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mation. In this study, a Bayesian model is developed to summarize sales information and pricing history
in an efficient way. This model is incorporated into a periodic pricing model to optimize revenues for a
given stock of items over a finite horizon. A computational study is carried out in order to find out the
circumstances under which learning is most beneficial. The model is extended to allow for replenish-
ments within the season, in order to understand global sourcing decisions made by apparel retailers.
Some of the findings are empirically validated using data from U.S. apparel industry.
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1. Introduction

Fashion goods such as ski-apparel or sunglasses are characterized by high degrees of demand uncertainty. Most of the merchandise in
this category are new designs. Although some of the demand uncertainty may be resolved using sales history of similar merchandise of-
fered in previous years, most of the uncertainty still remains due to the changing consumer tastes and economic conditions every year.
Retailers of these items face long lead times and relatively short selling seasons that force them to order well in advance of the sales season
with limited replenishment opportunities during the season. Demand and supply mismatches due to this inflexible and highly uncertain
environment result in forced mark-downs or shortages. Frazier [22] estimates that the forced mark-downs average 8% of net retail sales in
apparel industry, which he states is also an indication of as much as 20% in lost sales from stock-outs. He estimates that the overall result-
ing revenue losses of the industry may be as much as $25 billion.

In 1985, U.S. textile and apparel industry initiated a series of business practices and technological innovations, called Quick Response, to
cut down these costs and to be able to compete with foreign industry enjoying lower wages. Quick Response aims to shorten lead times
through improvements in production and information technology. As a result, production and ordering decision can be shifted closer to the
selling season, which will help to resolve some uncertainty. Moreover, additional replenishment opportunities during the season may be
created. See Hammond and Kelly [25] for a review of Quick Response and Sen [38,39] for reviews of operations and current business prac-
tices and trends in the U.S. apparel industry.

Despite the efforts of domestic manufacturers to remain competitive in this industry, retailers are using more and more imports to
source their apparel, preferring cost advantage over responsiveness. For most imported apparel and some domestic apparel, managing de-
mand through price adjustments is often the only tool left to retailers once the buying decisions take place. These adjustments are usually
in the form of mark-downs in the apparel industry. Fisher et al. [20] note that 25% of all merchandise sold in department stores in 1990 was
sold with mark-downs. Systems that can intelligently decide the timing and magnitude of such mark-downs may help balance the supply
and demand and improve the profits of these companies operating with thin margins. Despite enormous amount of data made available to
decision makers, such intelligent systems have found limited use in the apparel industry. Recent academic research such as Gallego and van
Ryzin [23] and Bitran and Mondschein [6] successfully model dynamic pricing of a given stock of items when the demand is probabilistic
and price sensitive. These studies assume that the retailer’s estimate of the demand does not change over the course of the season. How-
ever, substantial amount of uncertainty about the demand process can be resolved using the early sales information.

The purpose of this paper is to develop a dynamic pricing model that incorporates demand learning. By demand learning, we mean
learning by using the early sales information during the selling season as opposed to improving forecasts over time before the start of
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the season. Observing sales can facilitate learning about the magnitude of the demand or functional form of the demand-price relationship,
or both. Demand learning can be used to eliminate a considerable portion of demand uncertainty in the apparel industry. A consultant at
Dayton Hudson Corp. states “a week after an item hits the floor, a merchant knows whether it’s going to be a dog or a best-seller” (Chain
Store Age [12]). For our pricing only model, we assume that the ordering decision has already been made with the best use of pre-season
information and no further replenishment opportunities are available to the retailer. Basically, the model uses a Bayesian approach to up-
date retailer’s estimate of a demand parameter. Our model enables us to summarize sales and price history in a direct way to set the prob-
lem as a computationally feasible dynamic program. We also conduct a numerical study to analyze the impact of different factors on
pricing decisions. First, we study how the accuracy and degree of uncertainty of the initial demand magnitude estimates, starting stock
levels and price sensitivity of customers impact optimal price paths and expected revenues. We are also interested in finding the conditions
under which earlier sales information has the most impact on revenues and whether it is always optimal to use this information. We also
study the impact of demand function uncertainty on expected revenues obtained through demand learning. Finally, we extend the model
to account for the possibility of re-ordering during the selling season. This helps us to understand the possible trade-offs for using quicker
but more costly domestic manufacturing to achieve such flexibility.

Next, we review literature on Bayesian learning in inventory control and dynamic pricing of fashion goods. We present our basic model
in Section 3. Our computational analysis is in Section 4. Section 5 studies the effects of inventory flexibility during the horizon. Section 6
states our conclusions and avenues for future research.

2. Literature survey

Inventory models that incorporate the updating of demand forecasts have been studied extensively. Most of these models utilize a
Bayesian approach to update demand parameters of a periodic inventory model. Demand in one period is assumed to be random with
a known distribution but with an unknown parameter (or unknown parameters). This unknown parameter has a prior probability distri-
bution, which reflects the initial estimates of the decision maker. Observed sales are then used to find a posterior distribution of the un-
known parameter using Bayes’ rule. As more observations become available, uncertainty is resolved and the distribution of the demand
approaches its true distribution. The prior distribution of the unknown parameter should be such that the posterior distribution is similar
to the prior, which could be calculated easily. In addition, the demand distribution and the distribution of the unknown parameter should
enable the decision maker to summarize information such that a dynamic program to solve the problem is computationally feasible. See
DeGroot [15, Chapter 9] for such distributions.

Demand learning in inventory theory using a Bayesian approach is first studied by Scarf [33]. He studies a simple periodic inventory
problem in which at the beginning of each period the problem is how much to order with the assumption of linear inventory holding, short-
age and ordering costs and an exponential family of demand distributions with an unknown parameter. The distribution of the unknown
parameter is updated after each period using Bayes’ rule. He formulates the problem as a stochastic dynamic program and among other
results, shows that the optimal policy is to order up to a critical level and the critical level for each period is an increasing function of
the past cumulative demand. Iglehart [26] extends the results of Scarf [33] to account for a range family of distributions and convex inven-
tory holding and shortage costs. Azoury and Miller [3] show that in most cases non-Bayesian order quantities are greater than Bayesian
order quantities, but also state that this may not always be true. The dynamic programs used in these studies have two-dimensional state
spaces, one for the starting inventory level and one for the cumulative sales. Scarf [34] and Azoury [4] show that the two-dimensional dy-
namic program can be reduced to one-dimensional for some specific demand distributions.

A particular form of Bayesian approach to demand learning is assuming Poisson demand with an unknown rate in each period. The un-
known demand rate’s prior distribution is assumed to be Gamma, resulting in an unconditional prior distribution of demand, which can be
shown to be Negative Binomial. Posterior distributions are also Gamma and Negative Binomial whose parameters can be calculated by
using only cumulative demand. These specific distributions are used to model inventory decisions of aircraft spare parts by Brown and Rog-
ers [10]. Popovic [32] extends the model to account for non-constant demand rates.

Demand learning models are most valuable to inventory problems of style goods that are characterized with moderate to extreme de-
grees of demand uncertainty that is resolvable significantly by observing early sales. Murray and Silver [30] use a Bayesian model in which
the purchase probability of homogeneous customers is unknown but distributed priorly with a Beta distribution. This distribution is up-
dated after each period to optimize inventory levels in succeeding periods. Chang and Fyfee [13] present an alternative approach to de-
mand learning. Their model defines the demand in each period as a noise term plus a fraction of total demand, which is a random
variable whose distribution is revised once the sales information becomes available each period. Bradford and Sugrue [9] use the Negative
Binomial demand model described earlier to derive optimal inventory stocking policies in a two-period style-goods context.

Fisher and Raman [21] propose a production planning model for fashion goods that uses early sales information to improve forecasts.
Their model, which is called Accurate Response, also considers the constraints in the production systems such as production capacity and
minimum production quantities. Iyer and Bergen [27] study the Quick Response systems, where the retailers have more information about
upcoming demand due to the decreased lead times. They use Bayesian learning to address whether the retailer or the manufacturer wins
under such systems. Eppen and Iyer [16] develop a different methodology for Bayesian learning of demand. The demand process is as-
sumed to be one of a set of pure demand processes with discrete prior distribution. This distribution is updated periodically based on Bayes’
rule. This demand model is used in a dynamic programming formulation to derive the initial inventory levels and how much to divert peri-
odically to a secondary outlet for a catalog merchandiser. Eppen and lyer [17] use the same demand model to study the impact of backup
agreements on expected profits and inventory levels for fashion goods. Gurnani and Tang [24] study the effect of forecast updating on
ordering of seasonal products. Their model allows the retailer to order at two instants before the selling season. The forecast quality
may be improved in the second instance, but the cost may either decrease or increase probabilistically.

All of the studies above ignore one crucial aspect of the problem: pricing. In economics literature, Lazear [28] studies clearance sales
where he uses Bayesian learning to update the reservation price distribution after observing early sales in the season. However, his model
considers the initial and the mark-down prices of a single item and thus lacks the dynamics of price adjustments for a stock of items. Bal-
vers and Casimano [5] incorporate Bayesian learning in pricing models, but they assume a completely flexible supply and ignore invento-
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ries that link the pricing decisions. Style goods, on the other hand, face supply inflexibility as a result of short seasons, long lead times and
limited production capacities. This characteristic of the problem gave rise to models such as those in Gallego and van Ryzin [23] and Bitran
and Mondschein [6] that dynamically price the perishable good over the selling season. Both of these models assume that there is no
replenishment opportunity and the only decisions to be made are the timing and magnitude of price changes over the course of the season.
Gallego and van Ryzin [23] use a Poisson process for demand where the demand rate depends on the price of the product. Monotonicity
results as a function of the remaining stock level and remaining time in the selling season are derived via a dynamic continuous-time mod-
el. Among other results, they show that the optimal profit of the deterministic problem, in which demand rates are assumed to be constant,
gives an upper bound for the optimal expected profit. For the continuous price case, fixed-price heuristics are shown to be asymptotically
optimal. For the discrete price case, a deterministic solution can be used to develop again asymptotically optimal heuristics. Feng and Gal-
lego [18] derive the optimal policy for the two price case. In Bitran and Mondschein’s [6] model, the purchase process for a given price is
determined by a Poisson process for the store arrival and a reservation price distribution. They show that the model is equivalent to the
model in Gallego and van Ryzin [23]. They also show that the loss associated with preferring a discrete-time rather than a continuous-time
model is small. Smith and Achabal [35] study clearance pricing in retailing. Their model is deterministic, but incorporates impact of re-
duced assortment and seasonal changes on demand rates. Petruzzi and Dada [31] consider a periodic review model where the retailer
is allowed to order new inventory as well as change the price at each period. However, the stochastic component of their demand model
is very specific. If the retailer can fully satisfy the demand in any period, the uncertainty is completely resolved and the remaining problem
is a deterministic one. Otherwise, the retailer updates the lower bound for the uncertain component, the remaining problem remains to be
a stochastic one, with a new estimate for the uncertain component.

Recently, three closely related papers discuss Bayesian learning in pricing of style goods. Subrahmanyan and Shoemaker [37] develop a
general periodic demand learning model to optimize pricing and stocking decisions. As in Eppen and lyer [16,17], they use a set of possible
demand distribution functions for each period and a discrete prior distribution that tabulates the probability of these possible demand dis-
tributions being the true demand distribution. This discrete distribution is updated after each period using the Bayes’ rule. The information
requirements are extremely large in a general model as updating requires the history of sales, inventory levels and prices in each period.
They present computational results on specific demand and price parameters. Bitran and Wadhwa [7] consider only the pricing decisions
utilizing the two-phased demand model and discrete-time dynamic programming formulation in Bitran and Mondschein [6]. A Poisson
process for store arrival and a reservation price distribution are used to define the purchase process. They assume that uncertainty is in-
volved in a parameter of this reservation price distribution. An updating procedure on this parameter is proposed such that the rate of the
purchase process has Gamma priors and posteriors. The methodology allows them to summarize all sales and price information in two
variables. They present computational results to show the impact of demand learning on prices and expected profits. Aviv and Pazgal
[2] study a problem where the arrival process is Poisson, the arrival rate has a Gamma distribution and the retailer controls the price con-
tinuously. The resulting model is a continuous-time optimal control problem. Among other results, it is shown that initial high variance
leads to higher prices and the expected revenues of the optimal pricing policy are compared with expected revenues from several other
policies including a fixed price scheme. Our model differs from previous work in the literature, as we utilize demand learning to resolve
uncertainty about the demand function as well as the magnitude of the demand in a periodic setting.

3. Model
3.1. Demand model

Assume that there are N points in time that the pricing decisions can be made. Without loss of generality, assume that each period in
consideration is of unit length. The demand in each period has a Poisson distribution. The demand rate is separable and consists of two
components: a base demand rate A, and a multiplier ¥(p) which is a function of the price p. The Poisson rate is equal to

A(p) = ¥(p)4.

We assume that the functional form of the demand function is not known with certainty but is known to be from a family of K functions. In
particular we assume

¥(p) = y;(p) with probability 6;, forj=1,2,... K.

For each j, define p; such that ;(p;) = 1. Although our model does not depend on a particular demand function, in our computational study,
we assume exponential price sensitivity A(p) = ae”"? and use

Uy(p) e 00, M

Exponential price sensitivity and multiplicative demand functions are widely used in practice and research (see [35,36] for examples).
We assume that A is distributed as Gamma with parameters o and g. The distribution for Gamma is given by,

o501 o)
f2) = % 2> 0.

The distribution of demand for a given price p, conditional on the demand function and base rate is given by,

4PN (D) AF
f(x\p,A:xl,'P:(//j):e)[‘%, forx=0,1,2,...

Then, the prior distribution (unconditional of A and ¥) of demand is the following:

3 ~ K . o ) B K ‘ O(erf] ﬂ o w}(p) X -
f(x\p)—/0 ;f(x‘p,/l—/L,lp—l//])ej,of(/n)d),—z()m( N ><ﬁ+%(p)> (/3+¢j(p)>’ forx=0,1,2,... 2)

j=1
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Observing sales will facilitate learning on both the magnitude of demand (A1) and the demand function ().
If the retailer charged a price of p, in the first period and the realized demand in period 1 was x;, the posterior distribution of A4 and ¥
can be found using the Bayes’ rule as follows:

f X1lpy, 4 =2, ¥ = ¢)00f (1) _ (1/x2) (24 (p)I" e P 0501/ T (o) 57 e 17
Jo Siaf(alpy, A= 2, ¥ = )0kaf () di [37 ST, (1/xa) D (py ) e @) 0o [1/T ()] g2 e i
Integrating and simplifying, we get
02" e AUy, (p, )

f(/L7 lpjlxlap])

s bilx1,p1) = - 3)
! k T+ x1) Y1 Oeo Wi (P)] /1B + Wi ()7
Similarly, after observing x, x»
) 0;, 071X = 2B+ (1) + (P2)] [y Xy, x2
P02 py.Ps) — o Vitpu 1P @

a1+ 2X2) 4 Ol P W )/ 16+ () + o) P

In general, after observing x, X, ..., Xn_1
n . n -1
0502+ S ixe L 00] Ty (p, )

f(;“ijb(],---7xn—17p17---7pn71)_ 1 — 0(+E" Tt )
(o S0 S 0o Tl / 5+ Swip0]

Let D,,(p) denote the demand in period n for a given price p. The distribution of D,(p) given the demand history x4, x5, . .., X, and price history
P1, D2, - - - Pn (unconditional of A and ¥) can be derived as

O+ X1 +x—1 0+Xn_1
K n B+Myn_q Yi(p o+Xp
k=1 < </5+Mk_n71+d/k<p)) (/f+Mk n’ 1+Vk(p) ) Mk n10k0/ (B + Micn-1) 1

X
211571 Mk.n—] HI(.O/(ﬁ + Mk.n—l )DHX"?I

where X1 = 377X, M1 = 311 ¥4(p,) and My = 371 [0 (P)]- X1, M1 = [M1n_1.. Min_1] and Mp_q = [M1,_1 ... Mn_1] summa-
rize all the information in periods 1,...,n — 1 and are called the sufficient statistics for estimating demand in period n.
The distribution in (6) can be written as a mixture of K Negative Binomial distributions:

(6)

F(XIx1, .. Xn_1,P15- - P15 D) =

)

K
f(x‘xh .. '7XH*17p‘17"'7pn—]7p) = Zej,n—lfk(xlxh"' 7xn*]7p17"' 7pn—17p)7 (7)
k=1

where
0j0Mjn_1/(B + Mjn_1)*
Skt OcoMin1 /(B + Mypq)* 1

and fi(x|x1, ..., Xa_1, P1, - - » Pn_1, D) is @ Negative Binomial distribution with parameters o+ X;, 1 and (8 + Myn_1)/[B + Min_1 + Yi(D)]-
Using (7), we can find the mean and variance of D,(p) conditional on xq, ..., X,_1 and pq, ..., pn_1 as follows:

E[Du(p )|X1 ----- Xn-1,D1, - Pn_1]

Zekn 1(0+ Xa-1)¥(D)/ (B + Myn-1),

Var[D,
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—
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It is also worthwhile to see how the mean and variance of the unconditional distribution of demand behaves as n increases. For simplicity of
the exposition, assume that p; = p and price is equal to p throughout the season so that y(p,) =1 for all ¢ and k. The expected value and
variance of the unconditional demand are given by,

_ o+ X,
E[Dn(p)lx]7“"xﬂ 17p17~--7pn—1} ﬂ+2n:/7‘1147

_ o+ X +n
VarlD (). X 1.1 P 1] = (ﬂ%;_”)i’j !

It is easy to see that as n approaches infinity, both the mean and variance approach X, average of x;, which is the true rate of the Poisson
process. We note that the convergence is faster if  is smaller. This corresponds to higher degrees of uncertainty in the decision maker’s initial
estimate of demand rate, and thus more reliance on actual sales information in estimating future demand.

While our analysis so far assumes that the periods are identical except for the prices charged, our model allows us to permit seasonality
and any other extensions as long as the multiplicative nature of the demand is preserved. That is, as long as we can state the demand rate in
period ¢ as

Aé‘(pé’v ‘Eé‘) = T(pév TZ)A
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(where ¥ now is a more general random function of price p, and seasonality factor 7,) our model is applicable. Uneven period lengths are also
easily accountable by considering the length as a seasonality factor.

3.1.1. Deterministic demand function

Our specification of the demand function ¥ from a set of functional forms /; allows one to interpret the demand function as a non-
deterministic one. If the function is given as ¥ =/ with certainty, then the distribution function of A in (5) reduces to Gamma distribution
with parameters o + X,,_1 and g+ M,_;

[ﬁ+Mn 1]x+X.. 104 Xn-1~1 a—(B+My_1)2

i>0
T(o+Xn 1) » 420

fOx1, o X 1,D15 - Pnr) =

where My 1 = 3771y (p,)-
In this case, the unconditional distribution of demand in period n that is given in (6) reduces to Negative Binomial distribution with
parameters o + X, _1 and [f + M,_1]/[f + Mn_1 + /()]

_ a+Xp 1 +x—1 [)’ +M,4 o+Xp 1 w(p) )X B
st = () () () - orxm 0t

Note that here the sufficient statistics are X, 1 = >.0-/x, and M, 1 = Y= ¥(p,).
The demand in the nth period given the demand and price hlstory will have a mean of

(a+ >0 1X1’
B+ zLLMm

which basically means that the sales rate in the nth period is a linear function of sales rate in the earlier n — 1 periods. This is in fact not
surprising. Carlson [11] studied sales data of apparel merchandise from a major department store to see whether the sales rate after a
mark-down is predictable. Given an initial price and a mark-down percentage, he has shown that past mark-down sales rate is in fact a linear
function of pre mark-down sales rate. Our model completely agrees with this empirical result.

E[Dn(p)|xlv"'7xn711p]7"'7pn 1}

)

3.1.2. Deterministic demand rate
If the demand rate is given as A = 1 with certainty, the probability that the demand function is y(p) in period n given a sales history of
X1, X2, ..., Xp_1 and a price history of py, pa, ..., pn can be written as

N n-1
e”*zpl '#j(P;)Hﬂ*T [l//] (pmxz 00
S e T ()] e

Then, the unconditional (of A) distribution of demand in period n is given by

Opn1 =Pr{¥ = yj|x1,... . Xn1,P1,-- -, Dn1} =

K, e w )
f(X\X1,...,Xn,l,ph...,pn,],p Z(})n 1o ]
with mean equal to

K
E[Dn(p”xlv" . 7Xﬂ71’p17" . 7pn—1] = ZOJN*]Aw](p)
j=1

3.2. Pricing model

The problem is to determine prices in periods 1, ..., N so that a fixed stock of I, items is sold with maximum expected revenue. Risk
neutrality of the retailer (and thus expected revenue maximization) is a fairly standard assumption in the revenue management theory
and practice (see [40]) and may be considered reasonable given that the revenue management and dynamic pricing decisions are imple-
mented over many problem instances (flight departures, hotel nights, seasonal items, etc.). In other cases, there may be a need for incor-
porating the risk preferences of the retailer and this has only been recently studied (see, for example, [19,29]). Since our primary objective
in this initial paper is to understand the impact of demand learning on pricing decisions, we follow the traditional literature on revenue
management and assumed risk neutrality of the retailer. For simplicity of the presentation, we also assume that the inventory holding costs
within the selling season are negligible. We note that it is very easy to relax this assumption in the context of our model.

We use a discrete-time dynamic programming model. Let V,,(I,_1, X, 1, Mn,l,]\7ln,1) be the maximum expected revenue from perE)d n
through N when the initial inventory is I,,_; and the cumulative sales is X,,_1, vector of cumulative price multipliers are M,_; and M;_;.
Note that

I = maX{O,Io *Xn,]}

and can be dropped from the formulation. But we keep I,,_; in our formulation for ease of exposition. Also let ps be the salvage value for any
inventory left unsold beyond period N.
The backward recursion formulation can be written as

Vn(]n—laxn—17Mn—17Mn—1) = maXE[Pn min{Dn(pn)Jn—l} + Vn+1((1n—1 - Dn(pn))+7

Xn—l +Dn(pn)= -1 +l/1(pn)) n— 1M(pn)|xn laMn 1 Mn 1} (8)
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where W(p,) = [Y1(pn)- . Wilpa)] and M(p,) is a K x K diagonal matrix with entries [y, (p,)/>"®". ..., [y (p,)]>"® in the diagonal.
Boundary conditions are

Vit (In.Xn, Ma_1, My_1) = pely,  for all Iy, Xy, My_1, Mp_1, 9)
Vn(o«,xn—lyMn—hrM/n—l) = 07 for all naxn—h Mn—lyﬁn—l- (1O>

The first condition states that any leftover merchandise has only salvage value when the season ends at the end of period N. We assume that
this salvage value is deterministic and is known at time 0. The second condition states that the future expected profits are zero, when there is
no merchandise left in stock since re-ordering is not allowed. This property also allows us to avoid the problem of censored demand infor-
mation due to unsatisfied demand. In case of excess demand (when the inventory is exhausted), there are no further decisions to be made
and no further information about demand is required. The dynamic program can be solved by starting with the Nth period and proceeding
backwards.

We solved many problems with different sets of parameters to investigate the structural properties of the optimal policy. In all these
problems, we observed that higher sales in earlier periods always translate into higher prices in future periods. The intuition behind this
behavior is the following. First, higher sales in earlier periods mean (stochastically) higher demand in future periods because of the Bayes-
ian nature of the demand distributions. Second, higher sales in earlier periods also mean lower left-over inventory for future periods since
there are no further replenishment opportunities. Thus, higher sales in earlier periods inflate the expected demand while decreasing the
available supply in future periods. This allows the seller to charge higher prices to balance the demand and supply. The second part of the
argument (lower inventory calls for higher prices), is formally proved by Chun [14] for the Negative Binomial demand. The first part of the
argument (stochastically larger demand calls for higher prices), however, is not true in general. See Bitran and Wadhwa [8] for counter
examples and certain conditions that are required.

In order to show how the model works, we provide the following example.

Example: The retailer has 12 units to sell in a season with two periods of unit length. When the price is set to 1.00, the demand in each
period is Poisson with a rate distributed with Gamma with parameters o =2 and = 0.5. The retailer can charge different prices in these
periods from a discrete set 2 = {0.50,0.55,...,0.95,1.00}. The price affects the demand in an exponential manner with two possible elas-
ticity parameters

W(p) = Y, (p) = e2P-1  with probability 0.5,
PY=1 y,(p) = e4¢1  with probability 0.5.
The mean total demand is given as follows for each price in 2.

Price 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Mean demand 20.2 17.0 144 121 10.3 8.7 74 6.3 5.4 4.8 4.0

The problem is to find the price in the first period and the pricing policy in the second period so as to maximize the total revenues. We solve
the problem with the dynamic program given in Egs. (8)-(10). The optimal policy is to charge 0.95 in the first period and then charge the
prices in the second row of the following table in the second period based on the demand realization in the first period.

X1 0 1 2 3 4 5 6 7 8 9 10 11 12

s 050 055 060 065 075 080  0.85 0.95 1.00 1.00 1.00 1.00 1.00
100 x 0y, 53.5 527 520 512 505  49.7 490 482 475 467 460 452 445
E[Dy(1)] 121 1.81 2.41 3.01 3.61 421 481 5.41 6.01 6.61 720 780 839

The third row in the table shows the posterior probability that the demand elasticity parameter is 2. The third row is the expected de-
mand in the second period if the retailer charges a price of 1. The resulting optimal expected revenue is 7.81, about 0.65 per unit. The table
above also shows how the posterior probability that ¥ =/, and expected demand in period 2 (if a price of 1 is charged) changes based on
the observed demand in period 1.

4. Computational study

We first note that although pricing through a demand learning model is the best the retailer can do, it is not necessarily optimal. The
optimal policy depends on the true value of underlying base demand rate and the true demand function. The optimal prices can be com-
puted by using a dynamic programming formulation, which uses the Poisson demand distribution with the true value of the demand rate
and the true demand function. The performance of the demand learning model depends on how accurate the retailer’s initial demand esti-
mates are and how fast the retailer can learn about the true demand rate and demand function. Note that prior to the start of the season,
the retailer assumes that the base demand rate is distributed Gamma with parameters o and . The expected value and variance of this
random variable are given by,

E[/] :% and Var[i] = 2.

ﬁZ
Hence, o/p defines the initial point estimate. Coefficient of variation can be derived as 1/+/a.. Thus, given a fixed ratio «/g, the magnitude of «
(or p) defines the variance of the initial estimate, and hence the decision maker’s reliance on her prior beliefs about demand rate. For a fixed
ratio «/B, when « (or g) is large, the retailer is confident about her initial estimate, and she hardly updates her demand rate estimate based on
observed sales. As « (or ) gets smaller, more weight is given to the observed sales in estimating future demand.
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We analyze three different models in our computational study. Under Perfect Information model, the true value of the underlying base
rate and true demand function are known, and an optimal policy is derived using Poisson distributed demand with rate y/(p)A. Under No
Learning model, the decision maker only knows a, 8, 010, 02,0, - - ., Oxo and Yq, Yo, . .., Y and an optimal policy is derived using the initial
mixture of Negative Binomial distributions whose distribution is given in (2). This distribution is not updated as the sales are observed.
Under Learning model, the decision maker also only knows o, f, 01,0, 02,0, - - ., Oxo and Y1, Y5, . . ., i at the beginning of the season, however
the demand distribution is updated using observed sales following the learning model as given in (7).

In order to understand the impact and value of learning, the performance of the policies that are derived under Learning and No Learn-
ing models are evaluated using Poisson distributed demand with the true value of the base rate. We should note again however that this
rate is not revealed to the decision maker before the season (for otherwise, the decision maker would simply use Perfect Information model
to maximize its revenues) and thus evaluation of Learning and No Learning models based on the true Poisson rate cannot appropriately
guide the decision maker before the season.

Our primary objective in the computational study is to discover the conditions under which the early sales information has the most
impact on revenues by comparing the revenues of Learning model with that of No Learning model. While doing this we also generate
the optimal revenues for Perfect Information model. We specifically study the impacts of accuracy of the initial estimate, the variance
of the initial estimate, price elasticity of demand on the profit from all three models.

For the purposes of computational study, we assume that there is only one chance to change the price during the season. The resulting
model is a special two-period case of the model described earlier. We assume a season of length 1 and assume two equal periods of length
0.5. We allow the first and second prices to be in the set {0.50, 0.55, 0.60, . . ., 0.95, 1.00}. We do not put any restrictions on the direction of
the price change in the second period, i.e., the second period price can be higher or lower than the first period price. We assume that the
salvage value is zero. We use exponential price sensitivity, i.e., demand functions of the form y(p) = e-7®*~", In Sections 4.1-4.3, we assume
that the retailer has perfect knowledge about the demand function, (i.e., ¥ =y with probability 1), and investigate the impact of learning
about the demand rate only. Therefore the demand model used in Sections 4.1-4.3 is one that is explained in Section 3.1.1. In Section 4.4,
we investigate the impact of demand function uncertainty and demand rate uncertainty simultaneously and use the general demand mod-
el given in Section 3.1.

4.1. The impact of the accuracy of the initial point estimate of demand rate

In this part of the study, we assess the impact of the initial estimate on profits of Learning and No Learning models in a variety of set-
tings. For the price sensitivity of demand, we use a moderate value, e.g., y = 3.

The analysis is done in two steps; first we keep the initial point estimate constant and vary the true rate of the Poisson distribution and
later we keep the true rate of the Poisson distribution constant and vary the initial point estimate. Note that the value of the initial estimate
is «/B. In the first part of the analysis, we set o/ = 20. However in order to study also the impact of decision maker’s reliance on the initial
estimate, we use two scenarios. In high variance case, o = 10 and $ = 0.5, resulting in a variance of 40 for the gamma distribution (or a coef-
ficient of variation of 1/1/10). In low variance case, & = 40 and § = 2 resulting in a variance of 10 for the gamma distribution (or a coefficient
of variation of 1/v/40). We also use different values for the starting inventory level, in order to incorporate the impact of imbalance be-
tween supply and demand in pricing decisions. This first step of the analysis is summarized in Table 1. The revenues of Learning and
No Learning models are provided in percent of the optimal revenues that are generated by Perfect Information model. The row titled L/
N % shows the performance of Learning model against No Learning model (100 x expected revenue with Learning model/expected revenue
with No Learning model).

Note that / is the true Poisson rate when the price is set at the maximum price 1.00. The true Poisson rate takes on values 10, 15, 20, 25
and 30, while the decision maker’s initial point estimate is fixed at 20. Note also that optimal policies for No Learning and Learning models

Table 1
The impact of initial estimate, revenues as a function of /
Ip 2
10 15 20 25 30
10 a B Perfect Information 9.0361 9.8697 9.9918 9.9997 10.0000
10 0.5 Learning 99.47 99.87 99.90 99.98 100.00
No Learning 97.02 99.95 100.00 100.00 100.00
L/N (%) 102.53 99.92 99.90 99.98 100.00
40 2 Learning 97.57 99.98 100.00 100.00 100.00
No Learning 96.86 99.94 100.00 100.00 100.00
L/N (%) 100.74 100.05 100.00 100.00 100.00
20 o p Perfect Information 14.2552 16.8405 18.6529 19.6623 19.9511
10 0.5 Learning 89.40 98.03 99.54 99.19 99.49
No Learning 83.08 96.85 99.98 99.33 99.45
L/N (%) 107.61 101.22 99.56 99.86 100.04
40 2 Learning 84.96 97.24 99.96 99.45 99.57
No Learning 83.05 96.74 99.99 99.48 99.58
L/N (%) 102.29 100.52 99.97 99.97 99.99
30 a B Perfect Information 17.8773 21.7092 24.4823 26.6369 28.3606
10 0.5 Learning 87.64 96.64 99.28 98.57 95.88
No Learning 83.21 96.40 99.99 96.81 91.89
L/N (%) 105.33 100.24 99.29 101.81 104.34
40 2 Learning 86.70 97.67 99.88 97.05 92.15
No Learning 83.21 96.40 99.99 96.90 92.00

L/N (%) 104.19 101.32 99.88 100.15 100.17
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are evaluated using Poisson distribution with the true rate. When we compare the revenues obtained from No Learning and Learning mod-
els, we conclude that learning from observed sales is most beneficial when the initial point estimate is inaccurate and when the variance is
high (the decision maker relies less on the initial estimate and is more willing to update her estimate based on observed sales). This gives
an opportunity to Learning model to quickly identify the inaccuracy of the initial estimate and correct the estimate for the second period.
The benefits are more pronounced when the true Poisson rate is lower (e.g., 4 = 10) than the initial estimate and the initial inventory levels
are high (e.g., Ip =20 and Iy = 30). Since the maximum allowed price is 1.00, pricing is more instrumental when the demand rate is signif-
icantly lower than the initial inventory.

Notice that in 13 cases, No Learning model is performing better than Learning model. These are the cases where the initial estimate is
fairly accurate and updating the demand distribution using a random sample can therefore reduce the revenues. The reductions are min-
imal when the variance is low (the decision maker relies more on the initial estimate and is less willing to update its estimate based on
observed sales). It should be noted, however, that the savings due to Learning model when the initial estimate is inaccurate is much higher
than the losses due to Learning model when the initial estimate is accurate.

Finally we should note that when the initial inventory is low (i.e., Io = 10), pricing is not very useful as the maximum price is set at 1.00.
Therefore, the difference between Learning and No Learning models are minimal, and both models can perform very close to Perfect Infor-
mation model.

The second step of the analysis is summarized in Table 2. In the second step of the analysis we fixed the true Poisson rate (/) at 20 and
let the initial point estimate (o/B) take on values 10, 15, 20, 25 and 30. In order to eliminate the impact of the variance in the analysis, we
fixed the coefficient of variation of the gamma distribution (which is equal to 1/(a/$%)/(e/f) = 1/+/a to 1/+/10 for high variance case, and
to 1/+/40 for low variance case).

In addition to results that are similar to those that are obtained in the first step, the second step provides an additional interesting obser-
vation. While the maximum revenue is achieved when the estimate is accurate in No Learning model, the same is not necessarily true for
Learning model. When the initial inventory is 10 for both high and low variance, and when the initial inventory is 20 for high variance, the
maximum revenue is achieved when the decision maker is in fact overestimating the demand. By overestimating the demand, the decision
maker is less likely to charge lower than the maximum price in the second based on a random sample.

4.2. The impact of the variance of the initial estimate of demand rate

In this part of the study, we investigate the impact of the variance of the initial estimate on the performance of Learning and No Learning
models. Note again that the variance of the initial estimate reflects the decision maker’s reliance on its initial estimate and how much she is
willing to update her estimate based on observed sales for Learning model.

The analysis is summarized in Table 3 for an initial inventory level of 20, and Table 4 for an initial inventory level of 30. For both tables,
parameter o of the Gamma distribution takes on values 5, 10, 15, 25, 40 and 80 while the parameter  of the Gamma distribution takes on
values 0.25, 0.5, 0.75, 1.25, 2 and 4, respectively. This keeps the mean of the Gamma distribution constant at 20, while the variance of the
Gamma distribution takes on values 80, 40, 26.67, 16, 10, and 5. The tables show the optimal first period price, expected optimal second
period price and optimal expected revenue for Perfect Information model to form a benchmark. As mentioned earlier, No Learning model
uses the same the Negative Binomial distribution when deciding the first period price and deriving a policy for the second period price,
while Learning model uses an updated Negative Binomial distribution for the second period. However, the expected revenues and expected
second period prices reported in Table 3 and Table 4 use the true Poisson distribution when taking the expectations. In the less likely case
that the initial inventory is totally depleted in the first period, we take the second period price to be 1.00 when calculating expected second
period price.

Table 2
The impact of initial estimate, revenues as a function of «/p
Io /B
10 15 20 25 30
10 o B Perfect Information 9.9918 9.9918 9.9918 9.9918 9.9918
10 0.5 No Learning 99.64 99.97 100.00 100.00 100.00
Learning 99.54 99.86 99.90 99.97 99.97
L/N (%) 99.91 99.89 99.90 99.97 99.97
40 2 No Learning 99.73 99.97 100.00 100.00 100.00
Learning 99.73 99.97 100.00 100.00 100.00
L/N (%) 100.00 100.00 100.00 100.00 100.00
20 a B Perfect Information 18.6529 18.6529 18.6529 18.6529 18.6529
10 0.5 No Learning 87.04 96.27 99.98 99.29 98.31
Learning 87.51 96.25 99.54 99.71 99.84
L/N (%) 100.55 99.97 99.56 100.42 101.55
40 2 No Learning 87.19 96.27 99.99 99.29 98.06
Learning 87.18 96.45 99.96 99.77 99.08
L/N (%) 99.99 100.19 99.97 100.48 101.03
30 o B Perfect Information 244823 24.4823 24.4823 244823 24.4823
10 0.5 No Learning 82.03 97.21 99.99 97.33 92.44
Learning 82.70 97.96 99.28 98.30 96.21
L/N (%) 100.81 100.77 99.29 100.99 104.07
40 2 No Learning 82.14 97.21 99.99 97.33 92.37
Learning 82.46 97.73 99.88 98.07 94.16

L/N (%) 100.38 100.53 99.88 100.76 101.94
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Table 3
The impact of variance (Ip = 20)
A Perfect Information a
p; E[ps] Revenue 5 10 15 25 40 80
10 0.8 0.7383 14.2552 Learning pi 1 1 1 1 1 1
E[p;] 0.7128 0.7562 0.7670 0.7922 0.8129 0.8216
% 91.92 89.40 88.65 86.68 84.96 84.19
No Learning pi 1 1 1 1 1 1
E[p3] 0.8345 0.8345 0.8345 0.8345 0.8349 0.8401
% 83.08 83.08 83.08 83.08 83.05 82.65
L/N (%) 110.64 107.61 106.71 104.33 102.29 101.87
20 1 0.9400 18.6529 Learning Di 1 1 1 1 1 1
E[p5] 0.9088 0.9198 0.9208 0.9288 0.9330 0.9334
% 98.95 99.54 99.61 99.83 99.96 99.97
No Learning Pi 1 1 1 1 1 1
E[p5] 0.9298 0.9298 0.9298 0.9298 0.9355 0.94
% 99.98 99.98 99.98 99.98 99.99 100.00
L/N (%) 98.97 99.56 99.63 99.86 99.97 99.97
30 1 0.9999 19.9511 Learning pi 1 1 1 1 1 1
E[p;] 0.9872 0.9881 0.9882 0.9893 0.9895 0.9895
% 99.43 99.49 99.49 99.55 99.57 99.57
No Learning pi 1 1 1 1 1 1
E[p3] 0.9863 0.9863 0.9863 0.9863 0.9896 0.9902
% 99.45 99.45 99.45 99.45 99.58 99.61
L/N (%) 99.98 100.04 100.04 100.11 99.99 99.96
Table 4
The impact of variance (Ip = 30)
) Perfect Information a
pi E[p;] Revenue 5 10 15 25 40 80
10 0.65 0.6327 17.8773 Learning Di 0.90 0.90 0.90 0.90 0.85 0.85
E[ps 0.5967 0.6215 0.6314 0.6582 0.6828 0.6995
% 89.12 87.64 87.08 85.22 86.70 85.47
No Learning P; 0.85 0.85 0.85 0.85 0.85 0.85
E[p3] 0.8345 0.8345 0.8345 0.8345 0.8349 0.8401
% 83.09 83.21 83.21 83.21 83.21 83.20
L/N (%) 107.25 105.33 104.65 102.42 104.19 102.72
20 0.85 0.8565 24.4823 Learning p; 0.90 0.90 0.90 0.90 0.85 0.85
E[p3] 0.8035 0.8081 0.8067 0.8091 0.8518 0.8541
% 98.97 99.28 99.35 99.65 99.88 99.94
No Learning P 0.85 0.85 0.85 0.85 0.85 0.85
E[p5] 0.85 0.85 0.85 0.85 0.852 0.8565
% 99.99 99.99 99.99 99.99 99.99 100.00
L/N (%) 98.98 99.29 99.36 99.66 99.88 99.94
30 1 0.9496 28.3606 Learning Di 0.90 0.90 0.90 0.90 0.85 0.85
E[p3] 0.9536 0.9536 0.9495 0.9466 0.9738 0.9739
% 95.87 95.88 95.77 95.66 92.15 92.16
No Learning D; 0.85 0.85 0.85 0.85 0.85 0.85
E[p3] 0.9657 0.9657 0.9657 0.9657 0.9695 0.9712
% 91.89 91.89 91.89 91.89 92.00 92.07
L/N (%) 104.33 104.34 104.22 104.10 100.17 100.09

When the initial inventory (Ip) is 20, we note that No Learning and Learning models set the initial price to 1.00 for all variance levels
(Table 3). When the initial inventory (Ip) is 20 and the true Poisson rate (1) is 10, we observe that Perfect Information model sets the initial
price to 0.80, significantly lower than No Learning and Learning models. However, as the variance gets higher, Learning model is better able
to correct its estimate and thus charges lower prices in the second period. This is in contrast to No Learning model where the second period
price and the revenue is insensitive to the variance.

When the initial inventory (Ip) is 20 and the true Poisson rate (1) is 20, we observe that Perfect Information model sets the initial price to
1.00. The revenues of No Learning and Learning models are also quite close to the optimal revenue obtained in Perfect Information model.
However, we note that when the variance is high for Learning model, the decision maker runs the risk of charging a less than optimal price
as she may interpret a randomly low demand in the first period as a sign for low demand overall.

When the initial inventory (Ip) is 20 and the true Poisson rate (1) is 30, we again observe that Perfect Information model sets the initial
price to 1.00. Since the demand rate is quite high as compared to the supply, expected optimal second price also needs to be close to 1.00.
Similar to the case when the true Poisson rate (1) is 20, the decision maker still has the risk of charging a less than optimal second period
price, based on a randomly low demand in the first period when he uses Learning model. This is especially true for high variance case.
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When the initial inventory (Ip) is 30, we note that No Learning model sets the initial price to 0.85 for all variance levels, while Learning
model sets the initial price to 0.90 when the variance is high and to 0.85 when the variance is low (Table 4). The difference between the
initial prices of Learning and No Learning models shows that the fact that the decision maker will learn from observed sales may lead the
decision maker to different decisions, even before she observes sales.

Table 4 shows results similar to those in Table 3, except that now, Learning model provides significant benefits also when the true Pois-
son rate (1) is 30. The value of learning is more pronounced, when the starting inventory level is high, i.e., correcting an underestimation
pays more.

4.3. The impact of price elasticity

In Table 5, the impact of price elasticity of demand is analyzed for Perfect Information, Learning and No Learning models. In this specific
analysis, the parameter « of the Gamma distribution is taken as 10 and the parameter f of the Gamma distribution is taken as 0.5 leading to
an initial estimate with mean 20. The y value, which controls the price elasticity of demand, takes on 7 values between 1.0 and 4.0, where
7 = 1.0 models inelastic demand (for this case, the optimal price is 1.00 since reducing the price will not modify demand). We first note that
the optimal revenue is an increasing function of the price elasticity of demand for Perfect Information model as the decision maker is better
able to manipulate the demand.

For 4 =10, the decision maker is initially overestimating the demand for both Learning and No Learning models and charges an initial
price higher than the optimal price in Perfect Information model. However, Learning model can partially correct its estimate based on ob-
served sales and improve its revenue by reducing the price in the second period. The revenue of Learning model increases as the price sen-
sitivity increases since the price reductions are more effective with high price sensitivity. As the price sensitivity increases, we observe that
the difference between Perfect Information and Learning and the difference between Learning and No Learning also increase as the infor-
mation is more useful with a more elastic demand.

For /4 =20, Learning model performs worse than No Learning model for all demand elasticities. This is because the initial estimate is
accurate, and the decision maker is better off if she does not change her estimate based on observed sales. We also see that performance
of Learning and No Learning models improves as y increases, which shows that when the demand is accurately estimated, an elastic de-
mand will always help.

For /. = 30, the decision maker is initially underestimating the demand for both Learning and No Learning models. Note that with Perfect
Information model, the initial price needs to be 1.00, and we hardly need a reduction in price in the second period. However, with inac-
curate information, both Learning and No Learning models can ask for price reductions in the second period especially when the demand is
highly elastic. However, we should see that the relationship between y and the performances of Learning and No Learning models is not
clear to have any further conclusions.

Table 5
The impact of price elasticity (Ip = 20)
2 Y
1.0 1.5 2.0 2.5 3.0 3.5 4.0
10 Perfect Information Pi 1.00 0.75 0.70 0.75 0.80 0.80 0.80
E[p3] 1.0000 0.7338 0.7141 0.7204 0.7383 0.7764 0.8211
Revenue 9.9972 10.8237 12.2038 13.3753 14.2552 14.9601 15.4778
Learning Pi 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 0.8129 0.7509 0.7397 0.7562 0.7665 0.7799
% 100.00 95.62 91.10 89.77 89.40 90.04 90.90
No Learning Pi 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 0.9106 0.8622 0.8419 0.8345 0.8362 0.8451
% 100.00 94.20 87.42 84.05 83.08 82.88 82.82
L/N (%) 100.00 101.51 104.21 106.80 107.61 108.65 109.76
20 Perfect Information Di 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 0.9730 0.9524 0.9461 0.9400 0.9352 0.9356
Revenue 18.2233 18.2669 18.3928 18.5295 18.6529 18.762 18.8537
Learning )2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 0.9609 0.9375 0.9148 0.9198 0.9151 0.9171
% 100.00 99.95 99.81 99.52 99.54 99.41 99.34
No Learning 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 0.9851 0.9622 0.9462 0.9298 0.9298 0.926
% 100.00 99.96 99.95 100.00 99.98 99.96 99.88
L/N (%) 100.00 99.99 99.86 99.52 99.56 99.45 99.46
30 Perfect Information 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p3] 1.0000 1.0000 1.0000 0.9999 0.9999 0.9996 0.9996
Revenue 19.9505 19.9505 19.9506 19.9508 19.9511 19.9516 19.9521
Learning Pi 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p5] 1.0000 0.9967 0.9932 0.9876 0.9881 0.9849 0.985
% 100.00 99.86 99.71 99.45 99.49 99.36 99.37
No Learning p; 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[p5] 1.00 0.9989 0.9955 0.9918 0.9863 0.9863 0.9822
% 100.00 99.97 99.83 99.68 99.45 99.45 99.30

L/N (%) 100.00 99.90 99.87 99.77 100.04 99.91 100.07
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4.4. Demand function uncertainty

The analysis so far assumes that the demand function ¥ is known and the retailer has uncertainty only about the magnitude of the
demand. Using the general model in Section 3, we now study the case where the retailer has imperfect information regarding the demand
function as well. While our model allows us to study the case of misspecification of the demand function as well, we only consider the case
of misspecification of the parameter of a specific demand function. In particular, we assume exponential price sensitivity, as in Sections
4.1-4.3, but assumed that the parameter y is one of five values, i.e.,

¥1(p) = e 1=V with probability 0y,
W, (p) = e~2P-1  with probability 0,,
¥(p) =< y5(p) = e>*P-D  with probability 0,
Y4(p) = e~4P-1  with probability 0,,

ys(p) = e>P-V  with probability 0s.

We based our analysis on a single problem where the initial inventory I is 30, the true value of the arrival rate / is 20 and the true value of
the price sensitivity parameter y is 3. The season is again composed of two periods of length 0.5. The retailer charges a price in the set
2 ={0.50,0.55,...,0.95,1.00}. With Perfect Information, the optimal expected revenue is 24.4823. Optimal first period price for this prob-
lem is 0.85 and expected optimal second period price is 0.8565. We study the impact of prior imperfect information about the magnitude and
function of the demand on the optimal expected revenues of Learning and No Learning models.

In Table 6, we use three different sets of prior probabilities to study the impact of demand function uncertainty:
(01,02,03,04,05) € {(0, 0, 1, 0, 0),(0,1,4,1,0), (3,3,3.3,3)}. The first set corresponds to full and accurate information; the second set cor-
responds to a moderate level of uncertainty and the third set corresponds to a high level uncertainty regarding the demand function. The
retailer’s knowledge of the magnitude of demand is governed again by the parameters of the Gamma distribution. «/g reflects the accuracy
of the initial point estimate and takes on five values: 10, 15, 20, 25, and 30. For this purpose only g is varied so that the coefficient of var-
iation stays constant at 1/+/a.

The results in Table 6 show that Learning model provide revenue increases over No Learning model in 17 instances out of 20 instances
with demand function uncertainty. For the remaining three cases, Learning model performs very close to No Learning model (and to Perfect
Information model). The impact of the demand function uncertainty on the revenues of Learning model depends heavily on the accuracy of

Table 6
The impact of demand function uncertainty: /=20, y =3, I = 30
o B (01, 03, 03, 04, 0s5) Learning No Learning L/N (%)
Di E[p3) % pi E[p3] %
10 1.000 (0,0,1,0,0) 0.65 0.9748 82.70 0.65 0.9494 82.03 100.81
0,1,3.3,0 0.70 0.9209 89.30 0.65 0.9550 82.19 108.65
¢.3.3.4 5% 0.75 0.8591 93.91 0.70 0.9004 88.76 105.80
0.667 (0,0,1,0,0) 0.80 0.8608 97.96 0.80 0.8250 97.21 100.77
0,1,3,3,0 0.80 0.8569 97.94 0.80 0.8327 97.58 100.37
1111 5% 0.85 0.8274 99.48 0.80 0.8513 98.18 101.33
0.500 (0,0,1,0,0) 0.90 0.8081 99.28 0.85 0.8500 99.99 99.29
0,1,1,3,0 0.90 0.8119 99.32 0.85 0.8577 99.98 99.35
(%,%,%,%,Sl) 0.90 0.8238 99.64 0.85 0.8692 99.87 99.77
0.400 (0,0,1,0,0) 0.95 0.8024 98.30 0.95 0.8472 97.33 100.99
0,4,1,1,0) 0.95 0.8100 98.30 0.95 0.8488 97.22 101.11
(%%%%5% 1.00 0.8131 96.28 0.95 0.8653 96.19 100.09
0.333 (0,0,1,0,0) 1.00 0.8063 96.21 1.00 0.8723 92.44 104.07
0,1,3.3,0 1.00 0.8157 96.04 1.00 0.8756 92.14 104.23
(%%%%Sl) 1.00 0.8366 95.02 1.00 0.8838 91.46 103.89
40 4.000 (0,0,1,0,0) 0.65 0.9658 82.46 0.65 0.9539 82.14 100.38
0,4,1,1,0) 0.70 0.9018 88.73 0.65 0.9550 82.19 107.95
(%%%%5% 0.75 0.8439 93.42 0.70 0.9006 88.78 105.23
2.667 (0,0,1,0,0) 0.80 0.8454 97.73 0.80 0.8249 97.21 100.53
0,4,1,1,0) 0.80 0.8454 97.85 0.80 0.8357 97.64 100.22
%%%%% 0.80 0.8478 98.02 0.80 0.8551 98.29 99.73
2.000 (0,0,1,0,0) 0.85 0.8518 99.87 0.85 0.8520 99.99 99.88
0,1,3.3,0 0.90 0.8175 99.78 0.85 0.8677 99.96 99.82
3%%%% 0.90 0.8317 99.78 0.85 0.8804 99.73 100.05
1.600 (0,0,1,0,0) 0.95 0.8307 98.07 0.95 0.8472 97.33 100.76
0,1,3.3,0 0.95 0.8372 97.87 0.95 0.8543 96.89 101.01
%%%%% 0.95 0.8527 97.11 0.95 0.8678 96.08 101.07
1.333 (0,0,1,0,0) 1.00 0.8507 94.16 1.00 0.8735 92.37 101.94
0,1,1,3,0 1.00 0.8542 93.91 1.00 0.8830 91.57 102.55
(%,%,%,%,Sl) 1.00 0.8685 92.80 1.00 0.8957 90.50 102.55
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retailer’s initial estimate of the magnitude of the demand. There are many instances for which having more precise information about the
demand function may in fact hurt the retailer if her demand magnitude estimate is inaccurate. For example, in instance with « =10 and
B =1, the retailer’s expected demand rate is 10, when in fact the true value of the demand rate is 20. In this case, precisely knowing the
demand function (y=3 with probability 1) generates 82.70% of the optimal revenue, while prior probabilities (0,1,1,1,0) and
(¢,1,1,1.1) can generate 89.30% and 93.91% of the optimal revenue, respectively, under Learning Model. This can be explained as follows.
With a demand rate estimate of 10 and initial inventory of 30 units, the retailer would like to charge a low price in both periods to max-
imize its expected revenue. However, the imprecise information about the demand function will guide the retailer to be more conservative
in her pricing decision (i.e., she will charge a higher price) in the first period and this will lead to first period prices to be closer to the opti-
mal price (0.85). Note that Learning model still outperforms No Learning model in these cases, since the retailer learns about the demand
function and magnitude in Learning model and use this information for more efficient pricing in the second period. With a few exceptions,
the difference between Learning model and No Learning model is more significant when there is uncertainty about the demand function.
However, the relative performance of Learning model is not monotone in the level of uncertainty. One can also see from the results that the
revenue gains by using Learning model as opposed to No Learning model are larger when the retailer’s variance of the estimate of the de-
mand rate is higher (« = 10).

In Table 7, we introduce inaccuracies to the retailer’s initial estimate of the demand function by using four sets of prior probabilities
(61,02,03,04,05) € {(0, 0, 1, 0, 0),(0,0,3,%,0),(0,0,1,1,0),(0,0,%,3,0)}. In the first set, the retailer has full and accurate information
(y =3 with probability 1) about the demand function. In the second, third and fourth sets, the retailer uses prior probabilities 1, 1 and 2
for the event y = 4. In 26 out of 30 instances with demand function uncertainty, Learning model generates higher revenues than No Learn-

Table 7
The impact of demand function uncertainty: /=20, y =3, I =30
o B (04, 04, 03, 04, 05) Learning No Learning L/N (%)
pi E[p3] % pi Elp] %
10 1.000 (0,0,1,0,0) 0.65 0.9748 82.70 0.65 0.9494 82.03 100.81
(0,0,3.1,0) 0.70 0.9201 89.25 0.70 0.8820 88.18 101.22
(0,0,1,1,0) 0.70 0.9173 89.20 0.70 0.8781 88.09 101.26
(0,0,1.3.0 0.75 0.8657 94.04 0.70 0.8805 88.21 106.61
0.667 (0,0,1,0,0) 0.80 0.8608 97.96 0.80 0.8250 97.21 100.77
(0,0,3.3.0) 0.80 0.8523 97.81 0.80 0.8327 97.58 100.24
(0,0,3.3.0) 0.80 0.8494 97.78 0.80 0.8312 97.55 100.23
(0,0,1,2,0) 0.85 0.8100 99.02 0.80 0.8329 97.64 101.42
0.500 (0,0,1,0,0) 0.90 0.8081 99.28 0.85 0.8500 99.99 99.29
(0,0,3.1,0) 0.90 0.8067 99.35 0.90 0.8135 99.85 99.49
(0,0,1,1,0) 0.90 0.8119 99.32 0.90 0.8187 99.81 99.51
(0,0,1,2,0) 0.90 0.8235 99.62 0.90 0.8190 99.80 99.82
0.400 (0,0,1,0,0) 0.95 0.8024 98.30 0.95 0.8472 97.33 100.99
(0,0,3.3.0) 0.95 0.8058 98.47 0.95 0.8466 97.35 101.16
(0,0,3.3,0) 0.95 0.8058 98.47 0.95 0.8481 97.24 101.27
(0,0,1,2,0) 0.95 0.8269 98.08 0.95 0.8528 96.88 101.24
0.333 (0,0,1,0,0) 1.00 0.8063 96.21 1.00 0.8723 92.44 104.07
(0,0,2,1,0) 1.00 0.8131 96.20 1.00 0.8698 92.60 103.89
(0,0,1,1,0) 1.00 0.8120 96.27 1.00 0.8724 92.34 104.26
(0,0,1,3,0) 1.00 0.8219 95.92 1.00 0.8724 92.34 103.88
40 4.000 (0,0,1,0,0) 0.65 0.9658 82.46 0.65 0.9539 82.14 100.38
(0,0,2,1,0) 0.70 0.9016 88.72 0.65 0.9482 82.07 108.10
(0,0,1,1,0) 0.70 0.9024 88.76 0.70 0.8839 88.27 100.56
(0,0,1,32,0) 0.70 0.9026 88.77 0.70 0.8845 88.31 100.52
2.667 (0,0,1,0,0) 0.80 0.8454 97.73 0.80 0.8249 97.21 100.53
(0,0,2,1,0) 0.80 0.8430 97.73 0.80 0.8327 97.58 100.16
(0,0,1,1,0) 0.80 0.8456 97.87 0.80 0.8393 97.82 100.05
(0,0,1,2,0) 0.80 0.8478 98.02 0.80 0.8443 98.00 100.02
2.000 (0,0,1,0,0) 0.85 0.8518 99.87 0.85 0.8520 99.99 99.88
(0, 0.90 0.8175 99.78 0.85 0.8577 99.98 99.80
( 0.90 0.8210 99.84 0.90 0.8310 99.72 100.12
( 0.90 0.8278 99.83 0.90 0.8312 99.71 100.12
1.600 (0,0,1,0,0) 0.95 0.8307 98.07 0.95 0.8472 97.33 100.76
( 0.95 0.8372 97.87 0.95 0.8543 96.89 101.01
( ] 0.95 0.8420 97.63 0.95 0.8551 96.83 100.83
(0,0,1,2,0) 0.95 0.8465 97.42 0.95 0.8647 96.21 101.26
1.333 1.00 0.8507 94.16 1.00 0.8735 92.37 101.94
1.00 0.8542 93.91 1.00 0.8819 91.64 102.48
1.00 0.8533 93.97 1.00 0.8838 91.46 102.75
1.00 0.8665 92.95 1.00 0.8838 91.46 101.63
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ing model. In the remaining four instances, both models generate close to optimum revenues and the gap is insignificant. The impact of the
accuracy of the retailer’s initial estimate of the demand function uncertainty on the revenues of Learning model depends again heavily on
the accuracy of retailer’s initial estimate of the magnitude of the demand. In many instances, the retailer may in fact get hurt by the accu-
racy of his initial estimate of demand function if his estimate of the demand magnitude is not accurate. For example, when « = 10 and
B =1.00, the retailer’s initial estimate of the demand rate is 10, when in fact the demand rate 4 is 20. In this case, precise information about
the demand function (05 = 1) generates a revenue of 82.70% of the optimal revenue with Learning model, while increasing levels of inac-
curacy provided by 03 =32, 03 =1 and 0; = 1 generate 89.25%, 89.20% and 94.04% of the optimal revenues, respectively. The explanation is
similar to one provided for Table 6. Again, with a few exceptions, the performance gap between Learning and No Learning models is higher
when there is more inaccuracy in retailer’s initial estimate of the demand function. This is particularly true when the retailer’s initial esti-
mate of the demand magnitude is accurate.

5. Inventory flexibility

The analysis so far assumes that there are no further replenishment opportunities available once the selling season starts. In the apparel
industry, this corresponds to the case when the retailer orders from overseas and is not able to order during the season because of the long
lead times relative to the selling seasons. Obviously, this limits the retailer’s control during the selling season to pricing only, which sharply
diminishes its responsiveness. As a result, some retailers are willing to use domestic suppliers and be able to order frequently, even though
domestic suppliers are more costly. With domestic suppliers, the retailer is also able to make its initial order much closer to the season,
when there is more information, hence less variance, about the demand process.

Some companies are using two (or sometimes even three) different suppliers for the very same product: an off-shore low-cost supplier
for the initial large orders, and a domestic high-cost supplier for replenishments during the selling season (Apparel Industry Magazine [1]).

We study the value of this additional flexibility in the context of our pricing model. In a related study, Gurnani and Tang [24] study the
impact of forecast improvements by having the flexibility to order at two instances, one of them being closer to the season. Their model
differs from ours as they do not consider the possibility of ordering during the season by utilizing a structured learning from observed sales.
Also they do not consider any pricing during the season. While their model allows the cost to go up or down as the merchandise is ordered
closer to the season, we always assume that the ordering later is more costly reflecting the reality in the apparel industry.

In our model, the off-shore strategy will allow the company to order only once, but possibly with a low unit cost ¢°. The domestic strat-
egy will allow the company to order before and during the selling season, but possibly with a high unit cost c?. The blended strategy, on the
other hand, will allow the company to make its initial order at a unit cost c°, but later replenishments at the unit cost c®. We assume that
there are no other costs involved, the pricing and inventory decisions are made simultaneously at the start of the each period; period
lengths are equal for each strategy and the lead time is zero for all strategies.

To be able to compare these three strategies, we need to extend our pricing model to allow for inventory decisions. The problem is to
determine prices and stock levels in periods 1, ..., N so that total expected profit is maximized. We use a discrete-time dynamic program-
ming model. For this particular model, we assume that the retailer has no uncertainty regarding the demand function. The model is ex-
plained in the following.

Let Vy(I._1, X1, M,_1) be the maximum expected profit from period n through N where the starting inventory is I,,_; and the cumulative
sales and cumulative price multipliers are X;,_; and M,,_1, respectively. Also let B, be the starting inventory level for period n, after the re-
tailer receives its orders. Thus, the retailer acquires B, — I,,_; new units in the beginning of period n. Let p,, be the price set in period n and
let ¢, be the acquisition cost per unit in period n.

Backward recursion can be written as

Vn(In—th—laMn—l) = max E[*Cn(Bn *In—l) + Py min{Dnan}+Vn+l ((Bn *Dn)+7xn—1 +Dn7Mn—1 +m(Pn))|Xn—17Mn—1,Pn]~

Pn=Ps.Bn =14
Boundary conditions are
Vi (In, Xy, My) = pgly,  for all Iy, Xy, My,
Xo=Mp=1,=0.
The first condition states that any left over merchandise has only salvage value (p;) when the season ends at the end of period N. We also
assume that it is independent of the cumulative sales up to period N. The dynamic program can be solved by starting with the Nth period and

proceeding backwards.
For the off-shore strategy, the model can be used with the following acquisition costs.

G =c,
Ch=00, n=2,...,N.
For the domestic strategy, we simply have
ca=c!, n=1,...,N.
For the blended strategy, we have,
1 =¢°
cn=c?, n=2,...N.

Let V°(c°, ¢), VA(c?, c?) and V(c°, c?) be the optimal profits for the off-shore, domestic and blended strategies respectively. Without any ana-
lytical derivations, it is easy to see the following.
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Observation 1. When the off-shore cost is higher than or equal to the domestic cost (which is not likely), the domestic strategy outperforms the
off-shore strategy. That is, for c® > %, V°(c°, c?) < V¥(c°, c).

Intuition:. A domestic policy can simply imitate the optimal off-shore policy by ordering as much as the optimal off-shore policy does in
the first period and ordering zero units in later periods. Since the acquisition costs are lower for the domestic orders, this policy generates
more profit than the optimal off-shore policy.

Observation 2. When the off-shore cost is lower than the domestic cost (which is typical), the blended strategy outperforms both strategies. That
is, for ¢ < ¢4, VP(c®, @) = V°(c°, ¢) and VP(c®, ) > VA(c°, ).

Intuition:. A blended policy can imitate the optimal off-shore policy by simply ordering as much as the off-shore policy does in the first
period and ordering zero units in later periods. Since the acquisition costs are the same for the blended and off-shore strategies in the first
period, this policy generates the same profit with the optimal off-shore profit. Likewise, another blended policy can imitate the optimal
domestic policy by simply ordering as much as the optimal domestic policy does in each period. Since first period’s acquisition costs are
lower for the blended strategy, this policy generates more profit than the optimal domestic policy.

While these comparisons are trivial, a question of interest is under which other circumstances the retailers should favor domestic pol-
icies over off-shore policies and under which circumstances the gap between the blended and domestic and off-shore policies are minimal.
This is important as acquisition costs may not be the only concern for a retailer. For example, using an additional supplier may involve
additional fixed setup costs and complicate the coordination of the sourcing process, which disadvantage the blended strategies. Also,
in our study we do not consider the inventory holding and other logistics costs that may be incurred within the selling season. Inclusion
of inventory holding costs to the model may favor domestic and blended strategies against the off-shore strategy as domestic purchases
may be used for frequent replenishments and may reduce inventory levels. However, if unit inventory holding costs are proportional to the
unit cost and domestic cost is excessively higher than the import cost, inventory reduction effect will be less apparent.

We use the computational design in Section 4 to answer above questions. Again, the mean demand is «/f = 20 and we have two periods
of equal length. Different from the analysis in Section 4, the starting inventory level is optimized for all strategies. We assume that the
maximum price to charge is 1.00. We set the off-shore acquisition cost to 0.5 and vary the domestic acquisition cost to study the effect
of acquisition costs on different strategies. We note that in this analysis, we use Learning model as described in Section 3, and the expected
profits are evaluated using the Negative Binomial distribution (with initial parameters in the first period and with updated parameters in
the second period). We do not use the evaluations based on the true Poisson rate, as this is not available to the decision maker until after
the season, and the decision maker makes her sourcing decisions based on her prior beliefs and how she updates her beliefs based on sales
during the season. Fig. 1 shows the (expected) optimal profits of off-shore, domestic and blended strategies when ) = 2 and when variance
equals 1.5u or 3u. The optimal profits are normalized with the profit of the optimal off-shore policy when variance equals to 3. We first
note that the optimal off-shore profits do not vary with the domestic acquisition costs. Blended strategies, as shown above, outperform the
domestic and off-shore strategies. Clearly, optimal blended and domestic profits decrease with acquisition costs. However, optimal blended
profit curves are rather flat, as blended strategies prefers to order more from the off-shore supplier as the domestic supplier becomes more
expensive. In fact, optimal blended profits approach optimal off-shore profits as domestic acquisition costs increase. The reduction in prof-
its is more dramatic for domestic policies as they have to live with the expensive domestic suppliers. While domestic policies outperform
off-shore policies for low domestic acquisition costs, off-shore policies are favorable as the domestic suppliers become more costly.

For this particular example, domestic and off-shore profit curves intersect when the normalized domestic cost is 1.1 for 62 = 3. This
means that the “break-even” point where off-shore profit equals domestic profit is when the unit domestic acquisition cost is 10% more
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Fig. 1. Comparison of off-shore, domestic and blended strategies (y = 2): Impact of domestic cost.
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than the unit off-shore acquisition cost. Any unit domestic acquisition cost 10% more than the unit off-shore acquisition cost will lead the
retailers to source their merchandise off-shore.

Another important factor for the efficiency of the off-shore, domestic and blended policies is the variance of the demand process. Typ-
ically, apparel retailers choose domestic suppliers for their high fashion content-high variance merchandise, while standard low fashion
content-low variance merchandise can be sourced overseas. Also, the policy itself may help to reduce the variance as the domestic strat-
egies can order closer to the season. Fig. 2 shows the optimal profits for domestic, off-shore and blended strategies for three different
domestic acquisition costs (1.00, 1.06 or 1.12 times the off-shore acquisition cost). Again, the profits are normalized with the optimal
off-shore profit for 6% = 3. Note that blended and domestic policies are equivalent when the cost equals 1.00. These policies outperform
any other policy. As the variance increases, all profits decrease. The off-shore optimal profit curve is steeper as off-shore policies are subject
to more variance since they order only once. Optimal domestic policy when the cost equals 1.06 is inferior to the off-shore policy for low
variance levels, but becomes favorable as the variance increases. Note again that the base line is the optimal off-shore profit when the var-
iance is 3u. If we can reduce the variance to 1.75u by using a domestic policy, even the domestic acquisition costs of 1.06 can be desirable.

Finally, the price sensitivity of the customers also affects the relative efficiency of these policies. We expect the off-shore strategy to be
more sensitive to price sensitivity (y) as pricing is the only control for such strategy once the season starts. Fig. 3 shows the optimal profits
for varying levels of 7. Note that when y = 1, the demand is inelastic and it is optimal to keep the price at its maximum. Thus, optimal profits
at y =1 represent the optimal profits when the only control over the process is through inventory. All profits increase, as the price sensi-
tivity increases. As expected, optimal off-shore profit increases faster with the price sensitivity. The off-shore strategy outperforms the
domestic strategy with cost 1.06 when y is close to 3.
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Combining these ideas, we generate the regions in which one strategy is favorable to the other. Fig. 4 shows the trade-off curves for off-
shore and domestic strategies for y = 2 and y = 3. For variances and domestic costs on these lines, off-shore and domestic strategies gen-
erate the same profit. As domestic cost increases and/or variance decreases, off-shore strategy becomes more desirable and vice versa. Note
that, the region for which off-shore strategy is more profitable is larger when y = 3, reflecting the increased strength of off-shore strategies
with price sensitive demand. In general, as ) increases, the trade-off curve moves to southeast. Although it is difficult to detect visually, we
observe that the trade-off curves are concave in variance, possibly becoming flatter as variance gets larger. This means that if the variance
gets excessively high, variance differences would have less impact and supplier selection decisions would depend more on cost differences
and price sensitivity of demand.

The above analysis is based on the fact that the products are subject to same level of uncertainty under both strategies. However, in
most cases, the choice of strategy itself may affect the level of uncertainty. As the retailers are able to order closer to the season with
domestic strategies, they are able to know more about the consumer tastes that will shape the demand in the coming season and hence
they face a more stable demand when they make their ordering decisions. To incorporate the possible reductions in variance, we choose a
base case, which is an off-shore strategy with acquisition cost equals 0.5 and variance (¢?) equals 3. The trade-off curves in Fig. 5 shows
the increases in cost and reductions in variance with domestic strategy for which domestic and off-shore strategies generate equal profits.
For example, for y = 3, if the domestic cost is about 7% higher than off-shore cost, the domestic strategy will still result in higher profits, if
the variance is reduced by more than 30% as a result. Alternatively, if the variance is reduced about 30%, the domestic strategy will generate
higher profits only if the cost does not increase by more than 7%. Again, optimality region is larger for off-shore strategy for more price
sensitive demand.
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Table 8
Market share and cost of imports in apparel in 2002
Average domestic price?(c?) Average import price®(c®) Ratio (c%/c°) Market share of imports®
Men'’s
Sweaters 15.27 10.42 1.47 98.3
Swimwear 12.93 4.52 2.86 100.0¢
Suits 100.64 62.71 1.60 74.0
Women'’s
Sweaters 12.24 9.69 1.26 86.1
Swimwear 13.61 6.10 2.23 70.8
Dresses 20.10 9.08 2.21 64.0

Data compiled from U.S. Census Bureau [41]. Prices are per dozen in U.S. dollars.
¢ Average cost ($) per unit for manufacturers’ shipments.
b Average cost ($) (cost + insurance + freight) per unit from imports for consumption.
¢ Derived by dividing imports for consumption to apparent consumption in the U.S. market.
4 Missing quantity data for 2002 imports is estimated using data from 2001.

Each retailer faces its own trade-off curve for each apparel item it offers and makes its decision to source it overseas or domestically. An
aggregation of these individual decisions determines the market share of imports and domestic production in the domestic market. In Table
8, we provide the average unit import and domestic costs and the market share of imports for selected apparel in the U.S. market in 2002.

We observe that for all product categories, imports have a substantial cost advantage. This is particularly true for men’s and women’s
swim-wear. While this translates into a perfect market domination of imports in men’s swim-wear, domestic manufacturers still control
70.8% of the market for women’s swim-wear. Similar arguments are valid for sweaters for men and women and suits for men and dresses
for women. This shows that the cost advantage is not the only factor in supplier selection. Although it is very difficult to find an aggregate
measure for the variance of demand in apparel, we are certainly aware of the importance of fashion in women’s apparel. Popular styles and
colors change every year, making it very difficult to forecast demand for a particular SKU. From both our computational analysis and indus-
try data, we see that predictability of demand plays a considerable role in sourcing decisions. When the variance effect is less apparent (as
in sweaters product category, or as in men'’s apparel in general as compared to women’s apparel), we observe that cost difference is the
main driver for such decisions.

6. Conclusion

In this paper, we study the pricing decisions of a perishable products retailer in the existence of demand learning. This is one of the first
studies that incorporate “structured” Bayesian updating in the context of pricing for perishable products. The resulting model is compu-
tationally feasible and easy to understand and implement. We think that our model is most useful for apparel retailers, as this industry is
identified with high levels of uncertainty, most of which can be resolved after observing sales during the earlier weeks of the selling season.
Moreover, information required for the application of our model is readily available through point-of-sales scanners.

Through our computational study, we are able to understand the economics of pricing in this context. First, we observe that the optimal
price in a given period is a non-decreasing function of sales in the earlier periods when demand learning takes place. Second, we pinpoint
the circumstances under which this learning based on observed sales has the most value. We first study the impact of the accuracy and the
variance of the initial estimate of demand magnitude and the price elasticity of demand when the retailer has Perfect Information about the
demand function. Our major finding here is that demand learning is most beneficial when the initial estimate is inaccurate, the demand/
supply mismatches necessitate price changes and demand is sensitive to price changes. We then study the case where the retailer learns
about the demand function in addition to the demand magnitude. In this case, we observe that the accuracy and variance of the retailer’s
initial estimate of demand magnitude and demand function have a joint effect on the benefits of learning. Finally, we study the impact of an
opportunity to procure merchandise during the season, in addition to the up-front procurement before the selling season. This helps us to
see how supplier selection decisions are affected by the volatility and price-sensitivity of demand and the procurement costs. We support
our conclusions with aggregate data from the apparel industry.

We note that our model with inventory flexibility can be extended to incorporate lead times, inventory holding costs and set-ups (cost
and/or time) that may be attached to each purchase. We refrain from doing so, as their effects on costs are fairly trivial and their inclusion
may complicate the presentation of the model.

Several avenues for future research are in order. First, the model could be extended to allow for the case where the time to switch price
is also a decision variable. This way, one can study the impact of learning on optimal markdown times. An interesting question is whether
Learning model will always delay the pricing decisions in an effort to learn more about the underlying demand. Second, the impact of more
than two periods and mark-down only restrictions can be studied.
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