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In this paper, we study allocation strategies and their effects on total routing costs in hub networks. Given
a set of nodes with pairwise traffic demands, the p-hub median problem is the problem of choosing p
nodes as hub locations and routing traffic through these hubs at minimum cost. This problem has two
versions; in single allocation problems, each node can send and receive traffic through a single hub,
whereas in multiple allocation problems, there is no such restriction and a node may send and receive
its traffic through all p hubs. This results in high fixed costs and complicated networks. In this study,
we introduce the r-allocation p-hub median problem, where each node can be connected to at most r
hubs. This new problem generalizes the two versions of the p-hub median problem. We derive mixed-
integer programming formulations for this problem and perform a computational study using well-
known datasets. For these datasets, we conclude that single allocation solutions are considerably more
expensive than multiple allocation solutions, but significant savings can be achieved by allowing nodes
to be allocated to two or three hubs rather than one. We also present models for variations of this prob-
lem with service quality considerations, flow thresholds, and non-stop service.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Hubs are facilities that serve as switching points in telecommu-
nications and transportation networks. Hub networks arise where
there is traffic demand from many origin nodes to many destina-
tion nodes and connecting all origin–destination pairs by direct
links is not practical and/or economical. Flows from many origins
to many destinations are consolidated at hubs and routed together
to benefit from economies of scale. The p-hub median problem can
be defined as follows: given a set of nodes with pairwise traffic
demands, choose p nodes to locate hubs and route the traffic of
all nodes through these hubs at minimum cost. It is often assumed
that hubs are connected by a complete network, the routing cost
between hubs is discounted at a factor 0 < a 6 1, and no direct con-
nection exists between two nonhub nodes.

Recently, there have been studies on various extensions of this
problem, where the basic assumptions about the structure of the
network and the way the costs are discounted are relaxed. For
instance, O’Kelly and Miller (1994), Nickel et al. (2001), Yoon and
Current (2008), Calik et al. (2009), and Alumur et al. (2009) con-
sider hub location problems where the hub network is not neces-
sarily complete. Labbé and Yaman (2008), and Yaman (2008)
consider star hub networks, whereas Contreras et al. (2010) study
ll rights reserved.
a tree structure. Yaman (2009) studies the problem of designing
hierarchical hub networks where the top-level hub network is
complete and the second-level hub networks are stars. Campbell
et al. (2005a,b) study the problem of locating a given number of
hub arcs with discounted costs rather than locating hubs. Podnar
et al. (2002) discount the transportation cost on a link if the flow
on this link exceeds a threshold. O’Kelly and Bryan (1998), and
Horner and O’Kelly (2001) relax the assumption of a fixed discount
factor on hub-to-hub links and model economies of scale as a func-
tion of flow.

In extending the p-hub median problem, the focus has been pri-
marily on hub-to-hub connections. In this study, we keep the
assumptions concerning the hub network and focus on the alloca-
tion of nodes to hubs. In the literature, there are two versions of the
p-hub median problem that differ in their allocation strategies. In
the single allocation version, each node can send and receive traffic
through exactly one hub node, whereas in the multiple allocation
version, there is no such restriction; a node may be connected to
all p hubs. In both versions of the p-hub median problem, the total
cost is equal to the routing cost. The fixed costs of connections be-
tween nonhub and hub nodes and among hub nodes are not con-
sidered. However, in reality, each connection requires the use of
a capacity, in the form of a vehicle in a transportation application
and in the form of fibers and technical equipments in a telecom-
munications application. Hence, a hub network where nodes are
connected to almost all hubs by direct links may be difficult to jus-
tify economically. On the other hand, imposing the restriction of

http://dx.doi.org/10.1016/j.ejor.2011.01.014
mailto:hyaman@bilkent.edu.tr
http://dx.doi.org/10.1016/j.ejor.2011.01.014
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Fig. 1. The change in the number of nonhub–hub connections as the upper bound
on the routing cost increases.
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single allocation may result in a considerable increase in routing
costs.

Networks where each node is connected to exactly one hub and
networks where each node is connected to all p hubs are two ex-
tremes. In practice, however, most hub networks do not belong
to either of these cases. For instance, the airline networks, which
are key examples of hub networks, are usually not single allocation
networks. It is also hard to find examples of airline networks where
each node is connected to every hub in the network unless the
number of hubs is very small.

Motivated by the structure of hub networks that we encounter
in practice and the fact that multiple allocation solutions are often
significantly cheaper than single allocation solutions in terms of
the total transportation cost but that they have a larger number
of nonhub–hub connections, in this study we investigate the
trade-off between transportation costs and the number of non-
hub–hub connections and show that the issue of allocation de-
serves more attention when designing hub networks.

To avoid an excessive number of nonhub–hub connections, one
can include the fixed costs in the objective function in addition to
the routing costs, and/or impose lower bounds on the traffic on
open links. Campbell (1994) proposes the p-hub median problem
with flow thresholds and fixed costs for nonhub–hub connections.
He presents a model for this problem and then focuses on the case
with zero fixed costs. In this case, if the threshold is zero, the prob-
lem becomes a multiple allocation problem and if the threshold for
a given node is equal to the total flow at that node, then the prob-
lem becomes a single allocation problem. Later, Yoon and Current
(2008) propose a model that includes fixed costs as well as variable
arc costs.

However, it is often difficult to quantify the relationship be-
tween fixed and variable costs. In order to avoid this difficulty
and still limit the amount of fixed costs, we propose to restrict
the number of connections between a node and a hub node by a
fixed number. To this end, we define the uncapacitated r-allocation
p-hub median problem (UrApHMP) as follows. Given a set of nodes
with pairwise demands, choose p hubs and allocate each node to
at most r hubs to minimize the total routing cost. This problem re-
duces to the multiple allocation problem for r = p and it reduces to
the single allocation problem for r = 1. Hence the UrApHMP gener-
alizes both versions of the p-hub median problem.

In this study, we present mixed-integer programming models
for UrApHMP and unify the existing models for the multiple and
single allocation p-hub median problems. These models for UrA-
pHMP serve as the basis for modeling different problem variations.
For instance, they can be trivially modified to model a more realis-
tic version of the problem, where the upper bound on the number
of connections for a node depends on the total traffic demand at
that node. As another variation, we minimize the fixed costs of
nonhub–hub connections subject to a constraint that imposes an
upper bound on the total transportation cost. The aim here is to
see the trade-off between the transportation cost and the fixed
costs of nonhub–hub connections by solving this problem for dif-
ferent values of upper bounds on the transportation cost. The prob-
lem of minimizing the sum of fixed costs of nonhub–hub
connections and the transportation cost subject to flow thresholds
for nonhub–hub connections, studied by Campbell (1994), can also
be easily modeled.

We also consider quality issues and incorporate path-length
constraints and delivery time restrictions into UrApHMP. To the
best of our knowledge, the multiple allocation p-hub median
problem with delivery time restrictions has not been studied.
The UrApHMP with delivery time restrictions has this problem as
a special case and hence we give, as a byproduct, a model for the
multiple allocation p-hub median problem with delivery time
restrictions.
Finally, we present a maximization version of the problem
where the demand from an origin to a destination is a function
of the number of hubs traversed and non-stop service is allowed.

To motivate the study on the r-allocation p-hub median prob-
lem, we report the outcomes of an analysis for the CAB data with
25 nodes, p = 5, and a = 1,0.8. This data is introduced in O’Kelly
(1987) and is based on airline traffic between 25 US cities. First,
we compare the minimum routing costs for single and multiple
allocation solutions: The single allocation network is around 20%
and 13.5% more expensive than the multiple allocation network
for a = 1 and a = 0.8, respectively. When we study the allocations
in the multiple allocation optimal solutions, we observe the follow-
ing: When a = 1, each nonhub node is allocated to all five hubs in
the solution, resulting in 100 nonhub–hub connections. For
a = 0.8, out of 25 nodes, seven nodes are allocated to four hubs,
eight nodes to three hubs, one node to two hubs, and the remain-
ing nine nodes to a single hub. On average, a node is allocated to
2.52 hubs in this solution. When we solve the r-allocation p-hub
median problem for r = 3 and r = 2, the routing costs for r = 3
turned out to be almost the same as the routing costs for
r = p = 5. Hence, limiting the number of allocations to at most three
does not cause a significant increase in the routing costs but it does
result in a significant reduction in the number of nonhub–hub con-
nections. When r = 2 and a = 1, the routing cost increases by 4.46%
with respect to the multiple allocation solution but is 13.17%
cheaper than the single allocation solution. Hence, allowing each
node to be allocated to two hubs rather than a single one brings
a significant reduction in routing costs. Finally, we minimize the
number of nonhub–hub connections (including the connections
from a hub to itself) subject to an upper bound on the total trans-
portation cost. For a = 1, the minimum number of nonhub–hub
connections turn out to be 59 when we allow an increase of 1%
in the transportation cost and 42 when we allow an increase of
5% over the cost of the multiple allocation solution. For a = 0.8,
the number of nonhub–hub connections can be reduced to 46
and 34 by allowing 1% and 5% increases in the transportation cost,
respectively. In Fig. 1, we can see the change in the number of non-
hub–hub connections for different percentage increases allowed in
the optimal multiple allocation routing cost.

As a result of this analysis, we conclude that allocation in hub
networks is an important issue and the trade-off between fixed
costs related to nonhub–hub connections and total transportation
costs is interesting to analyze in designing hub networks. In this
study, we present different problems and their associated models
to be used in such an analysis.

To conclude this section, we briefly review the literature on
multiple and single allocation p-hub median problems. For more
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details, we refer readers to two recent surveys: Campbell et al.
(2002), and Alumur and Kara (2008).

Research on the single allocation p-hub median problem starts
with the works of O’Kelly (1987). Different formulations are pro-
posed by Campbell (1994), Ebery (2001), Ernst and Krishnamoor-
thy (1996), O’Kelly et al. (1996), Skorin-Kapov et al. (1996), and
Sohn and Park (1997, 1998). Abdinnour-Helm (2001), Campbell
(1996), Ernst and Krishnamoorthy (1996), Klincewicz (1991,
1992), O’Kelly (1987), Pirkul and Schilling (1998), Skorin-Kapov
and Skorin-Kapov (1994), and Smith et al. (1996) present heuristic
algorithms. O’Kelly et al. (1995) present a lower bounding proce-
dure and Ernst and Krishnamoorthy (1998a) propose a branch-
and-bound method, where shortest-path problems are solved to
compute lower bounds. Kratica et al. (2007) develop two genetic
algorithms and Ilić et al. (2010) develop a variable neighborhood
search. Sung and Jin (2001), and Wagner (2007) study the cluster
hub location problem.

The first formulation for the multiple allocation p-hub median
problem is given in Campbell (1992). Campbell (1994), Ernst and
Krishnamoorthy (1998b), and Skorin-Kapov et al. (1996) propose
alternative formulations. Campbell (1996) presents a greedy-inter-
change heuristic. Ernst and Krishnamoorthy (1998b) propose a
heuristic algorithm based on shortest paths and a cut-and-branch
algorithm. The same authors also propose a branch-and-bound
algorithm using shortest paths (Ernst and Krishnamoorthy,
1998a). Preprocessing tools and ways to strengthen constraints
are given in Boland et al. (2004).

A close relative of the p-hub median problem where the number
of hubs to be opened is also a part of the decision process is called
the hub location problem with fixed costs. The single allocation
version of this problem is proposed by O’Kelly (1992) and later
studied by Abdinnour-Helm (1998), Abdinnour-Helm and Venkat-
aramanan (1998), Campbell (1994), Chen (2007), Cunha and Silva
(2007), Labbé and Yaman (2004), Silva and Cunha (2009), and Top-
cuoglu et al. (2005). The multiple allocation version is studied by
Boland et al. (2004), Camargo et al. (2008), Campbell (1994), Cáno-
vas et al. (2007), Hamacher et al. (2004), Klincewicz (1996), Mayer
and Wagner (2002), Marín (2005), and Marín et al. (2006).

The rest of the paper is organized as follows: In Section 2, we
present two formulations for the UrApHMP and investigate the
relationship of these formulations with two well-known formula-
tions for the p-hub median problem. We discuss some problem
variations and propose ways to model these in Section 3. In Section
4, we report the results of our computational study and derive
some insights on the effect of the allocation strategies on routing
costs and locations of hubs in optimal solutions. We conclude the
paper in Section 5.

2. Mixed-integer programming formulations

For the single and multiple allocation p-hub median problems,
there are two types of formulations that are commonly used. The
first of these formulations uses up to four index variables and is
the tighter formulation. There is a flow variable for each pair of
nodes i and j and each pair of possible hubs k and l; this variable
gives the proportion of the flow from node i to node j that travels
from the origin node i to hub k, and then to hub l, and finally to the
destination node j. In the second type of formulations, the flow
variables are aggregated by origin and/or destination, resulting in
variables with at most three indices. These formulations are not
as strong but have the advantage of fewer variables. There are
other formulations that use fewer variables, however such formu-
lations have weaker relaxation bounds and need to be strength-
ened with cutting planes to be efficient.

In this section, we provide two mixed-integer programming for-
mulations for UrApHMP that extend the first two types of formula-
tions mentioned above. We first present the notation. Let N denote
the set of demand points. For i 2 N and j 2 N, tij is the amount of
traffic to be routed from node i to node j and dij is the unit routing
cost from node i to node j. We assume that the routing costs satisfy
the triangle inequality.

We use the following decision variables in our first model for
UrApHMP. The variable zik is 1 if node i 2 N is allocated to node
k 2 N and 0 otherwise. If zkk is 1, then node k is allocated to itself,
which means that a hub is opened at this node. The variable fijkl is
the proportion of the traffic from node i 2 N to node j 2 N that trav-
els on the path i ? k ? l ? j where k and l are hub nodes. Using
these variables, the UrApHMP can be modeled as follows:

min
X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl; ð1Þ

s:t:
X
k2N

zik 6 r 8i 2 N; ð2Þ

zik 6 zkk 8i; k 2 N; ð3ÞX
k2N

zkk ¼ p; ð4Þ
X
k2N

X
l2N

fijkl ¼ 1 8i; j 2 N; ð5Þ
X
l2N

fijkl 6 zik 8i; j; k 2 N; ð6Þ
X
k2N

fijkl 6 zjl 8i; j; l 2 N; ð7Þ

f ijkl P 0 8i; j; k; l 2 N; ð8Þ
zik 2 f0;1g 8i; k 2 N: ð9Þ

Constraints (2) ensure that a node is allocated to at most r hubs
and constraints (3) ensure that nodes can only be allocated to hubs.
Due to constraint (4), p nodes are selected as hubs. Constraints (5)
impose the requirement that the traffic between any origin desti-
nation pair is routed entirely. Finally, constraints (6) and (7) ensure
that if the flow of origin–destination pair i,j travels from hub k to
hub l, then i is allocated to hub k and j is allocated to hub l. Con-
straints (8) and (9) are nonnegativity and integrality constraints.
Note here that there exists an optimal solution where the vector
f has entries 0 and 1, since each traffic demand is routed on a min-
imum-cost path in the resulting network.

Let the above model be UrApHMP1. It has O(jNj4) variables and
O(jNj3) constraints. Next, we discuss its relationship to the strong
4-index formulations for the single and multiple allocation p-hub
median problems. First, notice that there exists an optimal solution
to this model, with

P
k2Nzik ¼ r for all i 2 N. If r = 1, then we haveP

k2Nzik ¼ 1 for all i 2 N. Now, constraints (5) imply that constraints
(6) and (7) have to be tight, i.e.,

P
l2Nfijkl ¼ zik for all i, j, k 2 N andP

k2Nfijkl ¼ zjl for all i, j, l 2 N. Hence, when r = 1, UrApHMP1 is equiv-
alent to the strong formulation for the single allocation p-hub med-
ian problem given by Skorin-Kapov et al. (1996). This formulation
is as follows:

min
X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl; ð10Þ

s:t: ð3Þ; ð4Þ; ð8Þ; and ð9Þ;X
k2N

zik ¼ 1 8i 2 N; ð11Þ
X
l2N

fijkl ¼ zik 8i; j; k 2 N; ð12Þ
X
k2N

fijkl ¼ zjl 8i; j; l 2 N: ð13Þ

If r = p, then there exists an optimal solution to UrApHMP1 and to its
linear programming relaxation with zik = zkk for all i,k 2 N. Then we
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can remove the variables zik’s for i, k 2 N with i – k. Hence, con-
straints (6) and (7) are the same as

P
l2Nfijkl 6 zkk for all i, j, k 2 N

and
P

k2Nfijkl 6 zll for all i, j, l 2 N. The resulting formulation is the
same as the strong formulation for the multiple allocation p-hub
median problem given by Skorin-Kapov et al. (1996):

min
X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl; ð14Þ

s:t: ð4Þ; ð5Þ; and ð8Þ;X
l2N

fijkl 6 zkk 8i; j; k 2 N; ð15Þ
X
k2N

fijkl 6 zll 8i; j; l 2 N; ð16Þ

zkk 2 f0;1g 8k 2 N: ð17Þ

This formulation is later strengthened by replacing constraints (15)
and (16) with (see Hamacher et al., 2004)

P
l2Nfijkl þ

P
l2Nnfkgfijlk 6 zkk

for all i, j, k 2 N. These inequalities are valid for the UrApHMP but it
is not possible to obtain a valid formulation by replacing constraints
(6) and (7) with these inequalities for r 6 p � 1.

Next, we extend the aggregated flow formulation of Ernst and
Krishnamoorthy (1998b) for the multiple allocation p-hub median
problem to UrApHMP. We define the following variables. Variable
wi

k is the flow from node i 2 N to hub k 2 N, yi
kl is the flow that orig-

inates at node i 2 N and that travels from hub k 2 N to hub
l 2 Nn{k}, and xi

lj is the flow that originates at node i 2 N and that
travels from hub l 2 N to destination node j 2 N. Then UrApHMP
can be formulated as follows:

min
X
i2N

X
k2N

dikwi
k þ

X
k2N

X
l2Nnfkg

adklyi
kl þ

X
j2N

X
l2N

dljxi
lj

 !
; ð18Þ

s:t: ð2Þ—ð4Þ and ð9Þ;X
k2N

wi
k ¼

X
j2N

tij 8i 2 N; ð19Þ
X

l2Nnfkg
yi

kl �
X

l2Nnfkg
yi

lk ¼ wi
k �

X
j2N

xi
kj 8i; k 2 N; ð20Þ

X
l2N

xi
lj ¼ tij 8i; j 2 N; ð21Þ

wi
k 6

X
j2N

tijzik 8i; k 2 N; ð22Þ

xi
lj 6 tijzjl 8i; j; l 2 N; ð23Þ

wi
k P 0 8i; k 2 N; ð24Þ

xi
kj P 0 8i; j; k 2 N; ð25Þ

yi
kl P 0 8i; k; l 2 N: ð26Þ

Here, constraints (19)–(21) are flow balance constraints. Con-
straints (19) ensure that for each node i, the total traffic originating
at node i travels from i to hubs. Due to constraints (20), the net
flow that originates at node i and that travels out of hub node k to-
wards other hubs is equal to the flow of node i that travels from i to
k minus the flow of node i that travels from hub k towards the des-
tination nodes. Finally, constraints (21) ensure that the flow that
originates at node i and that travels from hub nodes to destination
node j is equal to the traffic demand from node i to node j. By con-
straints (22), the flow from origin node i to hub node k is forced to
be zero if node i is not allocated to hub k. Finally, constraints (23)
ensure that the flow of origin node i that travels from hub l to des-
tination node j cannot be positive unless node j is not allocated to
hub l. Constraints (24)–(26) are nonnegativity constraints for flow
variables.

Let this model be UrApHMP2. Here we have O(jNj3) variables and
O(jNj3) constraints. As in the case of UrApHMP1, UrApHMP2 is
equivalent to Ernst and Krishnamoorthy’s formulation for r = 1
and r = p. If r = 1, we have

P
k2Nzik ¼ 1 for all i 2 N. Then, constraints

(19) and (22) imply that wi
k ¼

P
j2Ntijzik for all i 2 N and k 2 N. Sim-

ilarly, constraints (21) and (23) imply that xi
lj ¼ tijzjl for all i, j, l 2 N.

Hence, we can substitute for variables wi
k and xi

lj and obtain the
formulation

min
X
i2N

X
k2N

dik

X
j2N

tijzik þ
X
k2N

X
l2Nnfkg

adklyi
kl þ

X
j2N

X
l2N

dljtijzjl

 !
; ð27Þ

s:t: ð3Þ; ð4Þ; ð9Þ; ð11Þ; ð26Þ;X
l2Nnfkg

yi
kl �

X
l2Nnfkg

yi
lk ¼

X
j2N

tijzik �
X
j2N

tijzjk 8i; k 2 N; ð28Þ

which is the same as the formulation given in Ernst and Krishna-
moorthy (1996).

For r = p, again as zik = zkk for all i, k 2 N, we can remove these
variables and obtain the following formulation:

min
X
i2N

X
k2N

dikwi
k þ

X
k2N

X
l2Nnfkg

adklyi
kl þ

X
j2N

X
l2N

dljxi
lj

 !
; ð29Þ

s:t ð4Þ; ð17Þ; ð19Þ—ð21Þ; ð24Þ—ð26Þ;
wi

k 6
X
j2N

tijzkk 8i; k 2 N; ð30Þ

xi
lj 6 tijzll 8i; j; l 2 N: ð31Þ

This formulation is the same as that given in Ernst and Krishna-
moorthy (1998b).

Hence, for the special cases of r = 1 and r = p, the formulations
presented in this section, UrApHMP1 and UrApHMP2, have the same
linear programming relaxation bounds as the formulations of Sko-
rin-Kapov et al. (1996), and Ernst and Krishnamoorthy (1996,
1998b), respectively.

3. Modeling problem variations

In this section, we discuss ways to model several problem
variations.

In most practical applications, nodes’ incoming and outgoing
traffic demands may have large variations. In such cases, network
planners may be interested in networks where nodes with high de-
mand values are allocated to more hubs and nodes with low de-
mand values are allocated to fewer hubs. For each node i 2 N, we
have a value ri, which is an upper bound on the number of hubs
that node i can be allocated to. This variation can be easily modeled
by replacing constraints (2) with

P
k2Nzik 6 ri for all i 2 N.

As we have seen with the CAB data in the Introduction, it may
be interesting to find solutions with minimum number of non-
hub–hub connections subject to a constraint that imposes an upper
bound on the transportation cost. The resulting problem may be
solved with different values of upper bounds to make sensitivity
analysis and see the trade-off between fixed costs and transporta-
tion costs. Let cikbe the fixed cost for establishing a nonhub–hub
connection between node i 2 N and hub k 2 N and U be an upper
bound on the transportation cost. The problem of minimizing the
fixed costs associated with the nonhub–hub connections such that
the transportation cost does not exceed U can be modeled as
follows:

min
X
i2N

X
k2N

cikzik;

s:t: ð3Þ—ð9Þ;X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl 6 U:

An alternative model can be obtained as follows:
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min
X
i2N

X
k2N

cikzik;

s:t: ð3Þ; ð4Þ; ð9Þ; ð19Þ—ð26Þ;
X
i2N

X
k2N

dikwi
k þ

X
k2N

X
l2Nnfkg

adklyi
kl þ

X
j2N

X
l2N

dljxi
lj

 !
6 U:

In addition, let Tik be the minimum flow that should be routed
on the nonhub–hub connection between node i 2 N and hub
k 2 N for such a connection to exist. Then the problem of minimiz-
ing the sum of the fixed costs of nonhub–hub connections and the
routing cost subject to the constraint that the flow on nonhub–hub
connections should be at least as large as the threshold values can
be modeled as

min
X
i2N

X
k2N

cikzik þ
X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl;

s:t: ð3Þ—ð9Þ;X
j2N

X
l2N

ðtijfijkl þ tjifjilkÞP Tikzik 8i; k 2 N: ð32Þ

Campbell (1994) models the flow threshold requirements asX
j2N

X
l2N

ðtijfijkl þ tjifjilkÞP Tik �Mð1� zikÞ 8i; k 2 N; ð33Þ

where M is a large number. Constraints (32) dominate constraints
(33).

Our second model can be modified for this problem as follows:

min
X
i2N

X
k2N

cikzikþ
X
i2N

X
k2N

dikwi
kþ
X
k2N

X
l2Nnfkg

adklyi
klþ

X
j2N

X
l2N

dljxi
lj

 !
;

s:t: ð3Þ; ð4Þ; ð9Þ; ð19Þ—ð26Þ;
wi

kþ
X
j2N

xj
ki PTikzik 8i;k2N:

We note here that with the flow threshold constraints, it is not nec-
essarily true that there exists an optimal solution where the traffic
demand between a pair of nodes follows the same path, i.e., fijkl’s are
zero and one. If such a nonsplitting is required, then integrality
should be imposed explicitly for these variables. In this case, we
need extra variables in the second model because it uses aggregate
flow variables.

If service quality is one of the issues in the network design pro-
cess, then the decision maker may be interested in optimizing the
worst service quality in the network or ensuring a minimum ser-
vice quality by imposing restrictions on delivery times, transporta-
tion costs, and/or path lengths. The well-known p-hub center
problem is an example of the first kind, where the aim is to mini-
mize the largest transportation cost or distance among all pairs of
nodes (see, e.g., Campbell, 1994; Ernst et al., 2009; Kara and Tansel,
2000; O’Kelly and Miller, 1991). Another example of hub location
problems where one is interested in the worst-case performance
is the latest-arrival hub location problem, introduced by Kara and
Tansel (2001). The authors consider delivery times as a measure of
service quality and aim at minimizing the longest delivery time in
a single allocation hub network. They remark that if a single vehi-
cle is used on each link, then the vehicles departing from a hub
node towards other hubs should wait for the arrival of vehicles
from nodes that are allocated to this hub. Similarly, the vehicles
departing from a hub node towards the destination nodes that
are allocated to this hub should wait for the arrival of vehicles from
other hubs and from the nodes that are allocated to this hub.
Hence, the delivery time is composed of travel times and waiting
times. Later, Wagner (2004) show that this problem is equivalent
to the p-hub center problem, as the vehicles that travel on the path
that has the longest delivery time do not wait.

In our study, we are interested in minimizing the total routing
cost under some service quality constraints as done in Campbell
(2009), Yaman et al. (2007), and Yaman (2009).

If restrictions are imposed on path lengths or transportation
costs (see Campbell, 2009), they can be handled easily with the
UrApHMP1. For each origin–destination pair i, j, we define a set of
eligible hub pairs k, l, through which the traffic from i to j can be
routed. Suppose that upper bounds are to be imposed on path
lengths. Let skl be the length of connection from node k to node l
and b be an upper bound on the path length. Then we define
Pij = {(k, l) : k, l 2 N,sik + skl + slj 6 b} for each pair of nodes i and j
in N. Now path-length constraints may be imposed by adding

fijkl ¼ 0 8i; j; k; l 2 N : ðk; lÞ R Pij;

to UrApHMP1, and as such, paths that do not satisfy the path-length
constraints are avoided. The same approach can be used to impose
upper bounds on transportation costs. We note here that imposing
similar constraints in UrApHMP2 requires defining additional vari-
ables because flow variables are aggregate variables and because
the fact that zik = 1 and zjl = 1 does not imply that the flow from
node i to node j travels through hubs k and l unless r = 1.

To ensure a given service quality, delivery time restrictions may
also be imposed (see Yaman et al., 2007; Yaman, 2009). In this case,
let skl be the time to travel from k to l, �a be a discount factor for hub-
to-hub connections, and b be an upper bound on the delivery time.
We assume that the travel times satisfy triangle inequality. As done
above, we can define a set of eligible hub pairs, however, this ap-
proach may not sufficient. Consider the following case: Suppose that
nodes 1 and 2 are hubs and the traffic from node 3 to node 4 and from
node 5 to node 6 are routed through these hubs. The travel times are
s31 = 40, s51 = 10, s12 = 50, s24 = 10, and s26 = 40. We take �a ¼ 1 and
b = 100. Then the path from node 3 to node 4 and the path from node
5 to node 6 have lengths 100. However, as the vehicle at hub 1 has to
wait for the traffic from nodes 3 and 5 to arrive before it can depart
towards hub 2, it departs at time 40, arrives at node 2 at time 90,
and at nodes 4 and 6 at times 100 and 130, respectively. Such a rout-
ing is feasible when restrictions are imposed on path lengths but not
on delivery times. As was remarked by Wagner (2004), such a situa-
tion does not arise for the single allocation problem, where traffic de-
mands exist between all pairs of nodes, since in that case, the traffic
from node 3 to node 6 also needs to travel through hubs 1 and 2 and
the length of the resulting path is 130, which in turn implies that
such an allocation is infeasible. Hence, for single allocation, imposing
restrictions on path lengths, transportation costs, and delivery times
are equivalent, whereas for r P 2, these may not be equivalent.

As we explained above, in a single allocation problem where
there is a traffic demand between any pair of nodes and a single
vehicle on each link, the vehicles that depart from a hub k towards
other hubs need to wait for the arrival of vehicles from nodes that
are allocated to k. Hence, the earliest departure time is the same for
all vehicles that depart from hub k towards other hubs. However,
for r P 2, this is not true anymore. To model this, we define vari-
able Dkl to be the earliest time that the vehicle travelling on the link
from hub k to hub l can depart. This time cannot be earlier than the
arrival of vehicles from nodes that are allocated to hub k and that
have traffic demands that travel through hubs k and l. This require-
ment can be expressed with constraints

Dkl P sikfijkl 8i; j; k; l 2 N: ð34Þ

The vehicle traveling on the link from hub k to hub l arrives at hub l
at the earliest at time Dkl þ �askl. If node j is allocated to hub l, then
the vehicle traveling from l to j needs to wait for the arrival of the
vehicle from a hub k in the event that there is traffic demand that



Table 1
Comparison of total routing costs for r = 1, 2, 3, p for the CAB data with n = 25.

p a r = 3 r = 2 r = 1

exp3 cheap3 exp2 cheap2 exp1

3 1 0 15.48 1.06 14.58 18.31
3 0.8 0 11.98 0.34 11.68 13.61
3 0.6 0 8.16 0.08 8.09 8.88
3 0.4 0 4.66 0 4.66 4.89
3 0.2 0 1.88 0 1.88 1.92

4 1 0.34 16.60 2.95 14.44 20.32
4 0.8 0 12.49 1.75 10.97 14.28
4 0.6 0 7.75 1.30 6.55 8.40
4 0.4 0 4.19 0.61 3.60 4.38
4 0.2 0 1.77 0 1.77 1.80

5 1 0.65 16.34 4.46 13.17 20.30
5 0.8 0.21 11.78 2.70 9.59 13.59
5 0.6 0.34 7.88 1.72 6.62 8.93
5 0.4 0.25 4.19 0.81 3.66 4.64
5 0.2 0 1.56 0.06 1.49 1.58
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has its destination at j and that travels through hubs k and l. Hence,
the vehicle that departs from l towards j can arrive at j at the earli-
est at time maxk2NððDkl þ �askl þ sljÞmaxi2NfijklÞ. We would like this
arrival time to be no later than b, hence we use constraints

ðDkl þ �askl þ sljÞfijkl 6 b 8i; j; k; l 2 N: ð35Þ

Finally, we explicitly require fijkl’s to be integers with

fijkl 2 f0;1g 8i; j; k; l 2 N: ð36Þ

Constraints (35) can be linearized as

Dkl þ �askl þ sljfijkl 6 b 8i; j; k; l 2 N: ð37Þ

Let i, j, k, l 2 N. If fijkl = 1, then the left-hand sides of (35) and (37) are
equal. If fijkl = 0, then the left hand side of (35) is equal to zero
whereas the left-hand side of (37) is equal to Dkl þ �askl. If there exist
i0 and j0 such that i0 – i or j0 – j with fi0 j0kl ¼ 1, then constraint (37) for
i0, j0, k, and l states that Dkl þ �askl þ slj0 6 b, making constraint (37)
for i, j, k, and l redundant. On the other hand, if fi0 j0kl ¼ 0 for all i0

and j0, then there exists an optimal solution such that Dkl = 0 and
(37) for i, j, k and l reduces to �askl 6 b. As �askl is a lower bound
on the travel time from node k to node l, this needs to be satisfied
for the feasibility of the problem.

In summary, upper bounds on delivery times can be incorpo-
rated into UrApHMP1 by adding constraints (34) and (37) and by
replacing (8) with (36). The resulting formulation is valid for any
integer 1 6 r 6 p.

Aykin (1994, 1995), Sung and Jin (2001), and Wagner (2007)
consider the possibility of non-stop service between origin–desti-
nation pairs. This can be incorporated into our model UrApHMP1
in the following way. Let d̂ij denote the unit routing cost from node
i 2 N to node j 2 N for non-stop service. We define f̂ ij to be the pro-
portion of the demand from origin i 2 N to destination j 2 N routed
on a non-stop service. We replace the objective function (1) with

min
X
i2N

X
j2N

X
k2N

X
l2N

tijðdik þ adkl þ dljÞfijkl þ
X
i2N

X
j2N

tijd̂ij f̂ ij:

In addition, we replace constraints (5) withX
k2N

X
l2N

fijkl þ f̂ ij ¼ 1 8i; j 2 N ð38Þ

and add constraints

f̂ ij P 0 8i; j 2 N: ð39Þ

As in the case of UrApHMP1, there exists an optimal solution
where f and f̂ are integral.

In some applications, the demand from an origin to a destina-
tion may depend on the number of hubs traversed. Airlines is a
good example to this case; most clients prefer non-stop flights.
In such an application, minimizing the total routing cost is not a
reasonable objective as it would have a tendency to minimize
the demand captured. In this case, the decision maker may be
interested in maximizing profit. Let pijkl be the profit generated
for the origin–destination pair (i, j) if the path from origin i 2 N to
destination j 2 N goes through hubs k 2 N and l 2 N. Similarly, let
p̂ij be the profit generated if there is a non-stop service from origin
i to destination j. Now, this variant can be modeled as follows:

max
X
i2N

X
j2N

X
k2N

X
l2N

pijklfijkl þ
X
i2N

X
j2N

p̂ijf̂ ij;

s:t: ð2Þ—ð4Þ; ð6Þ—ð9Þ; ð38Þ and ð39Þ:

Note again that, even though we do not impose integrality on
vectors f and f̂ , there exists an optimal solution where each ori-
gin–destination pair is routed on a single path.
4. Computational results

In this section, we report the outcomes of three computational
experiments. In the first experiment, we continue our analysis on
routing costs that started in the Introduction. We investigate
how the routing cost changes as we change the allocation strategy.
In the second experiment, we are interested in the location of hubs
in optimal solutions for different allocation strategies. Finally, in
the third experiment, we compare our formulations in terms of
the strength of their linear relaxation bounds and solution times.

In these experiments, we solve instances generated using CAB,
Australia Post (AP), and Turkey data. We use the CAB data with
25 nodes, p = 3, 4, 5, and a = 1, 0.8, 0.6, 0.4, 0.2. The AP data is intro-
duced by Ernst and Krishnamoorthy (1996) and consists of coordi-
nate and flow data for 200 nodes that correspond to postcode
districts. Here, the collection cost is computed by multiplying the
distance by 3, the distribution cost is computed by multiplying
the distance by 2, and the hub-to-hub routing cost is discounted
with a = 0.75. The flow matrix is not symmetric and flows from a
node to itself are positive. Smaller-sized problems can be gener-
ated using a code made available by the authors. We generated in-
stances with n = 50, 75 and varied p to be 3, 4, and 5. In the Turkey
data, we have 81 nodes, each corresponding to a city. The unit
routing costs are taken to be equal to distances between cities.
The traffic demand between a pair of cities is computed by multi-
plying the populations of the respective two cities, dividing by a
constant, and rounding down. Twenty-one cities are candidates
to be hubs. This is the same dataset as the one used by Yaman
(2009). We take a = 0.9 and p to be in {5, . . . ,10}.
4.1. The effect of allocation strategies on total routing costs

In this section, we continue analyzing the effect of allocation
strategies on the total routing costs. Let costr be the minimum rout-
ing cost for a given r value. We compute how much more expensive
the r-allocation solution is compared to the multiple allocation solu-
tion by expr ¼ 100 costr�costp

costp
and how much cheaper the r-allocation

solution is compared to the single allocation solution by
cheapr ¼ 100 cost1�costr

cost1
.

In Table 1, we report expr and cheapr for r = 3 and r = 2 and exp1

for the CAB data for different values of p and a. We first observe
here that for a fairly large, single allocation solutions are consider-
ably more costly than multiple allocation solutions. Second, we ob-
serve that it is possible to obtain a significant cost reduction by
allowing nodes to be allocated to one or two more hubs. For



Table 2
Comparison of total routing costs for r = 1, 2, 3, p for the AP data.

n p r = p r = 3 r = 2 r = 1

cheapp exp3 cheap3 exp2 cheap2 exp1

50 3 1.61 0 1.61 0.09 1.52 1.64
4 1.55 0.07 1.48 0.18 1.38 1.58
5 2.23 0.08 2.16 0.28 1.96 2.28

75 3 1.91 0 1.91 0.12 1.79 1.95
4 2.17 0.06 2.10 0.20 1.98 2.22
5 2.68 0.02 2.67 0.35 2.35 2.76

Table 4
Hub locations in optimal solutions for the CAB data with n = 25.

p a r = 1 r = 2 r = 3 r = p

3 1 4, 8, 20 12, 18, 21 12, 18, 21 12, 18, 21
3 0.8 2, 4, 12 12, 18, 21 4, 12, 17 4, 12, 17
3 0.6 2, 4, 12 4, 12, 17 4, 12, 17 4, 12, 17
3 0.4 4, 12, 18 4, 12, 17 4, 12, 17 4, 12, 17
3 0.2 4, 12, 17 12, 17, 21 12, 17, 21 12, 17, 21

4 1 4, 7, 8, 20 4, 12, 13, 18 1, 4, 12, 17 1, 4, 12, 17
4 0.8 1, 4, 12, 18 4, 12, 13, 17 1, 4, 12, 17 1, 4, 12, 17
4 0.6 1, 4, 12, 17 1, 4, 12, 17 1, 4, 12, 17 1, 4, 12, 17
4 0.4 1, 4, 12, 17 4, 12, 17, 24 4, 12, 17, 24 4, 12, 17, 24
4 0.2 4, 12, 17, 24 4, 12, 17, 24 4, 12, 17, 24 4, 12, 17, 24

5 1 1, 2, 4, 7, 8 1, 4, 7, 12, 18 1, 4, 7, 12, 17 1, 4, 7, 12, 17
5 0.8 1, 4, 7, 12, 18 1, 4, 7, 12, 17 1, 4, 7, 12, 17 4, 7, 12, 17, 24
5 0.6 4, 7, 12, 14, 17 4, 7, 12, 17, 24 4, 7, 12, 17, 24 4, 7, 12, 14, 17
5 0.4 4, 7, 12, 14, 17 4, 7, 12, 14, 17 4, 7, 12, 14, 17 4, 7, 12, 14, 17
5 0.2 4, 17, 12, 14, 17 4, 7, 12, 14, 17 4, 7, 12, 14, 17 4, 7, 12, 14, 17

Table 5
Hub locations in optimal solutions for the AP data.

n p r = 1 r = 2 r = 3 r = p

50 3 14, 28, 35 14, 28, 35 14, 28, 35 14, 28, 35
4 14, 28, 33, 35 14, 28, 32, 35 14, 28, 32, 35 14, 28, 32, 35
5 4, 14, 28, 33, 35 4, 14, 28, 32, 35 4, 14, 28, 32, 35 4, 14, 28, 32, 35

75 3 21, 40, 52 21, 41, 52 21, 41, 52 21, 41, 52
4 21, 40, 49, 52 21, 41, 48, 52 21, 41, 48, 52 21, 41, 48, 52
5 5, 22, 42, 49, 52 5, 22, 42, 48, 52 5, 22, 42, 48, 52 5, 22, 42, 48, 52

Table 6
Hub locations in optimal solutions for the Turkey data.

p r = 3 r = 4 r = 5 r = p

5 1, 3, 6, 23, 34 1, 6, 23, 34, 35 1, 6, 23, 34, 35 1, 6, 23, 34, 35

6 1, 3, 6, 23, 34,
55

1, 6, 21, 34, 35,
55

1, 6, 21, 34, 35,
55

1, 6, 21, 34, 35,
55

7 1, 3, 1, 3, 1, 3, 1, 3,
6, 23, 34, 35, 6, 21, 34, 35, 55 6, 21, 34, 35, 55 6, 21, 34, 35, 55
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instance, for p = 4 and a 6 0.8, the optimal solutions with r = 3 have
the same cost as the multiple allocation solutions.

In Table 2, we report the percentage differences between total
routing costs with different allocation strategies, i.e., r = 1, 2, 3, p,
for the AP data with 50 and 75 nodes and p = 3, 4, 5 hubs. Here
we observe that the single allocation solutions are around 1–3%
more expensive than the multiple allocation solutions. The largest
percentage differences, 2.28% for n = 50 and 2.76% for n = 75, occur
for p = 5. For p = 5, when we allow each node to be allocated to two
hubs rather than force the single allocation requirement, we obtain
solutions that are only 0.28% and 0.35% more expensive than the
multiple allocation solutions for n = 50 and n = 75, respectively.
These solutions are 1.96% and 2.35% cheaper than the respective
single allocation solutions. Further, when we allow a node to be
allocated to three hubs, then the corresponding optimal solutions
are only 0.08% and 0.02% more expensive than the multiple alloca-
tion solutions for n = 50 and n = 75, respectively.

For the Turkey data, we take p = 5, . . . ,10. Here we were not able
to solve optimally the single and double allocation problems for
most of our instances. Hence, we report the results for r = 3, 4, 5.
The solver stopped without proving optimality for p = 9 and r = 3,
with a final gap of 0.06%; we use the final upper bound reported
by the solver for this instance. In Table 3, for each value of p and
r, we report how much more expensive the r-allocation solution
is compared to the multiple allocation solution. Here we see that
even with 10 hubs, restricting the allocation of nodes to at most
three hubs results in a 1.15% increase in the total routing cost. With
r = 4, the r-allocation solution is at most 0.29% more expensive
than the multiple allocation solution. For p = 5, 6, 7, restricting each
node to be allocated to at most five nodes does not increase the to-
tal costs. For larger p values, the increase is at most 0.08%.

We can conclude that we have similar results for the three data-
sets that we used in this experiment. Allowing a node to be allo-
cated to more than one hub results in significant improvements
in routing costs. Most of this improvement can be achieved, how-
ever, even when the single-allocation requirement is relaxed, by
allowing nodes to be allocated to a few hubs rather than all hubs.

4.2. The effect of allocation strategies on hub locations in optimal
solutions

In this experiment, we investigate the effect of allocation strat-
egies on hub locations. We use all three datasets in this
Table 3
Comparison of total routing costs for r = 3, 4, 5, p for the Turkey data.

p exp3 exp4 exp5

5 0.48 0.01 0.00
6 0.91 0.07 0.00
7 1.12 0.19 0.00
8 1.16 0.17 0.06
9 1.37 0.29 0.08
10 1.15 0.28 0.08
experiment. The results are given in Tables 4–6 for the CAB, AP,
and Turkey data, respectively.

For the CAB data with p = 3, we observe that the value of r af-
fects the hub locations only slightly when a is small. For a = 0.2,
the hub located at node 4 (Chicago) in the single allocation solution
moves to node 21 (St.Louis) for r = 2, 3. A similar situation occurs
for a = 0.4 and 0.6, where the hub located at node 18 (Philadelphia)
moves to node 17 (New York) and the hub located at node 2 (Bal-
timore) moves to node 17, respectively. For larger a values, the
changes are more significant. For instance, with a = 1, hubs are lo-
cated at nodes 4, 8 (Denver), and 20 (Pittsburgh) in the single allo-
cation solution, whereas they are located at 12 (Los Angeles), 18,
and 21 for r = 2, 3. We see that two hubs move away from the cen-
ter as r increases.
55

8 1, 3, 6 1, 3, 6, 1, 3, 6, 1, 3, 6,
25, 34, 35, 44,
55

21, 25, 34, 35,
38

21, 25, 34, 35,
38

21, 25, 34, 35,
55

9 1, 3, 6, 21, 1, 3, 6, 21, 1, 3, 6, 21,
25, 34, 35, 38,
55

25, 34, 35, 38,
55

25, 34, 35, 38,
55

10 1, 3, 6, 16, 21, 1, 3, 6, 16, 21, 1, 3, 6, 16, 21, 1, 3, 6, 16, 21,
25, 34, 35, 38,
55

25, 34, 35, 38,
55

25, 34, 35, 38,
55

25, 34, 35, 38,
55
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For p = 4, the hub locations are the same for a = 0.6, 0.4, 0.2 with
one exception; the hub located at node 1 (Atlanta) moves to node 24
(Tampa) as r increases from 1 to 2 for a = 0.4. For a = 1, node 4 is the
only common hub node for different values of r. Hubs are centrally
located, at nodes 4, 7 (Dallas), 8, and 20, in the single allocation solu-
tion. Two hubs move towards the east and west coasts, to nodes 18
and 12 for r = 2. As r increases further, there is a slight change, the
hub at node 13 (Memphis) is replaced with 1. For a = 0.8, nodes 4
and 12 are among the hub nodes for all values of r. In the single allo-
cation solution, the other two hubs are located at nodes 1 and 18.
These move to nodes 13 and 17 when r = 2. When r increases to 3
and 4, the hub at node 13 moves back to node 1.

For the CAB instances with p = 5 and a = 1, nodes 1, 4, and 7 ap-
pear as hubs for all values of r considered. The hub at node 2 in the
single allocation solution moves to node 18, and then to node 17 as
r increases. These nodes are located in the same region. However,
the other hub at node 8, which is located more in the center in the
single allocation solution, moves to node 12, on the west coast of
the United States, for r = 2, 3, p. Hubs are located at nodes 4, 7, and
12 in all the solutions for p = 5 and a = 0.8. Other than these, a hub
is located at node 1 for r = 1, 2, 3 and it moves south-east to node
24 in the multiple allocation solution. The fifth hub, located at node
18 for r = 1, moves to node 17 for larger r values. Finally for a = 0.6,
four hubs are located at nodes 4, 7, 12, and 17 in all solutions. The
fifth hub is located at node 14 (Miami) in the single allocation solu-
tion, moves to node 24 for r = 2, 3, and then moves back to node 14 in
the multiple allocation solution. Nodes 14 and 24 are located in the
south-east and are close to each other. For smaller a values, the loca-
tions of hubs are not affected by the allocation strategy. This is ex-
pected since nodes are often allocated to the closest hubs when a
is small, as discussed in the Introduction.

For the AP instances, we observe that hub locations remain al-
most the same for all allocation strategies; only slight changes occur
for r = 1 and 2.

Finally, we analyze the solutions for the Turkish data. We refer
the reader to the map given in Fig. 5 in Yaman (2009). We note
here that the problem with p = 9 and r = 3 could not be solved to
optimality, hence, we cannot report the optimal hub locations for
this instance. Here we see that for p = 9, 10, hub locations are not
affected by the choice of r. For smaller p values, there are slight
changes. For p = 5, the four hubs are located at nodes 1 (Adana),
6 (Ankara), 23 (Elazig), and 34 (Istanbul) in all solutions. The fifth
hub is located at node 3 (Afyon) for r = 3 and moves west to node
35 (Izmir) for larger r values. For p = 6, again, four hubs are located
at common nodes, namely, nodes 1, 6, 34, and 55 (Samsun). For
r = 3, the other two hubs are located at nodes 3 and 23. For larger
r, the hub at node 3 moves west to node 35 and the hub at node 23
moves slightly south-east to node 21 (Diyarbakir). For p = 7, hubs
are located at nodes 1, 3, 6, 34, 35, and 55 for all r values. The sev-
enth hub is located at node 23 for r = 3 and moves to node 21 as we
increase r. Finally, for p = 8, hubs are located at nodes 1, 3, 6, 25
(Erzurum), 34, and 35 for all r values. For r = 3, the remaining
two hubs are located at nodes 44 (Malatya) and 55. The hub at
node 44 moves south-east to node 21 and the hub at node 55
moves south towards the center of the country to node 38 (Kay-
seri). For r = p, the hub at node 38 moves back to 55.

Overall, we can conclude that the allocation strategy does not
have a large effect on hub locations in the optimal solutions for
our instances. Most hub locations remain the same for different r
values. For those hubs that change location, we observe a slight
movement away from the center as r increases.

4.3. Computation times

In our last experiment, we investigate the computational per-
formance of our formulations. We consider a third formulation
which is obtained by aggregating constraints (23) in UrApHMP2
(see Ernst and Krishnamoorthy, 1998b). This new model, called
UrApHMP3, is the same as UrApHMP2 except that constraints (23)
are replaced withX
i2N

xi
lj 6

X
i2N

tijzjl 8j; l 2 N:

With this aggregation, the number of constraints decrease from
O(jNj3) to O(jNj2), but the formulation becomes weaker.

We limit this experiment to datasets CAB with p = 5 and AP with
n = 50. We are able to solve the CAB instances using all three for-
mulations. However, with UrApHMP1, we ran out of memory in
the AP instances, hence, we only report the results for formulations
UrApHMP2 and UrApHMP3. For each instance and formulation, we
report the linear programming relaxation gap, i.e., the percentage
difference between the optimal value of the integer problem and
the optimal value of its linear programming relaxation, in column
‘gap’, the cpu time in seconds in column ‘cpu’, and the number of
nodes evaluated in the branch-and-cut tree in column ‘nodes’.
The best results are in boldface.

All instances are solved using GAMS 22.5 and CPLEX 11.0.0 on
an AMD Opteron 252 processor (2.6 GHz) with 2 GB of RAM oper-
ating under the system CentOS (Linux version 2.6.9-42.0.3.ELsmp).

In Table 7, we report the results for the CAB instances with
n = 25, p = 5, a = 1, 0.8, 0.6, 0.4, 0.2, and r = 1, 2, 3, 5. Here we ob-
serve that UrApHMP1 is stronger than UrApHMP2, which is, in turn,
stronger than UrApHMP3. The differences between gaps are quite
large for difficult instances. For the instance with r = 1 and a = 1,
these gaps are 0.20 %, 5.12%, and 21.27%, respectively. The differ-
ences are smaller for the instances with larger r values and smaller
a values. But even in these cases, UrApHMP3 is quite weak. For all
instances, UrApHMP1 is the best in terms of number of nodes in the
branch-and-cut tree. This formulation is also the best in terms of
cpu time for all instances except those with a = 0.2. These latter in-
stances are rather easy to solve; they are solved in a few seconds
with all three formulations. However, for the difficult instances,
i.e., the instances with large a and small r values, UrApHMP1 has
much shorter cpu times compared to the other two formulations.
For the instance with r = 2 and a = 1, the solution time is 225.41
with UrApHMP1, whereas it is 10059.71 and 14241.13 with UrA-
pHMP2 and UrApHMP3, i.e., around 45 and 63 times larger, respec-
tively. We can conclude that for the CAB data with 25 nodes, the
largest formulation, UrApHMP1, clearly outperforms smaller but
weaker formulations UrApHMP2 and UrApHMP3.

As mentioned above, the results for the AP instances are given
in Table 8 and we can only compare UrApHMP2 and UrApHMP3 be-
cause we had memory problems with UrApHMP1. In these results,
we see that UrApHMP2 outperforms UrApHMP3 in all instances and
for all three measures. The differences between gaps are quite large
in all instances. The largest gap with UrApHMP2 is less than 1%,
whereas the smallest gap with UrApHMP3 is 3.9%. The average gaps
are 0.55% and 4.86%, for UrApHMP2 and UrApHMP3, respectively.
The averages of the number of nodes are 35.33 and 94.83. The dif-
ference is larger for the cpu times. The average cpu time with
UrApHMP3 is 3313.51 seconds; this amounts to 3.67 times the
average cpu time with UrApHMP2.

To summarize, when we analyze these results, we see that, as
long as the memory permits, stronger formulations perform better
despite their large sizes.
5. Conclusion

In this paper, we introduce a new problem, called the uncapac-
itated r-allocation p-hub median problem. Here, each node can be
allocated to at most r nodes. This problem generalizes the single



Table 7
Comparison of formulations for the CAB data with n = 25 and p = 5.

r a Optimal UrApHMP1 UrApHMP2 UrApHMP3

Gap cpu Nodes Gap cpu Nodes Gap cpu Nodes

1 1 1173.24 0.20 82.34 7 5.12 1064.86 5080 21.27 11508.90 3620
0.8 1034.10 0.00 22.60 0 4.48 338.52 1067 17.15 9292.36 981
0.6 876.59 0.00 19.06 0 3.48 99.45 250 12.63 2178.39 407
0.4 707.69 0.00 7.75 0 1.49 19.00 20 7.44 76.78 46
0.2 538.39 0.00 4.85 0 0.23 4.29 3 2.53 5.92 7

Average 0.04 27.32 1.40 2.96 305.22 1284.00 12.20 4612.47 1012.20

2 1 1018.75 0.91 225.41 76 2.16 10059.71 3827 9.33 14241.13 3273
0.8 934.90 0.62 94.32 37 2.14 1589.40 1732 8.34 3554.24 1230
0.6 818.56 0.00 12.52 0 1.56 90.26 326 6.43 256.75 362
0.4 681.81 0.00 4.70 0 0.51 18.46 32 3.92 42.14 36
0.2 530.34 0.00 3.75 0 0.01 1.81 0 1.04 4.96 0

Average 0.31 68.14 22.60 1.28 2351.93 1183.40 5.81 3619.84 980.20

3 1 981.58 0.00 8.75 0 0.24 169.78 87 5.90 595.58 158
0.8 912.23 0.03 22.13 3 0.46 60.96 89 6.08 60.10 46
0.6 807.47 0.00 5.74 0 0.63 33.11 69 5.16 62.68 92
0.4 678.03 0.00 4.80 0 0.20 11.12 8 3.40 25.56 19
0.2 530.00 0.00 3.74 0 0.00 1.32 0 0.99 3.43 0

Average 0.01 9.03 0.60 0.30 55.26 50.60 4.31 149.47 63.00

5 1 975.24 0.00 5.18 0 0.00 5.68 0 5.29 25.69 0
0.8 910.35 0.00 6.15 0 0.32 30.86 20 5.85 52.71 46
0.6 804.70 0.00 5.48 0 0.35 24.08 25 4.82 44.50 56
0.4 676.34 0.00 5.23 0 0.03 7.80 0 3.14 18.00 0
0.2 530.00 0.00 4.19 0 0.00 1.76 0 0.99 3.26 0

Average 0.00 5.25 0.00 0.14 14.04 9.00 4.02 28.83 20.40

Table 8
Comparison of formulations for the AP data with n = 50.

r p Optimal UrApHMP2 UrApHMP3

Gap cpu Nodes Gap cpu Nodes

1 3 158569.93 0.49 1038.43 32 5.92 7072.40 161
4 143378.05 0.62 1189.92 35 6.11 8565.98 179
5 132366.95 0.95 1047.97 91 5.93 6012.50 191

2 3 156160.77 0.29 791.03 11 4.66 3243.53 25
4 141405.48 0.58 1440.95 30 4.93 2302.48 100
5 129773.61 0.75 1081.30 82 4.17 1772.34 112

3 3 156014.73 0.24 600.19 7 4.57 2742.73 24
4 141258.07 0.56 863.98 30 4.83 1772.14 98
5 129513.80 0.72 769.27 44 3.97 1049.42 89

p 3 156014.73 0.24 580.43 7 4.57 2677.03 24
4 141153.38 0.50 683.18 11 4.76 1661.99 86
5 129412.60 0.67 735.54 44 3.90 889.55 49
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and multiple allocation versions of the p-hub median problem. We
propose two mixed-integer programming formulations for this
problem. We show that these formulations boil down to the
well-known four-index and three-index formulations for the single
and multiple allocation p-hub median problem when r = 1 and
r = p, respectively. We discuss several variations of the problem
and propose ways to model these variations. We underline the dif-
ference between imposing upper bounds on path lengths and
delivery times for r P 2. Finally, we perform a computational study
and discuss the outcomes.

The results of our computational study lead us to the following
conclusions: We first conclude that single allocation solutions may
be much more expensive than multiple allocation solutions, how-
ever, allowing a node to be allocated to one or two more hubs may
result in considerable savings in terms of the routing cost. The
resulting solutions are likely to be cheaper than multiple allocation
solutions when the fixed costs related to the nonhub–hub connec-
tions are also taken into account. Moreover, the resulting networks
are likely to be much easier to operate and manage because they
have fewer connections compared to multiple allocation networks.

Second, we conclude that the allocation strategies do not have a
large impact on hub locations in optimal solutions. This implies
that companies may change their allocation strategies without a
big need to move their hubs.

Finally, we observe that a formulation’s strength is important in
solving UrApHMP instances. Hence, an interesting future research
direction would be to derive stronger formulations for this
problem.
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