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a b s t r a c t

This paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP)
in which a network user attempts to maximize flow in a network among K P 3 pre-specified node groups
while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The
paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem
and presents computational results to compare the models. MTNIP-E is obtained by first formulating
MTNIP as bi-level min–max program and then converting it into a mixed integer program where the flow
is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It
partitions the node set into disjoint subsets such that each node group is in a different subset and min-
imizes the sum of the arc capacities crossing between different subsets. Computational results show that
MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the prob-
lems in 24 hour. The optimal objective function values of both models are equal to each other for some
problems while they differ from each other as much as 46.2% in the worst case. However, when the post-
interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective
value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approx-
imation to MTNIP-E.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper investigates what we call the multi-terminal maximum-flow network-interdiction problem (MTNIP) for which no previous work
exists. In MTNIP, there are two opponents, a network user/defender and an interdictor/attacker. The network user wishes to maximize flow
among K P 3 node groups in an undirected network while the interdictor tries to minimize the network user’s maximum flow by using
limited interdiction resources (e.g., aerial sorties, missiles) to destroy the arcs of the network.

Consider two hostile forces AT and DF where AT is the attacker/interdictor on a communication (transportation) network and DF is the
defender/network user. AT’s interest is to minimize DF’s inter-force communication (transportation) capabilities by attacking a subset of
DF’s communication (transportation) lines. The set of lines that can be attacked is limited by the availability of AT’s interdiction resources.
Locations of DF’s forces may or may not be precisely known to AT. If they are precisely known, they are taken to be source and sink loca-
tions that mutually exchange information (materials). In the remaining case, we assume that AT has sufficient information to confine these
locations to K node groups that are taken to be source and sink groups among which information (material) exchange takes place. AT’s
problem is to identify a set of arcs whose deletion from the network limits DF’s ability to transfer flows (signals/materials) between exact
or possible sources and sinks while DF aims to maximize flow through the intact part of the network. This problem can be modeled as a bi-
level min–max problem where the inner maximization is a flow maximization problem given that a subset of arcs is interdicted while the
outer minimization involves the minimization of the maximum objective value of the inner maximization over the set of binary vectors
each satisfying the upper bound on the interdiction resource. Each binary vector specifies which arcs to be interdicted and which ones
to be left intact. The resulting bi-level min–max problem is what we refer to as MTNIP. The mathematical formulation will be given in Sec-
tion 2. MTNIP is a useful model to analyze possible courses of action to protect critical infrastructures against possible terrorist attacks.
Such critical infrastructures may include telecommunication lines, power lines, subways, highways, energy delivery lines (e.g., natural
gas, petroleum), and the like.
ll rights reserved.
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MTNIP is a generalization of the maximum-flow network-interdiction problem (MFNIP) (e.g., Wood, 1993). The problem context in MFNIP
is the same as the one in MTNIP except that the interdictor tries to minimize the maximum flow from a source node s to a sink node t
instead of among three or more groups of nodes. That is, MFNIP is a special case of MTNIP with K = 2. MFNIP is proven to be NP-hard even
if a single unit of resource is required to interdict each arc (Wood, 1993) and hence MTNIP is also NP-hard. The goal of this paper is to
extend the single-commodity structure of MFNIP to a multi-commodity structure so that more realistic and general problem settings
can be handled.

Even though MTNIP is new to the literature, MFNIP is well-studied. The notable contributions are Wollmer (1964, 1970a), McMasters
and Mustin (1970), Helmbold (1971), Ghare et al. (1971), Lubore et al. (1971), Wood (1993), Cormican et al. (1998), and Whiteman (1999).
Almost all studies prior to Wood (1993) are specific to the application and are not extendible to more general contexts. Wood (1993) is the
first to adopt mathematical programming methods. He develops a min–max formulation of MFNIP and then converts it to an integer-pro-
gramming model. Cormican et al. (1998) study a stochastic variation of MFNIP. Whiteman (1999) adapts Wood (1993)’s model to select
target sets.

Another category of network-interdiction problem is that of maximizing the shortest path (MXSP) in which a set of arcs is disabled to
maximize the length of a shortest path between s and t through the usable portion of the network. Notable contributions are Fulkerson
and Harding (1977), Golden (1978), Israeli (1999), and Israeli and Wood (2002).

Lim and Smith (2007) study a multi-commodity network-interdiction problem where the network user makes profit by delivering mul-
tiple commodities to certain destinations while the interdictor tries to minimize the network user’s profit by destroying arcs. The authors
develop two models and a partitioning algorithm along with a heuristic procedure for the partial and complete interdiction of arcs, respec-
tively. This study is closer to ours than others due to the multi-commodity flow structure; however, the two problems are structurally
different.

Other studies similar in spirit to MTNIP but applied to different fields are as follows. Wollmer (1970b) and Washburn and Wood
(1994) develop game-theoretic network-interdiction models. Assimakopoulos (1987) suggests an interdiction model for preventing
hospital infections. Anandalingam and Apprey (1991) investigate conflict resolution problems. Church et al. (2004) study the interdic-
tion of supply and emergency response facilities. Salmeron et al. (2004) study the disruptions to electric power grids. Brown et al.
(2005) describe a model for planning the pre-positioning of defensive missile interceptors. Brown et al. (2006) apply optimization
models to make critical infrastructure more resilient against attacks. Scaparra and Church (2008) study the problem of allocating pro-
tective resources among the facilities of a system. Smith et al. (2007) examine the problem of fortifying a network to defend against
attacks in the context of survivable network design (e.g., Alevras et al., 1998; Myung et al., 1999; Ouveysi and Wirth, 1999). Desai
and Sen (2010) consider the problem of designing reliable networks that satisfy several constraints while simultaneously allocating
multiple resources to mitigate the arc failure probabilities such that the total cost of network design and resource allocation is
minimized.

In the remainder of this paper, we (1) develop an exact formulation for MTNIP, (2) develop an approximating formulation for MTNIP, (3)
present computational results, and (4) conclude with further research directions.
2. Exact formulation of MTNIP

MTNIP is defined on a capacitated, undirected network G = (N,A) with node set N and arc set A consisting of unordered pairs of distinct
nodes. Flow on (i, j) 2 A can move from i to j or from j to i. The total flow on (i, j) 2 A, defined by the sum of flows from i to j and from j to i, is
restricted by a positive integral capacity uij.

The network user aims to maximize total flow among K P 3 disjoint, pre-specified node groups N01 # N; . . . ;N0K # N where each node
group acts both as a source and a sink. We define N0 ¼

S
kN0k to be special nodes and N � N0 to be regular nodes. It is also natural to as-

sume that jN0j � jNj. The total flow among K node groups is taken to be the sum of K single-commodity flows distinguished by their
source groups and restricted by joint capacity constraints. The kth single-commodity flow originates in nodes in N0k and is delivered
through the arcs of the network to nodes in N0 � N0k. That is, node group N0k is a source for commodity k and a sink for any other com-
modity k0 – k. Maximization of the sum of K single-commodity flows is equivalent to maximizing the total flow routed between K (K-1)
pairs of node groups N0k;N

0
k

� �
with k – k0. The network user’s resulting problem is a multi-commodity maximum-flow problem (Costa et al.,

2005).
In MTNIP, an interdictor aims to minimize the maximum flow achievable by the network user by destroying arcs. We assume that the

interdictor uses a single type of interdiction resource with a total of R units. Interdicting an arc (i, j) 2 A requires rij > 0 units of the resource.
Partial interdiction of an arc is not allowed, i.e. an arc is either interdicted or not interdicted.

In MTNIP, the network user and the interdictor engage in a two-step, sequential decision-making process: the attacker first allocates
limited interdiction resources to destroy arcs so that the maximum flow achievable by the network user is minimized and then the network
user maximizes flow through the network given the interdiction decisions of the attacker. In this sense, the interdictor is the leader and the
network user is the follower. This leader–follower relationship is similar to the one in a static Stackelberg game (Siman and Cruz, 1973) ex-
cept that a more general Stackelberg game continues in alternating plays between the leader and the follower. Such a game can be ex-
pressed mathematically as a bi-level programming problem (Dempe, 2002). In accordance with this, the interdictor’s problem MTNIP is
modeled as a bi-level min–max program. Later, we convert it into a mixed-integer linear program (MIP). In the following subsections,
the network user’s and interdictor’s problems are modeled, respectively.

In the rest of the paper, z�P and ZLP
P will represent the optimal objective function values for P and for the linear programming relaxation of

P, respectively. Similarly, x�P and xLP
P will represent the optimal solutions of P and the LP relaxation of P, respectively.

2.1. The formulation of the network user’s problem and its dual

The network user’s problem is modeled as a multi-commodity maximum flow problem (MXF). Let yijk and yjik be the amounts of flow,
respectively, from node i to node j and from node j to i on arc (i, j) for which the source node is any node in N0k.
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2.1.1. Model MXF: Network user’s multi-commodity maximum-flow model
z� ¼max
y

X
k¼1;...;K

X
ði;jÞ2A:i2N0k

yijk þ
X

ði;jÞ2A:j2N0k

yjik

0
@

1
A; ð1Þ

s:t:
X

j:ði;jÞ2A[ðj;iÞ2A

yijk �
X

j:ði;jÞ2A[ðj;iÞ2A

yjik ¼ 0; k ¼ 1; . . . ;K; i 2 N � N0 : aik; ð2Þ
X

k¼1;...;K

yijk þ yjik

� �
6 uij; ði; jÞ 2 A : bij; ð3Þ

yijk P 0; yjik P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A: ð4Þ
MXF is the network user’s multi-commodity maximum-flow model to maximize flow among node groups N0k when there is no inter-
diction. The objective function (1) maximizes the sum of flows originating from each node group N0k. Constraints (2) are flow-balance con-
straints for regular nodes. The arc-capacity constraints (3) restrict the amount of flow on each arc to the arc’s nominal capacity. Constraints
(4) are non-negativity constraints.

We note that MXF can also be modeled by creating a super source connected to N0k, a super sink connected to N0 � N0k, and by maximizing
the sum of flows on return arcs from super sinks to super sources. Even though this is the more common approach in most network flow
formulations (e.g., Ahuja et al., 1993), we prefer to maximize the sum of flows leaving each node group N0k in our formulation. This elim-
inates the flow-balance constraints for nodes in N0.

We assume in our formulation that no flow of commodity k occurs within the node group N0k and in arcs leading from nodes outside of
N0k into nodes in N0k. That is, yijk � yjik � 0 for i; j 2 N0k; k ¼ 1; . . . ;K , and yijk � 0 for j 2 N0k; i 2 N � N0k; k ¼ 1; . . . ;K. We further assume that
nodes in N0k are neither sources nor transshipment nodes for any other commodity k0 – k. Accordingly, yijk � 0 for i 2 N0k0 ; j 2 N � N0k for each
k0 – k. These assumptions can be incorporated into the model by preprocessing the data regarding the network structure. We may define,
for example, a three-dimensional matrix A whose rows and columns are associated with the nodes of the network and whose layers are
associated with the commodities so that the entry aijk takes on the value of 1 if flow is allowed from node i to node j for commodity k and 0
otherwise. Then, set (1) aijk = 0 for i; j 2 N0k; k ¼ 1; . . . ;K , (2) ajik = 0 for i 2 N0k, j is an element of N � N0k; k ¼ 1; . . . ;K , and (3) aijk0 ¼ 0 for i 2 N0k,
j is an element of N � N0k; k

0–k; k ¼ 1; . . . ;K.
Next, we give the dual problem D-MXF associated with MXF and derive some results about the properties of the dual variables that will

be used later.

2.1.2. Model D-MXF: The dual of the multi-commodity maximum flow model MXF
z� ¼min
a;b

X
ði;jÞ2A

uijbij; ð5Þ

s:t: � aik þ ajk þ bij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð6Þ
� ajk þ aik þ bij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð7Þ
aik þ bij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N � N0; j 2 N0 � N0k; ð8Þ
ajk þ bij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N � N0; i 2 N0 � N0k; ð9Þ
� ajk þ bij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N � N0; ð10Þ
� aik þ bij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N0k; i 2 N � N0; ð11Þ
bij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N � N0k and j 2 N0k; i 2 N0 � N0k; ð12Þ
aik; free k ¼ 1; . . . ;K; i 2 N � N0; ð13Þ
bij P 0; ði; jÞ 2 A: ð14Þ
In D-MXF, aik and bij are dual variables for constraints (2) and (3), respectively. bij can be viewed as a distance label on the arc (i, j) and aik

as the potential corresponding to commodity k on node i. Thus, the dual problem is an assignment of potentials to non-terminal/non-special
nodes (a zero potential is assigned to terminal/special nodes) and non-negative distance labels to arcs.

We observe that there is an optimal solution to D-MXF such that �1 6 aik 6 0, "i 2 N, k = 1, . . . ,K and 0 6 bij 6 1, "(i, j) 2 A. This is jus-
tified by observing that the coefficient of bij is positive in the objective function so that making each bij as small as possible as permitted by
the constraints does not cause a loss of optimality. Let A1, A2, A3 and A4 be the sets of arcs defined for the constraint pairs (6)–(11), and for
(12), respectively. That is, A1 ¼ fði; jÞ 2 A : i; j 2 N � N0g; A2 ¼ ði; jÞ 2 A : i 2 N � N0; j 2 N0 � N0k

� �
; A3 ¼ fði; jÞ 2 A : i 2 Nk0 ; j 2 N � N0g, and

A4 ¼ fði; jÞ 2 A : i 2 Nk0 ; j 2 N0 � Nk0 and j 2 Nk0 ; i 2 N0 � N0k0 g. Clearly, A1, A2, A3 and A4 partition the arc set A into four disjoint subsets. Ob-
serve that no two variables aik and aik0 with the same node index i but different commodity indices k and k0 appear in the same constraint.
Accordingly, the restriction of a variable aik to the interval [�1,0] does not affect any other aik for k – k0. Constraints (6) and (7) imply that,
for each arc (i, j) 2 A1, the variable bij is bounded below by the maximum of aik � ajk and �aik + ajk for k = 1, . . . ,K. Hence, bij is bounded be-
low by the maximum over k of these bounds. The restriction of the variables aik and ajk to the interval [�1,0] for these arcs implies that the
lower bound on bij enforced by constraints (6) and (7) is at most 1. Accordingly, restricting bij to the interval [0,1] for such arcs maintains
feasibility without causing a loss of optimality. Similarly, constraints (8) and (9) imply that bij is bounded below by the maximum of � aik

and �ajk for (i, j) 2 A2 and k = 1, . . . ,K. With the restriction of the variables aik and ajk to the interval [�1,0] for these arcs, the implied lower
bound is at most 1. Hence, we may again restrict bij to the interval [0,1] for the arc group A2. For arcs (i, j) 2 A3, the constraints (10) and (11)
imply bij is bounded below by the maximum of 1 + aik and 1 + ajk for k = 1, . . . ,K. Restriction of the variables aikand ajk to the interval [�1,0]
for these arcs implies that the maximum of these lower bounds is again at most 1. Hence, we may restrict bij to the interval [0,1] for these
arcs as well. Constraints (12) imply bij is bounded below by 1 for arcs in A4. Restriction of bij to the interval [0,1] for these arcs does not
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cause loss of optimality and yields bij = 1 in an optimal solution for these arcs. This concludes the justification of our initial claim that there
is an optimal solution to D-MXF such that all aikvalues are restricted to the interval [�1,0] and all bij values are restricted to the interval
[0,1]. This result will be useful in converting the bi-level programming formulation of MTNIP into a mixed integer linear program (MIP).

Due to the duality relationship between maximum flow and minimum cut problems, D-MXF is closely related to the NP-hard minimum
multi-way (multi-terminal) cut problem (MMCP). See, for example, Dahlhaus et al. (1994) and Costa et al. (2005). In MMCP, the purpose is to
find a set of arcs with minimum total capacity whose removal from G puts each terminal (specific node groups) in a different connected
component Gk = (Nk,Ak),k = 1, . . . ,K. When K = 2, the well-known maximum-flow minimum-cut theorem (Ford and Fulkerson, 1956) holds
and the set of saturated arcs in a maximum flow identifies also a minimum cut for the dual problem. Hence, the minimum two-way cut in
MMCP is directly available as an optimal solution to D-MXF for K = 2. On the other hand, the maximum flow among K P 3 node groups
need not be integral and does not in general give a multi-way minimum cut solution. In this case, the strong duality holds for MXF and
D-MXF (e.g., Garg et al., 1996; Costa et al., 2005) and this implies that an integral solution x�D�MXF gives the minimum multi-way cut for
MMCP.

2.2. The formulation of the interdictor’s problem

In this subsection, the interdictor’s problem is modeled as a bi-level, min–max program and then converted into a MIP. The interdictor’s
decision variable xij takes on the value of 1 if arc (i, j) is interdicted and 0 otherwise.

2.2.1. Model MTNIP-BI: MTNIP Formulation as a Bi-level Program
z� ¼min
x2X

max
y

X
k¼1;...;K

X
ði;jÞ2A:i2N0k

yijk þ
X

ði;jÞ2A:i2N0k

yjik

0
@

1
A; ð15Þ

s:t: Constraints ð2Þ; ð4Þ; andX
k¼1;...;K

yijk þ yjik

� �
6 uij 1� xij

� �
ði; jÞ 2 A : hij; ð16Þ
where
X ¼ x 2 f0; 1gjAj :
X
ði;jÞ2A

rijxij 6 R

( )
: ð17Þ
MTNIP-BI is the interdictor’s model to minimize the maximum flow achievable in MXF. For fixed x, the inner maximization is the net-
work user’s maximum-flow model. The objective function (15) minimizes the maximum flow among the subsets N0k. Constraints (16) setP

k¼1;...;kðyijk þ yjikÞ to zero when xij = 1 and to uij when xij = 0. Constraints (17) limit the expenditure of interdiction resource and require
interdiction variables to be binary.

MTNIP-BI is impossible to solve with standard optimization software. It may be possible to solve it by developing specialized decom-
position techniques as offered by Israeli and Wood (2002). However, we prefer a simpler method that allows us to convert MTNIP-BI into a
MIP and then to solve it directly by using standard software.

Our method consists of (1) taking the dual of the inner maximization by fixing x temporarily and then releasing x to obtain a mixed-
integer nonlinear ‘‘min–min’’ model, which is simply a minimization model, and (2) linearizing the nonlinear model to get a MIP.

2.2.2. Model MTNIP-MINP: MTNIP formulation as a mixed integer nonlinear program
z� ¼min
x

min
a;h

X
ði;jÞ2A

uijð1� xijÞhij; ð18Þ

s:t: � aik þ ajk þ hij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð19Þ
� ajk þ aik þ hij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð20Þ
aik þ hij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N � N0; j 2 N0 � N0k; ð21Þ
ajk þ hij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N � N0; i 2 N0 � N0k; ð22Þ
� ajk þ hij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N � N0; ð23Þ
� aik þ hij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N0k; i 2 N � N0; ð24Þ
hij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N0 � N0k and j 2 N0k; i 2 N0 � N0k; ð25ÞX
ði;jÞ2A

rijxij 6 R; ð26Þ

xij 2 f0;1g ði; jÞ 2 A; ð27Þ
aik; free k ¼ 1; . . . ;K; i 2 N � N0; ð28Þ
hij P 0; ði; jÞ 2 A; ð29Þ
Let MXF (x) be the version of MXF with upper bounds uij in MXF replaced by the upper bounds uij(1 � xij) and let D-MXF (x) be the dual
of MXF (x). That is, MXF (x) is the inner maximization in MTNIP-BI defined by (15), (2), (4), and (16) and D-MXF (x) is the inner minimi-
zation in MTNIP-MINP defined by (18)–(25), (28), and (29). The dual variables aik and hij in MTNIP-MINP correspond to constraints (2) and
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(16), respectively. Observe that hij plays in D-MXF (x) the role of bij in D-MXF so that the restriction of hij to the interval [0,1] does not cause
a loss of optimality in D-MXF (x). This restriction allows us to use the linearization that replaces (1 � xij)hij with gij P 0 and adding the set of
constraints gij P hij � xij. This yields the following MIP.

2.2.3. Model MTNIP-MILP: MTNIP as a mixed-integer linear program
z� ¼ min
a;h;x;g

X
ði;jÞ2A

uijgij ð30Þ
s.t Constraints (17)–(27) and
gij P hij � xij ði; jÞ 2 A; ð31Þ
gij P 0 ði; jÞ 2 A; ð32Þ
If xij = 0 in an optimal solution to MTNIP-MINP, the corresponding term in the objective function (18) is equal to uijhij. If xij = 1 in an
optimal solution, then the corresponding term in (18) is 0. Thus, for the linearization to work, it must be true that gij = 0 when xij = 1 and
that gij = hij when xij = 0. When xij = 1, constraints (31) are satisfied for 0 6 hij 6 1 and for 0 6 hij 6 0. However, because setting gij to any
value greater than 0 unnecessarily increases the objective function value, gij must be zero. When xij = 0, constraint (31) is satisfied for
gij P hij. However, due to the minimizing objective function (30), it must be true that gij = hij. This justifies the correctness of the
linearization.

Next, we argue that forcing constraints (31) to equality does not cause a loss of optimality. To see this, observe that whenever hij = 0, the
right side of (31) is either 0 or �1 so that (32) forces gij to be non-negative. Taking gij = 0 will not cause loss of optimality since the coef-
ficient uij of gij in the objective function is positive. Furthermore, taking xij = 0 in this case will also maintain optimality while maintaining
feasibility. Hence, (31) can be taken as equality whenever hij = 0. In the remaining case, hij > 0 and xij is either 0 or 1. If xij = 0, then (31)
reduces to gij P hij. In this case, taking gij = hij gives an objective value which is at least as good as taking gij > hij. If xij = 1, then the right
side of (31) is either zero or negative. In this case, gij is bounded below by zero and optimality is achieved by taking it to be zero. If the right
hand side of (31) is negative in this case (i.e., if hij < 1), then we may increase hij to 1 to make the right side of (31) equal to zero, thereby
achieving equality in (31).
2.2.4. Model MTNIP-E: Final version of the exact formulation for MTNIP
z� ¼min
a;g;x

X
ði;jÞ2A

uijgij; ð33Þ

s:t � aik þ ajk þ gij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð34Þ

� ajk þ aik þ gij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i; j 2 N � N0; ð35Þ

aik þ gij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N � N0; j 2 N0 � N0k; ð36Þ

ajk þ gij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N � N0; i 2 N0 � N0k; ð37Þ

� ajk þ gij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N � N0; ð38Þ

� aik þ gij þ xij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; j 2 N0k; i 2 N � N0; ð39Þ

gij þ xij P 1; k ¼ 1; . . . ;K; ði; jÞ 2 A; i 2 N0k; j 2 N0 � N0k and j 2 N0k; i 2 N0 � N0k; ð40ÞX
ði;jÞ2A

rijxij 6 R; ð41Þ

Xij 2 f0;1g ði; jÞ 2 A; ð42Þ
aik; free k ¼ 1; . . . ;K; i 2 N � N0; ð43Þ
gij P 0; ði; jÞ 2 A; ð44Þ
z�MTNIP�E gives the maximum flow achievable by the network user after interdiction. When R = 0, MTNIP-E resembles D-MXF (or when
nij + xij is replaced by bij). In this case, z�MTNIP�E ¼ z�D�MXF ¼ z�MXF. As R is increased, the value of z�MTNIP�E decreases. The decrease in the objective
function value is determined depending on which paths between node groups are disconnected by the interdiction of arcs and the flow
values on the disconnected paths.

The term gij + xij and aik in MTNIP-E can be interpreted as hij and aik in D-MXF (x), respectively, to gain more insight about the solutions
to MTNIP-E and its dual, post-interdiction MXF. This is a result of the fact that gij + xij 6 1 in an optimal solution. Because R is limited and
the objective value will unnecessarily increase when gij > 0, there is no incentive in setting xij = 1 and gij = 0, simultaneously. Moreover,
because 0 6 hij 6 1 and hij is replaced by gij + xij to obtain MTNIP-E, gij + xij 6 1 follows. Thus, using complementary slackness conditions
of optimality for MXF and D-MXF, g�ij > 0 implies that

P
k¼1;...;Kðy�ijk þ y�jikÞ ¼ uij and y�jik > 0 implies that �a�ik þ a�jk þ g�ij þ xij ¼ dijk with dijk

being the right-hand-side values of constraints (34)–(40). If a constraint in (34)–(40) corresponding to bijk is not satisfied at equality,
y�ijk ¼ 0. When xij = 1, gij > 0 in MXF. That is, the set of arcs to interdict is chosen from among the set of saturated arcs in MXF.

An optimal solution to MTNIP-E gives an optimal interdiction plan x⁄ to the attacker for a specific scenario. By analyzing multiple sce-
narios with different values/sets of R; N0k, or other parameters, an interdictor can develop an attack plan. From the point of the network
user, x⁄ can be regarded as the smallest set of arcs to be hardened. Thus, the network user can also develop a robust defense plan or system
by going through several what-if analyses.



246 _I. Akgün et al. / European Journal of Operational Research 211 (2011) 241–251
The models developed assume that all special node groups can be both source and sink. However, the formulations can easily be
adapted to situations in which some special nodes are only source or only sink. Models can easily be extended to handle issues such as
interdicting nodes, disallowing interdiction of certain arcs, allowing partial arc interdiction, and using different types of interdiction
resources.

MTNIP-E is an exact model for MTNIP because it explicitly minimizes the maximum amount of flow among node groups. Although an
exact solution is highly desirable, computational studies show that MTNIP-E is difficult to solve. This leads us to develop a new, easy-to-
solve approximating model, which is given next.

3. Approximate formulation of MTNIP

Multi-partition network-interdiction model (MPNIM) is a binary-integer program. It does not minimize the maximum flow among
N0k; . . . ;N0K directly. Instead, it partitions N into K disjoint subsets N1, . . . ,NK with N01 # N1; . . . ;N0K # NK and interdicts certain arcs connecting
the subsets Nk, while observing constraints on interdiction resources. The objective is to minimize the total capacity of the non-interdicted
arcs crossing between Nk.

Three decision variables are used in MPNIM: (1) xij that takes on the value of 1 if arc (i, j) crosses between two different subsets and is
interdicted; 0 otherwise, (2) xij that takes on the value of 1 if node i is assigned to Nk; 0 otherwise, and (3) kij that takes on the value of 1 if
arc (i, j) crosses between two different subsets and is not interdicted; 0 otherwise.

3.1. Model MPNIM: Multi-partition network-interdiction model
z� ¼min
x;k;x

X
ði;jÞ2A

uijkij; ð45Þ

s:t:
X

k

xik ¼ 1; i 2 N; ð46Þ

xik �xjk þ kij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; ð47Þ
�xik þxjk þ kij þ xij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; ð48Þ
xij þ kij 6 1; ði; jÞ 2 A; ð49ÞX
ði;jÞ2A

rijxij 6 R; ð50Þ

xik � 1; k ¼ 1; . . . ;K; i 2 N0k; ð51Þ
xik0 � 0; k0 ¼ 1; . . . ;K; i 2 N0k; k – k0; ð52Þ
Xij 2 f0;1g; ði; jÞ 2 A; ð53Þ
kij 2 f0;1g; ði; jÞ 2 A; ð54Þ
xik 2 f0;1g; k ¼ 1; . . . ;K; i 2 N; ð55Þ
The objective (45) minimizes the sum of the capacities on non-interdicted arcs crossing between different node subsets. Constraints
(46) require each node i to belong to exactly one subset Nk. Constraints (47) and (48) enforce a partitioning of the nodes and determine
whether an arc crosses between two subsets:

(1) If i, j 2 Nk, then xik �xjk = 0 and xjk �xik = 0, which allows xij = 0 and kij = 0. xij = 1 and/or kij = 1 are also feasible to constraints (47)
and (48) in this case, but we may assume that both are 0 because: (a) kij = 0 contributes less to the objective function than does kij = 1,
and (b) xij = 0 consumes less resource than does xij = 1. (Alternate optimal solutions with are xij = 1 possible if excess resource exists.)

(2) If i 2 Nk and j 2 N0k0 ; k–k0 then xij + kij = 1 is required to maintain feasibility. So, either xij = 1, indicating that arc (i, j) is interdicted or
kij = 1, indicating that this arc is not interdicted and contributes to the inter-subset capacity after interdiction.

MPNIM classifies the arcs in the network into three groups: (a) Arcs that cross between subsets and are interdicted, (b) arcs that cross
between subsets and are not interdicted, and (c) arcs that do not cross between subsets. Constraints (49) together with (47) and (48) ensure
that each arc is in one of these three groups. Note that constraints (49) are actually implied by the structure of the model. However, the
constraints are added explicitly to prevent from violations that may occur in the case of excess interdiction resource without changing the
objective function value. Constraint (50) limits the usage of the interdiction resource as before. Constraints (51) set xik = 1 if node i is pre-
assigned to node subset Nk, i.e., i 2 N0k, and constraints (52) set xik0 ¼ 0 if i 2 N0k and k – k0. Constraints (53) and (55) are set restrictions on
the decision variables.

Proposition 1. MPNIM solves MMCP when R = 0.
Proof. Solving MPNIM by setting R = 0 is clearly equivalent to solving the following model. h
3.2. MPNIMC: Multi-way cut model using MPNIM

In addition to (45), (46), (51), (52), (54), and (55):
xik �xjk þ kij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A; ð56Þ
�xik þxjk þ kij P 0; k ¼ 1; . . . ;K; ði; jÞ 2 A: ð57Þ



Table 1
Model statistics and run times for MTNIM-E and MPNIM on GN. ‘‘[ ]’’ indicates that the model could not be solved in 86400 seconds and that shows the best solution found and
the integrality gap at termination.

(a) Max-flow solution before interdiction with 376* =z  (R=0). 
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(b) Max-flow solution after interdiction with 16* =z  (R=9). 

Fig. 1. Maximum flow solutions for Pr.1 of GN instances before and after interdiction. The shaded nodes with numbers are special nodes while all other nodes are regular
nodes. Special nodes with the same number belong to the same node group. The undirected arcs do not carry any flow while directed arcs show the direction of the flow. The
values on the directed arcs represent the flow values with superscripts showing the origin of the flow. The arcs with an X are interdicted arcs, which are the same for both
MPNIM and MTNIP-E. The nodes enclosed within a rectangle with dashed lines belong to the same node subset imposed by MPNIM.
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In MPNIMC, the partitioning of the node set is similar to the one in MPNIM. If i, j2Nk, then kij = 0 can be assumed due to the objective
function. If i2Nk and j 2 Nk0 ; k–k0, then kij = 1 for feasibility. The set of arcs with kij = 1 constitutes the minimum multi-way cut due to the
minimizing objective function.
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When there is a solution for either MPNIMC or integral D-MXF, a solution for the other can be obtained. It can be checked that setting
bij = 1 in D-MXF for kij = 1 in MPNIMC and setting aik = �1 in D-MXF for xik = 1 with i2N � N0 in MPNIMC gives a feasible solution for the
integral D-MXF. Similarly, a solution for MPNIMC can be obtained from a solution of D-MXF.

Proposition 2. z�MPNIM provides an upper bound on z�MTNIP�E.
Proof. Let Z�ID�MXF be the optimal objective function value to integral D-MXF. Proposition 1 implies that z�MPNIMC ¼ z�ID�MXF P z�D�MXF. More-
over, z�D�MXF P z�MTNIP�E; z

�
MPNIMC P z�MPNIM, and z�MPNIMC P z�MTNIP�E can be established. MTNIP-E and MPNIM are obtained from D-MXF and

MPNIMC, respectively, in a similar manner and by adding the same set of interdiction constraints X ¼ fx 2 f0; 1gjAj :
P
ði;jÞ2Arijxij 6 Rg. Spe-

cifically, nij + xij in MTNIP-E replaces bij in D-MXF and kij + xij in MPNIM replaces kij in MPNIMC where gij + xij 6 1 and kij + xij 6 1. Thus, the
feasible regions of MTNIP-E and MPNIM are the union of the feasible regions of D-MXF and MPNIMC, respectively, with the interdiction set
X. It follows that z�MPNIM P z�MTNIP�E. h

Computational studies show that z�MPNIM ¼ z�MTNIP�E for some test problems. However, there are many instances for which
z�MPNIM > z�MTNIP�E. The results show that, for optimally solved problems, the difference between z�MPNIM and z�MTNIP�E can be as much as
46.2%. However, notice that z�MTNIP�E gives the post-interdiction flow capacity through the network while z�MPNIM gives the post-interdiction
multi-cut capacity (due to Proposition 1). We remark that all of the capacities of non-interdicted arcs constituting z�MPNIM do not necessarily
contribute to the flow capacity. The post-interdiction flow capacity for MPNIM, z�MPNIM�F, may be less than z�MPNIM. Let X�MPNIM represent the
optimal set of interdicted arcs in MPNIM. Then, z�MPNIM�F can be evaluated by solving either: (1) MXF after removing X�MPNIM from the net-
work, or (2) MPNIM-F obtained by setting xij = 1 for ði; jÞ 2 X�MPNIM in MTNIP-E. In our study, we prefer the latter.

Proposition 3. z�MPNIM P z�MPNIM�F P z�MTNIP�E.
Proof. It is clear that z�MPNIM�F P z�MTNIP�E. z�MPNIM P z�MPNIM�F must also be true because otherwise Proposition 2 is contradicted. h
4. Computational studies

We test MTNIP-E and MPNIM using three different types of networks, grid networks (GN), Euclidean-distance networks (EN), and ran-
dom networks (RN), each with four different sets of data.
Table 2
Model statistics and run times for MTNIM-E and MPNIM on RN. ‘‘[ ]’’ indicates that the model could not be solved in 86400 seconds and that shows the best solution found and the
integrality gap at termination.



Table 3
Model statistics and run times for MTNIM-E and MPNIM on EN. ‘‘[ ]’’ indicates that the model could not be solved in 86400 seconds and that shows the best solution found and the
integrality gap at termination.

_I. Akgün et al. / European Journal of Operational Research 211 (2011) 241–251 249
GN are n1 � n2 networks where n1 and n2 are the number of nodes in the horizontal and vertical axes, respectively. The number of nodes
and arcs change from 28 to 126 and from 63 to 333, respectively. The arc capacities are randomly drawn from the discrete uniform dis-
tribution on [13,99]. EN are complete graphs where the locations of nodes are generated randomly with an uniform distribution in a square
on [1,100]. The arc capacities are assigned as the Euclidean distances between the nodes set to integer units. RN are also complete graphs
where the arc capacities are randomly drawn from the discrete uniform distribution on [1,100]. The number of nodes and arcs in EN and RN
change from 30 to 120 and from 435 to 7140, respectively. It is assumed that rij = 1 for all arcs (i, j) in all three types of networks. Different
values of R and K are used for all networks.

Computational tests are performed on a PC with 3.0 GHz Intel Core 2 Duo processor and 3 GB of RAM by using the solver CPLEX 9.0. The
models are run until the optimality is attained or for 24 hour (86400 seconds) at maximum by using default settings of CPLEX, e.g., moving
the best bound strategy for branching is used, cuts are allowed (ILOG, 2003). In the tables, run times and z⁄ are given for problems solved to
optimality. For problems not solved to optimality, the resulting objective value and the integrality gap jBP � BFj/(10�10 + jBPj), where BP is
the objective value of the best integer solution and BF is the best remaining objective value of any unexplored node (ILOG, 2003), are given.

The objective values of MTNIP-E and MPNIM are compared by using the statistic Dz� ¼ 100%� z�MPNIM=z�MTNIP�E

� �
for problems solved to

optimality. For problems not solved optimally, D�z and Dz obtained by replacing z�MTNIP�E in Dz� with upper bound �zMTNIP�E and lower bound
zMTNIP-E reached at the end of allotted time, respectively, are used. To compare the objective values of MPNIM-F and MTNIP-E,
DF

z� ¼ 100%� z�MPNIM�F=z�MTNIP�E

� �
is used.

Table 1 gives results for test problems on GN. MPNIM can optimally solve all of 16 test problems with solution times ranging from 0 to
17.53 seconds. MTNIP-E can optimally solve 13 problems with solution times changing from 0 to 81680 seconds. The remaining three prob-
lems not solved by MTNIP-E are solved by MPNIM with the worst solution time being 17.53 seconds. Dz� ¼ 100% for 10 of the 13 problems
solved optimally by both models, i.e., the objective function values of the models are the same. Dz� for the remaining three problems are
103.6%, 102.5%, and 110.4%, respectively. Dz and D�z for problems not solved optimally by MTNIP-E change from 121% to 150% with an aver-
age of 136% and from 100% to 129% with an average of 115.67%, respectively.

To give a pictorial view of the effect of the interdictor with respect to flow capacity through a network, the maximum flow solutions
before and after interdiction for Pr.1 of the GN instances are given in Fig. 1. Fig. 1(a) shows the flow values on the arcs together with
the directions and origins when there is no interdictor, i.e., R = 0. The maximum flow value achieved in this case is 376. Fig. 1(b) indicates
the interdicted arcs and flow values for R = 9. For this instance, the set of interdicted arcs determined by MPNIM and MTNIP-E are the same.
After interdiction, there remain only two flow paths for flow to occur, both of which achieve the maximum flow of 16. Note that one addi-
tional unit of resource is needed to cut off the remaining two flow paths. Fig. 1(b) also shows the partitioning of the node set into subsets
resulting from the solution of MPNIM.

Table 2 gives results for test problems on RN. MPNIM can optimally solve all of 32 test problems with solution times changing from
ranging from 0.03 to 0.99 seconds. MTNIP-E can optimally solve only 20 problems with solution times changing from 0.09 to 17605



Table 4
Comparison of the objective function values of MPNIM-F and MTNIP-E for problems solved optimally by both MPNIM and MTNIP-E.
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seconds. 12 problems not solved by MTNIP-E are solved by MPNIM with solution times changing from 0.05 to 0.99 seconds. Dz� ¼ 100% for
only 1 problem out of 20 solved optimally by both models. Dz� for the remaining 19 problems change from 106.69% to 142.17% with an
average of 129.86%. Dz and D�z for problems not solved optimally by MTNIP-E change from 113.86% to 147.5% with an average of 130.8%
and from 111.91% to 135.75% with an average of 126.74%, respectively.

Table 3 gives results for test problems on EN. MPNIM can optimally solve all of 32 test problems with solution times ranging from 0.02
to 3.86 seconds. MTNIP-E can optimally solve only 22 of the problems with solution times changing from 0.22 to 48720.70 seconds. 10
problems not solved by MTNIP-E are solved by MPNIM with the solution times ranging from 0.13 to 3.77 seconds. Dz� ¼ 100% for only
2 problems out of 22 solved optimally by both models. D�z for the remaining 20 problems change from 101.41% to 146.19% with an average
of 125.93%. Dz and D�z for problems not solved optimally by MTNIP-E change from 108.9% to 146.88% with an average of 127.09% and from
105.64% to 145.97% with an average of 125.45%, respectively.

The previous results show that MPNIM is incomparably better than MTNIP-E with respect to solution times and that z�MPNIM P z�MTNIP�E in
compliance with Proposition 2. To summarize, Dz� ¼ 100% for 13 problems out of 56 optimally-solved problems, for which the average Dz�

is 120.33%. For the remaining 43 problems, the worst and the average Dz� are 146.19% and 126.33%, respectively. The best Dz� values are
obtained for problems on GN with an average of 101.27%. Average Dz� values for RN and EN are 128.44% and 123.57%, respectively.

Table 4 gives DF
z� for test problems solved optimally by both MPNIM and MTNIP-E. For GN, DF

z� change from 100% to 106.46% with an
average of 100.1%. For RN, DF

z� change from 100% to 106.38% with an average of 102.3%. For EN, DF
z� range from 100% to 107.9% with an

average of 101.97%. Note that the largest DF
z� is 107.9% while the largest Dz� is 146.19%. Notice that DF

z� is 101.87% for the problem (Pr.
Id. 31 on EN) with the worst Dz� value of 146.19%. The worst DF

z� value of 107.9% is obtained for the problem (Pr. Id. 8 on EN) with Dz� value
of 117.13%.

The results show that z�MPNIM P z�MPNIM�F P z�MTNIP�E in accordance with Proposition 3. Moreover, DF
z� is significantly smaller than Dz�

implying that the solution provided by MPNIM may be an adequate approximation to the solution to MTNIP-E in terms of post-interdiction
flow capacity. This combined with the fact that MPNIM is incomparably easier to solve shows that MPNIM can be used instead of MTNIP-E
especially when there are time constraints.

5. Conclusion

This paper defines and studies MTNIP in which a network user attempts to maximize flow in a network among k P 3 pre-specified node
groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact
(MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results carried out on differ-
ent types of networks to compare both models. MTNIP-E is obtained by formulating MTNIP as bi-level min–max program and then con-
verting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize
the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of
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the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds
while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal
to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction
flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only
7.90%. This result implies that MPNIM may be a very good approximation to MTNIP-E.

Further research may be on devising methods to improve the solution times of MTNIP-E, e.g., decomposition techniques outlined in Is-
raeli and Wood (2002) can be tried and integer-programming cuts can be developed, improving MPNIM to better approximate MTNIP-E,
and extending the models to allow stochastic interdictions.
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