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In this work, we investigate two groundwater inventory management schemes with multiple users in a
dynamic game-theoretic structure: (i) under the centralized management scheme, users are allowed to
pump water from a common aquifer with the supervision of a social planner, and (ii) under the decen-
tralized management scheme, each user is allowed to pump water from a common aquifer making usage
decisions individually in a non-cooperative fashion. This work is motivated by the work of Saak and Pet-
erson [14], which considers a model with two identical users sharing a common aquifer over a two-per-
iod planning horizon. In our work, the model and results of Saak and Peterson [14] are generalized in
several directions. We first build on and extend their work to the case of n non-identical users distributed
over a common aquifer region. Furthermore, we consider two different geometric configurations overly-
ing the aquifer, namely, the strip and the ring configurations. In each configuration, general analytical
results of the optimal groundwater usage are obtained and numerical examples are discussed for both
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1. Introduction

Effective management of limited resources shared by multiple
users is becoming of more importance due to increasing pressures
resulting from demographic and/or economic growth and ecologi-
cal deterioration. Such resources include fisheries, water and clean
air. They suffer from either lack of enforceable private property
rights or their designation of common/public property. Further-
more, these resources exhibit an interesting property. They tend
to move from one location to another depending on the extent of
usage. Underground water laterally flows within an aquifer along
with the hydrological gradient (difference between low and high
water levels); schools of fish travel to other locations to run away
from heavy fishing in one location; pollution at a point is dissi-
pated degrading the overall quality over a larger area. This prop-
erty permits gaming behavior among users. In this paper, we
focus on groundwater as one of a number of limited resources.
Our motivation comes from the following. Scarcity of water - for
personal and industrial/agricultural use - is increasing in both
absolute and relative terms. Shortages observed in rainfall, adverse
micro-climatic changes, contamination of groundwater reservoirs
(aquifers) due to increasing industrial and human pollution result
in a decrease in the amount of water of certain quality fit for use.
Increases in demand for water due to growth in the overall popu-
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lations and changes in consumption patterns result in the relative
scarcity of this precious resource. In arid and semi-arid regions of
the globe, the scarcity is reaching critical levels. The gaming behav-
ior of users may be detrimental for many communities for some
generations to come.

Earlier works on groundwater management have argued that
welfare gain from applying different policies and disadvantages
of gaming behavior are likely to be negligible. Specifically, Gisser
and Sanchez [7] have shown that, if the common and freely ac-
cessed aquifer’s storage capacity is large enough, a free market
(decentralized) behavior and optimal centralized control strategies
perform equally well in terms of the welfare gain from groundwa-
ter usage. Allen and Gisser [1] extended their work by considering
a non-linear demand function. They also confirmed that if water
rights are properly defined and if the aquifer’s storage capacity
is large, then the difference between no control strategy and opti-
mal control strategy is small, and, thus, can be ignored for practi-
cal policy considerations. However, Negri [11] objected to these
findings on the grounds that the fundamental assumption of
openly accessed groundwater aquifer is not valid. An open access
aquifer assumes that the overlying users can use as much of it as
they wish regardless of their location. However, for most aquifers,
this is not possible since access to groundwater is usually limited
since not all users own the overlying land as well as the water
rights. Furthermore, the lateral flows within the aquifer are not
instantaneous. Saak and Peterson [14] address these inadequacies
by considering a game-theoretic restricted access aquifer with
identical users over a finite planning horizon (of two periods),
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where lateral non-instantaneous flows are governed by a natural
law. Their contribution is twofold: they model underground
hydrological behavior more realistically and they incorporate pos-
sibility of lack of information about the ground transmissivity by
users. However, their analysis is restricted to two identical users.

In this work, we build on their model and extend it to the case
of multiple non-identical users with two different geometric con-
figurations overlying the aquifer. We investigate two groundwater
inventory management schemes with multiple users in a dynamic
game-theoretic structure: (i) under the centralized management
scheme, users are allowed to pump water from a common aquifer
with the supervision of a social planner, and (ii) under the decen-
tralized management scheme, each user is allowed to use water
from a common aquifer making usage decisions individually in a
non-cooperative fashion. In our work, the model and results of
Saak and Peterson [14] are generalized in several directions. We
first extend their work to the multiple non-identical user setting
with two different geometric configurations overlying the aquifer,
namely, the strip and ring configurations. The non-identical struc-
ture among users is represented in the differences of the parame-
ters of each user’s profit function. The rationale behind our
extension to both strip and ring configurations naturally arise
when there are more than two users, since with two users they
are identical. In fact, this resulting variation in the configuration
types itself motivates the extension to more than two users. Apart
from geometric description, it is more important to note that the
strip and ring structures mainly differ in the number of neighbor-
ing users that each user interacts, where in the latter one each user
interacts with two neighbors. In each configuration, namely, in
both the decentralized and centralized problems, general analyti-
cal results of the optimal water usage are obtained. We are able
to obtain closed form optimal solutions for special cases of param-
eter values. Our results reduce to those of Saak and Peterson [14] in
the case of two identical users, and validate some of their conjec-
tures about multiple users.

In our study, we show the existence of a unique Nash equilib-
rium in both configurations and provide the solution structure for
the decentralized problems with n non-identical users. For identical
users, we also manage to derive explicit solutions for the optimal
water usage. It is shown that in strip configuration with n identical
users, the optimal Nash equilibrium usage quantities oscillate
about the optimal Nash equilibrium usage quantities of the ring
configuration. Our numerical results indicate that as the under-
ground water transmission coefficient increases, users become
more greedy and tend to use more water. The analysis for the cen-
tralized problem in the strip and ring configurations reveals that
the optimal solution of groundwater usage is symmetric, unique
across users and independent of the characteristics of the ground-
water aquifer. This generalizes one of the important findings of Saak
and Peterson [14] regarding the optimal equilibrium water usage.
An important question that might be raised by a policy maker is
about the possibility of coordinating the groundwater system by
achieving the centralized solution in the decentralized game theo-
retic setting via a single pricing mechanism. Our results show that
in both configurations, this is impossible to be realized. Addition-
ally, we consider a variant of our model with salvage possibility
for left over water as a proxy for extending the problem horizon.

Our study focuses on the optimal water consumption of multi-
ple users with lateral transmissivity of groundwater among
adjacent users under centralized and decentralized management
schemes. Another work that considers centralized water manage-
ment under a different setting is by Haouari and Azaiez [8]. Their
work differs from ours in that the decision-maker (local authori-
ties) aims at selecting crops and allocating water and land to them
in order to maximize the total linear profit obtained from annual
and seasonal crops for the whole year of the plan. Their model is

addressed centrally for a limited availability of water stock without
allowing any “commonality” of the water source which creates a
gaming behavior in the model. In our work, because of the aquifer’s
commonality, a strategic-form game arises between the n- non-
identical users, and, hence, the water management problem is ad-
dressed centrally and decentrally. Also, our profit function is of
quadratic form. There are also a number of other studies in litera-
ture that consider conjunctive use of multiple water resources such
as Azaiez and Hariga [2], Azaiez [3] and Azaiez et al. [4]. Other re-
lated studies on water management and operations models can be
found in Yeh [15] and Labadie [10].

The rest of the paper is organized as follows. Section 2 includes
the preliminaries and the specifics of the model. Section 3 presents
the analytical results of the two water management schemes for
the strip configuration, while those related to the ring configura-
tion are presented in Section 4. Numerical results are presented
in Section 5. Section 6 concludes our work.

2. Preliminaries and basic model properties

In this section, we lay out some common assumptions and mod-
el properties in our analysis. We consider a system of n users who
are non-identical in their characteristics configured over and using
a common groundwater aquifer to maximize their profits dis-
counted over a finite planning horizon of two periods in either a
centralized or decentralized manner. User i has access to an under-
ground water stock of x; at the beginning of period ¢, fori=1,...,n
and t =1, 2. There is also an aquifer recharge w;; = w, for all i at the
beginning of Period 2; we assume that recharge does not alleviate
the underground water level above the base level x;o. We allow the
cost and revenue parameters to vary over time among users. Let u;,
denote the amount of groundwater pumped (and used) by user i,
i=1,...,ninperiod ¢, t = 1, 2. It is assumed that u;, < x;,, which im-
plies that groundwater is essentially a private resource within each
period and a user can not access groundwater lying beneath an-
other user. As water levels change locally due to consumption by
each user, water in the aquifer may flow laterally between adjacent
users (between the adjacent areas corresponding to the users’
plots). The inter-period lateral flow of groundwater between adja-
cent users is governed by Darcy’s Law. This natural law states that
the rate of flow of groundwater through a certain medium (soil) is
proportionally related to the hydrologic gradient (i.e. the driving
force acting on water) and the conductivity of the medium (i.e.
the measure of the ability of medium to transmit water), &, as sta-
ted in Hornberger et al. [9]. The water stock level of a user in a per-
iod will be expressed as a function of the previous period’s stock
level of the user, the groundwater usage of the user and the neigh-
bors, as well as the aquifer’s hydrological properties. In the analysis
below, we assume that initial water stocks x; 1, are identical for all
users i=1,...,n; furthermore, the soil properties are assumed sim-
ilar so that all users’ water stocks are subject to the same o. The
interaction in the availabilities of groundwater stocks among users
makes their decentralized and centralized problems non-
separable.

The profit functions of users are of quadratic form similar to
Saak and Peterson [14]. The profit function of groundwater usage
realized by user i for time period t is given by

8ir(Uie, Xig) = [,Di,tai‘t — Cit(Xio — Xie)]Uir — 0~5(pi‘tbi‘t + Ci.t)u%p (1)
where x;o=x;; and the cost-revenue parameters p;a;sbinCi¢>0
and satisfy the following condition

(Pichic + Cie)Xio < Piir < (2p;bic + Cie)Xio. (2)

The condition in Eq. (2) on the parameters follows from the mod-
elsin Saak and Peterson [14] and is needed for some of our structural
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results herein as for theirs. In the context of agricultural water usage,
it is assumed that the pumped underground water is used for irriga-
tion of crops. The profit functionin (1) is a special case of the general
profit function v;{pir Viduir) — TilUir,Xir) — ki¢), which has an
empirical estimated specification in Peterson and Ding [13], where
v, is utility-of-income function, p;, is the price per unit of the crop,
yiistheyield of the crop which is dependent on the amount of water
used, 7; (U X; ) is the cost of pumped groundwater (a joint function
of water usage and groundwater stock level) and k;  is the fixed cost
of infrastructural (farming) inputs. When we assume a linear
utility-of-income function, (v;{z)=2z), a quadratic yield function
Vir(Uir) = Qi llie — O.Sbi‘tu,?v[, a quadratic groundwater extraction cost

Tie(Uig, Xig) = Cig [(x,-‘o — Xit)Uie + 0.5uft] and omit the fixed costs

(ki¢ = 0), we get the profit function in Eq. (1). For this profit expres-
sion, we have the following key property.

Lemma 1. Positivity, continuity, concavity

(i) For u;r < Xir < X, the function g; (u;, x;.) is strictly increasing
inuy,i=1,...,nt=12

(ii) The function g;/(ui,x;.) is continuous and concave in u;,
i=1,...,nt=1,2.

Proof. All proofs are provided in the Online Supplement. O

We construct our models with non-identical users in the gen-
eral case. The differences among users may be due to differences
in the yield and cost parameters of the users. The differences in
the yield parameters (p;;,a; and b;;) among users represent differ-
ent cropping and irrigation patterns adopted by users, whereas the
difference in the cost parameters (c;; and k;,) represents different
technologies and machinery utilized in pumping groundwater
from the common aquifer and in irrigating the grown crops. The
geography of the aquifer region and the soil properties (hydrology)
of the land being planted and irrigated characterize possible differ-
ent transmission structures for the users configured over the com-
mon aquifer. Additionally, the specific configuration of the users
over this aquifer contribute to the water dynamics over time
among users. In this work, we consider two configurations - the
strip and ring configurations - within the general framework as
outlined above.

3. Strip Configuration

We consider the system of n non-identical users distributed
adjacently in a strip over the common groundwater aquifer. The
setting may be envisioned as an abstraction of a more complex
geographic configuration with the only restriction that each user
has at most two neighbors. For one dimensional flow of groundwa-
ter, there will be lateral flow of groundwater among adjacently lo-
cated users. Then, the extreme users on the strip (the first and the
last) will receive groundwater flow only from one neighbor,
whereas for all other (non-extreme) users, flow will be from the
two neighbors on both sides. Hence, for i=1 and j=2 and, i=n
and j=n — 1, the lateral flow of groundwater in period 1 is given
by Qi=—al(xij1 —uin+wir) — (X1 —ua+win)l = au —ujn),
where o € [0,0.5] is the lateral flow (aquifer transmissivity) coeffi-
cient, summarizing the hydrologic dynamics of the groundwater
aquifer, and (x;7 — uj; +wi1) — (X1 — uj1 +w;j,) is the hydrologic
gradient (the difference in hydrologic head between the wells).
Similarly, by applying Darcy’s Law in period 1, a non-extreme user
i,i=1,...,n— 1, would have lateral inflows Q; 1; and Q,.1; where
Qi_1i=0(uj1 — Uj_11) and Quq;=o(ui; — Uiq1)- In this configura-
tion, we consider below the two kinds of decision making - decen-
tralized and centralized problems.

3.1. The decentralized problem

In the decentralized problem, each user has the objective of
maximizing his/her own total discounted profit over the horizon
of two periods by choosing the water usage quantity in each per-
iod. But, at the same time, each user has to take into account
usages of all other users due to the commonality of the under-
ground aquifer. This generates an n — player normal-form game,
where the water usage quantity in each period is the strategy
of a player (a user), and the payoff function is given by a user’s
expected total discounted profit over the horizon. The strategy
space of any user is constructed from the other users’ decisions
of water usage and the available (and finite) underground water
stocks in any period. In this section, we consider this game-theo-
retic model and investigate its properties. The decentralized prob-
lem above can be stated formally as a dynamic program as
follows. Let I}, (i, X;) denote the maximum expected total profit
under an optimal water usage schedule for user i for periods t
through the end of horizon, where i, = (uy,..., un,t)T is the water
usage vector for all users in period t and X; = (X1, ... ,x,,,t)T is the
water stock vector for all users at the beginning of period t. For
t=1, 2, the decentralized problem of user i, i=1,...,n, is solved
by the following dynamic program

FZt(ﬂt’Xt) = muaxri‘t(ﬁt’zt)

it

= Max g (Uie.Xie) + Bl (Hr Fei), 3)

Xie + Wi — (1 — o)y — ol
(L]) € {(152)7 (nvn - 1)}

St Xity1 =
e Xie +Wir — (1 = 200U — oU(Ui—1¢ + Uig1e),

0 < uje < Xy (5)

In the above problem, the decision variables for this simultaneous
optimization problem are the water usage quantities of each user
in each period, u;.. Eq. (4) corresponds to the recursive temporal
relationship among the water stocks of the users as dictated by
Darcy’s Law. In our formulation, we assume the same hydrologi-
cal transmissivity coefficient o across the strip for all users and
all periods, as it would be the case for short time horizons. Eq.
(5) gives the constraint for each user’s water usage. We assume
that the discount rate f;;=p with 0<B<1; and set x;;=xy,
wi1=w; and I75(ii3,X3) =0 for all 3,13 and for i=1,...,n. (We
later relax the condition on I;(ii5,X3)). We are now ready to exam-
ine some properties of the optimal solution to the above formula-
tion. We first provide the structural results for the objective
function, I'i¢(i,X;). From Lemma 1 (i), immediately we have the
following.

Corollary 1. The within-period profit function g;{u;x;) attains its
maximum at uf, =X, i=1,...,n,t=1,2.

This result has two implications. (i) The myopic solution of the
problem is trivial; that is, all water resources are depleted in the
first period for any length of the horizon. (ii) In the optimal

solution, all users deplete their water resources in the very last
period, (i.e.,u;*_2 = xi,z,Vi>. Therefore, we have I';(t,%)=

(gi1(Ui1,Xi1) + Bgi2(Xia2, Xi2)]. Furthermore, x;, is a function of i;
and, hence, the n — user problem given in (3)-(5) reduces to a
single period problem which is only a function of #; and X;.
We can use these implications to obtain below a tighter
formulation of the original problem and to establish additional
properties.
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Proposition 1. Positivity, continuity, concavity

(i) Iiq(tiy,X;) is strictly increasing in u;; at u;; =0 if p;a;; >
Blpizaiz + Cipwy), i=1,...,n.

(ii) I'i1(tiy,X;) is continuous and jointly concave in i, if and only if
C2< pighizi=1,...,n

The first part of the above result establishes the positivity of the
optimal solution, that is uj;, > Oforalli,i=1,...,n. Therefore, it suf-
fices for our setting to consider a tighter search space (0 < u;; < X;
Vi). The latter part guarantees a well-behaving objective function
for optimization. We can now re-state the two-period decentral-
ized problem as follows. Fori=1,...,n,
max Fia (U, %) = max(g; (i1, Xi1) + B8z (Xi2: Xi2)l, (6)

st.0< Uiq < Xq, (7)

where the water stock in the last period x;, is given by Eq. (4).

We note that the problem stated in Egs. (4), (6) and (7) corre-
sponds to a single period strategic form game given by the payoff
function I';;(ii1,%;) and the strategy set u;;. We observe that the
strategy set; O <u;; < Xq, iS nonempty, continuous, convex and
compact (closed and bounded) and that the payoff function is con-
tinuous and jointly concave in the players’ strategies as implied by
Proposition 1. Then, from Theorem 1 in Dasgubta and Maskin [5],
we have the following result.

Proposition 2 (Existence of Nash equilibrium). The n — player
game which corresponds to the decentralized problem in the strip
configuration has (at least one) Nash equilibrium.

ANash equilibrium corresponds to the simultaneous solution of n
constrained optimization problems given above. If the Nash
equilibrium occurs such that no user depletes his initial water stock
in the first period (u;_1 < xl,Vi), then we have the unconstrained
solution. Although it cannot be guaranteed in general, this result ap-
pears to us as the most common, real-life solution. Moreover, we are
able to obtain further structural results and elegant solutions for the
unconstrained optimization problem, which we shall present
shortly. For completeness, we need also to consider the case of
constrained solutions where ui; =xi. To this end, we construct the
Lagrange function L(uiy,d;) = ig(ty,X1) + i(x1 — ui1), where
é; = 0 is the Lagrange multiplier corresponding to the constraint

T
uj1 < Xp. Let iy = (u;l, . .,u;J) be the vector of optimal water

,53)" be the optimal vector of the La-
.x1)" be an n x 1 vector of initial

usage in period 1, 6" = (&7, . ..
grange multipliers, X; = (xi,...
water stock in period 1 and 0 = (0,...,0)" be an n x 1 zero vector.
Then, as shown in the Online Supplement for Proposition 3, the Kar-
ush-Kuhn-

Tucker (KKT) conditions of the Lagrange function give the following.

Ail; — 6T =W, (8)
oT(F —1i3) =0, 9)
i <% (10)
5 >0, (11)
v, 01 0 0 0
€& Yy, o0 0 0
0 € o e 0
where Avan=| . .2 /,3 .3 . ) ) Wha =
0 O €2 Vn—l Gn—l
0 O €1 Vn
(M1 A Jno1 An)' and

Vi = { ﬁ(l - OC)Z(C,'VZ - pi,zbil) - (pi.lbil + Ci,l)v i= 17”7
b LB =207 (€2 — pisbia) — (pibia +ci), 0w
B = a)[p;5(Gi2 — bizX1) + (Cia — Pizbiz)wi] — pj1ain,
, i=1,n,
Ai =
B(1 = 20)[p;5(aiz — bizX1) + (Ciz — Piabi2)Wi] — p;1Gin,
O.W.

Po(1—200)(Ci2 — piobiz), 0.W.

o= pou(1—a)(Ciz = pizbiz), i=
T Bo(1—-2a)(Ci2 — pisbiz), O.W.

1, and Ei:{ﬁa(l-a)(c,,_z—p"_zb“), i=n-1,

Proposition 1 implies that the Hessian of I';; is negative semi-def-
inite, and, hence, the two-period decentralized problem is a concave
quadratic program. Therefore, the KKT conditions in (8)-(11) are, in
fact, sufficient for i} to be a global optimal solution as mentioned in
Nocedal and Wright [12]. Several classes of algorithms have been
used for solving concave quadratic problems that contain both
inequality and equality constraints. Active-set methods have for
long been used and are proved to be effective for small- and med-
ium-sized problems. However, a special type of active-set methods
called the gradient projection method has recently been shown
most effective for solving concave quadratic problems having only
upper and lower bounds as constraints on the decision variables,
as discussed in Nocedal and Wright [12]. Hence, any one of these
methods may be employed for solving the KKT conditions above
since we have only the upper bound on decision variables. Clearly,
if 6; =0 in the solution for the above Lagrange function for all i,
then, the optimal solution is the unconstrained solution (global
maximizer of I';;(ii;,X;) in ®"), which we consider next. First, we
establish the uniqueness of the unconstrained optimal solution.

Proposition 3. Uniqueness of the global maximizer and opt imal
ity).

(i) The global maximizer of I'i1(ii1,X) is unique and given by
T T q 5 5 *k
upy =3 uyy =2 and Ul = Ao + gy + Cur22) U’y

for k=1,...,n—2, wheret; = A [Z}?:Oe<n,n,j)é(n,j_2>] - 01[An—

1 5 1 3 1
> im0€mn—j)4n-j, T2 ="V [in = i—0€mn-j) infj] - [Zj:oe(n-nﬂ') X
~ 1 ~ 1 ~ 5
en-jnl K= [Zj:oem.n—j)e(n—j,n] -0 [Zj:oem,n—j)e(nﬁm] k2=
2 5 p 2
[ikﬂ - Zj;]e(k+l.k+2—j)}~k+2—j:|/[e(k+l.k+2)]7 €k+2.m) = *[ijl X
(k1 k2—j) Bera—im))/[€uer1 ks s form=1,2;24 = A, = 0,841 =
é(22) = Lé(l,z) = é(Z,l) =0 and €m,i) = é(m.]) = é(m.2) =0, for
{imy<1 and {im}>n; for i=1,...,ne;iy=y; and
o (i) =(Gi+1),i=1,...n—1
eijy =19 €, (L) =@@i-1),i=2,....n
o.w.

)

(i) If 0 < ujj < x4, for all i, then u;3, given above, is the optimal
solution for the decentralized problem.

When all users are identical, we have g;, = g; for all i. In the se-
quel, in A and W, we have

y,i=1,n w, i=1
e 0 = .
i €, ow.” o, ow.’

w, i=n-1 , i=1n
e,-:{ ’ and }.i:{n’ B
g, O.W. A, 0.W.

where y=p(1—a)X(c; — p2b2) — (p1b1+ 1), €=p(1 - 20)%(cy —
p2b2) — (p1bi+c1), @ =po1 —a)(ca — paba), 0= po1 —20)(ca —
p2b2), =P —a)pafaz — bax1)+ (C2* paba)wi] — pra;  and
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2= B(1 = 20)[pa(az — baxy) + (€2 — paba)wq] — p1a;. In this case, the
system can be characterized through difference equations with
location index as the argument (see Elaydi [6]); hence, we have a
closed form result for the optimal solution to the unconstrained
problem.

Corollary 2 (Unique global maximizer for identical users). For
n — identical users on a strip, let k=n/2 if n is even and (n+1)/2
otherwise. Then, the system Aii;* = W has a unique solution given by
Uy =gy =ho+ (r) +ho(ry)i=1,...,k, where hy=J}

(20 +€), 11 = (—€ - V€2 —462)/20, 1y = (—€ + V€2 —402) /20 and
for k=n/2,

) - (32)4]
= 1’
[y + o(r1)?] - [pr + o)) 2220 (2
o+ (0+er ] r\*"
hy = —h, |20 ON) (T
0+ (0+ €|\
and for k= (n+1)/2,

. - (52)/]

=y
by + on)?] - [ra + ()7 [22] (%)
B 20 + € (k=1)
hy = —hy {20’ + erj <r2> '

Remarks. (1). We note Saak and Peterson [14] find that the Nash
equilibrium for n = 2 gives water usages for both users that are sym-
metric, unique and dependent on lateral flow coefficient «. Corollary
2 also implies that the unconstrained optimal solution is symmetric
around the mid-point (s) of the strip and generalizes their findings to
the case wheren > 2.(2). Since € and o are negative, we haverq,r, < 0
and r; > rp. This implies that the unconstrained optimal solution has
a fluctuating structure across the users from the extremes toward
the center. Thus, for the unconstrained optimal solution, we have
established theoretically Saak and Peterson’s [14] conjecture (p.
226) that water usage would not be monotone for multiple users
(n > 2)even when they are all identical. We think that this has signif-
icance for policy makers in the design of payment schemes (cost
structures) for underground water usage for multiple users (n > 2).
In our numerical study, we have observed that, typically, the second
most extreme users at both ends of the strip have the highest water
consumption in the unconstrained solutions. If this observation
always holds, then it may be possible to obtain the cost-revenue
parameter space so that the Nash equilibrium always occurs as the
unconstrained optimal. (3). In the above formulation of the problem,
we have assumed that users have complete information about other
players’ parameters and the hydrological properties of the aquifer
expressed through o.. An interesting variant of the problem analyzed
by Saak and Peterson [14] for n=2 is the case where users have
incomplete information about « considered to be a random variable.
In the case of identical users, it turns out that, also for n > 2, the prob-
lem can be stated as the expected total discounted profits and all of
the results provided so far involving o« would still hold in the expec-
tation sense; that is, E[o] in place of o, E[(1 — ®)?] in place of (1 — a)?
etc. For non-identical users, incorporation of asymmetry of informa-
tion seems not so straightforward. We examine further properties of
the optimal solutions in our numerical study.

3.2. The centralized problem

In this problem, we envision a central decision maker (social
planner in the public policy parlance) aiming at determining the

optimal water usage for each user so that the total joint discounted
profit of all users throughout the planning horizon of two periods is
maximized. The problem can be formally stated as a dynamic pro-
gramming problem as follows. For t=1,2,andi=1,...,n,

I (i, %) = max I ¢(1r, X¢)

T

max {{Zgzt U,t,X,t } +ﬁtf:+](ﬁt+],5(}+])} (12)
s.t. (4) and (7 )

where I',(il;, %) is the joint profit-to-go function from period t until
the end of the problem horizon. All of the other conventions and
notations of the decentralized problem are retained. Since
ft(ﬂ,,)?() is a positive linear combination of individual discounted
profit-to-go functions in the decentralized problem, we immedi-
ately have the following.

Corollary 3. Myopic optimality, positivity, continuity, concavity

(i) The myopically optimal water usage in period t is to deplete all
stock |g; (Uir, Xit) = gi,f(xi.t,xi,t)l
(ii) For a given X, I'1(ii1, %) is strictly increasing in u;; at u;; =0 if
Pitliz = B(piz0i2 + Ciowy), for all i
(iii) For a given Xy, I'1(iiy,X,) is continuous and jointly concave in ii
if and only if c;> < pizbiy, for all i.

The above imply that the centralized problem also reduces to an
equivalent single period concave quadratic optimization problem
subject to the constraint set 0<u;; < x4, for all i. Constructing
the Lagrange function for this problem L(uis, 01) = (i, %)+
3i(x1 — ui1), the KKT conditions result in Aii; _5T = W together
with (9)-(11). The unconstrained solutlon of the centralized
problem corresponding to the general case of non-identical users
is given in the following result.
Proposition 4. Uniqueness maximizer and
optimality).

of the global

(i) The global maximizer of I'4(iiy, %) is unique and given by
upy =3, U3 and u,

uy =2 = Oz + €2 Ui + i) UsT,
fork=1,...,n -2, where

%)

|
o
B
=
L
o>
=
I
L —

3
On1— Z €(n-1nj) Hnj:| )

j=0

3 2
D= en1a€nin ) €nnien-iz)
= .
3 2
- Z €(n-1,n-j)€(n-j2) Z €(n,n—j)€(n—j1)s

j=0 j=0

4
Oki2 = |0k — Zekk+2 02 ,} / [e(kki2)]s
j=1

4
k+2m = |:Z (kk+2—j) € k+2 jm}/[ekkJrZ
=1
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for m= 1, 2,' g)] = g)z = 0,@(1_]) = é(z‘z) = ‘17(:3(],2) = é(;]) =0 and
€mi) = €m1) = €ma) =0, for {m,i}<1 and {m,ti}>n; ey ;= (pii-
piabi1+ci) + B(1 — 0w (pizbi 2— Ci2) + Bo?(pjbj2 G2) (ij)e
{(1,2),(nn—- 1)}

ey = (Pi1bir +Cin) + (1 =200 (piobiz — ci2)
+ 130(2[(/),-,1,2171‘71.2 - Ci—l.z) + (pi+1_2bi+1.2 - Ci+1.2)]7
i=2,....n-1,
eim = B2 (P22 — 6j2), (i.4.m) € {(1,2,3),
(n,n—1,n-2),(2,3,4),(n—-1,n-2,n-3),
(kk—1,k—2), (k.k+1,k+2)},
eijy = (1 —a)(p;abiz — €iz) + Bor(1 = 20)(p;2bj2 — ¢2),
(i.j)€{(1,2),(n,n-1)},
ey = (1 — 20 (pyybia — Ciz) + (1 — )
x (Pj2bjz —G2). (1.J) € {(2,1), (n - 1,m)},
ejy = (1 —=20)[(p;2bi2 — Ciz) +(Pj2bj2 — G2)],
(i,))€{(2,3),(n—1,n—-2),(k,k—1),(k,k+1)},
eij =0, elsewhere;
0i = pia @iz — B(1 = )(P;50i2 + CiaWr) — PP 202 + CjaWr)
+B(1 =) piabia(x1 +wr) + o bja (X1 +wr),
(i,j) €{(1,2),(n,n—1)} and
0;=p;1ai1 — P(1 = 200)(p;5Gi2 + CiaWi) — POU(P;i_1 2Gi12 + Ci_12W1)
+ (P11 281112 + Ciy12W1)] + B(1 = 200) 03, b2 (%1 +wr)
+ Bopi_1 bis12 (X1 + W) + Pr pbisi2 (X +wi )],

(i) If 0 < ujy <y, for all i, then 33, given above, is the optimal
solution for the centralized problem.

For identical users, we establish that the global maximizer of TH
in ®" is unique, independent of the hydrological properties of the
aquifer (o) and it is the same for all users unlike the decentralized
solution. Furthermore, the unconstrained solution is the optimal
for the centralized problem for certain cost and revenue parameter
values. We state this result below.

Corollary 4. Uniqueness of the global maximizer and optimality
for identical users).

(i) Suppose that users are identical and c; < p2b,. Then, the global
maximizer of I'y(iiy,X;) is unique and given by

Uy =u”
= [p1a1 — B(p,az + Cawr) + Bpyba (X1 +wi)]/[(p1b1 +€1)
+ B(pyb2 — 2)], Vi

(ii) If 0 < ufy < x4, for all i, then the optimal solution for the cen-
tralized problem is given by u** above.

Remarks (1). Saak and Peterson [14] have shown for n = 2 that the
optimal solution is independent of the characteristics of the aquifer
expressed through o. Hence, Corollary 4 generalizes this finding.
However, Saak and Peterson [14] make an implicit assumption that
the Nash equilibrium will be the unconstrained solution through-
out their analysis. In our result, we establish the conditions for
the optimality of the global maximizer to be within the constraint
set. (2). The conditions for the optimal solution above imply that,
under the cost-revenue assumptions of Saak and Peterson [14],
the centralized problem results in an optimal usage which does
not deplete the initial stock when 0.5 < < 1 - giving a realistic
hurdle rate between 0% and 100% per period. Hence, we think that

the above optimal result would be observed in most realistic cases.
(3). From a policy maker’s perspective, it is important to know if
the centralized solution can be achieved in the decentralized
game- theoretic setting through a pricing mechanism. Under the
stated condition above, the optimal solution dictates the same
usage for all users. However, in the decentralized solution for the
unconstrained case, we established that water usage fluctuates
from the ends toward the midpoint (s) of the strip. As these consti-
tute instances of counter examples, we establish by contradiction
the following.Corollary 5. No coordination). In a strip configura-
tion with n identical users, for (p¢b;: + c)xo < pear < (2pibe + c)Xo, there
does not exist a periodic unit pumping cost c, that equates the Nash
equilibrium with the centralized optimal solution, for all t.

We present further observations about the optimal solution in
our numerical section.

4. Ring configuration

In this section, we consider the setting where all n users are con-
nected to each other in a ring or circular configuration. By definition
of a ring, we have n > 2. Unlike the strip configuration examined
above, there are no locational extremes (ends) and each user has ex-
actly two neighbors. Hence, the lateral flows in the aquifer makes all
users communicate with each other; and, one particular user’s water
consumption affects all users in the system either directly or indi-
rectly. The more even nature of the structure brings a similar even-
ness to the solution as well, as shall be discussed below. Users are
numbered in a clockwise fashion where each user has lateral flow
from one preceding and one succeeding adjacent user in the ring.
In this configuration, we consider below the decentralized and cen-
tralized decision making environments.

4.1. The decentralized problem

The decentralized problem for the ring configuration is similar
to that for the strip configuration except that the recursive relation
between water stocks over time is different owing to the non-exis-
tence of any ends of a ring. For t = 1, 2, the decentralized problem
for useri,i=1,...,n, is formally stated as a dynamic program given
by

F;it(ﬁ“)_é[) = H&axf,:t(ﬁt,)_(})

it

= max (g (Uie,Xie) + Bic Do e Fern) |, (13)

Xie + Wi — (1 = 200U — ot(Uje + Umyr)
i,j 1* 72 s Uk 10— 171 ’
St Xipyq = (i,j;m) € {(1,n,2),(n,n )} (14)
Xie +Wir — (1 = 200U — ot(Ui1¢ + Uis1e),

i=2,....n—1,

0 < ujr < Xig- (15)

In the above, we retain the previous notations. Note that Eq. (14)
describes the recursive temporal relationship among the water
stocks of the users under Darcy’s Law; unlike the strip, the ring con-
figuration allows for each user to communicate with its immediate
neighbors. As before, we have the same o for all users and all ¢;
Bir=p with 0 < B < 1; we set x;1 =x1, W1 =w; and [3(li3,X3) =0
for all X;, i3 and for i=1,...,n. (We later relax the condition on
I'j(ii5,%3)). The properties of the within period profit function in
Corollary 1 also imply that the decentralized problem in the ring
configuration can be written as a single period problem, and that
its objective function is also a well-behaving function as stated in
the following result.
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Proposition 5. Positivity, continuity, concavity

(i) Ti1(ty, %) (= [gi1(Wi1,Xi1) + Bgi2(Xi2, Xi2)]) is Strictly increas-
ing inu;; at u;; =0 1if pi1a;; = P(Pi2Qiz+ Ciawy), i=1,...,n.

(ii) I';i1(ty,X;) is continuous and jointly concave in i if and only if
C2< pighiai=1,...,n

The proof methodology is identical to that for Proposition 1 and,
hence, is omitted. Proposition 5 enables a tighter reformulation of
the n — user problem given by Eq. (6) as the objective function sub-
jectto Eq. (7) where the water stock in the last period x; > is given by
Eq. (14). As the properties of the problem satisfy those of Theorem 1
in Dasgubta and Maskin [5], we have the existence of a Nash equilib-
rium as stated below.

Proposition 6. Existence of Nash equilibrium The n — player game
which corresponds to the decentralized problem in the ring configu-
ration has (at least one) Nash equilibrium.

The Nash equilibrium corresponds to the simultaneous solution
of n constrained optimization problems with a single constraint
uj; <Xxp, i=1,...,n. As shown in the Online Supplement for
Proposition 7, the KKT conditions of the Lagrange function
L(uiy,6;) = I'i(tiy, %) + 6i(x; —u;1), together with (9)-(11), give
Bii; — &' = Z, where

€ o7 0 0 01
O, € 0y 0 0
0 03 €3 03 0 T
ann = . 5 Zn><1 = ()ﬂ ;LZ o ';Ln—l j~n)
0 0 On_1 €p_1 Op_q
g, 0 -~ O O, €
and

€ = B(1 — 20)%(Ciz2 — pizbi2) — (Pi1bin + Ci). G
= po(1 - 20)(Cia — p;biz) and 4
= (1 = 20)[p;5(ai2 — biax1) + (Cia — Pi2bi2)Wi] — pi1Gin.

Proposition 5 implies that the Hessian matrix of I';; is negative
semi-definite, and, hence, the problem is a concave quadratic pro-
gram. Therefore, the KKT conditions above are, again, sufficient
for ii} to be a global optimal solution; and, the above mentioned
methods may be used to find it. Next, we focus on the uncon-
strained solution (57 = 0, Vi).

Proposition 7. Uniqueness of the global maximizer and optimality
for non-identical users).

(i) Suppose that users are non-identical. Then, the global maxi-
mizer of I';; (Aﬂl,)?l)Ais unique azzd given by uyy =% uy, =32
and Ui, = Aks2 + €2 Uiy + B2y, for k=1,...,n -2,
where

%1 = [Al —01 /qvn] |: e(n.n—j)é(n—jl]:|

1
=0

1
—[o14+018n2)] Pn - Ze(n.nfj)/ln—j:| ,

=0

1
Ty =[€61+018n1)) |:;ln - Ze(n.n—j);ln—j:|
-0

1
On+ Ze(n.n—j) é(nfj.l):| s

Jj=0

— (21— O]

1
K=[€1+01 é(n.l)] {Ze(n.n—j)é(nfjl)}
j=0

1
—[01+0184m2) |:0n + Ze(n.n—j)é(n—j.l)} )
j=0
and &, my are as defined before in Proposition 3. In addition, we have,
fori=1,...,n, e;p=¢€ and

o, (i) e {i+1),(Im}, i=1...n-1,

e(ij): 0, (17]) e{(ivi_1)7(n71)}7 i:27'~~1n’
0, ow.

(i) If 0 < ujy < x4, for all i, then u;3, given above, is the optimal
solution for the decentralized problem.

When all users are identical (i.e. €;=€,0;= ¢ and 4; = 4, where €,
g, 2<0), it is possible to obtain a compact expression for the Nash
equilibrium.

Corollary 6. Unique Nash equilibrium for identical users). The
n — player game corresponding to the decentralized problem in a ring
configuration has a unique Nash equilibrium given by, for all i,

o = {/1/(20'+6), 2> (20 + €)Xq,
BT g, o.w.

Remarks(1). In a ring configuration with identical users, all users
consume the same amount from the aquifer in each period. So long
as the cost-revenue structure is such that the condition 1>
(20 + €)x, is satisfied, the water stock is not depleted; otherwise,
all users deplete the initial stock in the first period leaving nothing
for the next period. We think that this observation may have signif-
icant implications for policy makers in setting the unit costs for
underground water usage if decentralized decision making is to
be employed. (2). Since users’ optimal decisions are identical, it
may be possible to convince the users either (i) into a cooperative
game rather than the competitive one they are playing, or (ii) into
enforcing a centralized decision. In the next section, we take up
this important issue of possible coordination through unit prices;
that is, whether or not single price mechanisms exist through
which the decentralized solution may converge to the centralized
optimal decision. (3). Similar to the strip configuration, it is possi-
ble to construct the above game with imperfect information about
the parameter o by replacing the expressions involving « with their
expectation for identical users.

4.2. The centralized problem

Analogous to the strip configuration, the centralized problem
for the ring configuration envisions that a social planner aims at
determining the optimal underground water usage for each user
so as to maximize the total discounted profit for the entire system
stated in Eq. (12) subject to Eq. (15) where ;- is characterized by
Eq. (14). Since the objective function of the optimization is a posi-
tive linear combination of the individual profit-to-go functions, we
have the following result.

Corollary 7. Myopic optimality, positivity, continuity, concavity

(i) The myopically optimal water usage in period t is to deplete all
stock (g, (i, Xio) = 8o (Xie, i)

(ii) For a given Xy, I';(ily, ;) is strictly increasing in ui;atu;;=0if
P11 = P(pi2aiz + ¢ipwy), for all i.
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(iii) For a given %, I'y (ti1, %) is continuous and jointly concave in i
if and only if c;> < pi2bio, for alli.

The above result once again implies that the centralized prob-
lem in the ring configuration reduces to an equivalent single per-
iod concave quadratic optimization problem subject to the initial
constraint set u;; < x; for all i. Constructing the Lagrange function
for this problem in a similar fashion, we observe that the KKT
conditions are given by F)E?u1 ST =W, together with (9)-(11).
Similar to the strip configuration, the method of finding the
unconstrained solution for the general case of non-identical users
is given below.

Proposition 8. Uniqueness of the global maximizer and optimality
for non-identical users).

(i) Suppose that users are non-identical. Then, the global maxi-
mizer of Fl(u1 Xp) is unique and given by uj", =

)2

& Uy =4

€2~y ~dy 3, u — e -diupy —dipust —disug)
da rT4l dig

Uz = a"d“iilz,l

G2 + ez U + a2 U5y + a2 3) U5 + Ckr2.a) Uy, for
k=3,...,n—2, where

Y= (a2.353 - a3,3éz)(a4.zaz,3 - a4,3az.2)

- (a2.364 - a4.352)(a3.za23 - a3,332,2)7
V2= (&2_384 - a4,3€2)(a3.1az,3 - 33,332.1)

- (a2.3€3 - a3.3éz)(a4.1a2.3 - 84,3512‘1)7
0= (a3.1a2.3 - 83_3212,1)(&4_2&23 - a4,3a2‘2)

- (a3.2a2.3 - aa,zaz‘z)(a4.1a2,3 - a4‘3a2.1)7
€ =di € — dzz4€1,ai.j = d1‘4dij - di,4d1j7

fori=2,3,4 andj=1,2,3,

1

e(l,m) + Ze(l n ])é(n —j,m) m= 17273
Jj=0
dl.m = 1 ’
> €an ] €(n-j4) m=4
j=0
dym = eom +eomenm, m=1,234,
nll+zenln1)e(n11 m=1
i
d3.m = 3 ’
Ze(n—l.n—j)é(n—j.m)7 m=2,3,4
j=0
2 A~
e(n,m) + Ze(n n ])e(n —j.m)» - ]72
j=0
d4.m = P
> emn-i)€(n-jm m=3,4
j=0

1
> e ibnis
)
€2 = ¢y — e n,
3
€ =hn1— > Cn1nj)bnjs
=0

3
€4 = d)n - Z e(n,n—j)d)n—
=0

e s 4 o
Withdria = ¢ — D11 kk+27j)d)k+2—j] /[e®ki2)]s —[h

ik ki2—j)Bk+2—jm)]/ [€kk+2)], for m=1234, with the conventions
¢ =0,8;5 =1, for j=1,2,3,4,8;; =0, for ij=12,3,4,i]j, and
emi) =€mj =0, for {im}<1 and {im}>nand j=1, 2, 3, 4, where,
for l = 1v- .5 n, e(l,l) = (p1,1b1,1 + Cl,l) + /S(] - 20‘) (,01, 2b1,2 - Cl,Z) +
BoPl(pic12bic1p — Ci12) ¥ (Pirigbir, 2 - Cn12)l i) =por
(pic12bi1i2 — Cica2)y edizny = Po(1 — 2a)[(pic12bii12 — Cioa,  2)+
(pizbiz — €i2)l, eqiry=po1 = 20)[(pizbiz — ¢, 2)+ (pir12bir12 —
c12)l  eir2) = Po(Pin12bi1 2 — Cir2)ejy =0,  elsewhere  and
¢i=pi1ai1 — Plo(pi128i 12+ Cioq, 2W1) + (1 — 200)(piaaiz + CioWq) +
o Pis1,2Gi12 + Cir12W1)] + Blopi12bi1 (% +wyq) + (1-2x)
Pi, 2bi2(X1 + Wq) + apis1 2bjsr 2(x1 + Wil

(ii) If 0 < ujy < xq, for all i, then u;;, given above, is the optimal

solution for the centralized problem.

e (k+2,m) =

For identical users, we find that the results for the optimal solu-
tion of the centralized ring configuration are exactly the same as
those for the strip configuration, as stated below.

Corollary 8 (Uniqueness of the global maximizer and optimality
for identical users). Identical to the results of Corollary 4.

Corollaries 4 and 8 indicate that the configuration of the users
does not change the optimal allocation of water among users when
the system is managed centrally. In the strip configuration, we
have shown that it is not possible to coordinate the system through
a centrally set unit cost (c;). This arises from decentralized deci-
sions of users being non-identical even for identical users due to
their differing locations over the common aquifer. For the ring con-
figuration, the decentralized optimal solution is the same for all
identical users. The next question we will address is: Is it possible
to coordinate the system in the ring configuration?

Corollary 9 (No coordination). In a ring configuration with n
identical users, for (pb¢ + c)xo < piar < (2p¢be + c¢)xo, there does not
exist a periodic unit pumping cost c, that equates the Nash equilibrium
with the centralized optimal solution, for all t.

Thus, under the cost structure adopted herein and by Saak and
Peterson [14], the social planner can not entice multiple (n>2)
users to behave in accordance with the centralized optimal deci-
sion. If the total profits realized from the central allocation of usage
are greater than those realized decentrally, then the centralized
solution will dominate the decentralized one. Unfortunately, no
analytical comparison could be obtained for the total discounted
profits realized from the optimal usage quantities under both man-
agement systems. However, the following section provides some
numerical illustrations and comparisons between the solutions in
both configurations.

So far, we have considered the scenario where all water stock is
depleted by the end of the problem horizon. Next, we extend this
model by allowing users to partially consume water stock for the
second period for irrigation purposes and to salvage the remaining
stocks according to a quadratic salvage value function. The addi-
tion of a salvage function may be viewed as a proxy for the impact
of extending the problem horizon. We discuss this variant of the
model in the Appendix; we observe that the fundamental results
hold under certain conditions for this case, as well.

5. Illustrative examples

We next present some numerical examples to illustrate the
impact of the number of users and the lateral transmissivity
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Table 1

Equilibrium usage in period 1 for n — identical users on a strip.
n 1 2 3 4 5 6 7 8 9 10
Setting1 pir=1,0ai;=10, bjy=5, ciy=2
ui, 5 6757 .6631 6635 6635 6635 6635 6635 6635 6635
u;, - 6757 .8961 .8890 8892 8892 .8892 .8892 8892 8892
u;, - - 6631 .8890 8819 8821 .8821 .8821 8821 8821
uy, - - - 6635 8892 8821 8824 .8824 8824 8824
uz, - - - - 6635 .8892 8821 .8824 8824 8824
ug, - - - - - 6635 .8892 8821 8824 8824
us, - - - - - - 6635 .8892 8821 8824
u;, - - - - - - - 6635 8892 8821
us, - - - - - - - - 6635 .8892
Uio, - - - - - - - - - 6635
T (i, %) 7.83 15.66 23.49 31.32 39.15 46.98 54.81 62.64 70.47 78.30
ST (i, %) 7.83 15.20 22.26 29.28 36.08 43.12 50.14 57.16 64.18 71.20
Setting2 pi1=1.05, pi>=1, a;; =10, bjy =5, cijy=2
ui, .5366 7105 6985 .6988 .6988 6988 6988 6988 .6988 6988
u;, - 7105 9274 9206 9208 .9208 .9208 .9208 9208 19208
u;, - - 6985 9206 9124 9141 9141 9141 9141 9141
u, - - - .6988 9208 9141 9143 9143 9143 9143
uz, - - - - .6988 .9208 9141 9143 9143 9143
u;, - - - - - 6988 19208 9141 9143 9143
us, - - - - - - 6988 19208 9141 9143
u;, - - - - - - - 6988 19208 9141
us, - - - - - - - - .6988 19208
T - - - - - - - - - 6988
T (i, %) 7.98 15.96 23.94 31.92 39.90 47.88 55.86 63.84 71.82 79.80
T T (@, %) 7.98 15.64 21.91 28.12 35.07 42.06 49.02 55.98 62.94 69.90
Setting3 pir=1,0a;1 =105, aj2=10, bjy =5, ¢y =2
ui, 55 7297 7168 7172 7172 7172 7172 7172 7172 7172
u;, - 7297 19552 9480 9482 19482 .9482 .9482 9482 9482
u, - - 7168 9480 9407 9410 9410 9410 9410 9410
uy, - - - 7172 9482 9410 9412 9412 9412 9412
us, - - - - 7172 9482 9410 9412 9412 9412
u;, - - - - - 7172 19482 9410 9412 9412
us, - - - - - - 7172 19482 9410 9412
u;, - - - - - - - 7172 9482 9410
us, - - - - - - - - 7172 9482
U0, - - - - - - - - - 7172
T (i, %) 8.01 16.02 24.03 32.04 40.05 48.06 56.07 64.08 72.09 80.10
S T (i, %) 8.01 15.7 23 30 37.49 44.73 51.96 59.21 66.46 73.71

Table 2

Total equilibrium usage and total profits for n — identical users on a strip: time-invariant setting.
n 1 2 3 4 5 6 7 8 9 10
up, Ui, 1 1 9418 9436 9436 9436 9436 9436 19436 19436
Uy + U, - 1 1.1165 1.0564 1.0564 1.0582 1.0582 1.0582 1.0582 1.0582
uj, s, - - 9418 1.0564 9928 19982 19981 19981 19981 19981
Uy, + U, - - - 9436 1.0564 .9982 1.0002 1.0002 1.0002 1.0002
us g +ug, - - - - .9436 1.0582 .9982 1.0002 1.0002 1.0002
ug, U, - - - - - 9436 1.0582 9981 1.0002 1.0002
U+ U, - - - - - - 9436 1.0582 .9981 1.0002
U +ug, - - - - - - - 9436 1.0582 .9981
up; + Uy, - - - - - - - - .9436 1.0582
U1 + Uig - - - - - - - - - -9436
TP 5 1.351 2.223 3.105 3.994 4.870 5.752 6.634 7.516 8.400
Ri% 50 67.57 74.08 77.62 79.75 81.16 82.17 82.93 83.52 83.99

coefficient o on the optimal usage quantities and the discounted above.) For comparison with the results of Saak and Peterson [14],

profits. In all of the following examples, all users are taken as iden- we assume that « is perceived by all users to be a random variable

tical with parameters =1, wijgo=w;;=0 and x;0=x;1=1. (The uniformly distributed over [0,0.5]. We provide numerical exam-

numerical results are obtained from the analytical results provided ples for time-invariant and time-variant settings.
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Table 3
Profits per user in the decentralized problem for n-identical users on a strip: time-invariant setting.
n 1 2 3 4 5 6 7 8 9 10
Iy (i, %) 7.83 7.60 7.21 7.21 7.12 7.12 7.12 7.12 7.12 7.12
I3, (i, %) - 7.60 7.83 7.42 7.42 7.44 7.44 7.44 7.44 7.44
I'34(th,%) - - 7.21 7.42 7.00 7.00 7.00 7.00 7.00 7.00
T4 (1, %) - - - 7.22 7.42 7.00 7.02 7.02 7.02 7.02
I'5, (i, %) - - - - 7.12 7.44 7.00 7.02 7.02 7.02
Iy (i, %) - - - - - 7.12 7.44 7.00 7.02 7.02
I3, (Hh, %) - - - - - - 7.12 7.44 7.00 7.02
Ty (U1, %) - - - - - - - 7.12 7.44 7.00
Iy, (i, %) - - - - - - - - 7.12 7.44
Ioq(U1.%1) - - - - - - - - - 712
ST (U, %) 7.83 15.20 22.26 29.28 36.08 43.12 50.14 57.16 64.18 71.20
Table 4
Equilibrium usage in periods 1 and 2 and total profits for n — identical users on a ring.
n Uiy uj, (ujy +ujy) TP, Ri% I (i, %) Sy (Hh, %)
Setting1 pit=1,0a;,=10, by =5, ciy =2
1 5 5 1 5 50 7.83 7.83
2 .6757 3243 1 13514 67.57 15.66 15.20
n=3 .8824 1176 1 .8824n 88.24 7.83n 7.032n
Setting2 pi1=1.05, pia=1,0a;;=10, bjy=5, it =2
1 .5366 4634 1 .5366 53.66 7.98 7.98
2 .7105 .2895 1 1.421 71.05 15.96 15.64
n=3 9143 .0857 1 .9143n 91.43 7.98n 7.24n
Setting3 pir=1,0a;1=10.5, a;> =10, b =5, ciy =2
1 .55 45 1 .55 55 8.01 8.01
2 7297 2703 1 1.4594 72.97 16.02 15.7
n=3 9411 .0589 1 9411n 94.11 8.01n 7.25n

Example 1. We first investigate the impact of the number of users
on optimal water usage and expected profits in the strip configu-
ration. We consider three different settings in this example. Namely,
the first one is time-invariant in which, we set p;, = 1,a;¢ = 10, b;s = 5
and ¢;, = 2 for all i and t. The second setting is time-variant in which,
we set p;1=1.05, p;2=1,a;,=10,b;;=5and ;.= 2 foralliand t. The
last setting is also time variant in which, we set p;;=1, a;; = 10.5,
a;> =10, bjy=5 and c;, =2 for all i and t. Table 1 summarizes the
water usage per user in period 1 accompanied with the total

discounted profits in the centralized (f;) and decentralized (I‘”>

problems realized over the two-period horizon. The centralized
solution is found from Corollary 4. More specifically, for time-
invariant setting, we find that u;;=05i=1,....n, and the corre-

sponding discounted profit is 7.83. For n users, the total discounted
profit attained by the social planner is 7.83n. In the second setting,
we have u;; = 0.5366, i=1,...,n, the discounted profit per user is

7.98 and the total discounted profit of the social planner is 7.98n.
Likewise, in the last setting, we have u;; =0.55,i=1,...,n, the

discounted profit per user is 8.01 and total discounted profit
attained by the social planner is 8.01n. We observe that with higher
crop’s unit price in period 1 (setting 2), users pump more in period 1
and realize more total profits in the centralized problem compared
to time-invariant price (setting 1). However, as they pump more
under this setting, their total profits in the decentralized problem
deteriorate with respect to the time-invariant setting. In setting 3,
we observe that users pump more in period 1 and realize more total
profit compared to the time-invariant setting in both centralized
and decentralized problems.

Table 2 presents the total usage per user over the two-period
planning horizon (u;j; +u;,) of the decentralized problem with
time-invariant setting. In this table, TP, denotes the total usage in

period t where (TP, = Y ,u;,) and R;% denotes the percentage of
the average usage, (R%=(TP,/n) x 100%). The optimal water usage
is symmetric around the mid-point of the strip but not monotone
with respect to the user location. This numerically validates Saak
and Peterson’s [14] conjecture as noted in Section 3.1. We make
two observations. (i) Non-extreme users pump more than the ex-
treme ones in period 1, while the opposite is true in period 2. (ii)
The total water usage may exceed the initial stock levels for some
users. Table 3 tabulates the total discounted profit per user in the
decentralized problem. We note that the profits are consistent with
the total water usage; that is, highest profits are obtained by the
second to extreme users. Likewise, profits are also symmetric
around the midpoints and non-monotone. However, the least prof-
its are not realized by the extreme users, which may be attributed
to the non-linear nature of the profit function. It is worth noting
that, under the time-variant settings, users exhibit the same
behavior in pumpage and in profit realization, and, hence, we skip
giving their results.

Example 2. We now consider the ring configuration with the same
settings above. Table 4 summarizes the corresponding numerical
results. We observe that users pump more and realize more profits
under the time-variant settings compared to the time-invariant
one. The corresponding centralized solutions are found from
Corollary 8, which are the same as those found in Corollary 4
above in the strip configuration. Fig. 1a depicts the values of R1%
versus the number of users n for strip and ring configurations for
the data tabulated in Tables 1 and 4 corresponding to the time-
invariant setting. We observe that R;% increases concavely in the
number of users. This implies that users become more greedy as
more users share the resource, however the tendency to pump
more water diminishes. As expected, for both configurations, the
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Fig. 1. (R;% vs. n), (Total discounted profits vs. ): time-invariant setting.

maximum discounted profits are attained in the centralized
problem. However, for n > 3, the strip configuration yields more
discounted profits than the ring configuration in the decentralized
problem. This occurs because, users in the strip configuration
exhibit an oscillating greedy behavior of pumping in period 1
where they pump more water than they do in the ring configu-
ration. Again, it is worth noting that users show the same behavior
in their R;% under the time-variant settings and, hence, their
corresponding figures are not given.

Example 3. In this example, we examine the effect of o € [0,0.5] on
the total decentralized discounted profits in both configurations for
n = 4 identical users. Here, we assume that users have perfect infor-
mation about the soil transmissivity and treat o as a deterministic
parameter. We set p;;=1, a;,=10, b;;=5 and ¢;; =2 for all i and ¢,
(ie., the time-invariant setting). Tables 5 and 6 summarize the
results for the strip and ring configurations, respectively. In both
tables, AP% = | (T'; — F:l)}[/l“ x 100% stands for the percentage
rate of decrease in discoun ed profit of the decentralized problem
relative to that in the centralized problem. In the strip configuration,
the unconstrained solution for o € [0.35,0.5], resulted in infeasible
solutions; uzy =u3y > 1 and ujy = uy; < 1. Hence, we obtained
the constrained solution numerically, u;, =u3; =1, (ie.
05 =03>0) and uj, =uj, <1, (ie. 4] =0, =0). Similarly, the
unconstrained solutions are suboptimal for the ring configuration
for o €[0.35,0.5]. The optimal solution obtained numerically
results in all users are depleting their total available stock of water
in period 1, uj; = 1and 6; = 0, fori=1, 2, 3, 4. We note that in both
configurations, as o increases, users experience more effects of
hydrologic dynamics and become more greedy tending to use more
water in period 1. Fig. 1b depicts the total discounted profits with
respect to o in both configurations. As observed from the figure, the
total discounted profits are non-increasing in « regardless of the
configuration. However, the rate of decrease, AP%, in the strip con-
figuration is always lower than that in the ring for « € [0,0.50]. It is
important to note that in both configurations, the maximum dis-
counted profit is attained in the centralized setting where the real-
ized total discounted profit is 31.33. However, both centralized and
decentralized problems achieve the same value of total discounted
profits when there is no lateral flow between users (i.e., when
o =0), as expected.

6. Conclusions

In this work, we consider ground water usage when the re-
sources are shared among n users under centralized and decentral-
ized management settings. Our work extends the results of Saak
and Peterson [14] to n non-identical users by considering two dif-
ferent user configurations - strip and ring - overlying a common
groundwater aquifer. It is assumed that transmission of the
groundwater is governed by Darcy’s Law, which induces a special
interaction type among the users between the periods. For a qua-
dratic periodic profit function, general analytical solutions related
to the optimal Nash equilibrium usage for the decentralized prob-
lem are obtained for both strip and ring transmission configura-
tions for a two-period planning horizon. Also, we are able to
arrive at more compact analytical results for the special case of
identical users for the centralized and the decentralized problems
in both configurations. However, in both configurations, the

Table 5

Total discounted profit vs. o: strip configuration.
o (u;‘ruj‘z) (u31,U32) <u§v1,u3_2) (Ugq-U52) I (i, %) Sl (U, %) AP%
0 (.5,.5) (.5,.5) (.5,.5) (.5,.5) 31.33 31.33 0
.05 (5325 .4658) (.5675,.4343) (.5675,.4343) (5325 4658) 31.33 30.94 1.25
.10 (.5649,.4276) (.6402,.3673) (.6402,.3673) (.5649,.4276) 31.33 30.76 1.82
15 (.5972,.3846) (.7185,.2997) (.7185,.2997) (.5972,.3846) 31.33 30.44 2.84
.20 (.6295,.3359) (.8025,.2321) (.8025,.2321) (.6295,.3359) 31.33 29.95 44
.25 (.6616,.2807) (.8925,.1652) (.8925,.1652) (.6616,.2807) 31.33 29.26 6.6
.30 (.6939,.2177) (.9885,.0999) (.9885,.0999) (.6939,.2177) 31.33 28.35 9.51
.35 (.7339,.1729) (1,.0931) (1,.0931) (.7339,.1729) 31.33 28.06 104
40 (.7772,.1337) (1,.0891) (1,.0891) (.7772,.1337) 31.33 27.80 11.27
45 (.8230,.0974) (1,.0797) (1,.0797) (.8230,.0974) 31.33 27.50 12.22
.50 (.8709,.0646) (1,.0646) (1,.0646) (.8709,.0646) 31.33 27.15 13.34
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Table 6

Total discounted profit vs. o: ring configuration.
¢ (“’i‘lﬁuf‘z) (uﬁ.rui.z) (”§m“§.2) (”2.1»”2‘2) Iy (th, %) S i (i, %) sP%
0 (.5,.5) (.5,.5) (.5,.5) (.5,.5) 31.33 31.33 0
05 (.5670,.4330) (.5670,.4330) (.5670,.4330) (5670 4330) 31.33 30.91 1.34
10 (.6383,.3617) (.6383,.3617) (.6383,.3617) (.6383,.3617) 3133 30.62 217
15 (.7143,.2857) (.7143,.2857) (.7143,.2857) (.7143,.2857) 3133 30.08 4
.20 (.7955,.2045) (.7955,.2045) (.7955,.2045) (.7955,.2045) 31.33 29.25 6.64
25 (.8824,.1176) (.8824,.1176) (.8824,.1176) (.8824,.1176) 3133 28.08 10.4
30 (.9756,.0244) (.9756,.0244) (.9756,.0244) (.9756,.0244) 3133 26.48 15.5
35 (1,0 (1,0 (1,0 (1,0) 31.33 26 17
40 (1,0) (1,0) (1,0) (1,0) 31.33 26 17
45 (1,0) (1,0 (1,0) (1,0) 3133 26 17
50 (1,0) (1,0 (1,0 (1,0) 31.33 26 17

centralized solution can not be achieved in the decentralized
game-theoretic setting through a single pricing mechanism (i.e.
no coordination). Our analytical results reveal that in strip config-
uration with identical users, the optimal Nash equilibrium usage
quantities oscillate about the optimal Nash equilibrium usage
quantities of the ring configuration. We also note that although
the optimal solutions of the strip structure do not converge to that
of the ring structure as the number of users increase, they are ob-
served to become very close in our numerical examples for the
non-extreme users of the strip. In our numerical results of time-
invariant setting, we observe that, in both strip and ring configura-
tions in decentralized problems, as the underground water trans-
mission coefficient increases, users become more greedy and use
more water. This greedy behavior however adversely affects the
system’s total discounted profit. On the other hand, we investigate
the water pumping behavior of users under the time-variant set-
ting by varying one parameter at a time and keeping the rest as
in the time-invariant setting. In particular, we study the effect of
changing the crop unit price and yield function parameters on
the optimal solution as well as on the realized total profits in the
centralized and decentralized problems. In all settings (variant
and invariant), the centralized solutions always dominate the
decentralized ones by achieving more profits.

In the presence of a salvage function for leftover water stock at
the end of problem horizon, we observe that, in both configura-
tions, the centralized solution dominates the decentralized one
by realizing more profits from water usage. Also, in the strip con-
figuration, water usage fluctuates from ends toward the midpoints
of the strip. Additionally, in both configurations and in both prob-
lems, users allocate part of their available water stocks in the sec-
ond period to satisfy demands other than the irrigation ones
through selling it out according to the given quadratic salvage va-
lue function. In the sequel, under this setting, the policy makers
(users and social planner) have more flexibility in allocating their
water stock in the second period among two different sources of
water demand. Our findings fit within the broader literature on
management and operating policy making for usage of limited nat-
ural resources. We hope that, in the context of groundwater man-
agement, our results will aid the decision makers in developing
and adopting control policies for more effective and fair usage of
limited resources.
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Appendix A. A model with salvage

In this section, we incorporate into our models the possibility of
salvaging remaining stock. We assume that it is not necessary for

the available stock of water at the beginning of period 2, x;-, to
be completely consumed in irrigation. More specifically, part of
Xi» which represents the pumpage quantity in period 2, u;», is used
to satisfy irrigation demands while the remaining part, (x;> — u;>),
is salvaged. We assume a quadratic salvage value function for the

unused water quantity in period 2, (x;» — u;»), fori=1,...,n, given
by

Svi2 (U2, Xi2) = fir (Xi2 — Uiz) — 0.5f15(Xi2 — Ui2)?, (16)
where f;; is positive and allowed to vary over time,i=1,...,n,t=1,

2. Now, we let g5 (Ui, Xi2) = 8 (Ui2, Xi2) + SVi2(Ui2, Xi2). To find the
optimal water pumpage quantity u;,, we optimize g;,(u;2, Xi2) with
respect to u;,. Specifically, we find the unconstrained solution of
8i2(Ui2,Xi2) and determine its feasibility conditions. The uncon-
strained solution is found by solving the FOC of g;»(ui2,Xi2). From

08ia (-, -)/OUiz = 05 (-,-)/OUin + OSVia(-,-)/OUi; = 0, the uncon-
strained solution is given by
usy = PiaGiz + (Ciz2 + fiz)Xi2 — CiaXio — fin ‘ (17)

,0,-‘2’91,2 +Cia +fi2

To guarantee the feasibility of Eq. (17
should hold
Ci2Xio +fi,1 — (Ci2 +fi,2)Xi,2 < P;L0i2

< CigXigo + fi1 + PiabinXia. (18)
If Eq. (18) holds, then uj, =u3, for i=1,...,n. We observe that
gi1(ui1,Xi1) is concave in u;; since 9%gi(-,-)[0 (Ui1)* = —(piabia +-
€i1)<0, i=1,...,n. Also, we notice that 9°gi,(-,-)/d(Uiz)* = —
(p12b12 + Cia +f 2) < 0, implying that g;,(u;2,X;2) is concave in u;5,
i=1,...,n. Therefore, g;;(u;1,Xi1) and g, (ui2,X;2) are continuous
and concave in their respective decision variables, for all i. To avoid
repetition of similar results in the original model, we only present
the changes that might appear under this new model in the results
of the strip and ring configurations.

), the following condition

A.1. Strip configuration: the decentralized problem

Fort=1,2,andi=1
given by

.,n, the decentralized problem of user i is

i1 (U1, X1) = max I'yy (i, ) = max [gi,l(ui,l,xf,l) + ﬁgi_z(u;‘;.,xf,(JH)
Uiy Uiq
s.t. (4) and (5)
The function I';;(iiy,%;) is continuous and jointly concave in i if
and only if the following condition holds for all i
2€i2(Ciz + fi2)(Pisbiz + Cia + fiz) — (,Oi_zbi,z)zfi.z — (Ci2 +fi2)
< (Pizbiz +ci2) < 0. (20)

Proposition 2 of the original model holds for this model. Also, Prop-
osition 3 holds with
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o {/’“y—z“)zz— (piibi1 +cip), i=1,n,

i ”“;22“)22 — (pi1bin +cin), ow. 7
Wz, i=1

%= M2z, ow. '

”““yﬁz o.W.

KA voy+ v1] - pis@ia, i=1,n,
1 Zac

hi=

P22 w0y + 01] = Py1Gix, OW.

where, for i=1,...,n, y=pisbix+ciz+fia, z=(ci2+fi2)2¢i2y —
(Ciz * fi2)(Pizbiz + i2)] — (pi2bi2)fiz.v0 = (2Ciz + fi2)Pi2Giz + 2Ci2-
(Ciz *+ fia)wr + Cio(fioxio — fi1)  and vy = pisbialfii(pizbiz + ci2) —
Pizbinfia(Xio + Wi) + pinainfiz — Ciofiaxio] — (pPiabia + cia)(Ciz + fi2)

[pi2ai2 + fiaXio+ (Ci2*fiz)w1 — fi1]- Accordingly, Corollary 2 holds
with y = —1 Xz —(pb1 +C1), €= Lyz“ —(p1b1+c1), © —”“(yl’“)z,
o= “)z, n= "5 voy+ vi) = pyan, =52 oy + vi] - pyar, Y =

p2b> + Ctfo z=(+ L2y — (2 +f2)(sz2 +6)] = (p2b2) fo, 0=
(2C2 + f2)p2az + 2C2(C2 + fo)wr + Ca(foXo — f1) and vy = paby[fi(p2bs +
C2) — p2bofa(Xo + W1) + paaofa — CofaXo]l — (p2ba + C2)(C2 + o) [paaz +
faxo +(c2 + f2)wr — fil.

A.2. Strip configuration: the centralized problem

The centralized problem under this setting has the same form of
that given in Eq. (12) subject to the constraints in Egs. (4) and (7).
Similarly, if the condition in Eq. (20) holds, then I'; (i1, %) is contin-
uous and jointly concave in ii;, for all i. Fundamentally, Proposition 4
of the original model holds under this setting. However, the coeffi-
cients e;;; and the right hand sides 6; for i=1,...,n, will be very
messy, and, hence, we skip writing their formulae. For identical
users, the elements of matrix A and the right hand side W in Section
3.2 become ¢y =—(p;b1+c1)+B(1—20+202)% oy = (20—
30%)2, ¢35 = Bor? Z, 1 = —(p; by +C1) +B(1 — 40 +60%)Z, Wy = ¢y~
wy =2po(1 — Zoc)y and 0=p}-p;a;, where y= pzbz +Catfo
2=Y((C2+ 1)(C2 + L)y + (pab2 + C2)(C2 +£2)*] — (p,b2)*fa and § =
(C2 +12) (202 — CaW1) + (P22 + fox1 — Cawr — f1)[1 + (C2 + f2) (P, b2+
c2)] — pybafi —{Vl[pzaz — pyba — c2(x1 +wy) — f1]. The following re-
sult gives the solution of the centralized problem for identical users
which is equivalent to Corollary 4 and, hence, its proof is omitted.

Corollary 10. Uniqueness of the global maximizer and optimality
for identical users).

(i) Suppose that users are identical. Then, I'y(ii;, %) is unique and
given by
Uiy =u" = [y — prany)/[pz — (p1br + c1)y], Vi

(ii) If 0 < uyy < x4, for all i, then the optimal solution for the cen-
tralized problem is given by u™ above.

Corollary 5 holds as well in this setting.

A.3. Ring configuration: the decentralized problem

Similar to the strip’s decentralized problem, I';; (i1, X;) is contin-
uous and jointly concave in ii; if and only if the condition in Eq. (20)
is satisfied for all i. Ploposmon 6 hold under this setting as well. Also,
Proposition 7 holds with ¢; = £0=22° 2” Z— (p;1bia + i), 01 = WZ,
Ji= ”“ 20 [yoy + v1] — p“a,,],andy,z vpand v, are as defined before
in the strlp configuration. Furthermore, Corollary 6 holds in this
setting.

A.4. Ring configuration: the centralized problem

Similar to the strip’s centralized problem, if the condition in Eq.
(20) holds, then I’ (tiy,X;) is continuous and jointly concave in i,
for all i. Fundamentally, Proposition 8 of the original model holds
under this setting. However, the coefficients e(;; and the right hand
sides ¢;, fori=1,...,n, will be very messy, and, hence, we skip writ-
ing their formulae. In the identical case, we observe that the ele-
ments of matrix B in Section 4.2 are ¢, i=1,2, 3, w;, i=1, 2 and
0 are as defined above in matrix A of the strip configuration. The
optimal solution of the centralized problem corresponding to the
ring configuration give the same solution given in Corollary 10.
Corollary 9 holds under this setting as well.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejor.2011.05.048.
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