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a b s t r a c t

The asymptotic expansion treatment of the homogenization problem for nonlinear purely
mechanical or thermal problems exists, together with the treatment of the coupled prob-
lem in the linearized setting. In this contribution, an asymptotic expansion approach to
homogenization in finite thermoelasticity is presented. The treatment naturally enforces
a separation of scales, thereby inducing a first-order homogenization framework that is
suitable for computational implementation. Within this framework two microscopically
uncoupled cell problems, where a purely mechanical one is followed by a purely thermal
one, are obtained. The results are in agreement with a recently proposed approach based
on the explicit enforcement of the macroscopic temperature, thereby ensuring thermody-
namic consistency across the scales. Numerical investigations additionally demonstrate
the computational efficiency of the two-phase homogenization framework in characteriz-
ing deformation-induced thermal anisotropy as well as its theoretical advantages in avoid-
ing spurious size effects.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Homogenization methods provide an efficient framework for addressing the multiscale nature of a large class of boundary
value problems. While higher-order homogenization frameworks have also been proposed (Forest, Pradel, & Sab, 2001; Kouz-
netsova, Geers, & Brekelmans, 2004; Larsson & Diebels, 2007), the majority of homogenization approaches are first-order in
the sense that if e = lmicro/lmacro denotes the ratio between representative length scales associated with the microstructural
features and the macrostructural problem then only oscillations of order Oðe1Þ are taken into account in the resolution of
the highly oscillatory fields such as displacement and temperature. In terms of the gradients of these fields, the resolution
is of the order Oðe0Þ, which corresponds to the classical separation of scales assumption lmicro� lmacro, or e ? 0. A formal res-
olution of the oscillatory solution fields is based on the asymptotic expansion (AE) approach that goes back to the work of
Sanchez-Palencia (1980). See also Torquato (2002) and Pavliotis and Stuart (2008) for recent overviews. The goal of this con-
tribution is to highlight the AE basis for a homogenization framework in finite thermoelasticity that was recently proposed in
Temizer and Wriggers (2011). A concise presentation is pursued with references exclusively concentrating on works where
an explicit AE approach has been investigated for thermomechanical problems. See Temizer and Wriggers (2011) for exten-
sive references on closely related approaches in various multiphysics problems.

The background on homogenization in finite thermoelasticity has three major branches. The first takes into account the
finite deformation kinematics in purely mechanical problems. While an AE treatment in the infinitesimal deformation re-
gime is well-known (Sanchez-Palencia, 1980), extensions to large deformations were first discussed in Takano, Ohnishi,
Zako, and Nishiyabu (2000) and subsequently developed in detail by Terada, Saiki, Matsui, and Yamakawa (2003) where
the algorithmic tangents associated with the Newton–Raphson type iterative solution of the nonlinear macroscopic
. All rights reserved.
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boundary value problem were additionally derived. See also Fish and Fan (2008). As the second branch of concern, an AE
treatment of nonlinear thermal conduction in a rigid heterogeneous medium was addressed first in Laschet (2002) in a
quasistatic setting while the treatment of the linearized setting is again well-known (Sanchez-Palencia, 1980). As the final
branch, the first treatment of the coupled transient thermoelasticity problem in a linearized setting was presented in Franc-
fort (1983). The coupled quasistatic problem was further investigated by Alzina, Toussaint, and Béakou (2007) while the
transient case with viscous dissipation effects was considered in Francfort (1986) and Yu and Fish (2002) and recently with
fluid-filled porous materials in Terada, Kurumatani, Ushida, and Kikuchi (2010). To the best knowledge of the author, an AE
approach for the coupled thermoelasticity problem with finite deformation kinematics, nonlinear thermal conduction and
large deviations from the equilibrium temperature has not been presented in the literature.

Computational approaches for the coupled nonlinear thermomechanical problem that are motivated by single-physics
homogenization techniques have been presented in a limited number of works, among them Miehe, Schröder, and Schotte
(1999), Aboudi (2002), Khisaeva and Ostoja-Starzewski (2007) and Özdemir, Brekelmans, and Geers (2008). These ap-
proaches were critically examined in Temizer and Wriggers (2011) and two major shortcomings were pointed out in the lit-
erature: (i) the coupled nature of the macroscopic boundary value problem has not been investigated to full extent in a
transient setting, and (ii) a separation of scales assumption has not been preserved. While the first shortcoming is important
from a numerical point of view, the second one is essential in order to avoid non-physical size effects and confirm consis-
tency with earlier single-physics approaches. With a view towards addressing these shortcomings, a framework was pre-
sented in Temizer and Wriggers (2011) based on the explicit constitutive formulation in finite thermoelasticity
(Chadwick & Creasy, 1984). It was demonstrated that in order to preserve thermodynamic consistency across the scale tran-
sitions, i.e. to obtain the classical finite thermoelasticity formulation on the macroscale as well, the homogenization ap-
proach must be based on an explicit enforcement of the macroscopic temperature which naturally induces a two-phase
computational framework. Within this framework, (i) a purely mechanical microstructural problem is solved on a test sam-
ple by imposing the macroscopic deformation gradient as boundary conditions while the temperature is uniformly elevated
to its macroscopic counterpart throughout the whole sample, followed by (ii) a purely thermal one where a nonlinear ther-
mal conduction problem is solved on the frozen configuration from the first phase. The first phase delivers the macroscopic
stress while the second delivers the macroscopic heat flux.

While the mentioned two-phase computational setup closely resembles the classical numerical staggering schemes
(Simo, 1998), it was emphasized in Temizer and Wriggers (2011) that this framework is not a numerical approximation
but rather it is exact to within a separation of scales assumption. In this contribution, the separation of scales is explicitly
invoked within an AE treatment and it is demonstrated that the mentioned two-phase computational homogenization
framework is recovered. For this purpose, the balance laws governing finite thermoelasticity are briefly summarized in Sec-
tion 2. The AEs of the thermomechanical primal and dual variables are introduced in Section 3 where various homogeniza-
tion results are also recalled. Finally, the cell problems of homogenization are obtained in Section 4 together with the
macroscopic transient boundary value problems. Practical implications of the obtained results are discussed in detail. While
the emphasis is strictly on the AE treatment, novel numerical results are presented that complement the investigations of
Temizer and Wriggers (2011) in the context of deformation-induced thermal anisotropy and spurious size effects. See also
Temizer and Wriggers (2011) for extensive numerical investigations together with additional discussions on the macro-
scopic thermodynamics and numerics.

2. Finite thermoelasticity

Let X and x denote the position vectors with respect to the reference (R) and current configurations of a body B such that
u = x � X corresponds to the displacement field while N denotes the outward unit normal toR. For the purposes of this work,
the reference configuration of a body coincides with the undeformed configuration at a uniform reference temperature hREF

while the current configuration is assigned a distribution h(X). Exclusively pursuing a finite thermoelasticity formulation,
Grad[�] and Div[�] indicate the associated gradient and divergence operators with respect to the reference configuration.
Consequently, F = Grad[x] and G = Grad[h] indicate the (deformation and temperature) gradient fields using which the gen-
eral constitutive forms P(h,F) for the 1st Piola–Kirchhoff stress tensor and Q(h,G,F) for the heat flux vector are admitted.
{x,u,h} will be referred to as primal quantities while dual will be employed to refer to {P,Q}. Explicit constitutive formula-
tions are presently not required.

Admitting a standard continuum, the angular momentum balance is assumed to be satisfied a priori : PFT = FPT. The linear
momentum balance requires (q : density in R)
Div½P� þ f ¼ q€u ð2:1Þ
in R, with f as a body force per unit volume of R, subject to the specification of x or p = PN on a suitable partitioning of the
boundary @R. In a similar fashion, using c to denote the specific heat at constant deformation per unit volume of R, the
energy balance for finite thermoelasticity can be expressed in the reduced form
c _h ¼ h
@P
@h
� _F � Div½Q � þ r; ð2:2Þ
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with appropriate boundary conditions on h or h = �Q � N. The first term on the right-hand side is responsible for the
Gough-Joule effect and r is a heat supply per unit volume ofR. For future reference, the stress power is denoted by P ¼ P � _F.

Herein, the existence of a Helmholtz free energy function W(h,F) (per unit volume of R) has been admitted such that
c = �h(@2W/@h2) and the second law of thermodynamics condenses to the requirements (Maugin, 1999)
P ¼ @W
@F

; D ¼ �Q � G
h

P 0: ð2:3Þ
The latter expression is the statement of a positive dissipation, which is purely thermal due to the absence of any mechanical
dissipation within a thermoelastic setting, and is assumed to be satisfied by the form of Q. A general expression for the func-
tional form of W may easily be constructed (Chadwick & Creasy, 1984) – see also Temizer and Wriggers (2011) and Section 5.

3. Two-scale representation

3.1. Asymptotic expansion

The body B is admitted to be materially inhomogeneous at a fine scale (or, microheterogeneous). Following a classical
mathematical construction (Pavliotis & Stuart, 2008; Sanchez-Palencia, 1980; Torquato, 2002), the nature of the heteroge-
neities is assigned a two-scale periodic structure that is represented by a macroscale (referential) position vector X and its
microscale counterpart Y = X/e such that e ? 0, i.e. scale separation is enforced. In the context of AE, {X,Y} are subsequently
treated as independent variables. The unit cell characterizing local periodicity at a macroscale position X is denoted Y. The
highly-oscillatory primal variables ue and he are then assumed to have the AEs
ueðXÞ ¼ uðX;YÞ ¼ uoðX;YÞ þ eu1ðX;YÞ þ e2u2ðX;YÞ þ Oðe3Þ ð3:1Þ
and
heðXÞ ¼ hðX;YÞ ¼ hoðX;YÞ þ eh1ðX;YÞ þ e2h2ðX;YÞ þ Oðe3Þ: ð3:2Þ
Here and in the following developments, the notation
½��o :¼ lim
e!0
½�� ð3:3Þ
will be consistently employed. It is assumed that the heterogeneous continuum is initially in mechanical and thermal equi-
librium. The latter requires, in particular, that h = ho = hREF initially. In addition to the Y-periodicity of the microstructure, ui

and hi are also assigned a Y-periodic structure. Moreover, it is assumed that there are no discontinuities in these fields. As
e ? 0, only the explicit solution of the first-order corrector (or, fluctuation) fields {u1,h1} are of interest.

The differential operators can be expanded in partial derivatives as
Div½�� ¼ DivX ½�� þ
1
e

DivY ½��; Grad½�� ¼ GradX ½�� þ
1
e

GradY ½��: ð3:4Þ
Consequently, using I to denote the identity tensor, the induced gradient fields have the expansions
F ¼ 1
e

GradY ½uo� þ I þ GradX ½uo� þ GradY ½u1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Fo

þeðGradX ½u1� þ GradY ½u2�Þ þ Oðe2Þ ð3:5Þ
and
G ¼ 1
e

GradY ½ho� þ GradX ½ho� þ GradY ½h1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Go

þeðGradX ½h1� þ GradY ½h2�Þ þ Oðe2Þ: ð3:6Þ
Now, if F and G are to remain bounded in the limit as e ? 0, it is required that
GradY ½uo� ¼ 0; GradY ½ho� ¼ 0; ð3:7Þ
which is simply a statement that uo and ho are independent of Y. In the classical linearized framework for single-and mul-
tiphysics settings, this result is automatically induced through an explicit expansion of the balance laws (Pavliotis & Stuart,
2008; Sanchez-Palencia, 1980; Terada et al., 2010; Yu & Fish, 2002). Making use of these expansions together with the cell
average
h�i ¼ 1
jYj

Z
Y
� dY ð3:8Þ
it is straightforward to verify the standard relationships between macroscopic and microscopic quantities:
F :¼ I þ GradX ½uo� ¼ hFoi; G :¼ GradX ½ho� ¼ hGoi: ð3:9Þ
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The macroscopic temperature is already represented by ho and it does not correspond to a cell average. To summarize, the
local deformation and temperature distributions are controlled by fhoðXÞ;GðXÞ; FðXÞg only.

3.2. Expansion of the dual variables

Finally, in order to construct an expansion of the dual variables without specifying the particular constitutive choices, the
microscale mechanical sensitivities
M ¼ @P
@h

; IK ¼ @P
@F

ð3:10Þ
and their thermal counterparts
m ¼ @Q
@h

; K ¼ @Q
@G

; Q ¼ @Q
@F

ð3:11Þ
are introduced. While the sensitivity of Q with respect to G classically involves a negative sign, the present choice is made for
simplicity. One may then proceed to the expansion of the stress via
Pðh; FÞ ¼ Pðh; FÞje¼0 þ e
dP
de

����
e¼0
þOðe2Þ ¼ Po þ e M

@h
@e
þ IK

@F
@e

� �����
e¼0
þOðe2Þ

¼ Po þ eðMoh1 þ IKofGradX ½u1� þ GradY ½u2�gÞ þ Oðe2Þ; ð3:12Þ
where Po :¼ P(ho,Fo). In a similar fashion, the expansion of the heat flux vector is found to be
Qðh;G; FÞ ¼ Q o þ eðmoh1 þ Ko GradX ½h1� þ GradY ½h2�f g þQofGradX ½u1� þ GradY ½u2�gÞ þ Oðe2Þ; ð3:13Þ
where Qo :¼ Q(ho, Go, Fo). Due to the assumed Y-periodicity, p and h are anti-periodic on @Y.
It is also useful to expand the body force and heat supply terms. Based on the relatively general forms f(h,u) and r(h,u), the

expansions
f ðh;uÞ ¼ f o þOðeÞ; rðh;uÞ ¼ ro þOðeÞ ð3:14Þ
hold with respect to u and h, respectively, where fo :¼ f(ho,uo) and ro :¼ r(ho,uo). Clearly, a similar expansion follows for all
quantities that depend on any of the fields {h,u,F}, in particular for fW; c;P;Dg:
Wo ¼ Wðho; FoÞ; co ¼ �ho
@2Wo

@h2
o

; Po ¼ Po � _Fo; Do ¼ �
Q o � Go

ho
: ð3:15Þ
It is noted that, while not explicitly denoted, all of these quantities have a dependence on {X,Y}.

4. Two-scale boundary value problem

4.1. Linear momentum balance

The substitution of (3.12) into (2.1), making use of (3.4) and explicitly retaining only terms of order e0 or less leads to:
q€uo þOðeÞ ¼ DivX ½P� þ
1
e

DivY ½P�
� �

þ f o þOðeÞ

¼ DivX ½Po� þ DivY ½Moh1 þ IKofGradX ½u1� þ GradY ½u2�g� þ f o þ
1
e

DivY ½Po� þ OðeÞ: ð4:1Þ
Note that q does not have an AE with respect to any of the fields {h,u,F} and therefore is retained in its original form.
In the limit as e ? 0, this expansion implies two results. First, Oðe�1Þ term induces
DivY ½Po� ¼ 0 ð4:2Þ
or, explicitly denoting Po,
DivY ½Pðho; FoÞ� ¼ 0: ð4:3Þ
This is a classical cell problem in Y. Its significance lies in the fact that only the macroscopic temperature ho enters the cell prob-
lem explicitly. In other words, the temperature distribution that is locally induced by the temperature gradient Go does not
influence the stress distribution within Y under the separation of scales assumption e ? 0. Consequently, a purely mechanical
cell problem is obtained which is solved at an elevated (or, reduced) temperature ho that is uniform throughout the cell. Since
Po is nonlinear in Fo, this cell problem is solved iteratively for the u1 term, that is unique to within a rigid body translation,
while enforcing hFoi ¼ F.
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As the second result of the expansion (4.1), terms of order e0 imply, after rearranging,
DivY ½IKoGradY ½u2�� ¼ q€uo � f o � DivX ½Po� � DivY ½Moh1 þ IKoGradX ½u1��: ð4:4Þ
Here, the classical condition is invoked, namely that for this equation to have a Y-periodic solution u2 the cell average of the
right-hand side must vanish (Pavliotis & Stuart, 2008):
hDivX ½Po� þ DivY ½Moh1 þ IKoGradX ½u1�� þ f o � q€uoi ¼ 0: ð4:5Þ
It is remarked that, since X and Y are treated as independent variables, X enters all functional dependencies only as a param-
eter such that h�i is interchangeable with GradX[�] and DivX[�]. The terms within DivY[�] vanish after cell-averaging due to
their periodicity, upon making use of the divergence theorem. Consequently, the induced equation corresponds to the mac-
roscopic linear momentum balance and reads
DivX ½hPoi� þ hf oi ¼ hqi€uo; ð4:6Þ
where hPoi ¼: P corresponds to the macroscopic stress, hf oi ¼: �f is the macroscopic body force term and hqi ¼: �q is the macro-
scopic density. Clearly, P is governed by the microstructure and fho; Fg, and hence depends implicitly on X, but does not de-
pend on Y due to cell-averaging. All results are in close similarity with the purely mechanical case (Terada et al., 2003).

The divergence-free nature of Po together with the periodicity conditions ensure the classical transition
hPoi ¼ hPo � _Foi ¼ hPoi � h _Foi ¼ P � _F ¼: P; ð4:7Þ
where P is the macroscopic stress power, which is referred to as the micro–macro work equality (or, Hill–Mandel macrohomo-
geneity condition) in the engineering literature. This condition can alternatively be regarded as the starting point for design-
ing boundary conditions which are not periodic within practical homogenization setups – see Temizer and Wriggers (2011)
for extensive references.

4.2. Energy balance

Similar to Section 4.1, the substitution of (3.13) into (2.2), making use of (3.4) and explicitly retaining only terms of order
e0 or less leads to:
co
_ho þOðeÞ ¼ hoMo � _Fo � DivX ½Q � þ

1
e

DivY ½Q �
� �

þ ro þOðeÞ ¼ hoMo � _Fo � DivX ½Q o�

� DivY ½moh1 þ KofGradX ½h1� þ GradY ½h2�g þQofGradX ½u1� þ GradY ½u2�g� �
1
e

DivY ½Q o� þ ro þOðeÞ:

ð4:8Þ
In the limit as e ? 0, this expansion also implies two results. First, Oðe�1Þ term induces the cell problem
�DivY ½Q o� ¼ 0; ð4:9Þ
or, explicitly denoting Qo,
�DivY ½Qðho;Go; FoÞ� ¼ 0: ð4:10Þ
Its significance is twofold. First, only the macroscopic temperature ho enters the cell problem and hence the temperature dis-
tribution induced by Go does not influence temperature-dependent thermal material properties. These are evaluated at the
elevated macroscopic temperature ho. Second, Fo is transferred from the solution to the purely mechanical cell problem (4.3).
In other words, (4.10) is a purely thermal cell problem that is solved at the frozen (deformed) configuration that is inherited
from the mechanical one. Since Qo is possibly nonlinear in Go, this cell problem is solved iteratively for the h1 term, that is
unique to within a constant shift of the temperature, while enforcing hGoi ¼ G.

It is important to highlight that, as delineated in Temizer and Wriggers (2011), the uncoupling among the mechanical and
thermal problems on the microscale cell problem is not a numerical (e.g. operator-split type) approximation. Rather, it is an
exact theoretical split that is a consequence of the separation of scales assumption e ? 0.

As the second result of the expansion (4.8), terms of order e0 imply
DivY ½KoGradY ½h2�� ¼ �co
_ho þ hoMo � _Fo � DivX ½Q o� þ ro � DivY ½moh1 þ KoGradX ½h1� þQofGradX ½u1� þ GradY ½u2�g�:

ð4:11Þ
Here, the mechanical terms have been retained on the right-hand side together with all the other variables which can be
numerically evaluated. Consequently, the existence of a Y-periodic solution to the unknown term h2 requires that the cell
average of the right-hand side vanishes (Pavliotis & Stuart, 2008). Using the periodicity of all terms within DivY[�], the
requirement reads
hcoi _ho ¼ hohMo � _Foi � DivX ½hQ oi� þ hroi ð4:12Þ
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where hQ oi ¼: Q corresponds to the macroscopic heat flux and hroi ¼: �r is the macroscopic heat supply term. This is the finite
thermoelasticity counterpart of the result in Yu and Fish (2002). Similar to the linear momentum balance, Q is governed by
the microstructure and fho;G; Fg, and hence depends implicitly on X, but does not depend on Y due to cell-averaging.

As for its mechanical counterpart (4.7), the divergence-free nature of Qo together with the periodicity conditions ensure
the transition
hDoi ¼ �Q o � Go

ho

� �
¼ �hQ oi � hGoi

ho
¼ �Q � G

ho
¼: D; ð4:13Þ
where D is the macroscopic thermal dissipation, which is a micro–macro (thermal) dissipation equality. The identities (4.7)
and (4.13) together ensure that the microscale mechanical work and thermal dissipation are preserved through the scale
transition.

While (4.12) represents the macroscopic energy balance, it is not of the form (2.2) that is expected for the macroscopic
thermoelastic medium, i.e. the macroscopic quantities are expected to satisfy
�c _ho ¼ ho
@P
@ho
� _F � DivX ½Q � þ �r: ð4:14Þ
In order to restate (4.12) in this convenient form, the macroscopic specific heat �c is characterized in the next section. It is re-
marked that the form (4.14) is strictly an expectation on the basis of a separation of scales. Otherwise, a macroscopically
viscous response may be observed (Molinari & Ortiz, 1987). For heterogeneities that are small but not too small, the extent
to which the assumption of a purely thermoelastic macroscopic response is suitable also depends on the relevant time scales
of the problem (Molinari & Ortiz, 1987; Yu & Fish, 2002).

4.3. Macroscopic specific heat

Since Po = P(ho,Fo), one can reexpress Mo as
Mo ¼
@P
@h

����
e¼0
¼ @Po

@ho
¼ dPo

dho
� @Po

@Fo

@Fo

@ho
; ð4:15Þ
where use has been made of the fact that the Fo distribution, but not its cell average hFoi ¼ F , depends on the macroscopic
temperature ho. Consequently, the cell-averaged Gough–Joule term may be expanded as
hohMo � _Foi ¼ ho
dPo

dho
� _Fo

� �
� ho

@Po

@Fo

@Fo

@ho
� _Fo

� �
; ð4:16Þ
where the first term on the right-hand side can be further simplified to
ho
dPo

dho
� _Fo

� �
¼ ho

@hPoi
@ho

� h _Foi ¼ ho
@P
@ho
� _F; ð4:17Þ
which is exactly the macroscopic Gough–Joule term. Here, the transition to the second equality is performed, as in the tran-
sition (4.7), by making use of the periodic boundary conditions and the divergence-free nature of dPo

dho
, the latter stating that Po

satisfies the cell problem (4.3) for all choices of ho at a fixed macroscopic deformation F. Note that @Po
@ho

alone is not divergence-
free since a constant Fo distribution while ho is varied does not satisfy local equilibrium.

Combining (4.16) and (4.17), the macroscopic energy balance (4.12) may be restated in the convenient form
hcoi _ho þ ho
@Po

@Fo

@Fo

@ho
� _Fo

� �
¼ ho

@P
@ho
� _F � DivX ½Q � þ �r: ð4:18Þ
In order to verify that this expression is equivalent to the macroscopic counterpart (4.14) of (2.2), the left-hand side terms
may be combined as follows. Concentrating on the second term, it is noted that
@Po

@Fo

@Fo

@ho
� _Fo

� �
¼ @Fo

@ho
� @Po

@Fo

_Fo

� �
¼ @Fo

@ho
� _Po �

@Po

@ho

_ho

� �� �
: ð4:19Þ
Here, the symmetry in @Po
@Fo
¼ @2Wo

@Fo@Fo
has been made use of. Moreover, the first term in this cell average vanishes since
@Fo

@ho
� _Po

� �
¼ @Fo

@ho

� �
� h _Poi ¼

@F
@ho
� _P ð4:20Þ
and F is independent of ho. Here, the fact that _Po is divergence-free has been employed together with @Fo
@ho
¼ dFo

dho
, the former

stating that Po satisfies the cell problem (4.3) for all choices of ho and F. Consequently, the left-hand side of (4.18) simplifies
to the expression
hcoi _ho � ho
@Po

@ho
� @Fo

@ho

_ho

� �
¼ co � ho

@Po

@ho
� @Fo

@ho

� �
� _ho: ð4:21Þ
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It remains to verify the interpretation
�c ¼ co � ho
@Po

@ho
� @Fo

@ho

� �
: ð4:22Þ
For this purpose, macroscopic thermodynamic consistency is invoked which requires that
�c ¼ �ho
@2W

@h2
o

ð4:23Þ
where W :¼ hWoi is induced by (4.7) – see Temizer and Wriggers (2011) for a discussion of macroscopic thermodynamic con-
sistency conditions. Indeed, this identification follows from
co � ho
@Po

@ho
� @Fo

@ho

� �
¼ �ho

@2Wo

@h2
o

þ @2Wo

@ho@Fo
� @Fo

@ho

* +
¼ �ho

d
dho

@Wo

@ho

� �
¼ �ho

@

@ho

@Wo

@ho

� �

¼ �ho
@

@ho

dWo

dho
� @Wo

@Fo
� @Fo

@ho

� �
¼ �ho

@2hWoi
@h2

o

þ ho Po �
@Fo

@ho

� �

¼ �ho
@2hWoi
@h2

o

þ hohPoi �
@Fo

@ho

� �
¼ �ho

@2hWoi
@h2

o

þ hoP � @F
@ho
¼ �ho

@2hWoi
@h2

o

¼ �ho
@2W

@h2
o

¼ �c; ð4:24Þ
which completes the characterization of the macroscopic specific heat. Consequently, (4.14) can be used as the direct mac-
roscopic counterpart of (2.2) with all macroscopic terms as cell averages except for �c that is defined through (4.22).

5. Numerical investigations

In this section, numerical demonstrations of the two-phase homogenization framework are provided. Since extensive
numerical results were already presented in Temizer and Wriggers (2011), the present aim is not to duplicate but rather
complement the observations stated therein. Towards this purpose, the examples are grouped in two categories. First, the
computational efficiency of the framework is highlighted by characterizing the deformation-induced anisotropy of the ther-
mal response. Second, a spurious size effect that is not consistent with a separation of scales assumption, and hence with
standard first-order homogenization frameworks, is discussed.

The Helmholtz free energy function in finite thermoelasticity is of the general form
Wðh; FÞ ¼ h
hREF

WREFðFÞ �
h� hREF

hREF
eREFðFÞ þ

Z h

hREF

1� h

h0

� �
cðh0; FÞdh0; ð5:1Þ
where WREF(F) represents the purely mechanical response and the reference internal energy eREF(F) is responsible for thermal
expansion. Following the entropic theory of elasticity in an isotropic setting (Chadwick & Creasy, 1984), eREF(F) = 3jahREFln
(det[F]) is chosen where j is the bulk modulus and a is the thermal expansion coefficient. Additionally, a volumetric-devi-
atoric decoupling WREF ¼ Wvol

REF þWdev
REF is admitted for the purely mechanical response where Wvol

REF ¼ j
4 ðdet½b� � lnðdet½b�Þ � 1Þ

with b = FFT and Wdev
REF is modeled by a classical Ogden-type material. In order to complete the thermomechanical material

model, a constant specific heat is assumed together with a Fourier-type thermal response q = �kg on the deformed config-
uration where g = F�TG, q = det[F]�1FQ and the conductivity k is a constant. The reader is referred to Temizer and Wriggers
(2011) for the values of the material parameters employed, including the mismatch ratios between the material parameters
of the individual constituents.

5.1. Deformation-induced thermal anisotropy

Within the two-phase homogenization framework, the dependence of the macroscopic heat flux Q on the macroscopic
temperature gradient G is governed by the thermal phase only. Consequently, the characterization of thermal anisotropy
can be carried out by solely varying the direction of the macroscopic temperature gradient within the thermal phase without
recomputing the mechanical response, leading to significant savings in computation time in comparison with a fully-coupled
thermoelastic computation. Such a characterization is summarized in Fig. 1 on a unit-cell with a single spherical inclusion at
a volume fraction of 25 percent. Since an isotropic thermal conduction on the deformed configuration is assumed for the
individual constituents and the macroscopic purely thermal response of such a unit cell is known to be isotropic (Torquato,
2002), the temperature gradient and heat flux vectors
�g ¼ F�T G; �q ¼ 1
det½F�

FQ ð5:2Þ
on the deformed configuration are monitored to characterize the deformation-induced thermal anisotropy. More specifically,
a discrete number of �g orientations are chosen based on the 974-point angular grid of Lebedev and Laikov (1999) and a con-
stant k�gk is assigned. Subsequently, for a chosen H :¼ F � I; G is determined in order to impose periodic thermal boundary



Fig. 1. The unit cell consists of a hard particle embedded in a soft matrix. 20 hexahedral elements per spatial direction are employed to discretize the unit
cell. Here, the blue elements represent the matrix, the red ones correspond to the particle and green elements lie at the interface. All H ¼ F � I components
are set to zero, except for the ones which are explicitly denoted, and ho � hREF = 10 where hREF = 293.15 K is the initially uniform temperature of the
heterogeneous medium. The spatial location of a sphere represents the components of the corresponding vector. The magnitude is color-coded: GRD ¼ k�gk
and FLX ¼ kqk. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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conditions. The thermal phase delivers Q as a cell average, which is then mapped to �q and plotted in Fig. 1. It is remarked
that, in the present case, the periodic thermal boundary conditions can alternatively be imposed directly via �g and the de-
formed cell average of the microscopic flux qo :¼ 1

det½Fo � Fo Q o can be equivalently employed to determine �q (Temizer & Wrig-
gers, 2011).

The perfectly spherical response in Fig. 1 for H ¼ 0 verifies the expected macroscopically isotropic purely thermal re-
sponse. Large axial deformations of the unit cell significantly alter the heat flux, although the induced anisotropy is weak
compared to large shear deformations. For the latter, ellipsoidal distributions of �q clearly demonstrate deformation-induced
thermal anisotropy.

5.2. Spurious size effects

The two-phase homogenization framework explicitly enforces the separation of scales assumption so that the absolute
dimensions of the unit cell do not affect the homogenized response fP;Qg for given fho;G; Fg. An alternative microscopically
coupled homogenization framework may be constructed where G and F are simultaneously projected onto the unit cell in the
usual manner. However, the mechanical response is now influenced by the temperature distribution that is induced by G and
therefore a method of projecting ho onto the unit cell is additionally required. Presently, the temperature at a single corner
point of the unit cell is enforced to ho although other approaches are possible and will display qualitatively similar problems
which are to be shortly demonstrated. The microscopically coupled problem is subsequently solved through full linearization
within a monolithic scheme. It is highlighted again that the macroscopic problem remains thermomechanically coupled in
all cases.

Fig. 2 summarizes the macroscopic stress and heat flux responses of a unit cell with varying edge length lmicro, the two-
phase framework results displaying no sensitivity. On the other hand, within the coupled framework the stress is influenced
by the increasing temperature across the unit cell such that large sample sizes lead to larger deviations from the two-phase
results. Moreover, simply by changing the direction of the macroscopic temperature gradient the stress can be influenced
within the coupled framework. However, such a dependence is not consistent with the classical thermomechanical material
models where the independence of the stress from the temperature gradient is typically postulated. Consequently, these size
effects are strictly spurious within a separation of scales assumption. Indeed, as lmicro ? 0 the responses from the two alternative
approaches match. The macroscopic heat flux also displays size effects. However, in this example the microscopic thermal
response is postulated to be independent of the temperature and hence the size effect is only governed by the changes in the
microstructural geometry due to thermal expansion. Since these changes are small within confined geometries, as in a unit
cell, the measured influence of lmicro on the thermal response is small compared to that on the mechanical response but nev-
ertheless significant. In particular, since F ¼ I in this case, Q should be isotropic in G although the coupled framework clearly
displays sensitivity to the direction of G.

As an alternative demonstration of the spurious size effect, random microstructures are taken as the basis of motivation.
With such microstructures, one typically employs non-periodic (e.g. linear) boundary conditions (BCs) (Temizer & Wriggers,
2011) and it is necessary to choose a sufficiently large sample size in order to ensure that it qualifies as a representative vol-
ume element (RVE). Presently, the anticipated shortcomings of the microscopically coupled framework can be demonstrated
by periodic microstructures. Two-dimensional microstructures are employed to reduce the computational cost and sample
enlargement is carried out by varying the number of unit cells per spatial direction of a test sample (Fig. 3). As the sample is
enlarged, periodic BCs within the two-phase framework display an invariant stress as well as flux response and hence are
taken as the reference cases. The responses of the two-phase framework using non-periodic BCs are observed to monoton-
Fig. 2. The microscopically coupled framework is compared with the two-phase framework. Here, H ¼ 0, ho � hREF = 0 (see Fig. 1) and all components of G1

are set to 104. G2 has the same magnitude with G1 but is oriented in the vertical direction. The reference stress PREF is computed with the two-phase
framework by assigning 0.1 to all components of H and the reference flux Q REF by using G1.



Fig. 3. The microscopically coupled framework is compared with the two-phase framework for periodic (PR) and non-periodic (NPR) boundary conditions.
Here, all components of H are set to 1, ho � hREF = 0 (see Fig. 1) and all components of G are set to 104. The reference stress PREF and heat flux Q REF correspond
to the two-phase framework with periodic boundary conditions. The absolute unit cell size is such that the radius of a particle is 10�4 units at a volume
fraction of 25%.
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ically approach the reference results which is a well-known fact and has also been demonstrated in Temizer and Wriggers
(2011). Within the coupled framework, however, periodic BCs deliver results which are not constant and they monotonically
diverge from the reference results. A similar response is observed under non-periodic BCs within the coupled framework and
is more clearly demonstrated by monitoring the heat flux. As the sample is enlarged, the results first converge towards the
response obtained under periodic BCs. With a sufficiently large sample size, the boundary condition effects are alleviated
although now size effects dominate. Consequently, under sample enlargement, the response curves under periodic and
non-periodic BCs converge towards each other while diverging from the results of the two-phase framework.

It is noted that the size effect in a microscopically coupled framework has two implications. First, it is necessary to vary
the size of the unit cell in the range of macroscopic control parameters fho;G; Fg in order to ensure that the absolute size does
not significantly influence the macroscopic response. Second, with random microstructures, the sample enlargement proce-
dure for the determination of an RVE must be carefully monitored to avoid any spurious effect. Clearly, neither procedure is
straightforward or computationally favorable, which further highlights the computational efficiency and the theoretical
robustness of the two-phase homogenization framework.
6. Conclusion

An asymptotic expansion (AE) basis was provided for the first-order computational homogenization framework recently
proposed in Temizer and Wriggers (2011) for finite thermoelasticity. Within an AE treatment, the separation of scales
assumption is naturally enforced, yielding results that are in agreement with those obtained in Temizer and Wriggers
(2011) through the monitoring of thermodynamic consistency across the scales. In particular, the AE treatment also deliv-
ered a two-phase homogenization problem posed on the unit cell of periodicity where a purely mechanical cell problem is
followed by a purely thermal one. The two problems are uncoupled in the sense that only the macroscopic temperature en-
ters the mechanical problem, and not the local temperature that is induced within the thermal one, while the thermal prob-
lem is solved at the (fixed) deformed configuration obtained from the mechanical one. The result is a computationally
efficient framework on the microscale. However, this uncoupling is not a numerical one and, indeed, the coupling among
the thermal and mechanical fields is preserved within the obtained macroscopic balance laws. An alternative microscopically
coupled homogenization framework was additionally investigated and was shown to display spurious size effects that are
not consistent with a separation of scales assumption. The agreement with the results of Temizer and Wriggers (2011) is
encouraging since purely thermodynamical arguments based on explicit finite thermoelasticity formulations were pursued
therein. In the context of finite deformation thermomechanical problems with inelasticity, such explicit formulations are not
available and therefore it may be more advantageous to pursue an AE approach instead.
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