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Abstract

In this paper, we propose a framework for urban visualization using a conservative from-region visibility algorithm
based on occluder shrinking. The visible geometry in a typical urban walkthrough mainly consists of partially visible build-
ings. Occlusion-culling algorithms, in which the granularity is buildings, process these partially visible buildings as if they
are completely visible. To address the problem of partial visibility, we propose a data structure, called slice-wise data struc-
ture, that represents buildings in terms of slices parallel to the coordinate axes. We observe that the visible parts of the
objects usually have simple shapes. This observation establishes the base for occlusion-culling where the occlusion gran-
ularity is individual slices. The proposed slice-wise data structure has minimal storage requirements. We also propose to
shrink general 3D occluders in a scene to find volumetric occlusion. Empirical results show that significant increase in
frame rates and decrease in the number of processed polygons can be achieved using the proposed slice-wise occlusion-cull-
ing as compared to an occlusion-culling method where the granularity is individual buildings.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction However, occlusion-culling algorithms are still very

costly.

The efficiency of a visibility algorithm is vitally
important for making an urban visualization system
usable on ordinary hardware. View-frustum culling
and back-face culling are ways to speed-up the visu-
alization and there exist efficient methods for them.

* Corresponding author. Fax: +90 312 266 4047.
E-mail addresses: yturker@cs.bilkent.edu.tr (T. Yilmaz),
gudukbay@cs.bilkent.edu.tr (U. Giidikbay).

In occlusion-culling algorithms where the granu-
larity is individual buildings, an object could be sent
to the graphics pipeline even if a small portion of
it becomes visible. In most cases, this would result
in unnecessary overloading of the hardware, espe-
cially if the objects are very complex. An efficient
approach is needed to create a tight visibility set
without causing further overheads. Although it is
feasible to traverse the nodes in the hierarchy of
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Fig. 1. Slice-wise occlusion culling sends approximately 51% fewer triangles to the graphics pipeline and increases frame rate by 81%, as
compared to occlusion culling using building-level granularity for this model. The yellow colored sections show occluded regions, which
are discarded from the graphics pipeline. In addition, the slice-wise representation decreases Potentially Visible Set (PVS) storage
requirement drastically. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

paper.)

an object to see which parts are visible, it is usually
impractical to store the visibility lists.

The first contribution of this paper is the slice-
wise structure. This is a simple data structure, which
takes advantage of the special topology of buildings
within an urban scene. It automatically exploits
real-world occlusion characteristics in urban scenes
by subdividing the objects into slices parallel to
the coordinate axes (Fig. 1). Other object hierar-
chies such as octrees and regular grids can well be
used to partition the objects; even individual trian-
gles can be checked. However, the storage require-
ment of Potentially Visible Sets (PVSs) limits the
scalability of their usage. The PVS storage require-
ment of the proposed slice-wise structure is very
low (3 bytes for each viewpoint and partially visible
building). An index is stored for a partially visible
building, indicating the visible slices along each
coordinate axis.

The second contribution of the paper is an occlu-
der-shrinking algorithm to achieve conservative
from-region visibility. Conservative occlusion-cull-
ing can be performed by shrinking the occluders
and performing the visibility tests using the shrunk
versions of the occluders. To our knowledge, this
is the first demonstrated attempt that can also be
applied to general nonconvex occluders as a whole.

The organization of the paper is as follows. We
give related work in Section 2. In Section 3, we
describe the proposed slice-wise data structure. In
Section 4, we describe the occlusion-culling method
based on conservative from-region visibility and our
shrinking algorithm. In Section 5, we give experi-
mental results and comparisons. Finally, we give
conclusions.

2. Related work

Scene representation has a crucial impact on the
performance of a visibility algorithm in terms of

memory requirement and processing time. Many
data structures have been adopted for scene and
object representation such as octrees [1], or scene
graph hierarchy [2]. Scene graph usage that provides
fast traversal algorithms is particularly popular [3,4].
However, these are useful mainly for the definition of
object hierarchies. Their usage in determining visibil-
ity may require them to be augmented with additional
information, thereby increasing their storage require-
ments. In addition, the natural object structure is
modified in some applications. In [5], the triangles
that belong to many nodes of the octree are subdi-
vided across the nodes for easy traversal. In [6], the
objects could be divided into subobjects to create a
balanced scene hierarchy, if necessary.

Occlusion-culling algorithms detect the parts of
the scene occluded by other objects and do not con-
tribute to the overall image; these parts should not
be sent to the graphics pipeline. Since most of the
geometry is hidden behind occluders for urban envi-
ronments, it is extremely helpful to detect these
occluded portions.

Occlusion-culling algorithms can be classified as
from-point and from-region. From-point algorithms
calculate visibility with respect to the position and
viewing direction of the user, whereas from-region
algorithms calculate visibility which is valid for a
certain area or volume. One of the most advanta-
geous property of the from-region algorithms is that
the visibility can be precomputed and stored for
later use. However, it has the disadvantage of large
storage requirements, which we intend to overcome
by developing the slice-wise data structure.

The occlusion-culling algorithms can also be clas-
sified as either conservative or approximate [7]. Con-
servative algorithms may classify some invisible
objects as visible but never call a visible building invis-
ible. Instead of traversing an object’s internal hierar-
chy for fine tuned visibility, most conservative
algorithms either accept the entire object as visible
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or reject it. These algorithms may even accept invisi-
ble buildings as visible. Approximate occlusion-cull-
ing algorithms, such as [§-10], render the visible
primitives up to a specified threshold, i.e., some of
them may not be sent to the graphics pipeline
although they are visible. There are also approaches
to occlusion-culling that use parallel processing
methods, such as [6,11,12].

Another class of algorithms is the exact visibility
algorithms, which provide accurate visibility lists at
the expense of degrading the rendering performance
and increasing storage requirements. An example of
this class is [13], where the authors represent trian-
gles and the stabbing lines in a 5D Euclidean space
derived from a Pliicker space and perform geomet-
ric subtractions of the occluded lines from the set
of potential stabbing lines. In [14], the authors com-
pute visibility from a region by using a hierarchical
line space partitioning algorithm. They map the ori-
ented 2D lines to points in dual line-space and test
the visibility of a line segment with respect to the
occluders yielding to a visibility from a region.

There are occlusion-culling algorithms developed
for specific environments, such as indoor scenes [15],
outdoor environments like urban walkthroughs
[11,16-18], and general environments—environ-
ments having no natural object definition [13,19-
21]. In all of the algorithms the navigable area is
clustered in a way to provide the fastest occlusion-
culling possible. For indoor scenes, the navigation
area is naturally clustered into rooms and specific
techniques were developed such as portal usage
[15]. For the case of urban walkthroughs, the navi-
gable area is clustered or cellulized so that precom-
putations can be performed with respect to a
limited area. Most of the algorithms developed for
general environments are also applicable to others
with little or no modifications such as [21], but the
best performance is achieved by using the algo-
rithms in their target environments.

Some applications are only suitable for the envi-
ronments where there are large occluders and a
large portion of the model is behind these occluders.
These algorithms strongly rely on temporal coher-
ence. The traversal cost and other overheads
increase as the occluded regions decrease, thereby
limiting the scalability [5,22,23]. Visibility determi-
nation by traversing a scene hierarchy requires the
quick selection of occluders or the occluders should
be selected beforehand to decrease the time required
for this process. Performing occluder selection is a
difficult task [24-27] because it must be completed

in a limited time and there are many factors affect-
ing the occluder selection process, such as the pro-
jected area of the occluder, triangle counts,
transparency factors and holes. A survey of occlu-
sion-culling can be found in [7].

The purpose of creating visibility lists for each
view-cell is to improve scalability. Time consuming
operations are done beforehand. This results in a
large amount of data to be stored. There are many
different approaches to compressing the resultant
data, such as [21,28-31]. Our slice-wise data struc-
ture significantly decreases the amount of informa-
tion that needs to be stored.

The proposed slice-wise structure is able to create
a tight visibility set of slices of objects for any kind
of occlusion-culling algorithm. The visibility set
thus produced is tighter than those that measure
occlusion at the building level, but more conserva-
tive than the exact ones that operate at the polygon
level: it groups polygons by exploiting visibility
characteristics in a typical urban walkthrough.

Our urban visualization framework can be com-
pared with the previous state of the art work as follows:

¢ It does not make any assumption on the architec-
tures of the buildings. Unlike [17,23,32,33], our
occlusion-culling algorithm handles all kind of
3D occluders as in [10,13,19,34], not just 2.5D
buildings generated by extruding the city plans.

e The occlusion-culling algorithm is based on occlu-
der shrinking performed in the object-space. Itis a
from-region method, asin[16,21,33]; however, our
algorithm is capable of shrinking all kinds of 3D
objects by calculating the Minkowski difference
of the occluders and the view-cell. We can shrink
the nonconvex 3D occluders as a whole.

e All of the previous approaches use some kind of
data structure to speed up scene and object tra-
versal. We also use quadtree-based scheme for
culling large portions of the scene. However, we
make use of our proposed slice-wise structure
to determine visible parts of each building to gain
more rendering time by eliminating those invisi-
ble portions. Instead of traversing and storing a
large amount of data for the representation of
visible portions, we store only 3 bytes for each
building and access them in constant time.

e Unlike [8,9,35], which are approximate occlusion-
culling algorithms and [13,14], which are exact
occlusion-culling algorithms, our algorithm is
conservative, like [10,17,19,22,23,26,32-34] and
handles all types of occluder fusion.
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e We use hardware occlusion queries to determine
occlusions, as in [10,21,22]. We calculate the
visibility with respect to the centers of the calcu-
lated view-cells [36]. Since we use occluder
shrinking, the potentially visible set (PVS) calcu-
lated for the center of the view-cell is valid
throughout the whole view-cell.

3. Slice-wise structuring of objects
3.1. Object visibility characteristics

Our slice-wise approach is based on the
observation that while a person is navigating
through a city, the visible parts of the objects
usually have one of the following three forms
(see Fig. 2):

e The visible part looks like an L-shaped block
in different orientations if a Dbuilding is
occluded in part by a smaller occluder, as in
Fig. 2a.

e The visible part looks like a vertical rectangular
block, from the left or right of the building if
the occluder seems taller than the occludee (see
Fig. 2b).

o If the occluder is a large one and appears to be
shorter than the occludee, it usually hides the
lower half of the building. In this case the visible
portion looks like a horizontal rectangular block,
as in Fig. 2c.

Most of the occlusion can be represented by the
proposed slice-wise structure using these character-
istics. However, there are of course some other cases
that the occlusion cannot be perfectly represented.

These may include a configuration such as both
sides of the building are occluded resulting in a mid-
dle part visibility and the top of the building is vis-
ible in addition to the middle part visibility. In any
of these cases the occlusion-culling algorithm tries
to capture the occlusion as much as possible in
one of the three visibility forms. For example, the
middle part visibility is regarded as vertical rectan-
gular, the top and middle part visibility is regarded
as L-shaped visibility.

Obviously, a visibility-culling algorithm could be
developed without characterizing visible parts of the
buildings. However, this might send unnecessarily
large number of polygons to the graphics pipeline.
If we could find a way to exploit these visibility
characteristics with a little overhead, we could
reduce both the number of polygons sent to the
graphics pipeline and the storage requirements for
the PVSs.

3.2. Slicing objects

The aim of the proposed slice-wise structure is
to create tight PVSs for urban scenes. Slice-wise
representation is obtained by subdividing an
object into axis-aligned slices and determining
the triangles that belong each slice. The slicing
process is composed of two steps: subdivision
and slice creation. In the subdivision step, each
object is uniformly subdivided and the grid cells
occupied by each triangle are determined. Next,
the occupied cells in the uniform subdivision
are combined into axis-aligned slices for each
coordinate axis. The process of slicing an object
is shown in Fig. 3. The resultant data structure
is shown in Fig. 4.

Fig. 2. Visibility forms during urban navigation: (a) L-shaped form; (b) vertical rectangular form; (c) horizontal rectangular form. In each
part of the figure, the visible part of the occludee is the green transparent area. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this paper.)
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Fig. 3. The process of slicing an object determines the triangles that belong to each slice. (a) A complete view of the object where the
positions of slices are shown; (b) an x-axis slice; (c) a y-axis slice; (d) a z-axis slice.
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Fig. 4. The scene data structure produced by slicing operations.
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Fig. 5. Defining visibility indices for objects: the visible slice
indices are determined for each axis during occlusion determina-
tion. (a) If an object is partially occluded from the right, the index
of the last visible slice is stored with a “+ sign. (b) If the object is
partially occluded from the left, the index of the last invisible slice
is stored with a “—"" sign. (c) If the object is partially occluded
from the bottom, we store the index of the first visible slice.

3.3. Visibility representation using slices

Defining the visible portions requires determining
the visible slices. As shown in Fig. 5, we only need to
store one visible-slice index for each axis. The combi-
nation of these indices facilitates the representation of
the visibility characteristics (see Fig. 2).

In addition to facilitating the exploitation of dif-
ferent visibility characteristics for tight visibility
processing (see Figs. 1 and 2), the benefits of slicing
objects are:

e Each triangle is encoded in at least three slices in
different axes. Therefore, we can use slices on any
axis during visualization. We choose the axis with
maximum occlusion (see Fig. 19). Choosing the
maximally occluded axis allows us to tighten
the visible set as much as possible.

e The memory required for the slice-wise approach
is minimal. In order to define the visibility,
3 bytes, one for each axis, are used for each
object and for each view-cell. This representation
greatly decreases the storage requirements for
PVSs (see Fig. 7).

e Slicing the objects provides a fast way to access
visible portions of an object. Unnecessarily tra-
versing a tree-like data structure is prevented by
directly accessing the visible slices and hence tri-
angles of an object.
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3.4. Comparison with other storage schemes

For precomputed visibility, the size of the data
stored for the view-cells may become so large that
the total size of the PVSs is much larger than the
size of the scene. Aside from a few studies
[21,31,37], the problem of big PVS storage problem
has not been given enough importance [7].

We compare the proposed structure with octrees
and regular grids in terms of the memory require-
ments. In Fig. 6, we depict subdivision depth and
the number of nodes needed for each subdivision.
The number of nodes for octrees refers to regularly
subdivided octree including the bits needed for the
previous levels. In an adaptively subdivided octree,
the number of nodes is below these levels. However,
giving exact costs and approximations on adaptive
version is very difficult. Instead, we give an informal
comparison of the results of the empirical study
with octrees and triangle level PVS sizes in Section
5. A comprehensive study of the costs for various
construction schemes of octrees is presented in [38].

PVS storage costs are depicted for various stor-
age schemes in Fig. 7. In this comparison, we
assume that all objects are visible or partially visi-
ble. We also assume that each node of octree and
regular grids can be identified with 1 bit and we
discard additional information to be stored along
them, such as corner coordinates. The pointers to
polygons are not taken into account because they
are needed in all types of structures. Additionally,

100000

we provide the data needed for occlusion culling at
the polygon level, assuming that the visibility of
each triangle is encoded in bits. The figure shows
that the slice-wise structure requires much less
space to store the PVSs; this is an indispensable
part of most preprocessed occlusion-culling
algorithms.

Using individual triangles and testing for occlu-
sion is a good way to create the tightest possible vis-
ibility set for any point in the scene and at first it
may sound better than the approach presented here.
However, the PVS storage issue becomes a big prob-
lem and limits the scalability. The slice-wise struc-
ture creates a good balance between PVS storage
and running time.

It is also possible to define some semantic prop-
erties and store occlusion information with respect
to this information. For example, in [23], the
authors define floors for the buildings, called as
2.5D + ¢; these buildings have more vertical com-
plexity than 2.5D buildings. Their occlusion-culling
algorithm tests triangles and determine the visibility
on a floor basis. However, this prevents its applica-
tion to real city models obtained from sources, such
as airborne laser scanners. Our algorithm is capable
of handling all types of buildings, do not need floor
information and determines occlusion with respect
to three axes. In this way, it captures a tighter
PVS than the floor-based visibility calculation.
Since it requires more processing time, it is applied
as a preprocessing step.
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Fig. 6. The comparison of the number of nodes needed for each subdivision scheme. The graph shows the number of nodes needed. The

values are in logarithmic scale.
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the use of memory. The values are in logarithmic scale.

4. Slice-based from-region visibility

Fig. 8 shows the framework for urban visuali-
zation using the slice-wise representation. It
mainly consists of a preprocessing phase and a
navigation phase. To test the effectiveness of the
slice-wise representation, we developed a conserva-
tive from-region visibility algorithm. To achieve
conservative occlusion culling, we made use of
the shrinking idea first proposed by Wonka
et al. [11]. Our shrinking algorithm can be applied
to any kind of scene object, including nonconvex
ones.

4.1. Occluder shrinking

The purpose of shrinking is to achieve conserva-
tive occlusion culling by sampling from discrete
locations. It is possible to determine occlusion from
a point and retain conservativeness for a limited
area because the occluders are shrunk by the maxi-
mum distance that can be traveled in the view-cell.
To achieve conservativeness, it is necessary to
shrink occluders so that the objects behind the

occluder is visible even if the user moves to the far-
thest possible location in the view-cell.

Wonka etal. [11]shrink occluders by using a sphere
constructed around 2.5D occluders. Decoret et al. [16]
generalize the shrinking by a sphere to erosion by a
convex shape, which is the union of the “edge convex
hulls” of the object. This is performed to create tighter
visibility sets and to increase the occlusion region of
the objects. They compute the shrunk versions of
objects using an image-based algorithm at each view
cell using a voxelized representation. This makes it
very difficult to apply the presented image-based
approach to general 3D objects.

4.1.1. Shrinking general 3D objects

The exact shrinking can only be performed by cal-
culating the Minkowski differences of the object and
the view-cell [39,40]and using the volume constructed
inside the object as the shrunk version (see Fig. 9).

Consider a general 3D object O and a set of vec-
tors X of a view-cell. The dilation of O by X, also
known as the Minkowski sum of both sets is defined
by the equation:

OdX={M+xMeO,xcX} (1)
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Fig. 8. The urban visualization framework: in the first phase, we
read the scene and calculate the bounding boxes of objects. Next,
we apply uniform subdivision to each object. Then, we cluster the
cells of the uniform subdivision into slices. After creating the
shrunk versions of the objects, these slices are checked for occlusion
and a tight visible set is determined for each grid location. The
phases in dashed blocks are performed in the preprocessing phase.
The view-frustum culling (VFC) is also done during navigation.

Here, X is commonly called the structuring element
[16]. Thus, the inner volume, which composes the
shrunk shape S of the object, can be defined as:

OcX={SVxeX,S+xec0}
={S|{S}eXxcoO}
={S} c{oex}

Although there exist methods for exact Minkowski
sums [41], it is practically very hard to find the exact
Minkowski differences of general 3D objects. Our
aim is to find a shrunk version of an object and
retain the conservativeness of the view-cell visibility.
Thus, we try to find an approximation to the differ-
ence, which will also satisfy the conservativeness of
the occlusion-culling process. In this way, we can
shrink any complex 3D object.

—~
\S]
~—

4.1.2. Shrinking using the Minkowski difference

We shrink an object by moving the vertices in the
reverse direction of their normals. Although archi-
tecturally we do not make any assumption on the
buildings, connected and closed meshes shrink

Fig. 9. Shrunk volume extraction using Minkowski difference
calculation. O denotes the object and S denotes the shrunk
volume of the object.

better. Our aim is to use an approximate Minkowski
difference of the object and the view-cell and still
achieve conservative occlusion culling. It should be
noted that the vertices are not moved with a
constant distance (see Fig. 10).

The traveled distance of a vertex during shrink-
ing affects the final position of a face. For the exact
Minkowski difference calculation, the movement
distances of the faces towards inside vary with
respect to the orientation of the view-cell, as shown
in Fig. 11a. As an approximation that guarantees
conservativeness, the faces should be moved at least
the distance ¢, which is the longest movement dis-
tance within a view-cell (see Fig. 11b).

Theorem 1. Let O be the occluder, S be its shrunk
shape, and ¢ be the maximum travel distance from the
center of the view-cell. If the minimum shrinking
distance of O is greater than or equal to ¢, the determined
visibility from the center of the view-cell by using the
shrunk shape of the occluder provides a conservative
estimate for the whole view-cell (see Fig. 12).

Proof. According to Eq. (2), the shrunk shape S is
{S} C {05 X}. Let X, be the vectors of length d,
which is smaller than ¢ and is the correct distance cal-
culated using the Minkowski difference, thatis d = a
or d=05b (see Fig. 11a). Hence, {S;} C {0 © X,}.
Since ¢ is the maximum distance to be moved, then
{a,b} < e. Then, the volume of {S,} is greater than
or equal to the volume of {S,}. Consequently, if
{S,} is conservative, then {S,}, having a smaller vol-
ume, is definitely conservative. [J

4.1.3. Calculating shrinking distance for the vertices
Using the notations of Figs. 11b and 13,

N, N;
= min { 90 — arccos <”'> },
{ INL[[Ni]

i=12,...,n

NSRS
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Fig. 10. A sample view-cell, in which the user can move at most with ¢ distance.

face

Fig. 11. Shrinking using the Minkowski difference: (a) in an exact Minkowski difference calculation, the movements of the faces towards
inside are different with respect to the view-cell position. The two faces move with distances @ and b. (b) The face movements are assumed
to be at least the distance ¢ of Fig. 10 to guarantee conservativeness. In this case, the vertex movement distance becomes J. For easy
interpretation, only an instance of the process where two faces sharing a vertex is shown.

where n is the number of faces sharing that vertex,
N, is the vertex normal, and N; is the face normal.
Then the shrinking distance of the vertex becomes
0 =¢/sin(5). In order to calculate J, we calculate
the minimum angle between the vertex normal and
all the neighboring face normals, since it yields to
the longest distance and guarantees conservative-
ness. The calculated shrinking distance becomes a
conservative bound on the real Minkowski differ-
ences of the model and the view-cell.

4.1.4. Shrinking occluders
The calculation of a correct shrinking distance is
not enough to create conservative shrunk versions

Fig. 12. If a point Py is visible from the center of the view-cell,
then it should also be visible with respect to its shrunk version S,
even if the user moves to the farthest distance available in the
view-cell, ¢. If the inner movement distance d of the faces for the
shrunk shape calculation is greater than or equal to &, the
conservativeness is guaranteed and the point P; becomes visible
with respect to the shrunk version S. The reader is referred to [11]
for the proof of the other case: if a point is occluded with respect
to the shrunk version S, then it is also occluded with respect to its
original version O, within an ¢ neighborhood.

Fig. 13. The object is shrunk by moving the vertex in the
opposite direction of the vertex normal. The shrinking distance ¢
is calculated based on the view cell parameter ¢ and the angle 4.

of the occluders; some faces may go inside one
another and invalidate conservativeness (see
Fig. 14). To prevent such cases, we check the inter-
section of the volumes formed by the movement of
the faces in the occluder and the corresponding
faces in the shrunk version and remove the inter-
sected ones. In order to accomplish this;

e We first check the intersection of their axis-
aligned bounding boxes,

e Ifthe axis-aligned bounding boxes intersect, we try
to find a supporting plane between the volumes,
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o If there is a supporting plane between them, the
volumes do not intersect,

e Otherwise, we remove the faces that cause inter-
section from the shrunk object (see Fig. 15).

We also remove other bad cases such as triangles
with no area and overlapping triangles. Shrinking
examples are given in Figs. 15 and 16.

Our shrinking algorithm has some similarities with
simplification envelopes [42]. Simplification enve-
lopes are used to create simplified versions of 3D
models. The simplified models are obtained by mov-
ing the vertices at most J distance from their original
position. When many triangles come close to each
other, they are removed and smaller number of trian-
gles are inserted. In simplification envelopes, it is
guaranteed that the movement distance of the verti-
ces are at most 0, whereas in our shrinking algorithm
it is guaranteed to be at least §. In simplification enve-
lopes, the vertices are moved with small steps and the
triangles are checked for intersection at each step. In
our case, since the movement distance has to be at
least J, we calculate the necessary distance once and
check for intersections later. Since our aim is to shrink
the objects, we do not create new triangle patches as
opposed to simplification envelopes since the triangle
patch creation may invalidate conservativeness.

The shrinking approach used in [21]is also appli-
cable to general 3D scenes. They accept triangles or

a

groups of connected triangles as occluders. They use
the supporting planes of the triangles or a combina-
tion of supporting planes to construct an occluder
umbra with respect to a selected projection point.
The shrinking is performed in this umbra by calcu-
lating the inner offset of the supporting planes
towards the center of the occluder umbra. Since they
use planes of the triangles, the view-cell size changes
with respect to the geometry. This approach facili-
tates the load balancing of the geometry for each
view-cell. However, in large environments, the
view-cell partitioning may go deeper and may result
in a large number of view-cells. As reported by the
authors, they may have up to 500K view-cells rang-
ing from several inches to a few feet wide for which
the occluder shrinking should be performed. In our
approach, we use the objects as a whole and calcu-
late their shrunk versions once.

As a result of occluder shrinking, some triangles
may be removed from the model if there is any inter-
section. Conservativeness of the calculated visibility
may be invalidated if we let these intersected trian-
gles in the occluder model. This triangle removal
may be overly conservative especially for the models
with object sizes less than the shrinking distance. A
minimally conservative solution requires the calcu-
lation of exact Minkowski differences. Currently,
conservativeness degree is lowered by adjusting the
view-cell size with respect to the average size of

b

Fig. 14. (a) Shrinking without any intersection: the neighboring triangles do not intersect because of common vertices. (b) The movement
volumes of the two triangles intersect and this case results in removal of the triangles.

Fig. 15. Shrinking applied to a heptoroid: the rims around holes shrink to null when the triangles from opposite sides start to intersect

with each other (0 values are increasing in row-wise order).
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- &

Fig. 16. Shrinking applied to a general 3D object: the vertices touching the ground are not moved vertically (6 values are increasing in

row-wise order).
the buildings. The view-cells for different city mod-
els are shown in Fig. 17.
4.2. Occlusion culling

The occlusion-culling algorithm works in the pre-
processing phase. It regards each scene object as a

candidate occludee and performs an occlusion test
with respect to all other objects in the scene. At each

a

step, slices of the horizontal axis are checked for
complete occlusion. The other two-axis slices are
checked for partial occlusion. An object is tested
against a combination of the shrunk versions of
all other objects; this creates occluder fusion and
determines the occlusion amounts. This process is
repeated for each navigable view-cell. The culling
scheme is applied from a coarse-grained to fine-
grained occlusion-culling tests (see Algorithm 1).

Fig. 17. View-cells (cubes) for different city models: (a) the view-cell for the procedurally generated model. (b) The view-cell in the

Vienna2000 model. (c) The view-cell in the Glasgow Model.
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foreach grid location in 3D do
Draw the shrunk versions of the visible objects in the frustum as occluder;
Cull portions of the scene using a quadtree;
foreach candidate occludee belonging to visible quadtree blocks do
Construct frustum towards the center of the occludee;
Test the bounding box of the occludee using NV_.OCCLUSION_QUERY;
if the bounding box of the occludee is visible then
‘ Mark the object as VISIBLE
else
L Mark it as INVISIBLE

foreach VISIBLE object do
| Test slices using Algorithm 2;

foreach PARTIALLY_VISIBLE object in the scene do
| Optimize visible slice counts using Algorithm 3;

Algorithm 1. The occlusion-culling algorithm: this
algorithm differentiates between visible and invisible
occludees. Then the visible objects are sent to the
slice-wise occlusion-culling algorithm. Next the
number of visible slices are optimized and the PVS
for the view-cell is determined.

4.2.1. Coarse-grained culling

The visible buildings are classified as either par-
tially visible or completely visible. Determining
these two forms require more occlusion queries to
be performed. Algorithm 1 performs a coarse-
grained occlusion culling to eliminate large invisible
portions of the scene. It performs the following
operations:

e Draw shrunk versions of all objects as occluders
and disable color and depth buffer updates.

e We perform projection towards all 90° sections
of the viewpoint and send quadtree blocks con-
structed from the ground locations of the build-
ings for being culled. We wuse hardware
occlusion queries for this purpose. This step elim-
inates most of the invisible buildings quickly
without testing them one by one.

We calculate the projection of the ocludees
belonging to visible quadtree blocks. In practice,
although the calculated shrink versions are con-
servative, due to the use of graphics hardware to
detect occlusion and hence the rasterization errors
can be encountered, the conservativeness can be
violated. For example, a far away object may pro-
ject to less than a pixel but an occluder right in
front of the object may still cover the entire pixel
due to the rasterization errors. These errors may
be caused by projection, image sampling, and
depth-buffer precision errors [43]. We overcome
these problems by adjusting the viewing parame-
ters for the projection so that the occludee is

zoomed to the maximum extent on the occlusion
test screen, which is 1024 x 768 pixels. This results
in a very large view of the redrawn object. In other
words, the outer contour of an occluder in the
current view becomes tested with a very high pre-
cision. Besides, the bounding box of the candidate
occludee is tested while generating two fragments
for each pixel as in [43] and using antialiasing. In
this way, rasterization errors that can be faced
due to hardware occlusion queries are prevented.
e We test the bounding box of the candidate occlu-
dee. If the bounding box test returns visible pixels,
we mark the object as visible, otherwise as invisible.

Most occlusion-culling algorithms stop after this
step and accept an object as visible if the occludee
becomes partially visible. We go through further
steps and determine a tighter visibility set for the
object. If the bounding box of the occludee is visi-
ble, we submit occlusion queries for the slices; we
then determine the maximum occlusion height for
each slice of the occludee using Algorithm 2. Thus,
we classify the buildings as completely visible, par-
tially visible and invisible. The visibility information
for the slices is sent to Algorithm 3 to decrease the
number of slices and determine the visibility indices
to be used during navigation.

4.2.2. Fine-grained culling

Algorithm 2 performs fine-grained occlusion-
culling. It checks the slices of a candidate occludee.
To find the exact occlusion, we first submit occlu-
sion queries and test the vertical slices with blocks
of size A (see Fig. 18). Next, we collect the query
results. Finding the last invisible 4 allows us to
determine the occluded height of the slice. Horizon-
tal slices are checked for complete occlusion.

4.2.3. Optimizing the visible slice counts

An object occluded by several occluders may have
an irregular appearance that cannot be easily repre-
sented (see Fig. 19). However, our aim is to decrease
the amount of information needed to represent visi-
bility, and therefore reduce the time to access the vis-
ible parts of the objects. In particular, the purpose of
this optimization is to represent the visible area by
using a small number of slices and determine a single
index for each axis. We have to sacrifice tightness of
visibility somewhat to reduce the access time and
memory requirement (see Fig. 19).
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Generate and submit NV_occlusion_queries:
begin
forall vertical slices do
slice_increment— 1;
while slice_increment*A <slice_height do
Query the slice box with height (slice_increment*A);
slice_increment++;

forall horizontal slices do
| Query the horizontal slice box;

end
Collect the results of the occlusion queries:
begin
forall vertical slices do
slice_increment«— 1;
while slice_increment*/\ <slice_height do
if The query returns any visible pixels then
slice_occlusion_height <« (slice_increment-1)*A);
break;
else
| slice_occlusion_height «—— slice_increment*A;

slice_increment++;
if slice_occlusion_height=slice_height then
| Mark the slice as INVISIBLE;
else
if slice_occlusion_height=0 then
Mark the slice as COMPLETELY _VISIBLE;
else
L Mark the slice as PARTIALLY_VISIBLE,

forall horizontal slices do
if The query returns any visible pixels then

| Mark the slice as COMPLETELY _VISIBLE;
else

L Mark the slice as INVISIBLE;

end
if all slices are COMPLETELY_VISIBLE then

| Mark the object as COMPLETELY_VISIBLE;
else

| Mark the object as PARTIALLY_VISIBLE;

Algorithm 2. Testing the slices for occlusion: each
slice is tested against the shrunk occluder. The vertical
slice bounding boxes are drawn from the bottom to
the top incrementing them gradually as in Fig. 18b.

The algorithm for optimizing the slice counts is
given in Algorithm 3. This algorithm is used to
decrease the number of slices representing the visible
portion of an occludee. In this algorithm:

e Any triangle of the object is represented by slices
from three axes. We first find the maximally
occluded axis by calculating the occluded regions
and the percentages of occlusion with respect to
each axis.

e The rectangle that represents the occluded area is
constructed.

e For all the slices of the maximally occluded axis,
we discard the vertical ones up to the vertical
edge of the rectangle and the horizontal ones
up to the upper horizontal edge.

e The region above the upper edge of the rectangle
is represented using horizontal slices and the
region on the right- or left-hand side of the rect-
angle is represented using vertical slices.

e We discard the slices of the minimally occluded
axis.

¢ Finally, the indices are calculated for each axis
(see Fig. 5).

X _occlusion «—— Percentage of occlusion for X-axis slices;
Z _occlusion «—— Percentage of occlusion for Z-axis slices;
work_azxis «— max (X _occlusion, Z__occlusion);
Construct maximum sized rectangle of occlusion in the work.axis;
forall Slices of the work_azis do
Discard the vertical slices within the horizontal range of the rectangle;
L Discard the horizontal slices within the vertical range of the rectangle;
Discard the slices of the vertical axis other than work_axis;
Assign the visibility indices to each axis for being stored;

Algorithm 3. Optimizing the visible slice counts: the
algorithm reduces the number of slices used to
represent the visible portion for an occludee (see
Fig. 19).

The created PVS size is a function of the number
of view-cells and the number of the objects. The size
of the PVS does not change with respect to the
model complexity (see Fig. 7).

4.3. Rendering

Vertex arrays [21] and vertex buffer objects [22]
are two popular techniques used for rendering the
complex environments. We perform rendering by
creating OpenGL display lists for the view-cells on-
the-fly. OpenGL display lists are more flexible for
run time purposes than using vertex buffer objects.
We also create display lists for the neighboring
view-cells of the user location to prevent perfor-
mance degradation. This degradation might occur
because of the display list compilation of the new
PVS for the view-cell the user moves into. The neigh-
boring view-cells are updated on-the-fly gradually
without decreasing the frame rate below 25 fps. It
should be noted that this operation is also highly
parallelizable. The rendering process is shown in
Fig. 20. We avoid multiple renderings of the triangles
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Fig. 18. In order to determine the correct occlusion height in (a), the slices are tested beginning from the lowest unoccluded height and the
point of occlusion is found as in (b) by iteratively eliminating blocks of size 4 from the vertical slice; this creates occluder fusion (the
viewpoint is in front of the occluder). The test order for slices along the x, y, and z axes are depicted in (c—e), respectively. While the slices
in the x and z axes are tested for exact heights, the y-axis slices are tested for complete occlusion (d). Testing y-axis slices for complete
occlusion may result in unnecessarily accepting the slice as visible. However, this case is handled by optimizing the slice counts.
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Fig. 19. The resultant shape of the occlusion may have a jaggy appearance and we need to smooth it to represent with the slice-wise
structure (a and b). This is handled as described in Algorithm 3. After selecting the maximally occluded axis, the starting corner of the
occlusion is determined (c). The rectangle to represent the occlusion is determined (d). The vertical slices up to vertical edge of the rectangle
and horizontal ones up to the horizontal edge are discarded (e).

IDLE
@ C [ & Function
PRIORITY | PRIORITY|
View Render
L [ J € |—»| PVS |—» | Frustum|—» |PVS with
USER | PRIORITY| comp"er CuIIing Display
Movement C C C Lists
Direction

Fig. 20. The rendering process: the user is in the blue view-cell. The display list for the view-cell is compiled before entering to the
navigation stage, along with the neighboring view-cells. During navigation, the compilations of the display lists for the neighboring view-
cells in the movement direction are given high priority. The display list compiler is attached to the idle function of the OpenGL so that the
neighboring view-cell compilation does not cause bottlenecks. In this way, frame dips caused by the compilation of the display lists are
prevented. After view frustum culling is performed on the quadtree blocks of the ground locations of the buildings, the constructed display
lists for each building in the view frustum are rendered. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)

at the intersections of the horizontal and vertical lution. The navigation algorithm is supported by a
axes of the partially visible objects (see Fig. 19e). view-frustum-culling algorithm, which eliminates
The tests were performed in 1024 x 768 screen reso- the objects that are completely out of the view frustum.
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Fig. 21. The models used in tests: (a) the procedurally generated 40M-polygon test model is composed of 6144 buildings ranging from 5K
to 8K polygons each; (b) the Vienna model is a 7.8M-polygon model that has 2078 blocks of buildings ranging from 60 to 30,768 faces. In
this model, contrary to previous works, each surrounding block of buildings is accepted as a single object during the tests. (c) Glasgow
model has originally 290K polygons. However, the mesh structure is not well-defined and has intersecting, long and thin triangles.
Therefore, the mesh structure has been refined and a total of 500K polygons are used during the tests.

Fig. 22. Still frames from the navigations through the scenes used in the experiments. On the left column, still frames from the current
viewpoint are shown. In the middle, the views above the view-points are shown. The view-cell is the green box. On the right, larger areas
showing the results of the slice-wise occlusion culling are shown. Partially visible buildings are in blue, completely visible buildings are in
red, and invisible buildings are in yellow color. The rows belong to procedurally generated, Vienna, and Glasgow models, respectively.

5. Results and discussion
5.1. Test environment

The proposed algorithms were implemented using
C language with OpenGL libraries; they were tested
on an Intel Pentium IV 3.4 GHz. computer with
4 GB of RAM and NVidia Quadro Pro FX 4400
graphics card with 512 MB of memory. We use three

different urban models for the tests (Fig. 21). The
first one is a procedurally generated model using a
few detailed building models, which is composed of
40M triangles. The second one is the model of the
city of Vienna composed of 7.8M triangles
(Vienna2000 Model with detailed buildings). The
last one is the Glasgow model, which is a relatively
small (500K) model. Table 1 shows various statistics
about these models. The results of the tests are
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Table 1

Statistics of the models used in the tests

Model Procedurally generated Vienna 2000 Glasgow
No. polygons 40M 7.8M 500K

No. buildings 6144 2086 1461
Model size 100K x 63K 2385 %2900 4246 x 3520
View-cell size 200 x 200 10x 10 15x 15

No. navigable cells 45.5K 72K 66K

Table 2

Summary of the test results using the slice-wise structure

Model Procedurally generated Vienna 2000 Glasgow
Total PVS size on disk (MB) 52 18 65

No. slices 377,920 30,392 11,948
No. triangle pointers 136.2M 27.3M 1.6M
Slice-wise memory usage (MB) 1094 218.7 12.4
PVS calculation time/cell (ms) 323 292 436
Shrinking time/building (s) 30.0 13.8 3.7
Total PVS calculation (h) 4.08 5.6 8.0
Total shrinking time (h) 0.05% 8 1.5

# Since the procedurally generated model contains six different types of buildings repetitively, total shrinking time is low.

summarized in Table 2. We discuss the results for the
largest one, 40M-polygon procedurally generated
model, for space considerations. The interpretation
of the test results for two real city models are similar.

For the procedurally generated model, the navi-
gation area is divided into 200-pixel grids. The area
of the city is 100K x 63K pixels. There are about
45.5K navigable grid points in the scene, from
where the visibility culling is done. The test city
model used in the experiments consists of 6144 com-
plex buildings with six different architectures, each
having from 5K to 8K polygons with a total of
40M polygons. The slices are 200 pixels wide, the
same width as the grid cells, although they can be
different to adapt to the dimensions of the buildings.
On the average, there are 15 slices on the x and z
axes. The number of slices of the y axis depends
on the heights of the buildings, which in our case
is around 25 slices. As a result each object has about
55 slices. Preprocessing takes approximately 323 ms
for each view-cell. We perform a navigation con-
taining 12,835 frames (Fig. 22). The navigation is
performed on the ground to make the occlusion
results comparable with other works. It should be
noted that flythrough-type navigation is also possi-
ble without any modification.

The first aim of the empirical study is to test
whether our slice-wise structure and the shrinking
algorithm provide an advantage in occlusion culling
over one where an object is sent to the graphics

pipeline completely even if it is only partially visible.
This is performed to test if there are any overheads
that will prevent its usage for fine-grained-visibility
testing. Slice-wise occlusion culling refers to occlu-
sion culling where the granularity is individual slices
whereas the building-level occlusion culling refers to
the occlusion culling where the granularity is build-
ings. The second aim is to compare the PVS storage
requirements of an occlusion culling approach using
a slice-wise data structure and other subdivision
schemes, such as octree and triangle level occlusion
culling.

5.2. Rendering performance

Fig. 23 shows the frame rates obtained using the
slice-wise and building-level occlusion culling. The
graphs are smoothed for easy interpretation using
a regression function. The average frame rate of
the building-level occlusion culling is 61.36 frames
per second (fps). We achieve average frame rates
of 111.06 fps, 81% faster than using building-level
granularity. In our tests, 99.26% of the geometry
is culled on the average. The culling percentages
strongly depends on the size of the view-cell used.
As the size of the view-cell increases, the number
of preprocessed occlusion-culling operations
decreases, whereas the number of the triangles
unnecessarily accepted as visible increases. As exam-
ples of geometry culling performance: in [26] from
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Fig. 23. Frame rates (left column) and number of polygons rendered (right column) of the proposed slice-wise approach as compared to
the building-level approach for each model. The average frame rate speedups are 81%, 73.7% and 26.7%; and the average polygon
reductions are 51%, 46.3% and 34.6% for the procedurally generated, Vienna2000, and Glasgow models, respectively. One reason for the
lower performance increase in the Glasgow model is that the average number of the polygons rendered are very small for both
granularities and the GPU is not fully utilized. The other reason is that the mesh structure has long and thin triangles belonging to several

slices, thereby decreasing the exploitation of the data structure.

72% t0 99.4%; in [23] from 99.86% to 99.95%; in [11]
99.34% culling ratios are reported.

Fig. 23 also gives the number of polygons ren-
dered for the slice-wise and building-level occlusion
culling. Using the building-level granularity, 93

buildings and 592K polygons are drawn on the
average for each frame. Using the slice-wise occlu-
sion culling, 89 of these buildings are accepted as
partially visible. This decreases the number of ren-
dered polygons to 290K on the average, which is
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Table 3

Comparison of the average frame rates and rendered polygon counts for slice-wise occlusion culling and building-level occlusion culling
Model Procedurally generated Vienna 2000 Glasgow

Frame rate Slice-wise 111.06 135.1 152.2
Building-level 61.36 77.8 120.1

Polygon count Slice-wise 290K 122.1K 26.2K
Building-level 592K 227.6K 40.1K

Frame rate is in frames per second (fps); polygon counts are the average number of polygons rendered per frame.

approximately 49% of the number of polygons ren-
dered with building-level occlusion culling. Table 3
gives the average frame rate and rendered polygon
count comparisons for slice-wise and building-level
occlusion-culling methods for the three test models.

5.3. PVS storage

The proposed slice-wise occlusion-culling algo-
rithms are optimized to exploit their benefits.
Applying each subdivision scheme and performing
tests on their performances would require different
optimizations. This would make the comparisons
unbalanced. Therefore, we only give informal
results of using octrees and polygon level occlu-
sion-culling processes for their effects in terms of
the resultant PVSs.

We compare PVS storage requirements of the
slice-wise structure and other subdivision schemes,
namely the octree-based and triangle-based PVS
storage (see Fig. 7). In 45.50K navigable view-cells,
there are four completely visible, 89 partially visible
buildings and about 290K visible polygons on the
average. The PVS created using the slice-wise struc-
ture is 52 MB, where each partially visible buildings
is represented with 55 slices on the average.

For the octree structure, a building is represented
with 4680 nodes to obtain the same granularity with
the slice-wise structure, which requires a subdivision
depth of 4. We assume 75% of this amount for the
adaptive octree case, which is 3510 bytes. We fur-
ther assume that each node of octree for the build-
ings is in the memory and the visible nodes are
represented in bits, hence decreasing down to
around 438 bytes/building. Totally, the octree-
based PVS storage requirement is about 1.95 GB.

For the triangle level PVS storage, there are about
13.20 billion triangles (290K visible polygons for
45.5K view-cells), which should be encoded into bits
resulting in about 1.65 GB. Thus, the storage require-
ment of the slice-wise structure is about 3.15% of the
triangle-level PVS storage and 2.67% of the octree-

based PVS storage. Since, the PVS storage require-
ment for the slice-wise data structure is the same for
all subdivision levels, as the subdivision goes deeper,
it becomes more advantageous to use it.

A rough comparison of the PVS storage require-
ment of the proposed approach with some well-
known approaches is as follows. In [11], the model
used consists of 82K view-cells with 7.8M triangles
and a PVS with a size of 55 MB (building-level
occlusion culling is used). In [21], the model used
consists of 90K view-cells with 34M triangles. The
authors employ a very powerful compression and
decompression scheme for the PVS and they have
1.1 GB-size PVS for their environment (polygon-
level occlusion culling is used). In our test environ-
ment, we have 45.5K view-cells and 40M triangles.
The PVS created by our scheme is 52 MB without
any compression.

For the scenes that have a lot of connectivity, it
may be necessary to subdivide the scene into clusters
asin[6,21,22]. The clustering approach is suitable for
the cases where there is no natural object definition.
However, the buildings are mostly disconnected for
urban models. Thus, the cluster formation process
is not very useful since the quadtree or k-d tree-based
hierarchy for the ground locations of the buildings
serves the same purpose, as shown in [23].

Our approach can also capture occlusion in bird’s-
eye view. However, since the occlusion becomes less
and the amount of the visible geometry increases, it
may be more suitable to combine the approach with
LOD (Level-of-Detail) rendering approach, espe-
cially for the completely visible buildings.

6. Conclusions

In this paper, we proposed a data structure that
exploits the visibility characteristics of buildings in
the visualization of urban scenes. The proposed
approach avoids sending a building entirely to the
graphics pipeline if only a small portion of it is vis-
ible, thereby solving the partial occlusion problem.
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The objects are divided into axis-aligned slices and
the slices rather than the whole objects are checked
for occlusion.

We also showed how to shrink objects in a scene,
including nonconvex ones, in order to use them as
occluders for from-region conservative occlusion
culling. Our shrinking algorithm can be used for
any kind of object, not just 2.5D buildings in an
urban scene. Our experiments showed that the pro-
posed slice-wise occlusion culling provides a signifi-
cant increase in frame rates and decrease in the
number of processed polygons per frame as com-
pared to a visualization using building-level occlu-
sion culling. In addition, the slice-wise structure
drastically reduces the PVS storage requirement.

The slice-wise structuring of objects can also be
used to visualize scenes other than urban scenery,
although we did not test this. Another application
of our method would be scenes, where buildings
are touching (as in some European cities). In this
case, a subdivision at the object level could be done
to create smaller objects as in [6,21,22].

The proposed approach works for flythrough-type
navigations where the user can be above buildings. It
is also suitable for tilted viewing directions. Since, the
occluded parts in the urban model become less as the
flying altitude increases, it would be helpful for real
time rendering to integrate our method with other
approaches, such as view-dependent refinement.
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