 88723 2.62 85.69 91.57
r, 3, 3, 1, 3 381 69.99 155.04 140149 5.15 92.97 95.60
r, 4, 2, 2, 3 225 20.77 374.79 565135 24.69 73.52 81.66
r, 3, 2, 1, 4 299 41.93 128.59 171691 9.59 49.80 66.45
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could prove optimality for two instances, whereas without valid inequalities, the minimum final gap is 7.48%.
The average final gap is 33.62% without valid inequalities and 24.16% with valid inequalities. These results
show that the valid inequalities help compute better upper and lower bounds in general, but the problem
for larger instances remains difficult to solve to optimality.

The second experiment tests the effect of using mixed pallets on total costs. For this experiment, we use two
sets of instances. In the first set, there are two types of products and in the second set, the number of product
types is three. In both sets, there are three periods and the number of customers goes from 3 to 7. The results
are reported in Tables 10 and 11. We solve the problem with no mixed pallets, one mixed pallet and two mixed
pallets. For each variant, we report the optimal value. Let costi be the optimal value for the problem with i

mixed pallets, for i ¼ 0; 1; 2. The quantities %imp1 and %imp2 are computed as cost1�cost0

cost0
� 100 and

cost2�cost1

cost1
� 100.

The results show that incorporating mixed pallets results in significant savings in inventory holding and
backlogging costs for the beverage producer’s customers. For all 10 instances, significant reductions in total
cost are possible, even with the introduction of a single mixed pallet. Incorporating a second mixed pallet



Table 8
Results without valid inequalities for randomly generated instances with larger number of customers or periods

Problem name Number of rows Number of columns % Root gap Cpu (in seconds) Best upper bound Final % gap

r, 3, 2, 1, 6 41 150 52.21 5118.74 591.7 16.52
r, 5, 2, 1, 4 48 153 39.27 4084.87 812.8 21.80
r, 4, 2, 2, 4 44 142 61.74 3100.62 605.6 59.21
r, 10, 2, 1, 3 92 261 64.82 2665.99 872 40.05
r, 8, 2, 1, 3 65 184 46.46 3152.60 757.9 26.73
r, 4, 3, 2, 3 91 285 75.30 2560.41 516.7 50.85
r, 6, 3, 2, 3 113 347 70.04 1955.40 798.3 47.37
r, 6, 2, 3, 3 51 145 41.90 2742.59 558.7 34.42
r, 4, 2, 1, 5 41 139 39.10 12953.72 663.6 7.48
r, 4, 2, 2, 5 41 139 38.71 3651.33 661.2 31.75

Table 9
Results with valid inequalities for randomly generated instances with larger number of customers or periods

Problem name Number of rows % Root gap Cpu (in seconds) Best upper bound Final % gap

r, 3, 2, 1, 6 618 40.87 3364.17 591.7 0.00
r, 5, 2, 1, 4 449 37.40 6880.10 806.8 11.40
r, 4, 2, 2, 4 465 60.52 3485.45 600.8 57.46
r, 10, 2, 1, 3 613 64.38 3229.82 912.8 40.17
r, 8, 2, 1, 3 467 38.87 4812.57 757.9 17.16
r, 4, 3, 2, 3 472 60.34 3930.67 513.1 32.46
r, 6, 3, 2, 3 648 66.77 3559.15 793.5 27.20
r, 6, 2, 3, 3 401 39.93 3030.50 557.5 33.47
r, 4, 2, 1, 5 525 26.40 403.07 663.6 0.00
r, 4, 2, 2, 5 564 26.13 4877.77 661.2 22.28

Table 10
Results with two types of products

jCj Cost0 Cost1 %Imp1 Cost2 %Imp2

3 410.5 271.9 33.76 226.3 16.77
4 576.4 359.8 37.58 311.8 13.34
5 699.7 437.5 37.47 342.7 21.67
6 809.7 499.5 38.31 404.7 18.98
7 840.5 530.3 36.91 435.5 17.88

Table 11
Results with three types of products

jCj Cost0 Cost1 %Imp1 Cost2 %Imp2

3 565.5 321.9 43.08 278.1 13.61
4 795.15 405.45 49.01 352.65 13.02
5 1013.45 549.95 45.73 476.15 13.29
6 1123.45 659.95 41.26 538.15 18.46
7 1154.25 690.75 40.16 568.95 17.63
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results in further savings for the customers, albeit with decreasing marginal returns. The message from this
experiment is clear. For unpopular items, offering even a limited number of mixed pallets will lead to consid-
erably lower costs than the case where the customers are allowed to order only in full pallets. Such a result will
enable the beverage producer to operate with standard pallets (mixed or full) without having much impact on
customer profitability and sales.
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5. Conclusion

In this paper, we study a manufacturer that is designing standard mixed pallets for its various customers
(that are differentiated by their demand mix) that cannot justify full pallet shipments for every product that
they demand. We state the problem of the manufacturer as determining the designs of a given number of
mixed pallets so as to minimize the total inventory holding and backlogging costs of its customers. First
we show that the problem is NP-hard. We develop a mixed integer linear programming formulation and valid
inequalities to strengthen the formulation. Our numerical study shows that the incorporation of mixed pallets
improve the performance of customers considerably, even with restrictions and a limited number of mixed pal-
lets. Our numerical investigation also shows that the valid inequalities help significantly in reducing the solu-
tion times, but the problem remains to be difficult for instances with higher dimensions. Therefore, one
straightforward extension of our study would be the development and testing of heuristics. One may also con-
sider the incorporation of manufacturer’s own costs (such as inventory holding cost of pallets) to the model.
Although the specific company that motivated this research works with customers with deterministic product
demands, another logical extension is the introduction of probabilistic demands to the problem.
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