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1. Introduction

Random codes are closely related with random matrices over finite fields. Specifically, parameters
of random codes depend on distribution and correlations between the ranks of submatrices. This
paper studies ranks of random matrices for code theoretical applications.

We start with the basic definitions of linear codes. One can find this material and more on codes,
for example in [9] and [12]. A linear code C is a linear subspace of IFg where Fy is a finite field
of q elements. The number n is called the length and the dimension k of C is called the number of
information symbols of the code. The number of nonzero coordinates of a code vector e is said to be
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the weight |e| of e. The minimum of the weights over nonzero code vectors is the minimum distance
of the code and it is usually denoted by d. We call a code with parameters n, k, d over Fg an [n, k, d]q
code.

If we consider Fy as a linear space with the standard scalar product (u,v) = 7 u;v;, then the
orthogonal complement C of C is called the dual code to C.

Let C be an [n,k]; code and let G be a k x n matrix whose rows form a basis of C. Then any
element e € C is a linear combination of these row vectors. We call G a generator matrix of the
code C. Any vector ¢’ € C* is orthogonal to the basis vectors of C and the product G x (¢/)T is the
zero vector, this gives the criterion for lying in C1. The matrix G is called a parity check matrix of the
code Ct.

Let C C IFZ be a code and let A; be the number of code vectors with exactly i nonzero coordinates

Ai=|{eeC: |e|=i}|.

The set of A;s form the weight set of the code C. We define the weight enumerator W¢ (t) of the code C
as the polynomial

We(t) = ZAit”_i. (1)
i

Let C be a code with generator matrix G. We find the following form of the weight enumerator
vital for our purposes (see [11])

We( +t) = Z qk—”t“l, (2)
1c{1,2,....n}

where r; is the rank of the column submatrix spanned by the column set I.

All the parameters of codes can be extracted from the weight enumerator W¢(t) which is given
by the rank function ¢, I C {1,2,...,n} of the generator matrix. A code can be considered as a
configuration of points (columns of the generator matrix) in the projective space. Then the existence
of a code with given weights turns out to be equivalent to existence of a configuration with given rank
function as we see in Egs. (1) and (2). But this is a classical wild problem and it can be arbitrarily
complicated [10]. So we pass to the statistical approach rather than trying to determine the explicit
structure.

For a matrix G, we take randomness in the sense that the entries are independent and they are uniformly
distributed along the field Fq. One must keep in mind that there are two codes that are attached to a
random matrix. Once we are given a k x n matrix G there is the [n, k]; code which assumes G as
its generator matrix; and second, the code assuming G as its parity check matrix. Both codes will
be referred to as random codes. We denote the random code in the first sense by C and the code
in the second sense by Ct. Their weight enumerators will be referred as W¢(t) = > Ait" and
Wei(t) =Y ; ALt" respectively.

There is a major difference between the asymptotic behaviors of ranks of square and rectangular
matrices. One can easily deduce from Eq. (7) that the probability of a square n x n matrix over Fy
to be singular is positive even when n — oo. It is also clear from the same formula that as long as
R =k/n is kept away from 1, a k x n matrix is almost sure to have rank k. Hence we will tacitly
assume maximality of the rank when codes of fixed R < 1 are aimed.

The main results of this paper are explicit formulas for the correlation functions between the ranks
of up to three submatrices. Correlations between the weights of a random code are deduced using
these results. In particular we find out that the coefficients of the weight enumerator of a random
code are uncorrelated.

We list the main results as follows. The sth moment of the rank function g~ of a k x n random
matrix is given by
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Ms(qirkxn =q —kn Z qr(n s)|:] l_[ (]7q7n+i)’

o<r<k 0<i<r

s (q—rkxn) — l_[ (q—n + q—s _ q—11—s+z')7
0<i<k

where the product in the second formula is noncommutative in x=¢~" and y = q~° with the com-
mutation rule yx = gxy. The moment pus(q~"k<n) is symmetric in n and k. Furthermore if s is a
nonnegative integer then it is also symmetric in s. For example the expectation of q~"kxn is given
by

E(q*rkxn) =q "+ qfk _ q—n—k.

The covariance between the rank functions g~"' and g~/ of two column submatrices is given by

(@— D@ - D@ -1
q2k+\l|+|]\

cov(g ", q) =

We also provide a conjecture for the covariance between the ranks of two submatrices spanned by
arbitrary row and column sets.

Next we show that the covariances between the coefficients of weight enumerator of the random
code C1 are given by

cov(Wer (x), Wer () Zcov (Af, A7)K" fyn=i

-1 n—k _
= %«qu—n”—(m").

An important corollary to this theorem is that coefficients of weight enumerator of the code C* are
uncorrelated. This result is not valid for the code C given by a random generator matrix.

We also studied the triple correlations between the ranks of three submatrices. Using the clas-
sification of triplets of subspaces we managed to deduce an extremely complicated formula. To our
surprise computer experiments show beyond reasonable doubt that the formula is equivalent to a
simple closed one. It is even simpler when we switch from the correlations to the cumulants. We
conjecture that the closed formula of the joint cumulant of ranks of three submatrices is given by

o - @-0*@ -1 -
o(qg.q 7 .q) = W(q11+]K+IH UK _ (g1 +¢/K + 1)

+24+ (qk —q)(q”K _ 1))’

where on the right-hand side of the equation the multiplicative notation for sets like I ] means the
cardinality of their intersection |[I N J|. We remind that the joint cumulant of a triplet of random
variables is

o (X,Y,Z) =E(XYZ) — E(X)cov(Y, Z) — E(Y) cov(Z, X)

—E(Z)cov(X, Y) — E(X)E(Y)E(Z).

This conjecture is equivalent to the following formula for joint cumulants of the coefficients
of WcL (f),
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G(Wci (X)a WCL (y), Wci (Z))

- Zo(AiL, Aj-, At yn=izn
il

=g P @ -12@" - D{(xyz+ @ - Dx+y+z+q-2)" — (xy2)"
—(xy+q-D"—@x»)")Z" — ((yz+q—1D" — (y2)")x"
—(@x+q =" = @")y" + (" —g)[xyz + g — D" — (xy2)"]}.

For the random code C the corresponding equation is

o (Wex), We(y), We (@)
=@q-D*(¢ - D){g " cyz+q-D"—q " (xy +q— D"z +q - D"+ (yz+q—D"(x+q—1)"
+@X+q-D"Y+q-D")+207"x+q- D"y +q-D"z+q-1D"
+(@ - (xyz+@-Dx+y+z+9-2)" —q¢ & +q- D"y +q-D"z+q-D"]}.

There exists a classification of quadruples of subspaces due to Gelfand and Ponomarev [6]. For further
study of this subject, one may wonder whether it may lead to a closed formula for the quadruple
correlations.

The above results on correlations imply, for example, that the roots of the weight enumerator
Wc(1+2) of a selfdual code C = C1 are almost surely on the circle |z| = +/q provided g > 9. Here by
almost sure we mean that the probability to have a root off the circle tends to 0 as n — oco. Similar
but less sharp results hold for all [n, k]; codes where q > qo(R), R =k/n. The proofs will be published
elsewhere.

The paper is organized as follows. In Section 2 we evaluate the moments and covariances between
the rank functions. Moments are given by Theorem 3. We derive the covariance between the ranks of
two submatrices in Theorem 8. Using this, we show that the coefficients of weight enumerator of the
random code C* are uncorrelated by Theorem 12 and Corollary 13.

In Section 3 we study the triple correlations between the ranks of three submatrices. A triplet
of submatrices gives a triplet of subspaces. We review the classification of triplets of subspaces and
obtain the number of triplets with given invariants. This enables us to obtain a formula for the triple
correlation between the ranks of three submatrices which is given by Theorem 20. Conjecture 21
provides the closed form of the joint cumulant of three ranks. Equivalent to this conjecture we give
Corollaries 23 and 24 on the joint cumulant of the coefficients of W¢(t) and W1 (t) respectively.

2. Moments of the rank function and the covariances

This section is devoted to calculation of the moments and covariance between the rank functions
of column submatrices. We will derive the covariances between the coefficients of a random weight
enumerator from these results.

2.1. Moments of the rank function

We will start with the moments of the random variable g~ "kx» where 1y, is the rank of a k x n
matrix. The basic tool for evaluation of moments is the probability P(n, k,r) of a random k x n matrix
to have rank r.

We need g-analogues [n]; of positive integers n and the g-factorials to express this probability.
Instead of the usual definition [n]g = (¢" — 1)/(q — 1) we use the following form

[nlg:=q"—1.
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These functions extend the Binomial coefficients as follows

[0lg!=1,
[nlg! = [nlgln — 11q...[1]q,
!
[n] - 3)
rlq [rlg!ln —rlg!

The quantum Binomial coefficient in Eq. (3) gives the number of r-dimensional subspaces of an n-
dimensional linear space over [Fg. The cardinality of the group GL(k, q) is given by the factorial

IGLk, )| =q" 7" [Klg. (4)

In the following we drop the subscript g in the notation. We will need two classical formulae in the
sequel:

q-Binomial theorem (commutative)

[10-d0)= 3 ig"s" [‘:]t", (5)

0<j<d 0<i<d

q-Binomial theorem (noncommutative)
d d] i d-i
k=30 |y (6)
0<i<d

where the power on the left-hand side is noncommutative in x and y. The power is to be expanded so that
every monomial is in the form x'yJ by the relation yx=qxy.

Note that the g-Binomial identities are expressed in the g-Binomial coefficients and our convention
on [n]g does not change them. See [7] for the theory of the subject and proofs of the items above.

Proposition 1. The probability P(n, k,r) of a random k x n matrix to have rank r is given by

re—1) [n]! k]! 1

Plfon = *k"+ [n—r] [k—r]! ﬁ %)
Proof. This is a standard formula, see for example [13]. O
In the next theorem we will use the following simple lemma.
Lemma 2.
! _ i
[k[l—(];ﬂ! =" oglzga( Ve m""“’ " ®)
Proof.

k! , - ;
[k[_]d]! _ 1—[ (¢ —1)= g l—[ (1—q%).

0<i<d 0<i<d
When we replace the last product with the corresponding sum by Eq. (5) we get the result. O

The following theorem gives the moments of the rank function of a random matrix.
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Theorem 3. The sth moment [s(q~"<n) of the rank function q~"k<n is given by

k .
Ms(qirkxn) zqfkn Z qr(nfs) [;] l_[ (1 _q7n+1)’ (9)

o<k o<i<r
us(@em)= ] (@"+ga° —g"H), (10)
o<i<k

where the product in the second formula is noncommutative in x = q~" and y = q—° with the commutation
rule yx = qxy. The moment formula s(q—"k=<n) is symmetric in n and k. Furthermore if s is a nonnegative
integer then it is also symmetric in s.

Proof. We use the formula in Eq. (7) for the probability.

ps(g ) = Zq*”P(n, k1)

r

— —kn4+ 102D g (k]! [n]!
B Zq ’ k=] [n = r]! ()

T
_ , e i
Eq. (8) q—kn Z q—rs |::i| (_])W% [:]qn(r—l) (12)
r,i

gy g m [T (@-gm). (13)

r oi<r

To get the second formula of the moments we proceed from Eq. (12) as follows
_ _ |k sy [r _i
Ms(q rkxn) = q kn 2 :CI s |:,:| § :(—1)1(] > |:l] (qn)r i
r i
= k iy [k—r1 i
—kn —s(k—r) i n(k—r—i)
—k— -1 2
r—k-rq Eriq H( )q [ i ]q

;o= k] - k—i r, o _ —i—r
Z(_l)zq G0 |:ij|qr(7n—s)|:< . '] (q—n) (q s)k

. @a-1 [k i, _ok—i
Z(—l)lq#[f](q*”*) (@ +q7) " (14)

The last equation follows from the noncommutative g-Binomial formula (Eq. (6)). Finally by the com-
mutative g-Binomial formula given in Eq. (5) we get

ps(@em) = T (@"+a7 =g "),
0<i<k

where we remind that the product is noncommutative. It should be expanded in x=q™", y =q° so
that every monomial is put in the form x'y/ by the commutation relation yx = gxy.

The probability formula P(n, k,r) is symmetric in n and k hence the same is true for the moment
formulas. This can be proven by expanding [k]!/[k — r]! instead of [n]!/[n — r]! in Eq. (11). If s is a non-
negative integer the formula is completely symmetric in n, k and s. This follows from the symmetry
of the noncommutative g-Binomial formula (6). O
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Example 4. An easy calculation gives the expectation E and the second moment wu, of g "xn as
follows

E(q—rkxn) — q—n +q—k _ q—n—k7 (15)
w2 (q—rkxn) — q—2n + q—Zk + q—2n—2k+1 + q—n—k(q + 1)(] _ q—n _ q—k)’ (16)
We can derive the expectations of the coefficients of a random weight enumerator from the ex-

pectation of the rank function. Expectations and the second moments of the coefficients can be found
for example in [5, p. 10] and [1, p. 44].!

Example 5. Let G be a random k x n matrix and let C be the code with generator matrix G. Eq. (2)
expresses the weight enumerator of the code C in terms of the rank functions. From there we see
that the expectation of the weight enumerator of the code C is given by

EWc®)= > dBl@")c-n"

Ic{1,2,..n}

We obtain the expectation of the weight enumerator when we substitute E(q~"") = E(q~"*xI1l) given
by Eq. (15)

k
. -1
EWe) = LB =+ C g -1 (17)
i
Now making use of the well-known MacWilliams duality [8]
Wer(1 +t)=q"‘t"Wc<1 + %) (18)

we obtain the analogous result for the random code given by a parity check matrix. Let C be the
random code whose parity check matrix is G. Taking expectations of both sides of Eq. (18) and using
Eq. (17) we get

EWer(®) =Y E(AD)" =g~ ((t+q - D"+ (¢" = 1)"). (19)

1
2.2. The covariance between the ranks and codeweight correlations
The covariance between two rank functions is given by

cov(g ", q7)=E(q") —E(g"")E(q ). (20)
The new ingredient E(q~"'~"/) requires the joint probability P(r;,rj) of ranks of the submatrices G;
and G; spanned by the column sets I and J respectively. In order to express P(r;,r;) we need an
auxiliary function. Let G be a k x n matrix and let M fixed columns of G span a matrix of rank m.
Denote by P(n,k, M, m,r) the probability that G has rank r.

Lemma 6.

P(n,k,M,m,ry=P(n— M,k —m,r —m). (21)

1 We thank the anonymous reviewer who brought these references to our attention.
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Proof. Let V( be the column space of the given M vectors. We have to find n — M column vectors
of rank r — m in the space IE"(;/VO and then lift them up to Fg So the number N(n,k, M, m,r) of
complementary matrices is given by

N, k, M, m,r) =q®M&mpq _ M k—m,r—m)gn—"m,
To find the probability we multiply by g~ ™~M* and the exponents cancel. O
The following proposition gives the moments of this partial probability function.

Proposition 7. Moments of the partial rank function are given by

> q Pk, r—m)=q " ps(gon) (22)
-

__ ,—Sm—kn r(n—s) k] _ ,—n+i
=q > g [r [T @a-am) (23)

o<r<k 0<i<r
=q" [] @+ —q "), (24)
0<i<k

where in the last formula the product is noncommutative in the variables x = q—" and y = q—°. The moment
formula is symmetric inn and k. Moreover when m = 0 and s is a nonnegative integer the formula is completely
symmetricinn, k and s.

Proof. The proof of this proposition repeats the same steps as Theorem 3 so we skip the proof. O

Theorem 8. Let G be a random k x n matrix and let I, | C {1, 2, ..., n} be two column sets. Then the covari-
ance between the rank functions ¢~ and g~/ is given by

ey @@= D@ =@ -1y
cov(g.q7) = R : =

Proof. The covariance is given by

cov(g,q7)=E(@ ") —E(g")E(q"). (26)

So we need the expectation of g~"'~"J, hence the joint probability P(rj,r;) of the ranks r; and rj.
This probability is given by the following sum

P(ry,ry) = ZP(I],k, NPk, 1], r,r)P(J,k, 1],1,1)),

where 1] is the shortcut notation for |I N J|. The sum runs over the column rank of the intersection.
We extend the intersection to the sets I and J with the ranks r; and r;. Substituting for the auxiliary
probabilities given by the last two factors we get

E(@"™)= Y q"IPUJ.k NP k—r.ri—nP(J.k—r.r)—7),

rryry
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where I = [T\ J| and 7 =[J \ I|. We can sum up over r; and r; by Egs. (15) and (22)
E(q ") =Y PUJkn(@ (1 —q ) +q g 1 -qT)+q7).
r
Finally the summation over r gives

Blg ) =g (0 —a (107 g T T uaa )
HEH =g+ a1 g ),

We have expressed E(q~""~"/) in terms of the first and second moments of the rank function and they
are given by Egs. (15) and (16). If we substitute them with the product E(q~")E(g~"/) in Eq. (26) we
get the claim. O

While the covariances between the rank functions of column submatrices are enough for the code
theoretical purposes the same question about arbitrary submatrices is still an interesting problem.
Let G be a random k x n matrix. Let I C {1,2,...,n} be a column set and L C {1,2,...,k} be a row
set. We denote by r;; the rank of the submatrix spanned by the rows in L and the columns in I.

Conjecture 9. The covariance between the rank functions q—"!, q~"™J of two submatrices is given by

@- D@ - 1)@"™M 1)

=Tl 4= TM]) —
cov(q™M.q7M) = QUL

Before we proceed with the covariance between the coefficients of the weight enumerators we
need the following lemma.

Lemma 10. Let

Sj=y, ¢ (27)
1,]c{1,2,..n}
=i 1=

We have the following generating function for S;

D osixyl =1+ x4y +ax)". (28)
ij

Proof. Set the cardinality of I N J to m. We can choose the elements in the symmetric difference and
then split this set to I and J. This gives

SU_Z(m, j—m, i—m, n—{—m—i—j)q ’

m
The sum above shows that S;; is the coefficient of xylin 1+x+y+qxy)". O

We have developed the necessary tools for the covariance between the coefficients of weight enu-
merators. The following theorem gives the covariance between the weights of a code with random
generator matrix.
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Theorem 11. The covariances between the coefficients of the weight enumerator of the random code C are
given by

cov(We(x), We(y) (xy+q—-1"—

(g -1
)= (q— )q('? )( (29)

(X+q—1)”(y+q—1)”>
q" '

Proof. Let S; be the coefficient of z' in W¢ (1 + z) given by Eq. (2)

— Z qk—r, .
[I=i
The covariance of coefficients S; and S; is obtained by Eq. (25)

- L
cov(Si, Sj) = w Z (q|mj| -1)

1+]
i 1=tJ1=i

@-D@ -1 n\ (n
= T Sl] - . . )
q 1/ \J
where S;; was defined by Eq. (27). For the covariance of weight enumerators we substitute this

cov(We(1+x), We(l+y)) =Y cov(S;, S)x'y!
ij

“asnd-o((Za(5) (7)) (43 ()

_@-D@ -1

- ((xy+x+y+q)”— x+9"y+9 )

ql’l

When we substitute x — 1 for x and y — 1 for y we get the formula. O

When we transform this theorem to the case of the random code C- the result is more interesting.
We see in the covariance formula (29) that the coefficients A; and A; of the weight enumerator are

correlated as coefficients of x'yJ for i # j can be nonzero. However this is not the case for CL.

Theorem 12. The covariances between the coefficients of the weight enumerator of the random code C are
given by

-1 —
cov(Wer(x), Wer(y)) = w (ky +q—D" = @xn"). (30)

Proof. By MacWilliams duality we have

COV(WCL(] +x), Wer (1+ y)) = cov(q"‘x“WC <1 + %),q_"ynwc <1 + %))

When we substitute the covariance of the weight enumerators from Eq. (29) the result follows from
a simple calculation. O

Note that there are only diagonal terms in the covariance of weight enumerator of a random code
in this sense. The following corollary is for emphasizing the fact that the coefficients are uncorrelated.
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Corollary 13. The coefficients of the weight enumerator of the random code C are uncorrelated
141y _
cov(A; A7 )=0. (31)
Proof. We see in Eq. (30) that there is no x'yJ for i # j. Hence the coefficients are uncorrelated. O

The same result is obtained by Wadayama [14] independently in the binary case.
3. The triple correlations

In this section we will study the triple correlations between the ranks of three column subma-
trices. A triplet of submatrices gives a triplet of subspaces. So we will start with the classification
of triplets of subspaces. The classification enables us to evaluate the triple correlations between the
rank functions. The formula for the rank correlations turns out to be highly complicated. We made
numerous evaluations with computer and we observed that the formula simplifies to a closed form.
We give the closed form of this formula as a conjecture. We will give triple correlation formulas for
the coefficients of the weight enumerators as equivalent forms of this conjecture.

3.1. Classification of triplets of subspaces

A triplet of subspaces U, V, W in E is represented in a diagram as follows

I (32)
U—E<«~W

where each arrow is an inclusion. This corresponds to a so-called quiver representation of the Dynkin
diagram D4. We will obtain the classification of subspaces from the indecomposable representations
of this quiver.

We recall some of the basic definitions of quiver representations from [4]. A quiver Q is a set of
vertices and a set of arrows between some of the vertices. The set of vertices of Q is denoted by
Qy, and the set of arrows by Qg. The maps t,h: Q; — Q, map an arrow to its tail and to its head
respectively.

Definition 14. Let Q be a quiver with a finite number of vertices and let F be an algebraically closed
field. A representation of Q is a collection of linear spaces V (x) over [F for each vertex x and F-linear
maps V() : V(t(a)) > V(h(a)) for each arrow « in Q.

Gabriel’s theorem [3] gives the finiteness condition and the isomorphism classes of the indecom-
posable representations of a quiver.

Theorem 15. The number of isomorphism classes of indecomposable representations of a quiver Q is finite
if and only if Q is a disjoint union of the simply-laced Dynkin diagrams Ay, Dy, Eg, E7 and Eg with arbi-
trary orientation. In this case, there is a bijection between the set of isomorphism classes of indecomposable
representations and the positive roots of the corresponding root system.

The positive roots corresponding to D4 are given below [2].

0
{ (33)
1



508 A.A. Klyachko, I Ozen / Finite Fields and Their Applications 15 (2009) 497-516

0 1 0
\: \ \ (34)
1— 0<«0, 00— 0«0, 00— 0«1
1 1 0
\: \: 2 (35)
1—- 1«0, 0—> 1«1, 1—->1<«1
1 0 0
\: \: \: (36)
0—> 1«0, 1—- 1«0, 0> 1«1
1
\ (37)
1—> 2 «1

We are interested in the indecomposables that correspond to a subspace configuration. So the
indecomposable representations of a triplet of subspaces has dimension vectors coming from the
roots except those given in line (34).

We denote a 1-dimensional indecomposable with the dimension vector

J
ilk

by [ijk] and its multiplicity by m;ji. Also we fix our notation for the two-dimensional indecomposable
as [111], and for its multiplicity as h. So the triplet U, V, W C E has the following decomposition

(E; U, V, W) =m11[111] + mooo[000] + m110[110] + mo11 [011] + m101[101]
+ m100[100] 4+ m010[010] + mgo1 [001] + A[111]3. (38)

The multiplicities mq11, mooo, M110, Mo11, M101, M100, Mo10, Moo1, h of the indecomposables are called
the natural invariants of the triplet given in diagram (32). They have the following interpretations

. unv . Vvnw . wnu

myo = dim ———, mor1 = dim ——, mio1 = dim ———,
unvnw unvnw unvnw
mygo = dim u mpio = dim v Moo1 = dim w
100 = Unv+w) 010 = VAW E0) 001 = WAUTV)
mip =dim(U NV NW), Mmoo = codim(U + V + W)
and
) unv +w) . VW +U)
h =dim =dim
UNV)+Wnu) VAW)+@UNV)
wnu+Vv 1 Uu+v)yniv+w)n(w+u
—dim U+Vv) ——dim(+)(+ YN W +U) (39)

Wwnlh)+Vnw) 2 UNVY+(VAW)+WnU)
3.2. The number of triplets with given invariants

For the triple correlation problem we need the number of triplets of subspaces with given in-
variants. Since GL acts transitively on the triplets with fixed invariants, the number of triplets is the
index of the automorphism group. Thus as the first attempt we calculate the order of the automor-
phism group of a triplet.
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3.2.1. Automorphism group of a triplet

A morphism M between the triplets (E; U, V, W) and (E’; U’, V', W) is a linear map M : E — E’
such that M(U) cU’, M(V) Cc V' and M(W) Cc W'.

The triplet U,V,W C E has a direct sum decomposition given in Eq. (38). This decomposition
gives

End(E) = ) _Hom(T;, T),

where T;, T; runs through the indecomposables with the correct number of occurrence. The automor-
phisms of the triplet are the invertible elements of the endomorphisms. It turns out that the matrices
M = {M[i, j] = Hom(T}, T;)} of the endomorphisms are block triangular for a particular ordering of
the isotypical components in the decomposition. So after finding the form of the endomorphisms it
is easy to find the order of the stabilizer group and hence the number of triplets.

It is easy to see that the dimensions of the spaces of morphisms Hom(T;, T) are as given in the
following table. The [ij] entry of the table is the dimension of Hom(T}, T;).

[111]|[1101{[101[[011]{[111]2|[010]|[100]|[001]|[000]
myl 111121 ]1]1]1
mojfo|1|lolo| 1|1 ]1]o0o]1
morf ool 1ol 1ol 1]|1]1
ot ololo| 1| 1|10 1|1
(40)
Ml o|lofofo| 1 [ 1] 1] 1]2
o]l o[ oloflo|lo|1]o0o]o0]1
(mooj]f o[ oflofof ofof|1]o]1
ooijff olo oo ofof]o]1]1
ooojfl o oo |lo| ofo|o]f o] 1

Proposition 16. Let U, V, W be a triplet in a k-dimensional space E, with given invariants my1, Mm110, Mo11,
myo1, h, Moo, Mo10, Moo1, Mooo- Then the order of the automorphism group A of the triplet is given by

LAl = g5 [m1111![m110]![mo11 1!m1011'[h]![mM100]![Mo10]! [Moo1 1! [Mooo]! (41)

where

k—
EA= ( 5 + h(mi11 +mgoo) — M110Mo11 — Mo11M101 — M101M110 — M110MQ01
— Mo11M100 — M101Mo10 — M100Mo10 — Mo10Mo01 — Mo017M100- (42)

Proof. The space of endomorphisms of the triplet splits into the direct sum
End(U,V,W C E)=)_Hom(m;T;,m;T}),

where T;’s are the indecomposables and m;'s are the number of T;’s in the decomposition. The
nonzero entries in the table (40) form a triangular matrix. This shows that nonsingularity is obtained
if we choose the elements of the diagonal entries Hom(m;T;, m;T;) from GL(m;). The other summands
are completely free. Hence we have



510 A.A. Klyachko, I Ozen / Finite Fields and Their Applications 15 (2009) 497-516

|Al = ¢"° |GLam11) || GL(M110) | |GL(Mo11) || GL(M101) | |GL()| | GL(M100) |

x |GL(mo10) ||GL(moo1) | |GL(Mgo0)

where FS is the number of free summands and it is given by

FS = (m111 + h + mooo) (M110 + Mo11 + M1p1 + M100 + Mo10 + Moo1) + M110(M100 + Mo10)

+ mo11 (Mo10 + Moo1) + M1o1 (Moo1 + M1o0) + M111Mooo + 2h(M111 4+ Mooo).-

Substituting the cardinalities of GLs and collecting the exponents we obtain the result. O

3.2.2. The number of triplets

In this part we will obtain the number of triplets with given dimensions and the dimensions of
intersections. We denote the dimension of a space U by u and the dimension of an intersection by
the product notation, e.g. dim(U N V) = uv. The correspondence between the natural invariants and
the dimensions are as follows

Mg =Uuv —uvw, Mg =uU—Uv —wu+uvw —h, (43)
Moyt = VW — Uvw, Moo=V —Vvw—uv-+uvw —h, (44)
Myo1 = WU — UVW, Moo1 =W — WU — VW +uvw — h, (45)
mipn =uvw, mooo =k —d, (46)
d=dimU+V+W)=u+v+w—-uv—vw—wu+uvw —h. (47)

Proposition 17. The number Ny v w of triplets U, V, W in a k-dimensional space with given dimensions
u,v,w,uv,vw, wu, uvw and h is given by

exp_ [KI!

DU, V, W)’ (48)

Nyv.w=¢q
where

DWU,V,W)=[uvw][uv —uvw]![vw —uvw]![wu — uvw]![h]![k — d]!
x[u—uv—wu+uvw —h]!l[v—-vw —uv+uvw — h]!
X [W—wu—vw+uvw —h]!,
d=u+v+w—uv—vw—wu-+uvw —h,
EXP= (uv +vw + wu)(uv + vw + wu — (u + v+ w) + 2h — 3uvw)

Fuxv+vxw+wxu+ wvw—h)u+v+w+3uvw)
h(3h —1)
+T'

Proof. The group GL(k) has a transitive action on the triplets, hence the number of triplets Ny, v, w
is the index of the automorphism group. We know the order of the automorphism group by Eq. (41).
An easy calculation gives the number of triplets with given natural invariants

k]!
N =gf€ 49
VW = Mmol![mon 1Mmaor AT M 10011 [Moro ) [moon 1'mooo]! (49)
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where

EC = kh + m110mo11 + Mo11M101 + M101M110 + M110M001 + M011M100
hth+1)
2
— h(mq11 4+ Mooo).- (50)

+ mM101Mo10 + M100Mo10 + Mo10Moo01 + Moo17M100 —

When we substitute the dimensions and the dimensions of intersections of the spaces by Eqs. (43)
through (47) into the previous formula we get the number of triplets in the desired form. O

3.3. The triple correlation between the ranks

The joint cumulants are generalizations of the covariance to the case of more than two variables.
Let £ = (£1,&2,...,&p) be a random vector. The joint cumulant of the random variables &; is given by

n

=——log(E A A oA . 51
0(€) = o log(E(exp0uagy + oo -+ Aaki))|_, (51)
The correlations are expressed via the joint cumulants in a simple way
E@ & .. &)=Y [[oG). (52)
i

where the summation is over all the disjoint partitions I of {1,2,...,n} into nonempty subsets I;.

Example 18. The first three joint cumulants are given as follows

o (X) =E(X),
o(X,Y)=cov(X,Y),
o (X,Y,Z) =E(XYZ) — cov(X, Y)E(Z) — cov(Y, Z)E(X) — cov(Z, X)E(Y)
—EXOEY)E(2).

In this section we give the formula of the cumulant o(q~",q"/,q %) of the random variables
q",q7",q k. We remind that
O_(q—r, , q—r_, , q—T[() — E(q—rl—rj—r,<) _ E(q—r,) cov(q—rj—r,() _ E(q—r]) Cov(q—r,<—r,)
—E(g*)cov(q"") —E(q7")E(q " )E(a ™). (53)
Through the calculations we use the following abbreviations for the column sets and their cardinalities

[J=In], IJ=dnD\K, TI=I\(JUK),

JK=JnK, JK=(JnK\I, J=J\(KUD,
KI=KnNI, KI=X NN\ J, K=K\dU]),

I[JK=INnJNK.

The column submatrix spanned for example by I N J = 1] will be denoted by Gy;.
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Recall that we made use of the joint probability distribution of the ranks of submatrices for the
covariance between the rank functions. For the triple correlations we need the joint probability dis-
tribution of the ranks of three submatrices. Analogous to the previous case we will introduce an
auxiliary probability which gives the joint distribution after a summation over its parameters.

Let us consider a k x n matrix G, let I, J,K C {1,2,...,n} be column sets such that the column
sub-matrices Gy, Gy, Gx span the matrix, i.e. [IU JUK|=n.Let U,V,W C ]F’C‘I be the column spaces
of the sub-matrices G;j, Gjx and Ggj. Let r,rj,rg,r1j¢ be the ranks of the column sub-matrices
G1,Gj, Gk and Gpjg respectively. To keep the notation short we will refer to the invariants of the
triplet as U, V, W as well. Let P(r;,rj,rg, U, V, W, rjx) be the probability that G has the described
properties.

Proposition 19. The probability P(ry,ry, 1k, U, V, W,rjjk) is given by
P(ri,ry i, U, VW) =g P NGy wP (54)

where Ny, v w is given in Eq. (48), EP and ‘P are defined as follows

EP=1JKuvw +IJu+ JKv + KIiw + k(I + ] + K), (55)
P=PUJK,uvw,rijx)PIJ,u—rijx,u—rijg)P(JK, v =11k, v — 1K)
x P(KI,w —rijg, w =11 )Pk —w —u+wu, rp — w — u+ wu)
xP(J,k—u—v+uv,rj—u—v+uv)

x P(K,k—v—w+vw,rg —v —w+vw). (56)

Proof. We will find the number N(rj,rj,r¢, U, V, W,r[j¢) of matrices with given properties so that
we will have

P(ri,ry,ric, U, V, W, r1 ) =q NGy 1y, e, U, VL W k). (57)

The triplet of subspaces that Gy, Gk, Gk form can be fixed among Ny v w triplets.

The columns in I JK must be chosen from the uvw-dimensional space with rank rjjx. The number
of column submatrices G is given by the factor '/ KWW P (I JK,uvw,ry k).

We will extend this construction to the column sets IJ, JK and KI. The columns in I] must
be chosen in U and they must extend the IJK column vectors to a matrix of rank u. The num-
ber of such vector sets is equal to q//“P(I],u — rijk,u —ryjg) in the notation of Eq. (21). Ex-
tending the column set [JK to JK and KI brings the factors ¢/¥VP(JK,v —rijx, v —r1;¢) and
q“"™WP(KI1, w — 1)k, w — 1K) Tespectively.

Finally we will extend the construction to the column sets I, ] and K. For the set I, we have the
given IJ U KI columns with the rank dim(W + U) = w + u — wu. The generators this time will be
chosen in Fg they will extend the column set IJ UKI to I to have rank r;. So, the number of choices
for the column set I is ¢ P(I,k — (W +u — wu), r; — (W + u — wu)). Similarly the number of the
column sets for J and K are ¢*/ P(J,k — (u+v —uv),rj — u+v —uv)) and ¢* P(K,k — (v + w —
vw),rx — (v +w — vw)) respectively. Bringing these factors we get

NGty U, Vo W) =qEP Ny v wP

where P is the product of all the probabilities mentioned and EP comes from the exponents appearing
before them. The probability follows from Eq. (57). O
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We will obtain the correlation between the ranks of a triplet of submatrices by the auxiliary
probability.

Theorem 20. Let G be a random k x n matrix. Let I, |, K C {1,2,...,n} be three column subsets with
|IU J UK| =n. The triple correlation E(q~"'~"/~"k) between the ranks is given by

IE(qfr,frjfrx) _ quknJrEP—rI—r]er Nuv wP, (58)

where EP and ‘P are given in Eqs. (55) and (56) respectively. The sum runs over 1,1, g, all the invariants
u,v,w,uv,vw, wu,uvw, h of triplets with ryjx that are subject to the constraints (61) through (73).

Proof. The triple correlation is given by

]E(q—r,—rjer): Z q "TITTRP Gy, 1y, TR,

rLry.rg

where P(rj,rj,rg) is the joint probability of the ranks r;, rj and rx. We get this probability by
summing up over the rest of the parameters from P(r;,r;,r¢, U, V, W, k) given in Eq. (54). So the
correlation becomes

E(q ") = Y q TRy Py, UL VL W) (59)

LB RLN ¢

with the inner sum running over the parameters ryjk, h,uvw,uv, vw, wu, u, v, w. When we substi-
tute P(r;,ry,rg, U, V, W, r[jg) given in (54) we obtain

E(q"17K) =Y g EPTITITONy P (60)

where Ny v.w, EP and P are given in Egs. (48), (55) and (56) respectively.
The constraints for the parameters are the natural bounds so that no negative g-factorial appears
in the formula

0 <k <min(IJK,uvw), (61)

0 <uvw <min(uv, vw, wu), (62)
max(u+v —ry,0) <uv <min(u, v), (63)
max(v +w —rg,0) < vw < min(v, w), (64)
max(w +u —ry,0) < wu < min(w, u), (65)
0<u<<min(ry,ry,1],k), (66)

0< v <min(ry,rg, JK, k), (67)

0 < w<min(rg, ry, KI,k), (68)

0 <r; <min(l, k), (69)

0<ry <min(J,k), (70)

0 <rg <min(K, k), (71)

and finally for h we have
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h<min(u —uv —wu+uvw,v —vw —uv +uvw,w — wil — VW + Uvw), (72)

h>max(u+v+w—uv—vw—wu+uvw —k, 0). O (73)
3.4. The closed formula of the cumulant

Although the triple correlation formula (58) is extremely complicated modern computers with
algebra packages can easily handle it. We provide a Maple procedure for evaluation at the web ad-
dress [15]. Numerous computer experiments suggest that there exists a closed formula for the triple
correlations. The formula becomes simpler for the cumulant (53). We give the formula for the cu-
mulant suggested by experiments as a conjecture. The triple correlations can be obtained using the
conjecture below and Eq. (53). The formula extends the previous results. When we set for example
K = in the triple correlation formula, we get the pair correlations.

Conjecture 21. Let G be ak x n matrixand let I, |, K C {1, 2, ...n} be three column sets. Then the cumulant
o(q~",q7",q7%) is given by

—r o - @=D2G" =1, 1o keki-1k i K, KI
O—(q T”q T]’q f]():W(q J+IK+ J _(q]+qj _|,_q )

+2+ (¢ —q)(@* -1)).

We give an other conjecture which is on the joint cumulant of rank functions of three arbitrary
submatrices. We remind the reader that when L is a row set and [ is a column set r;; denotes the
rank of the matrix spanned by the row set L and the column set I.

Conjecture 22. Let G be a random k x n matrix, let I, |, K C {1, 2,...,n} be column sets and L, M, N C
{1,2,...,k} be row sets. Then the joint cumulant of the rank functions q—"!, q~"™/J and q~"NK is

O—(q*m7 q*TM] , q*rNK)

@ -1) 1JK LM+MN~+NL—LMN
= QU RTFIL MM (@ =1)(g -1)

4 (qLMN _ ])(qu+]K+KI—I]K —1) - (qu _ 1)(qLM —1) - (q]K _ 1)(qMN —1)

_ (qKI _ ])(qNL 1) -+ 1)(qu1< _ 1)(qLMN ~1)).

Using similar arguments as in the proof of Theorem 11 one gets the corresponding conjectures for
the coefficients of the weight enumerators. We sketch the line as follows. Let G be a random k x n
matrix and C be the code assuming G as a generator matrix. Let

Si= q“",

=i
so that

We(l +x) = Z Sixt
i

and

o(We(+x). We(1+y), We(1+2) =) o (Si.Sj. Spx'ylZ. (74)
i,j.l
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For 0(S;, S, S;) we will calculate generating functions. For this we will put the conjectural formula
in the following form

e q@-1D%@ -1, _ CUUD—K o (UK—] « —(KUD—
r,’q rj’q rK) o ( (IU]UK)_(q vj) K+q (JUK) I+q (KUI) ])
q

+2q7 70K 4 (qk _ q) (q—l—]—]+l]K _ q—l—]—K))'

o(q

This gives the cumulants of the coefficients S;’s as follows

U(S,, 517 Sl) — (q _ ])Z(qk _ -l) Z (qf(IU]UK) _ qf(IU])fK _ qf(_]UK)fl
=i, 1]I=j. IK|=l

e B Y e e (qk —q) (q—1—1—1+111< _ q—l—]—K)). (75)

Let us introduce more notations now and let [x'y/Z/|M(x, y, z) be the coefficient of x'y/Z' in a poly-
nomial M(x, y, z). It is easy to check that

D g IO = Wy ) (x+ Dy + DE+ D +q-1)"g "

Zq—(lu]) K

]
[x'yfz’]((x—i-1)(y+1)+q—1)"(z+q)"q_2”
Y U =Ky (v + D+ D +a—1)" x+ )",
[
K

Zq_(KUI) J— le]zl]((z+1)(x+])+q_])n(y+q)nq—2n
ot

D g TS Wy ) (e D+ DEH D+ @ D+ y+z+q+ D) g,

[Xy/Z])x+ "y + "z +9)"g ",

where all the summations are over I, J, K C {1,2,...n} with |I| =1i,|]J| =j and |K|=1. This set of
sums once put in Eq. (75) gives the cumulant o (S;, S, S;). Then summation over i, j, [ gives the joint
cumulant of the coefficients of the weight enumerator given in Eq. (74). When we substitute x — 1 for
x, y—1 for y and z— 1 for z we get the joint cumulant of triplet of the coefficients Ajs

o (We®), We(y), We@) =Y o (A Aj, ApX"y" 2"
i,j,l

We give the joint cumulants of triplets of coefficients of the weight enumerator as a corollary to
Conjecture 21.

Corollary 23. The joint cumulants of the coefficients of W (t) are given by

o (We(), We(y). We@) =@—1*(¢" - 1){g "xyz+q—-1)"
M@y +q—D"z+q—-D"+z+9-1D)"x+q-1)"
+@X+q— D"y +g-D")+2¢ " x+q-D"(y+q—D"z+g—1)"
+ (@ —q)a " (xyz+@—-Dx+y+z+q-2)"

¢ M x+q-D"(y+q-D"z+q-D"]}.
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Given G we can consider the code C + which assumes G as a parity check matrix with the weight
enumerator Wei(t) =) ; A#t"‘l. Once again MacWilliams duality transforms the previous corollary
to this case.

Corollary 24. The joint cumulants of the coefficients of W1 (t) are given by

O(Wer (), Wer(0). Wer () =Y o (Af, A7, A )X yn=T !
i,j,1

=q*@- D¢ - ) {(xvz+ @ DEx+y+z+q-2)" — (xy2)"
—(xy+q-1D"=@xp"Z" - ((yz+q-1D" = (y2)")x"
—(@x+q—1D" = @")y" + (¢ —q)[xyz+q - D" — (xy2)"]}.
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