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Abstract

Beam search (BS) is used as a heuristic to solve various combinatorial optimization problems, ranging from scheduling
to assembly line balancing. In this paper, we develop a backtracking and an exchange-of-information (EOI) procedure to
enhance the traditional beam search method. The backtracking enables us to return to previous solution states in the
search process with the expectation of obtaining better solutions. The EOI is used to transfer information accumulated
in a beam to other beams to yield improved solutions.

We developed six different versions of enhanced beam algorithms to solve the mixed-model assembly line scheduling
problem. The results of computational experiments indicate that the backtracking and EOI procedures that utilize problem
specific information generally improve the solution quality of BS.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we propose an enhanced beam
search (BS) algorithm to solve combinatorial opti-
mization problems. The proposed algorithm is
developed by incorporating specific enhancement
tools into the traditional BS method.

BS is a constructive type heuristic and has been
around for at least two decades. It was first used
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2007.02.024

* Corresponding author. Tel./fax: +90 312 2664126.
E-mail addresses: sabun@bilkent.edu.tr (_I. Sabuncuoğlu),
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in artificial intelligence for the problem of speech
recognition (Lowerre, 1976). Later, it was applied
to optimization problems (see Ow and Morton,
1988; Chang et al., 1989; Sabuncuoglu and Kara-
buk, 1998).

It is a fast and approximate branch and bound
method, which operates in a limited search space
to find good solutions for optimization problems.
It searches a limited number of solution paths in
parallel, and progresses level by level without
backtracking.

In this paper, we introduce two new features,
namely backtracking and exchange-of-information
(EOI); these enhance the traditional BS method.
.
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The enhanced BS is applied to the mixed-model
assembly line (MMAL) sequencing problem. The
results of our computational experiments indicate
that the proposed BS algorithm with these addi-
tional enhancements is superior to the traditional
BS method and other heuristic approaches in the lit-
erature. Based on the experience gained in this
study, we see great potential for the BS enhance-
ment tools to solve other optimization problems.

The rest of the paper is organized as follows: we
review the literature in Section 2. We discuss the
problem domain and the state-of-the-art heuristic
procedures in Section 3. We give the description of
the proposed algorithm and the enhancement tools
in Section 4. We present the results of our computa-
tional experiments in Section 5. Finally, we give
concluding remarks and further research directions
in Section 6.

2. Literature review

Beam search (BS) is an adaptation of the branch
and bound method in which only some nodes are
evaluated in the search process. In this method, only
b promising nodes, called beam width number of
nodes, are kept for further sprouting at any level
(Sabuncuoglu and Bayiz, 1999). The potential
promise of each node is determined by a global eval-
uation function that selects the best nodes and elim-
inates others. In order to reduce the computational
burden of global evaluation, a filtering mechanism
can also be used, by which some nodes are elimi-
nated by a local evaluation function prior to the glo-
bal evaluation.

Since BS was first employed in artificial intelli-
gence (Lowerre, 1976), it has been used in various
problem areas. Ow and Morton (1988) use BS to
solve the single machine early/tardy problem and
the flow shop problem. Chang et al. (1989) develop
a BS algorithm for the FMS scheduling problem. In
another study, Sabuncuoglu and Karabuk (1998)
develop a filtered BS for the FMS scheduling prob-
lem with finite buffer capacity, routing and sequenc-
ing flexibilities. The studies of Sabuncuoglu and
Bayiz (2000), Shayan and Al-Hakim (2002), and
Pacciarelli and Pranzo (2004) are other scheduling
examples of BS.

BS has also been applied to other problems:
assembly line sequencing (Leu et al., 1997; McMul-
len and Tarasewich, 2005), assembly line balancing
(Erel et al., 2005), stochastic programming (Beraldi
and Ruszczynski, 2005), marketing (Alexouda and
Paparrizos, 2001), and tool management (Zhou
et al., 2005). There are also a few studies in which
the solution construction mechanism of local
search methods such as the ant colony optimiza-
tion (ACO) approach and genetic algorithms are
hybridized with BS applications (see Alexouda
and Paparrizos, 2001; Tillmann and Ney, 2003;
Blum, 2005).

In recent years, several enhancement tools have
been developed to improve the performance of BS.
For example, Honda et al. (2003) propose a back-
tracking BS algorithm for a multi-objective flow-
shop problem. In the proposed method, the
traditional BS is first performed, and then a back-
tracking mechanism is repeatedly invoked at some
selected nodes to obtain non-dominated solutions.
The results of their computational experiments indi-
cate that the proposed algorithm yields better solu-
tions than the standard BS.

Della Croce and T’kindt (2002) and Della Croce
et al. (2004) develop a recovering BS (RBS) method
for combinatorial optimization problems. The
recovering phase aims to recuperate the previous
decisions. This step is invoked for each of the
beam-width number of best child nodes. For a given
node, the recovering phase, by means of interchange
operators applied to the current partial schedule,
checks whether the current solution is dominated
by another partial solution sharing the same search
tree level. If so, the current solution is replaced by
the new solution. The results indicate that RBS out-
performs the traditional BS. Several RBS
approaches have also been proposed for other prob-
lems (see Valente and Alves, 2005; Ghirardi and
Potts, 2005; Esteve et al., 2006). Table 1 further
summarizes all these existing studies and BS appli-
cation in various problem domains.

3. Problem domain

Even though the idea of the proposed enhance-
ment tools is general enough to be applied to any
optimization problem, its details are problem spe-
cific. Hence, we first introduce our problem domain
prior to the description of the algorithm.

Mixed-model assembly lines (MMALs) are
multi-level production lines in which a variety of
product models are simultaneously assembled one
after each other. In these systems, raw materials
are fabricated into components, which in turn are
combined into sub-assemblies that are transformed
into final products.



Table 1
The variations and application areas of beam search

Author Type of BS Enhancement/hybridized
methods

Application area

Ow and Morton (1988) Standard – Scheduling
Chang et al. (1989) Standard – FMS scheduling
Shahookar et al. (1993) Hybridized Genetic algorithm Layout problem
Leu et al. (1997) Standard – Assembly line sequencing
Sabuncuoglu and Karabuk (1998) Filtered – FMS scheduling
Kim and Kim (1999) Standard – Transportation
Matsuda et al. (2002) Hybridized Graph-based Induction Method Data mining
Sabuncuoglu and Bayiz (2000) Filtered – Scheduling
Ortmanns and Ney (2000) Enhanced Look-ahead techniques Artificial intelligence
Alexouda and Paparrizos (2001) Hybridized Genetic algorithm Marketing
Shayan and Al-Hakim (2002) Standard – Sequencing
Zeng and Martinez (2002) Enhanced Varying BS parameters Neural networks
Wang (2002) Hybridized Fuzzy approach Project scheduling
Honda et al. (2003) Enhanced Backtracking Scheduling
Tillmann and Ney (2003) Hybridized Dynamic programming Artificial intelligence
Pacciarelli and Pranzo (2004) Filtered – Scheduling
Della Croce et al. (2004) Enhanced Recovering phase Scheduling
Kim et al. (2004) Filtered – Sequencing
Abdou and Scordilis (2004) Standard – Artificial intelligence
Zhou and Hansen (2004) Hybridized Divide-and-conquer method Automated planning
Lee and Woodruff (2004) Standard – Metabonomics
Erel et al. (2005) Standard – Assembly line balancing
Beraldi and Ruszczynski (2005) Filtered – Stochastic programming
Zhou et al. (2005) Standard – Tool management
Blum (2005) Hybridized ACO approach Scheduling
Valente and Alves (2005) Enhanced Recovering phase Scheduling
Ghirardi and Potts (2005) Enhanced Recovering phase Scheduling
Zhou and Zhong (2005) Standard – Scheduling
Lim et al. (2006) Standard – Scheduling
Forshed et al. (2005) Standard – Metabonomics
McMullen and Tarasewich (2005) Standard – Assembly line sequencing
Zhou and Hansen (2004) Enhanced Backtracking Automated planning
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The MMAL sequencing problem is defined as
determining a sequence of product models on the
final assembly line to optimize some performance
measures. In this study, we use the part usage vari-
ation criterion that maintains a constant rate of
usage of all parts feeding the final assembly line.
This objective requires that products be assembled
at rates proportional to their demand, and that
parts be pulled through the system at constant rates
(Miltenburg and Sinnamon, 1992). Note that we
consider variability only at the sub-assembly level,
as suggested by Monden (1983).

The mathematical formulation of this problem is
first given in Jin and Wu (2002). Their objective
function is to minimize the sum of quadratic differ-
ences between the actual parts usage and desired
parts usage at each stage (i.e. position). At any stage
k, the total number of sequenced models must be
equal to k, and the number of times model i is
sequenced should increase by one or remain the
same. In addition, the number of times that model
i is sequenced at any stage k should not exceed the
demand for this model. The problem is an integer
non-linear problem and it is NP-Hard in any sense
even if the objective is linearized (Jin and Wu, 2002).

The parts usage variation at any stage, i.e., level k

is calculated as follows:

V ¼
XC

j¼1

XN

i¼1

xi;kcj;i � krj

 !2

; ð1Þ
where xi,k is the total number of times model i se-
quenced in the first k positions for a specific se-
quence, cj,i is the number of part j required for
model i; krj is the desired number of part j con-
sumed in the first k positions for a specific sequence,
N is number of different models to be produced, and
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Fig. 1. Representation of a BS tree.
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C is the number of different parts that can be used
by a model.

The state-of-the-art heuristic to solve the MMAL
sequencing problem is the two-step variance method
developed by Jin and Wu (2002). The variance
method is developed to eliminate the myopic feature
of a well-known greedy heuristic, the goal chasing
method (GCM) developed by Monden (1983). The
GCM selects the model that yields the minimum
parts usage variation at any stage, ignoring the
effect of future sequences. This myopic feature of
the GCM is reduced when the effect of the remain-
ing composition is taken into account in selection
of the model. In this vein, the variance method inte-
grates the ‘‘composition variance’’ for the remaining
composition as the opportunity cost into the total
cost. The opportunity cost is multiplied by a dis-
counting coefficient and the model with the mini-
mum total cost is selected at each level. The
two-step variance method positions two models
for the two subsequent levels and compares alterna-
tives with respect to the combined total variation.
The combination of two feasible models with the
least total variation is selected and only the first
model is positioned in the sequence.

4. Proposed algorithm

This section is organized in two parts: general
description of enhanced BS and application to the
MMAL problem.

4.1. General description

The representation of a BS tree is shown in
Fig. 1. We select the promising b nodes (beam
nodes) by invoking local and global evaluations
and proceed with the search through these selected
nodes. Then we apply the algorithm to these nodes
independently and generate one partial tree (i.e.,
beam) from each of them. After a filtering proce-
dure and using the outcome of the global evalua-
tion, one node is chosen from the descendants of
each beam node. This becomes the beam node for
the next level. In this way, the search progresses
through b parallel beams.

The proposed algorithm is based on a BS in
which each node corresponds to a solution state rep-
resenting the partial sequence of products. The leaf
nodes correspond to the full sequence of products
(see Fig. 1). The potential promise of each node is
determined by the global evaluation function, which
typically estimates the minimum total cost of the
best solution that can be obtained from the partial
schedule represented by that node. In the proposed
algorithm, a filtering procedure is also used to elim-
inate some nodes by a computationally fast method
(i.e., local evaluation function), and only the
remaining nodes (filter width) are globally evalu-
ated. The value of the local evaluation function is
the parts-usage variation. The global evaluation
function is defined as the total parts usage variation,
which is the sum of the parts usage variation at the
current level (i.e., one level ahead of the beam node)
and the subsequent levels. Hence, it estimates the
solution quality of a partial solution, instead of a
full solution; this allows us to globally evaluate
the candidate nodes quickly (this procedure is
explained in Section 4.2.1).

The proposed algorithm incorporates two new
enhancement tools, backtracking and information
exchange, to improve the performance of BS. Back-

tracking is the process of revisiting previous solution
states in the search tree with the expectation of
obtaining better solutions. The motivation for this
procedure stems from the fact that whenever two
or more beams are equivalent in some sense, some
of the beams are further explored by returning to
solution states at earlier levels.

The equivalence theorem enables to determine if
the current beam at a stage is equivalent to another
beam in terms of the number of products sequenced
up to that stage and identify the inferior beam.
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Search is resumed on the superior beam, but it is
backtracked to the previous stage on the inferior
beam in a different direction.

The second enhancement tool is the exchange-of-
information (EOI) by which part of a solution from
one beam is transferred to another beam hoping
that the resulting beam will lead to better solutions.
EOI is carried out in such a way that a partial solu-

tion consisting of the product sequence between the
first and the last appearance of a product is trans-
ferred to all other beams. All these enhancement
procedures will be explained in detail within the
context of the MMAL sequencing problem in the
next section. The basic steps of the proposed algo-
rithm are as follows.

Notation

BL beginning level for EOI
I interval for EOI
k indicator for EOI
s total number of stages (e.g., total number

of products to be sequenced)
l current level in the search tree

Steps of the Proposed Algorithm:
Step 0. (Initialization)

Set k ¼ 0 and l ¼ 0.
Step 1. Generate descendant nodes.
Step 2. (Determining beam nodes)

Select the best b beam nodes using the global

evaluation function, and set l ¼ lþ 1.
Step 3. (Search the beam nodes)

Step 3.1. For each beam:
Step 3.1.1. Using the local evaluation func-

tion, keep at most a nodes emanating from the
current beam node.

Step 3.1.2. Using the global evaluation func-

tion, select the best node among w of them.
Step 3.2. Set l ¼ lþ 1.

Step 4. (Exchange of information)
Step 4.1. If l ¼ BLþ I � k and l 6 s, then

Step 4.1.1. For each beam:
Step 4.1.1.1. Select the best beam among

the alternative solutions generated by the EOI
procedure.

Step 4.1.2. Set k ¼ k þ 1.
Step 5. (Backtracking)

Step 5.1. If l ¼ s, stop the algorithm.
Step 5.2. If equivalency is observed, create an

alternative beam for each inferior beam using
the backtracking procedure.

Step 5.3. Go to Step 1.
4.2. Application of enhancement tools

4.2.1. Backtracking procedure

The backtracking procedure is applied whenever
equivalence is observed following the selection of
beam nodes at any level. Beams are considered
equivalent at a level whenever each product has been
sequenced the same number of times at that level.
As an illustration, consider the following two beams
in Fig. 2: The products A, B, B, C are sequenced in
Beam 1 and the products C, A, B, B are sequenced
in Beam 2 (see Fig. 2a). Since both of these beams
have one A, two B’s, and one C, they are considered
equivalent.

The cumulative variation of equivalent beams at
the current level (i.e., level k < DTÞ is calculated and
inferior beams with larger cumulative variation are
identified. Each of these inferior beams is back-
tracked by moving one level up, and generating
the next best (NB) child node. The NB node is fur-
ther sprouted by selecting the best node using the
global evaluation function. The original node, how-
ever, is also sprouted by selecting the NB node.
Finally, these two generated nodes are evaluated
and the one having the least value of global evalua-
tion function plus the variation at the current level is
selected.

The backtracking procedure is shown by consid-
ering two equivalent beams as in Fig. 2a. After com-
paring the cumulative variation values of the two
beams at level k, Beam 2 is found to be inferior.
Then, the NB child node of Beam 2 at level k is fur-
ther branched by choosing the best node at level
k þ 1; the original node (i.e., product B on Beam
2) at level k is further branched by selecting the
NB node at level k þ 1. Hence, at level k þ 1 we
have two alternative beam nodes; after evaluating
these nodes, we continue the search procedure by
selecting the superior one.

The backtracking procedure discussed above is
based on the equivalence theorem that is stated
and proved next.

4.2.2. Equivalence theorem
We first present the notation and then the proof

of the theorem.

ri
k: partial sequence at level k on beam i,

k ¼ 1; . . . ;DT � 1
V ðri

kÞ: parts usage variation for ri
k

CV (ri
k): cumulative parts usage variation for ri

k

(CVðri
kÞ ¼

Pk
j¼1V ðri

jÞ)



               Beam  1 (superior)                        Beam 2 (inferior) 

       Level k-1

        Level k      

a. The representation of equivalent beams. 

                     Beam 1 (superior)   Beam 2 (inferior) 

Level k-1

NB node 
Level k             

b. Backtracking on the inferior beam 

               Beam 1 (superior)                                 Beam 2 (inferior) 

Level k

Level k+1            best node    NB node                               best node 
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Fig. 2. A schematic view of the backtracking procedure.
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GEjðri
k): the value of global estimation obtained

by completing ri
k up to level j, j ¼ k þ 1 ,. . .,DT
Theorem. Let ri
k and rj

k be two equivalent sequences

belonging to beam i and beam j, respectively. If the

result of global and local evaluation functions only

depend on the remaining products at level k � 1, and

CVðri
kÞ < CVðrj

kÞ, then the following inequality
holds (as long as the same BS parameters are used

in the remaining levels of the search tree):

CVðri
DT
Þ < CVðrj

DT
Þ.

Proof. First consider the case in which only the glo-
bal evaluation function is invoked. Since the
remaining products to be scheduled for beam i

and beam j are identical, during global evaluation
the same nodes are considered at level k þ 1 for each
beam. Let the products chosen for beam i and beam
j at level k þ 1 be m and n, respectively, such that
m 6¼ n; hence:

m ¼ argminsfGEtðri
k [ sÞ; s : xsk

< dk; t ¼ k þ 1; . . . ;DTg; ð2Þ

where xsk: number of times product s is sequenced
up to level k,

ds: demand for product s

The following inequality is obtained from (1):

GEtðri
k [ mÞ < GEtðri

k [ nÞ: ð3Þ
After applying the same steps for beam j, the follow-
ing inequality is obtained:

GEtðrj
k [ nÞ < GEtðrj

k [ mÞ: ð4Þ
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Since the values of global estimations are equal
for the equivalent sequences (i.e., ri

k [ l and
rj

k [ lÞ, the following equation is obtained:

GEtðri
k [ lÞ ¼ GEtðrj

k [ lÞ; l ¼ m; n: ð5Þ

Hence, the inequalities (3) and (4) contradict each
other, implying m ¼ n. As a result, the same product
is chosen for each beam at level k þ 1. The selection
of the same product at further levels for each beam
is pursued since the beams are also equivalent at
each of the remaining levels. Since variation at
any level only depends on the number of times each
product is sequenced up to that level, and the se-
quences of beam i and beam j are also equivalent
at level k þ 1; the following equality is obtained:

V ðri
k [ mÞ ¼ V ðrj

k [ mÞ: ð6Þ

It is inferred from Eq. (6) that the cumulative vari-
ation for each beam is equally incremented at subse-
quent levels. Accordingly, if beam i is superior to
beam j at level k, it is also superior at the last level
(i.e., level DTÞ, which implies:

CVðri
DT
Þ < CVðrj

DT
Þ: �

This theorem also holds with the filtering proce-
dure. This is due to the fact that the same candidate
nodes are filtered out for beam i and beam j, since
the local evaluation function depends on the
remaining products at level k � 1. As a result, the
same nodes are considered at further levels for each
beam during the global evaluation, which also
implies that cumulative variation for each beam is
equally incremented at subsequent levels.
4.2.3. Exchange-of-information (EOI) procedure
EOI is performed in the following way. First, the

last product (i.e., product i at level k in Beam 2 in
Fig. 3a) of a beam is chosen. Then, a partial solution

consisting of the product sequence between the first
and the last appearance of that product, i.e., prod-
uct i is transferred to all other beams (see Fig. 3b).
This transfer is carried out as follows.

First, we insert the partial solution to a new beam
at the level where product i appears first in the
sequence. If the level to which the new beam extends
is smaller than the current level, then we repeat this
insertion process at the next level where i appears
next. Otherwise, we truncate the partial solution at
level k. Note that in either case, we repeat this inser-
tion process until a feasible solution is obtained.
The new beams are compared against the original
beams; the beams with the smallest value of the glo-
bal evaluation function plus cumulative variation at
the previous level (i.e., one level before the current
level) are retained to continue the search procedure
(see Fig. 3b). The procedure is repeated for subse-
quent levels. When EOI and backtracking proce-
dures are used at the same level, EOI is invoked
before backtracking. Moreover, if a new beam is
chosen as a result of EOI and there exits equiva-
lency between the new beam and another beam
where the new beam is the inferior beam, the back-
tracking procedure is skipped. Instead, the NB is
selected for the next level.
4.2.4. Global evaluation

The global evaluation function used in the pro-
posed BS calculates the sum of variation at the cur-
rent level, i.e., level k and subsequent three levels.
The mathematical expression of this function has
been given in Eq. (1).

The global evaluation function uses a heuristic
procedure to determine the quality of a partial
sequence for the next three levels. The procedure
first selects the product with the minimum variation
at the next level, i.e., level k þ 1 for a sequence at
level k. For the last two levels, it calculates the com-
bined variations (i.e., the variations at levels k þ 1
and k þ 2) with each of the alternative product
pairs. Then, it selects the first product pair with
the lowest combined variation.

Since minimization of the sum of the variation at
each level is the objective function, it is expected
that an optimal/near-optimal sequence will yield lit-
tle variation at each level. This implies that the
amount of actual usage is very close to desired usage
for each part at a particular level. Hence, if the var-
iation at level k þ 1 is ignored, some of the alterna-
tive pairs can be eliminated without considering the
sequence at level k þ 1. A detailed explanation of
the methodology for selecting the last two products
is given below:

First, all of the feasible 3-level sequences starting
with the product at level k þ 1 are created. Then, the
total variation for each of them is calculated by
summing the variations at level 2 and level 3, and
the variation at level 2 for a sequence with the last
two products. As an example, for a sequence of A

(the last product of the sequence at level k þ 1), B,
and D, the total variation is calculated as follows:

TV ðA;B;DÞ ¼ V ðA;BÞ þ V ðA;B;DÞ þ V ðB;DÞ:



                                Beam 2 

                             Beam 1             

    The first i

              The first i                                      product j

                                                      product l
partial sequence 

                                                     product m

Level k

a. Constructing a partial solution from Beam 2. 

   Beam 1                                                            Beam 2 

                              product j 

             partial sequence product l

                                                         product m

Level k

                        Alternative beam

                continue with better solution 

b.  The comparison of the original beam and new beam 

i

i

i

j

i

l

i

i

Fig. 3. The schematic view of EOI.
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This equation implies that if the TV ðA;B;DÞ is suffi-
ciently small, the products B and D are suitable to
be sequenced after A, and D is suitable to be chosen
after B. If TV (A;B;DÞ is significantly large, prod-
ucts B and D should not be appended to any partial
solution that ends with A. This is because of the fact
that at the last three levels in any near-optimal solu-
tion that ends with A, B, and D, the total variation
most probably increases dramatically.

After calculating the value of total variation for
each 3-level sequence, the best w solutions (i.e., the
ones that have the minimum total variation) of at
most n2 alternatives is considered for global estima-
tion. Then w solutions are created by adding the last
two products of the filtered 3-level sequences to the
current solution (i.e., the sequence at level k þ 1)
and the pair that yields the minimum combined var-
iation is selected. Finally, the first product of the
best pair is chosen for level k þ 2. Similarly, the
product for level k þ 3 is selected using the same
procedure.

The enhancement tools are illustrated on an
example in the Appendix.

4.3. Different versions of the proposed method

Up to now, we assume that beams progress inde-
pendent of each other. However, the proposed algo-
rithm can also be implemented with dependent
beams, i.e., all descendant nodes are evaluated at
any level and the best b nodes are chosen among
them as the beam nodes. In this section, we consider
this new version, expecting to obtain better solu-
tions. Note that the filtering procedure is also
invoked for each beam independently in this
version.
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In order to observe the effect of backtracking and
EOI on the performance of the procedure, we
develop the following six versions of the proposed
algorithm.

BS-1: A BS technique in which beams progress
independently.
BS-2: A BS technique in which beams progress
independently, and backtracking procedure is
invoked.
BS-3: A BS technique in which beams progress
independently, and EOI procedure is invoked.
BS-4: A BS technique in which beams progress
independently, and backtracking and EOI proce-
dures are invoked.
BS-5: A BS technique with dependent beams.
BS-6: A BS technique in which beams progress
dependently, and EOI procedure is invoked.

Note that we do not apply the backtracking
procedure for the BS method with dependent beams
as backtracking requires that beams progress
independently.
5. Computational results

In this section, we first present the results of
experiments that compare the proposed method
with the 2-step Variance method. Then, we examine
the effects of the backtracking and EOI procedures
in Section 5.2. We further study the effects of EOI
at different positions in Section 5.3.
5.1. The evaluation of the proposed algorithm

All the six versions of BS (i.e, BS-1, . . .,BS-6) are
compared with the 2-step Variance Method. In the
implementation process, we tune-up the parameters
of the algorithms, including filter width, EOI begin-
ning level, and number of stages to invoke EOI.
5.1.1. Computational results for the parts usage

measure

The heuristics are first tested with the problem
data set given in Bautista et al. (1996) and Jin and
Wu (2002). The results are presented with 95% con-
fidence level for different structures used for various
part-product combinations and demand patterns.
The value of the objective function (ZavgÞ is the aver-
age of the variations obtained for demand patterns.
The results indicate that the performance of BS-6
is generally better than the other versions. Specifi-
cally, BS-6 is statistically better than the 2-step Var-
iance method for all structures, except Structure 3
and Structure 5 (see Table 2). BS-4 and BS-6 are
numerically the best performers (even though statis-
tically insignificant) in structures 3 and 5, respec-
tively. In addition, BS-4 is superior to the 2-step
Variance method for structures 2, 6.1, 6.2, and
6.3. Moreover, we observe no significant difference
between BS-5 and BS-6, implying that EOI is not
very effective in improving the solution quality of
BS for dependent beams.

We compare the computation times of the pro-
posed algorithms and the heuristics in the literature.
We observe that all of the proposed algorithms
require larger computational effort relative to the
heuristics in the literature. To be more specific, the
CPU times of the proposed algorithms and the heu-
ristics for Structure 6.2 are depicted in Table 3. The
larger computational effort of the proposed algo-
rithms is due to the existence of the enhancement
tools and the global evaluation function, whereas
most of the heuristics in the literature are greedy
in nature. Although the proposed algorithms
require relatively higher computation times than
the heuristics, they are still fast for practical pur-
poses. For example, average CPU time of the BS-
6 for the largest problem size is only about 220
milliseconds.

Computational experiments are also conducted
on new data sets that employ the following factors:
(1) number of products, (2) quantity per assembly,
and (3) degree of commonality. Nine different
demand patterns are generated for each configura-
tion as discussed in Ding and Cheng (1993). In each
experimental condition, 10 independent replications
are made for statistical accuracy.

As can be seen in Table 4, BS-6 statistically out-
performs the 2-step Variance method in all of the
structures except Structures 4 and 7 for which BS-
4 displays better performance. However, BS-6 is still
statistically better than BS-4 for other structures.

In order to test the efficiency of the backtracking
procedure, we compare the performances of BS-1
and BS-2. As explained before, beams in BS-1 pro-
gress independently and none of the enhancement
tools are invoked; however in BS-2, beams progress
independently and only the backtracking procedure
is performed. To measure the effects of the EOI pro-
cedure, we examine the relative performances of BS-
1 and BS-3. The computational results (Table 2)



Table 3
The comparison of the algorithms in terms of computational
effort

Structure b Heuristic Z CPU time (in
milliseconds)

6.2 – GC 226.875 10
– 2-step 153.040 30
– Variance 146.040 10
– 2-step/var.s 138.040 20
5 BS(Leu) 136.042 30
5 BS-1 137.04 261
5 BS-2 137.04 270
5 BS-3 125.708 330
5 BS-4 130.208 331
5 BS-5 126.708 171
5 BS-6 125.708 220

Table 2
The results obtained by the data sets given in the literature

Structure N D # of
demand
pattern

b Heuristic Zavg p-Value

1 4 20 45 – 2-step/var. 61.973 0.003
4 BS-1 62.24
4 BS-2 61.742
4 BS-3 61.795
4 BS-4 60.818
4 BS-5 60.356
4 BS-6 60.124

2 4 20 45 – 2-step/var. 138.376 0.0005
4 BS-1 139.541
4 BS-2 137.852
4 BS-3 137.545
4 BS-4 134.849
4 BS-5 134.089
4 BS-6 133.529

3 4 20 45 – 2-step/var. 137.984 0.478
4 BS-1 141.642
4 BS-2 140.078
4 BS-3 140.82
4 BS-4 137.598
4 BS-5 137.620
4 BS-6 137.309

4 4 20 45 – 2-step/var. 15.732 0.032
4 BS-1 15.821
4 BS-2 15.803
4 BS-3 15.812
4 BS-4 15.714
4 BS-5 15.661
4 BS-6 15.652

5 4 20 45 – 2-step/var. 157.505 0.243
4 BS-1 163.232
4 BS-2 158.456
4 BS-3 161.241
4 BS-4 154.827
4 BS-5 156.705
4 BS-6 155.367

6.1 5 20 45 – 2-step/var. 48.216 0.0001
4 BS-1 48.18
4 BS-2 47.891
4 BS-3 47.562
4 BS-4 47.287
4 BS-5 46.58
4 BS-6 46.402

6.2 5 48 1 – 2-step/var.s 138.040 –
5 BS-1 137.04
5 BS-2 137.04
5 BS-3 125.708
5 BS-4 130.208
5 BS-5 126.708
5 BS-6 125.708

6.3 5 280 1 – 2-step/var. 574.018 –
5 BS-1 599.660
5 BS-2 599.660

Table 2 (continued)

Structure N D # of
demand
pattern

b Heuristic Zavg p-Value

5 BS-3 552.732
5 BS-4 560.660
5 BS-5 587.875
5 BS-6 549.446
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indicate that the EOI procedure improves the solu-
tion quality in all structures except Structure 4.
5.2. The effects of backtracking and EOI

We also observe that the performance improve-
ment due to EOI gets larger as demand increases.
This arises because the number of alternative solu-
tions created during the search procedure increases
as demand increases.

We further test the combined effect of backtrack-
ing and EOI on solution quality, by comparing BS-1
and BS-4 (see Table 2). The results indicate that BS-
4 statistically outperforms BS-1 in all structures
(p < 0:044). This implies that the enhancement tools
are generally more effective when they are used
together.
5.3. The effect of EOI at different positions

The results obtained up to now indicate that EOI
generally improves the solution quality. However, a
further analysis is needed to determine the interval
for which EOI is more effective (i.e., frequency of



Table 4
The computational results obtained by the newly generated data sets

Configuration N D QPA DOC (%) b Heuristic Zavg p-Value

1 5 20 1–10 0–20 – 2-step/var. 1043.8 <0.0001
3 BS-1 1041.7
3 BS-4 1038.4
3 BS-5 1033.1
3 BS-6 1032.4

2 5 20 1–10 60–80 – 2-step/var. 1290.8 <0.0001
3 BS-1 1282.9
3 BS-4 1279.5
3 BS-5 1274
3 BS-6 1273.2

3 5 20 1–20 0–20 – 2-step/var. 3840 0.002
3 BS-1 3826.3
3 BS-4 3822.7
3 BS-5 3797.07
3 BS-6 3796.5
3 BS-1 4589.4

4 5 20 1–20 60–80 – 2-step/var 4627.7 <0.0001
3 BS-1 4589.4
3 BS-4 4584.7
3 BS-5 4565.5
3 BS-6 4564.2

5 20 40 1–10 0–20 – 2-step/var. 11093.5 <0.0001
10 BS-1 11035.6
10 BS-4 10899.2

10 BS-5 10984.6
10 BS-6 10983.7

6 20 40 1–10 60–80 – 2-step/var. 29329.6 <0.0001
10 BS-1 28839.2
10 BS-4 28734.8
10 BS-5 28391.7
10 BS-6 28389.1

7 20 40 1–20 0–20 – 2-step/var. 36902.4 0.0002
10 BS-1 36796.8
10 BS-4 36443.9
10 BS-5 36562.3
10 BS-6 36564.2

8 20 40 1–20 60–80 – 2-step/var. 112,033 <0.0001
10 BS-1 109820.2
10 BS-4 109158.3
10 BS-5 108688.6
10 BS-6 108688.6
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EOI use). Hence, the EOI procedure is invoked at
certain stages to observe its effect on the perfor-
mance measure. For example, in a design with 20
levels, EOI is invoked at the following intervals:
1–4, 5–8, 9–12, 13–16, 17–20. Note that this analysis
is performed on BS-3 since beams progress indepen-
dently in this version. The experiments are con-
ducted for both small (i.e., demand of 20) and
large (demand of 260) problems.
The results indicate that if the number of levels
(i.e., total demand) is small, invoking the EOI pro-
cedure between certain intervals generally does not
improve the objective function (see Fig. 4). For
Structure 2, EOI statistically improves the solution
quality if it is invoked at the middle levels. On large
problems, EOI improves solution quality for Struc-
tures 1, 2, and 5. As can be seen in Fig. 5, EOI is
more effective when invoked at the middle levels.
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Fig. 4. The effect of EOI on the performance measure when
number of levels is 20. BL for EOI refers to the level at which EOI
is first invoked.

851

852

853

854

855

1 21 41 61 81 101 121 141 161 181 201 221 241

BL level for EOI

Z
av

g

a) Structure 1 

2150

2200

2250

2300

2350

Z
av

g
b) Structure 2 

1914

1915

1916

Z
av

g

c) Structure 3 

195

196

Z
av

g

d) Structure 4 

3480

3560

3640

3720

3800

3880

Z
av

g

e) Structure 5 

1 21 41 61 81 101 121 141 161 181 201 221 241

BL level for EOI

1 21 41 61 81 101 121 141 161 181 201 221 241

BL level for EOI

1 21 41 61 81 101 121 141 161 181 201 221 241

BL level for EOI

1 21 41 61 81 101 121 141 161 181 201 221 241

BL level for EOI

Fig. 5. The effect of information exchange on the performance
measure when number of levels is increased to 260.
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6. Conclusion

In this paper, we develop backtracking and EOI
procedures to enhance the traditional beam search
method. The backtracking procedure enables us to
return to previous solution states in the search tree
with the expectation of obtaining better solutions.
The EOI procedure copies a part of the solution
from one beam to another beam. The beam with
this additional information is expected to yield
improved solutions.

We apply the proposed algorithms to the mixed-
model assembly line sequencing problem. The
results indicate that the backtracking and EOI pro-
cedures generally improve solution quality. We also
analyze the effect of EOI when it is invoked at differ-
ent positions in the search tree. The results suggest
that EOI is most effective when it is invoked at the
middle levels in the search tree.

In this study, we show that the BS method with
some appropriate enhancement tools can be used
to solve difficult optimization problems. We also
note that this enhanced version of BS offers research
opportunities in other areas such as, scheduling,
assembly line balancing, etc. New backtracking
and EOI procedures can be developed to improve
the efficiency of BS. Further studies could also iden-
tify the problem environments where these enhance-
ments tools would be most effective.

Appendix. An example to illustrate the

enhancement tools

The steps of the proposed algorithm are clarified
with an example problem. Suppose that there are
four different products to be assembled and four
components that will be used for these products.
The values of cj,i, which are taken from Bautista
et al. (1996), are presented in Table 5. The demand
vector is (2,4,3,1), representing the demand for
product 1 is 2, the demand for product 2 is 4, etc.
Table 5
The part structure used for the example problem (Structure 3 in
Bautista et al. (1996))

Parts Products

P1 P2 P3 P4

P1 0 0 0 5
P2 3 1 0 5
P3 3 3 5 0
P4 4 6 5 0
The values of the parameters used to implement
the algorithm are as follows: the beam width b
and filter width (aÞ are set to 2 and 3, respectively.
EOI is invoked only at level 5. Moreover, the width
for global evaluation function (wÞ, called global
width, is set to 5. Note that this version of the algo-
rithm is BS-4.

In order to show the improvement obtained by
BS-4 with respect to the traditional BS method,
we first present the solution of the BS method
(i.e., BS-1) for the example problem (see Fig. 6).
The nodes given in Fig. 8 represent the beam nodes
in the search tree. The resultant sequence of Beam 1
yields the CV of 71.8, while the CV of the sequence
of Beam 2 is 72.6. Hence, the implementation of the
BS method yields the cumulative variation of 71.8,
with the following sequence:

2-1-3-1-2-3-4-3-2-2.
The proposed algorithm, however, first invokes

the backtracking procedure at level 2, at which the
equivalency is observed. As Beam 2 is found to be
Z = 71.8                                                                            Z = 72.6
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2
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2

Fig. 6. The BS tree obtained by implementing BS-1. Z stands for
the value of the objective function.
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Fig. 8. The EOI procedure in the implementation of BS-4.
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inferior at this level, it is backtracked by moving one
level up, and generating the NB node, (i.e., product
3 in Fig. 7a). The NB node is further branched by
selecting the best node (i.e., product 2 in Fig. 7a);
whereas the original node is further sprouted by
choosing the NB node at level 3. After the compar-
ison of these two nodes, the newly generated node is
found to be superior. Hence, Beam 2 progresses the
search procedure with the new node. As the equiva-
lency is observed at level 3, the same procedure is
invoked for the inferior beam (i.e., Beam 2 in
Fig. 7b) at this level.

In addition to the backtracking method, we apply
the EOI procedure at a certain level which is level 5.
We first choose the last products of Beam 1 and
Beam 2, which are product 2 and product 3, respec-
tively. Then we exchange the information between
each beam in the following way: First we transfer
the sequence of 2-2 from Beam 2 to Beam 1 since it
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is between the first and the last appearance of the last
product (i.e., product 3) of Beam 2. This partial
sequence is inserted to Beam 1 at level 3, at which
the first appearance of product 3 is observed. Hence,
a new solution with the sequence of 2-1-3-2-2 is
obtained at level 5. This solution is compared with
the original solution of Beam 1 that has the sequence
of 2-1-3-1-2. Similarly, the sequence of 1-3-1 is trans-
ferred from Beam 1 to Beam 2, leading a new beam
with a sequence of 1-3-2-1-3-1. Since the length of
the new beam is greater than the current level, it is
truncated, by which we obtain the sequence of 1-3-
2-1-3. The result of the evaluation of the original
beams and the newly generated beams reveals that
the new beams are inferior. Hence, the procedure
progresses with the original beams at level 5.

During the implementation of the algorithm, the
equivalency is observed again at level 9. However it
does not change the structure of the inferior beam
(i.e., Beam 1) at this level. The resulting sequence
is 1-3-2-2-3-4-2-3-1-2, with a CV value of 66.2.
Hence, the CV is improved by 8.4%.
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930 _I. Sabuncuoğlu et al. / European Journal of Operational Research 186 (2008) 915–930
Sabuncuoglu, I., Bayiz, M., 1999. Job shop scheduling with beam
search. European Journal of Operational Research 118, 390–
412.

Sabuncuoglu, I., Bayiz, M., 2000. Analysis of reactive scheduling
problems in a job shop environment. European Journal of
Operational Research 126, 567–586.

Shahookar, K., Khamisani, W., Mazumder, P., Reddy, S.M.,
1993. Genetic beam search for gate matrix layout. In:
Proceedings of the 6th International Conference on VLSI
Design, pp. 208–213.

Shayan, E., Al-Hakim, L., 2002. Beam search for sequencing
point operations in flat plate manufacturing. Computers and
Industrial Engineering 42, 309–315.

Tillmann, C., Ney, H., 2003. Word reordering and a dynamic
programming beam search algorithm for statistical machine
translation. Computational Linguistics 29, 97–133.

Valente, J.M.S., Alves, R.A.F.S., 2005. Filtered and recovering
beam search algorithms for the early/tardy scheduling prob-
lem with no idle time. Computers and Industrial Engineering
48, 363–375.

Wang, J., 2002. A fuzzy project scheduling approach to minimize
schedule risk for product development. Fuzzy Sets and
Systems 127, 99–116.

Zeng, X., Martinez, T.R., 2002. Optimization by varied beam
search in hopfield networks. In: Proceedings of the IEEE Inter-
national Joint Conference on Neural Networks, pp. 913–918.

Zhou, R., Hansen, E.A., 2004. Breadth-first heuristic search. In:
Proceedings of the 14th International Conference on Auto-
mated Planning and Scheduling.

Zhou, B., Xi, L., Cao, Y., 2005. A beam-search-based algorithm
for the tool switching problem on a flexible machine.
International Journal of Advanced Manufacturing Technol-
ogy 25, 876–882.

Zhou, X., Zhong, M., 2005. Bicriteria train scheduling for high-
speed passenger railroad planning applications. European
Journal of Operational Research 167, 752–771.


	Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling
	Introduction
	Literature review
	Problem domain
	Proposed algorithm
	General description
	Application of enhancement tools
	Backtracking procedure
	Equivalence theorem
	Exchange-of-information (EOI) procedure
	Global evaluation

	Different versions of the proposed method

	Computational results
	The evaluation of the proposed algorithm
	Computational results for the parts usage measure

	The effects of backtracking and EOI
	The effect of EOI at different positions

	Conclusion
	An example to illustrate theenhancement tools
	References


