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a b s t r a c t

Quick response systems enable retailers to estimate customer demand more accurately,

and improve stocking decisions for perishable products with uncertain demand.

Retailers place separate orders for a product at two different times before the selling

season. Following the initial order, additional market information is obtained, and the

second-order amount is decided based on an improved demand forecast. In some cases,

purchase cost associated with the second order is uncertain, and demand for the

product during the season depends on the selling price. We present a solution procedure

for finding the optimal order quantity and selling price in this setting. We also study the

case where any desired portion of the initial order can be cancelled after updating

the demand forecast. In the numerical study, the optimal price is observed to be

relatively insensitive to changes in demand variability.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Forecasting demand for products as accurately
as possible is crucially important for maintaining the
profitability of retail businesses. Advances in information
technology have facilitated development of various new
decision support tools that help the companies to control
inventory levels in a cost-efficient manner.

Quick response systems in fashion apparel industry
aim at shortening manufacturing and distribution lead
times by means of information technology such as
Electronic Data Interchange (EDI) and Point of Sale
scanner, by utilizing faster modes of transportation,
and also by organizing the manufacturing operations
around cellular manufacturing concepts (Fisher and
Raman, 1996). Successful fashion retailers identify custo-
mer trends and changing preferences as they emerge, and
using highly automated processes such as computer-aided
design and computer-aided manufacturing (CAD/CAM),
ll rights reserved.
convert these ideas into concrete products within weeks
(Christopher et al., 2004).

For managing inventories of style goods, quick re-
sponse systems have become popular and have been used
successfully by a number of major retailers in the US
(Fisher and Raman, 1996). Style goods are essentially
the seasonal products such as toys and fashion apparel.
They have a long supply lead time relative to the length
of the selling season, and hence the number of ordering
opportunities is limited, generally to one or two. These
products are not typically carried over into future selling
periods. At the end of the selling season, inventory not
sold during the regular season must be liquidated at a
discounted price or otherwise disposed of. By updating
the demand forecast as actual market data become
available, quick response systems allow for adjusting the
stock of a retail item as closely as possible to the optimal
level. An implementation of quick response approach at
Sport Obermeyer, a leading fashion skiwear designer and
manufacturer, is described in Fisher and Raman (1996).

The appropriate inventory level for a product at the
beginning of a selling season is determined by considering
the tradeoff between the cost of unsold items at the end
of the selling season and the cost of unsatisfied demand

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
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caused by stockouts during the season. In general,
uncertainty in customer demand forecast is higher when
there is more time until the selling season. As the selling
season approaches, more information about the potential
customer demand is acquired and demand forecasts
become more reliable. For example, Bitran et al. (1986)
report that demand for the products of a consumer
electronics company occurs mainly in the last quarter of
the year, and sales forecasts are made at the beginning
of each quarter. For a particular product, the successive
sales forecasts pertaining to the next Christmas season
had a coefficient of variation of 1, 0.5, and 0.2 in January,
April, and October, respectively.

A common practice utilizing information update in a
quick response system is to split the traditional single
purchase order into two lots. The first order has a longer
lead time; the second order is placed closer to the selling
season when the retailer is able to take advantage of the
improved demand forecast in choosing the stocking level
for the item. However, in some cases the unit purchase
cost associated with the second order may be unknown
when the first order is placed. Hence, uncertainties in both
future demand and purchase cost must be taken into
account when the retailer determines the size of the
first order. While short lead times help the retailer make
better decisions regarding the amount of item to stock
(due to better demand forecast), possible increases in unit
purchase cost is a discouraging factor in adopting an
extreme strategy involving 100% postponement of the first
order. An optimal sourcing strategy is likely to prescribe a
combination of short lead time and long lead time
alternatives (Fisher and Raman, 1996).

In some cases, late orders are always more costly than
early orders. Consider the production problem faced by a
semiconductor manufacturer. The long lead times asso-
ciated with the low-cost, offshore production require that
the firm sets the initial (offshore) production quantity
before observing any demand (Cattani et al., 2008). After
getting a demand signal, the manufacturer can produce
additional units by utilizing its high-cost, domestic
manufacturing capacity.

Yan et al. (2003) discuss a component procurement
problem faced by a security system manufacturing
company. A key part of security systems is the micro-
controller which has a read-only memory (ROM) that can
be installed in one of two ways. Micro-controller chip can
be custom-made according to user-supplied data require-
ments during the wafer fabrication process. This option
entails significant lead time. The second option is to
purchase a micro-controller with a generic programmable
ROM and add the program code after the chips are
received. These micro-controllers with programmable
ROMs can be procured in a shorter lead time but are
twice as expensive as custom-made chips. The company
uses both types of micro-controller chips to balance the
tradeoff between uncertainty in demand for security
systems, which depends on lead time, and unit purchase
cost of micro-controllers.

A number of researchers have studied the optimal
purchasing decisions in a quick response scheme by using
newsvendor-like inventory models. It is commonly
assumed in the literature that selling price is an
exogenous and given parameter, independent of the
demand for the product. While this assumption may be
plausible when the firm is a price-taker, for some products
it may be more appropriate to assume a negative
relationship between demand and price, as in the case of
fashion garments sold by a specialty retailer that owns a
network of approximately 50 stores in the US (Federgruen
and Heching, 1999). In this paper we treat both the
order quantity and selling price as decision variables. We
consider a retailer who has to decide how much to order
at two different times prior to the selling season. The first
order is based on an initial demand forecast. The second
order is based on an improved demand forecast, but the
purchase price in the second order is not known with
certainty when the initial order is given. We consider
that the retailer can estimate the average demand more
accurately by collecting market information between
the first and the second orders. The two-stage ordering
problem that we explore in this paper is built upon the
assumption of normal probability distribution for uncer-
tain demand, which has also been employed by a number
of researchers in the inventory literature. Our framework
allows specification of error component in price-dependent
demand according to two common approaches, namely
additive and multiplicative errors. Determining the optimal
solution in the problem with price-sensitive demand is not
straightforward; we therefore propose a search procedure
based on computation of the expected profit at different
points in the search region.

We make a separate analysis of the retailer’s ordering
policy when it is possible to cancel the initial order fully or
partially; we show that the expected profit is a concave
function of the initial order amount. An algorithm for
solving the retailer’s ordering problem with order-cancel-
lation flexibility is presented.

Results from our computational study indicate that
higher demand variability leads to a decrease in the
retailer’s initial order size. We also observe that introduc-
tion of order-cancellation flexibility helps the retailer cope
better with the negative impact of demand uncertainty,
and the optimal price is fairly robust with changes in
demand variability.

The paper is structured as follows. After reviewing the
related literature, we present the key modeling assump-
tions in Section 3. In Section 4, we study the retailer’s
problem when selling price is fixed. The optimal ordering
and pricing policy in the price-sensitive demand scenario
is explored in Section 5. In Section 6, we look into the
setting where the retailer has the ability to cancel any
portion of the initial order after revising the demand
forecast. Following numerical examples in Section 7, the
concluding remarks are given in Section 8.
2. Literature review

For goods ordered periodically over time, a common
approach followed by retailers for predicting the future
demand is to adjust the previous forecast by taking into
account the latest actual sales data available; time series
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methods such as exponential smoothing is widely used
(e.g. Venkateswaran and Son, 2007). Various researchers
have studied the benefits of demand information sharing
in multi-echelon supply chains consisting of manufac-
turers, distributors and retailers (Wu and Edwin Cheng,
2008); by observing the customers’ demand information
directly, the manufacturers and distributors can reduce
their inventory costs, and hence, the negative effect of
demand variability on the supply chain is mitigated.

In style-goods inventory literature, the impact of quick
response systems on the profits of the manufacturer and
retailer has been investigated using multi-stage ordering
models with demand forecast updating. A research stream
has considered a setting where there are two selling
periods and the retailer has a chance to adjust its
inventory level at the beginning of the second period
based on sales observed in the first period. Bradford and
Sugrue (1990) study a two-period model in which a group
of items have heterogeneous Poisson demands; for each
item the parameter of the Poisson distribution is dis-
tributed according to a gamma distribution, resulting in a
negative binomial distribution for the aggregate demand.
An improved solution procedure for the problem discussed
in Bradford and Sugrue (1990) is given by Lau and
Lau (1999). Fisher and Raman (1996) look into the
production commitment decisions of a manufacturer. An
initial commitment is made before receiving any customer
orders; after observing initial demand, a second commit-
ment is made in the second period. In each period, there
are lower and upper limits on the production quantities
of multiple products. Eppen and Iyer (1997) investigate
backup agreements between a catalog retailer and man-
ufacturers. A fixed fraction of the firm commitment is held
as backup. After observing early demand, the catalog
company can order additional units from this backup.
Again in a two-period setting, Fisher et al. (2001) assume
that the manufacturer delivers the updated order from the
retailer after a significant lead time, and backorders for the
first period can be filled from this replenishment. In Milner
and Rosenblatt (2002), the buyer places initial orders for
two periods at a specified unit price. At the end of the
first period, the buyer can adjust the second period order
by incurring order adjustment charges.

Our paper follows the other major research vein in
which two orders given at two separate ordering instants
prior to the selling season together constitute the
inventory that will be available to the retailer to satisfy
the demand in a single selling period. The demand
forecast updating is based on information such as sales
of related products, advance purchases, and other market
observations. Gurnani and Tang (1999) explore a two-
stage ordering problem with uncertain purchase cost at
the second-ordering instant. Yan et al. (2003) study a
similar problem in which the known purchase cost
is higher in the second order. As in Gurnani and Tang
(1999), Choi et al. (2003) investigate the retailer’s ordering
decision in a problem with two ordering opportunities
and uncertainty in the ordering cost at the second stage.
But instead of defining a joint probability distribution
of market information and demand, they use a Bayesian
conjugate family (normal prior and posterior distribution)
for the forecast update process. Choi et al. (2006) consider
the case where the Bayesian updating procedure is
applied to both the mean and variance of the demand
distribution.

Choi et al. (2004) consider a problem where the retailer
updates the demand forecast multiple times before the
selling season; the purchase cost of the product increases
and the forecast error decreases as time progresses. The
problem is to determine the timing and size of the single
order given by the retailer. Kim (2003) explores a similar
problem in which the retailer is able to order not once but
multiple times before the beginning of the selling period.
Iyer and Bergen (1997) compare the effect of inventory
decisions on the retailer and the manufacturer with or
without using quick response. Donohue (2000) investi-
gates channel-coordinating buy-back contracts in this
kind of two-stage ordering systems. In a similar vein, Chen
et al. (2006) investigate coordination of a system in which
the manufacturer commits to a production quantity in the
first stage. Choi and Chow (2008) extend the results of Iyer
and Bergen (1997) to the case where the impact of a quick
response system on both the mean and the variance of the
profit distribution is taken into account. Ferguson et al.
(2005) analyze a setting where a buyer can specify its
order quantity based on either an initial or an updated
demand forecast; in the early commitment case the buyer
assumes all of the demand risk whereas in the delayed
commitment case the risk is shared by the buyer and the
supplier. Huang et al. (2005) study a two-stage purchase
contract in which an order quantity is specified at stage 1;
changing this order quantity after the forecast update
incurs a fixed as well as a variable cost. Yan et al. (2008)
describe an application of quick response in the textile
industry in which a fabric manufacturing company places
orders with yarn suppliers.

In general the retail price has been assumed to be fixed
in the literature reviewed above. One of the exceptions is
the two-period model of Petruzzi and Dada (2001) in
which demand depends on the retail price, a decision
variable. They assume the unsold stock at the end of the
first period can be carried to the second period by
incurring a transshipment cost. They determine optimal
prices and order amounts for the two periods. Another
paper built on price-dependent demand is Choi (2007) in
which the retailer first determines the order quantity
based on a tentative market price. Following the demand
forecast update, based on the latest demand information
and the available stock, the retailer sets the actual price to
be charged during the single period.

Although the specific demand probability distributions
and Bayesian updating mechanisms employed in the
earlier literature may vary depending on the particular
study, the common idea in all these papers is that reducing
the variance of the demand forecast after collecting
preliminary market data enables the retailer to choose a
better stocking level, and hence reduces the expected
inventory costs. A demand forecast update is also a critical
element of our model, but unlike the traditional setup, we
consider the retailer’s two-stage ordering problem when
demand is price sensitive, and offer a practical approach to
calculate the retailer’s expected profit.
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3. Model

We consider a retailer who needs to stock the
appropriate amount of a style good with uncertain
demand prior to the selling season. The first order must
be given at time 1, before the retailer can gather additional
information about the potential demand; the unit whole-
sale price at time 1 is c1. The retailer’s second order is
given at time 2 after the forecast revision; the unit
wholesale price c2 at time 2 is assumed to have a discrete
probability distribution. We use c2i to denote the whole-
sale price in state i at time 2, i ¼ 1,y, n, and the
probability of state i is denoted by wi. It is possible that
the observed wholesale price at time 2 can be lower than
that at time 1. The retailer sells the item during the regular
season at unit price p. We first consider p as given, and
investigate the optimal ordering policy. In a later section,
we explore the joint optimization of price and order
quantity under price-sensitive demand. The unit holding
cost (physical carrying cost minus salvage value) asso-
ciated with leftover items is denoted by h. Each unsold
unit at the end of the selling season results in a cost of h,
which can be negative if the salvage value is greater than
the physical carrying cost.

For modeling the demand probability distribution and
Bayesian updating of the distribution parameter, we adopt
the approach used by Iyer and Bergen (1997) and by Choi
et al. (2003). At time 1, customer demand forecast is
a normal probability distribution with unknown mean m

and known variance s1
2. There is uncertainty regarding the

mean of the distribution, m. We assume m is also normally
distributed with mean m1 and variance d1. A higher value
for d1 indicates that the retailer is less informed about m.
Hence, the unconditional probability distribution of
demand at time 1 is a normal distribution with mean m1

and variance s1
2+d1. The normal probability distribution

for demand has been commonly used in the inventory
literature; in practice, the vast majority of commercial
inventory systems assume normal demand distribution
(Nahmias, 1994). The normal distribution is frequently
assumed in the newsvendor model because of the central
limit theorem, and also because of its entropy-maximizing
property (Perakis and Roels, 2008). Among all distribu-
tions with given mean and variance, the normal distribu-
tion maximizes entropy, which is a measure of the
amount of uncertainty. Thus, the normal distribution is a
‘‘robust’’ distribution when the decision maker knows
only the mean and variance of the distribution.

The retailer orders Q1 units at time 1. Between time 1
and time 2, market information is gathered and translated
into an observation about demand, say x. In practice, the
‘‘new market information’’ is obtained through trade
shows, marketing research and early order commitments
(Donohue, 2000). Some Internet retailers sell products
such as movies, music CDs and books at a discounted
price before they are released to the broader market; these
pre-committed orders by customers are used to improve
the market demand forecast for the product (Tang et al.,
2004). The observed sales of related items can be used to
decrease forecast error for the product (Iyer and Bergen,
1997). In fashion apparel industry, the information on
sales of clothes with a particular color (e.g. red) is useful
for predicting the demand of other clothes sharing the
same color (Choi et al., 2003). Two different CD albums by
the same artist is another example for products with
correlated sales (Choi et al., 2006).

The distribution of the location parameter m is updated
based on x. By Bayesian theory, the posterior distribution
of m will be normal with mean [(1/s1

2)x+(1/d1)m1]/-
[(1/s1

2)+(1/d1)] and variance s1
2d1/(s1

2+d1). The uncondi-
tional probability distribution of demand at time 2 will be
a normal distribution with mean m2 ¼ (m1s1

2+xd1)/(s1
2+d1),

and variance s2
2
¼ s1

2[1+(d1/(s1
2+d1))]. Defining d2 ¼ s1

2d1/
(s1

2+d1), we have s2
2
¼ s1

2+d2.
Based on the updated distribution for demand, and the

observed purchase cost c2i, the retailer orders Q2i units at
time 2. Thus, the total stock available at the beginning of
the selling season will be Q1+Q2i.
4. Optimal ordering policy when selling price is fixed

The retailer’s optimal order quantity Q1 at time 1 can
be found in two steps using backward dynamic program-
ming. First, for a given Q1 and the demand observation x,
we derive the expression defining the optimal order
quantity at time 2. Second, by substituting the expression
for optimal Q2i in the retailer’s objective function at time
1, we determine the optimal Q1.

The retailer’s expected profit at time 2 as a function of
Q1 and Q2i, B2i is given

B2iðQ1;Q2iÞ ¼ pE½minðQ1 þ Q2i;YÞ� � hE½Q1 þ Q2i � Y �þ � c2iQ2i,

where Y stands for the random demand, the expectations
are with respect to the probability distribution of demand
at time 2, i.e., a normal distribution with mean m2 and
variance s2

2, and (K)+
�max (K, 0). Note that Q2i, the order

quantity in state i, is selected after observing the random
purchase cost c2i at time 2. Setting the derivative of B2i to
zero, we obtain the optimal Q2i, Q�2i:

Q�2i ¼maxf0;m2 þ ðd2 þ s2
1Þ

0:5F�1
ðsiÞ � Q1g,

where F�1( � ) is the inverse cumulative distribution
function (cdf) of standard normal distribution and si is
the standard critical fractile solution of the newsvendor
problem, i.e.,

si ¼ ðp� c2iÞ=ðpþ hÞ.

The retailer’s expected profit at time 2 can be expressed
as a sum of two parts, one conditional on Q�2i40, and the
other conditional on Q�2i ¼ 0. Let ti ¼ m2+(d2+s1

2)0.5F�1 (si).
Then, the retailer’s expected profit when Q�2i40, J1i (Q1, m2 ),
is given by

J1iðQ1;m2Þ ¼ pE½minðti;YÞ� � hE½ti � Y �þ � c2iðti � Q1Þ

¼ ðp� c2iÞm2 � ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5CðF�1
ðsiÞÞ þ c2iQ1,

where CðuÞ ¼
R1

u ðz� uÞfðzÞdz is the unit loss function for
the standard normal distribution, and f(z) is the standard
normal probability density function (pdf). If the updated
mean demand at time 2 is less than Q1�(d2+s1

2)0.5F�1 (si),
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i.e., if tioQ1, no order will be placed at time 2, and the
retailer’s expected profit, J2 (Q1, m2 ), will be

J2ðQ1;m2Þ ¼ pE½minðQ1;YÞ� � hE½Q1 � Y �þ

¼ pm2 þ hðm2 � Q1Þ � ðpþ hÞðd2 þ s2
1Þ

0:5

�C½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
�.

By taking expectation of J1i and J2 over the probability
distributions of m2 and the unit purchase cost at time 2,
we can write the retailer’s expected profit at time 1, B1, as

B1ðQ1Þ ¼
Xn

i¼1

wi

Z 1
�1

B2iðQ1;Q
�

2iÞgðm2Þdm2 � c1Q1

¼
Xn

i¼1

wi

Z 1
Q1�ðd2þs2

1
Þ
0:5F�1

ðsiÞ

J1iðQ1;m2Þgðm2Þ

(
� dm2

þ

Z Q 1�ðd2þs2
1
Þ
0:5F�1

ðsiÞ

�1

J2ðQ1;m2Þgðm2Þdm2g � c1Q1, (1)

where g(m2) is the pdf of m2, viz., a normal distribution
with mean m1 and variance s2

¼ [d1
2/(d1+s1

2)]. B1 (Q1) is
concave in Q1, so the optimal Q1, if positive, satisfies the
first-order condition (Choi et al., 2003):

@B1=@Q1 ¼
Xn

i¼1

wifðp� c2iÞFð�iÞ þ ðc2i � c1Þ

�ðpþ hÞ

Z ki

�1

F
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg

9>=
>; ¼ 0, (2)

where ki ¼ Q1�(d2+s1
2)0.5 F�1(si), g ¼ (m2�m1)/s, and

ei ¼ [Q1�(d2+s1
2)0.5 F�1(si)�m1]/s.

To express (2) in a more compact way, we can evaluate
the integral term by using

Z z

�1

F
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg

¼ BN
affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
q ; z; r ¼ � bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
q

0
B@

1
CA, (3)

where BN( � ) is the standard bivariate normal cdf, i.e.,

BNðh; k;rÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�

Z k

�1

Z h

�1

exp �
x2 � 2rxyþ y2

2ð1� r2Þ

� �� �
dx dy,

a ¼ ðQ1 � m1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ s2

1

q
and b ¼ � s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ s2

1

q� �
(Owen,

1980). Thus, (2) can be computed easily by substituting
(3) in (2). In Appendix A, we present a method for
calculating the retailer’s expected profit function B1 (Q1).
Tim
1

Q1 units ordered at
unit purchase cost c1 

Market information x
is gathered  

D
is

P
is

Fig. 1. The sequence of dec
The method is based on transforming complicated
expressions to more tractable ones that can be evaluated
using already existing standard algorithms for the normal
probability distribution.
5. Optimal policy under price-dependent demand

While the single-period inventory problem with a fixed
selling price has been a useful building block for many
previous studies, the assumption of a constant selling
price may be too restrictive in certain situations, and it is
more appropriate to treat price as a controllable variable
(e.g. Ray et al., 2005; Teng et al., 2005; Serel, 2008).
The extension of the standard newsvendor problem to the
case where demand is negatively related to the selling
price has received considerable interest from researchers
in the operations management field (e.g. Lau and Lau,
1988). For a recent review of the literature, see Petruzzi
and Dada (1999). On the other hand, only a few papers
have considered the case of price-sensitive demand in a
quick response framework with demand forecast updating
(Petruzzi and Dada, 2001; Choi, 2007). Since price-
sensitive demand is a relevant issue in a wide variety of
practical settings, we extend the two-stage model with a
constant selling price to the case where both price and
order quantities are decision variables.

We consider the additive uncertainty approach such
that the random demand Y in the selling season is

Y ¼ yðpÞ þ z,

where y(p) is the deterministic part of the demand and z is
a random variable with mean me and variance s2

e . The
additive error model assumes that the variance of demand
does not change as price changes. This assumption is also
empirically supported for certain products; based on data
collected from a retailer of high-end women’s apparel in
the US, Federgruen and Heching (1999) report that the
standard deviation of nation-wide weekly sales is inde-
pendent of selling price. Regarding y(p), we assume that
the expected demand is linearly related to the selling
price, i.e., y(p) ¼ a�bp where a and b are known
parameters (a, b40). The selling price p is set by the
retailer after observing the random cost c2i at time 2. The
order of decisions by the retailer is shown in Fig. 1. After
observing the state of the world at time 2, the optimal
price associated with that state is selected for the season.

In general, there are various ways to incorporate
the additional market information collected by the retailer
between time 1 and time 2 into a model involving
e

emand forecast
 updated  

urchase cost c2i
 observed 

Q2i units ordered at
purchase cost c2i 

Selling price pi is
specified    

2

isions over time line.
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price-dependent demand. For example, it can be assumed
the parameter a or b is not known with certainty, and the
new information is used to update this unknown para-
meter. Alternatively, it can be assumed that a and b are
known, and the additional information is used to improve
the estimates of the parameters of the error distribution.
We can relate this latter approach to the core model in the
earlier section more directly and easily. The model in
Section 4 corresponds to the special case a ¼ b ¼ 0 of the
model discussed in this section.

In this section we will assume that all parameters except
me are known, and the Bayesian estimation procedure is
applied to the mean of the distribution of z only. Thus,
the expected demand is a�bp+me, the deterministic part
of the demand y(p) ¼ a�bp is assumed to be known, and
there is a prior probability distribution on the unknown
error mean me at time 1. The error is normally distributed
with unknown mean me and known variance s1

2, and me is
normally distributed with mean m1 and variance d1 at time
1. The market information will be used to obtain the
posterior distribution of me and the predictive distribution
of the additive error z at time 2. With this assumption, the
particular method developed earlier for solving the retai-
ler’s problem can be smoothly integrated with the solution
procedure for the joint pricing–inventory problem that we
explore in this section. We remark that in Petruzzi and
Dada (2001) the demand forecast update is based on the
observed additive error, and as in our model, the determi-
nistic part of the demand y(p) is assumed to be known.

5.1. Deterministic demand

For ease of exposition and as a precursor, we start by
considering the deterministic demand case where me is
assumed to be known and se

2
¼ 0. Demand as a function

of price is given by

Y ¼ a� bpþ me.

Although there is no forecast update when demand is
deterministic, due to uncertainty in the purchase cost at
time 2, we continue to have a two-stage problem. Since
the retailer has a second purchase opportunity at time 2,
the optimal policy should specify the purchase quantity at
time 1 Q�1 as well as the optimal price p�i and purchase
quantity Q�2i in state i at time 2, i ¼ 1,y, n. For a given
initial order Q1, the retailer will order additional units if
the purchase cost at time 2 c2i is low enough, and it will
not order new units if c2i is relatively high. Suppose it is
optimal for the retailer to order additional units in state i

at time 2. Given that Q1 units were ordered at time 1, the
retailer who is deciding the additional order amount in
state i at time 2 will try to maximize

RPðiÞ ¼ pðiÞða� bpðiÞ þ meÞ � c2iða� bpðiÞ þ me � Q1Þ � c1Q1,

(4)

where p(i) is the selling price chosen by the retailer in state
i for a given Q1. The price pi maximizing (4) is given by

pi ¼ ðaþ bc2i þ meÞ=2b. (5)

Now suppose it is not optimal to order additional
units in state i at time 2. As long as Q1 is less than the
single-stage profit maximizing order quantity Qf (defined
below), the retailer will select the price such that the
demand will be equal to the available stock, i.e., Q1.
The price that leads to this outcome is

pi ¼ ðaþ me � Q1Þ=b. (6)

We note that the optimal initial order Q�1 is always less
than or equal to Qf. Thus, for a given Q1, we can place the n

states at time 2 into two different groups, S1 and S2. When
in a state in set S1, the retailer will issue a positive order
(Q2i40), set p(i)

¼ pi, and bring the total inventory to

Y ðiÞ ¼ a� bpi þ me. (7)

When in a state in set S2, the retailer will not order
additional units (Q2i ¼ 0), and set p(i)

¼ pi. For the states in
set S1, it should hold that Y(i)4Q1, and for the states in set
S2 we have Y(i)rQ1. Hence, for a given Q1 the retailer’s
profit function RP(Q1) can be written as

RPðQ1Þ ¼ � c1Q1 þ
X
i2S1

wi½piY
ðiÞ
� c2iðY

ðiÞ
� Q1Þ�

þ
X
i2S2

wi
aþ me � Q1

b

� �
Q1, (8)

where S1 ¼ {i: Y(i)4Q1}, and S2 ¼ {i: Y(i)rQ1}. To act
optimally in state i at time 2, the retailer compares Q1

with the state-dependent threshold Y(i), and if Q1oY(i),
Y(i)
�Q1 units are ordered; if Q1ZY(i) no additional order is

made and the selling price is set to pi.
As Q1 increases from 0, the number of states in set S1

decreases, and correspondingly the set S2 is enlarged.
Although at first RP(Q1) may appear discontinuous in Q1, it
is actually a continuous function of Q1. To see this,
consider a state j such that jAS1 for Q1 ¼ Y(j)�, and jAS2

for Q1 ¼ Y(j)+, where Y(j)�
¼ lime-0 Y(j)

�e, Y(j)+
¼ lime-

0 Y(j)+e, and e40. Thus we consider the neighborhood of
Q1 ¼ Y(j) where state j moves from set S1 to set S2. Then as
e-0, we have

wj½pjY
ðjÞ
� c2jðY

ðjÞ
� Y ðjÞ�Þ� ¼ wj

aþ me � Y ðjÞþ

b

 !
Y ðjÞþ

" #
,

implying that RP(Q1) is continuous. Since, from (8),

@RPðQ1Þ

@Q1
¼ �c1 þ

X
i2S1

wic2i þ
X
i2S2

wiðaþ me � 2Q1Þ

b
, (9)

@2RPðQ1Þ

@Q2
1

¼
X
i2S2

�2wi

b
� 0, (10)

RP(Q1) is concave in Q1. Using the first-order condition
qRP(Q1)/qQ1 ¼ 0, if set S2 is not empty at the optimal
solution, the optimal Q1 satisfies

Q�1 ¼
�bc1 þ b

P
i2S1

wic2i þ ðaþ meÞ
P

i2S2
wi

2
P

i2S2
wi

(11)

Note that if we know which states are included in sets
S1 and S2 in the optimal solution, Q�1 can be determined
using (11). From (9), we have

@RPðQ1Þ

@Q1

				
Q1¼0

¼ �c1 þ
Xn

i¼1

wic2i, (12)
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since when Q1 ¼ 0, set S1 contains all states i ¼ 1,y, n.
Thus, if c14

P
i ¼ 1
n wic2i, @RP(Q1)/@Q1o0 at Q1 ¼ 0. Since

RP(Q1) is concave in Q1, this implies that @RP(Q1)/@Q1o0
for Q140. Hence, when we have the special case where
c14

P
i ¼ 1
n wic2i, the optimal solution is Q�1 ¼ 0, Q�2i ¼ Y ðiÞ

and p�i ¼ pi, i ¼ 1,y, n. The retailer’s optimal profit is

RPðQ1 ¼ 0Þ ¼
Xn

i¼1

wiðpi � c2iÞY
ðiÞ.

Using pi–c2i ¼ (a+me)/b–pi, and after some algebra, we
obtain

RPð0Þ ¼
Xn

i¼1

wiðaþ me � bc2iÞ
2

4b
.

To find an upper bound on the optimal initial order
quantity, we consider the single-stage problem in which
purchasing is allowed at time 1 only. A single-stage
problem is equivalent to a two-stage problem with n

additional constraints Q2i ¼ 0, i ¼ 1,y, n. The retailer’s
profit in the single-stage problem would be

RP1
¼ ðp� c1Þða� bpþ meÞ

and, using the first-order condition, the optimal price
would be

pf ¼ ðaþ bc1 þ meÞ=2b. (13)

The profit RP1 evaluated at p ¼ pf can be regarded as a
lower bound for the retailer’s optimal profit RPðQ�1Þ since
it ignores the possibility of sourcing some units at a cost
less than c1 at time 2. The demand at p ¼ pf , a�bpf+me, is
an upper bound on the optimal Q1 since in the case where
the retailer can also order at time 2, the optimal Q1 will
not exceed this upper bound. Let the upper bound on Q1

be defined by

Qf ¼ a� bpf þ me. (14)

Note that when c1rmin (c21, c22,y, c2n), the optimal
solution Q�1 ¼ Qf and Q�2i ¼ 0, i ¼ 1,y, n.

We propose Algorithm 1 in order to determine the
retailer’s optimal two-stage policy when demand is
deterministic and price sensitive. In this algorithm,
we first identify the optimal price p(i) and the optimal
additional order Q2i in state i at time 2 given Q1, and then
find the optimal Q1 by comparing expected profit values
associated with different Q1 values. When searching for
the optimal Q1, we use the increment DQ to discretize the
search region, DQ ¼ Qf/(k�1) where k is the maximum
number of iterations allowed in Algorithm 1; k (an integer
greater than or equal to 2) should be specified by the user.

Algorithm 1 (Optimal solution–deterministic demand).
Step 0: Set Q1 ¼ 0, maxprofit ¼ 0.

Step 1: For each state i, compare Y(i) and Q1. If Y(i)4Q1,

set p(i)
¼ pi, and Q2i ¼ Y(i)–Q1. If Y(i)rQ1, then compare Q1

and Qf. If Q1 ¼ Qf, set p(i)
¼ pf, and Q2i ¼ 0. If Q1oQf, set

p(i)
¼ pi, and Q2i ¼ 0.

Step 2: Calculate the retailer’s expected profit given Q1

from (8). If RP(Q1)4maxprofit, set maxprofit ¼ RP(Q1),

Q�1 ¼ Q1, p�i ¼ pðiÞ, Q�2i ¼ Q2i. If RP(Q1)rmaxprofit, stop.
Step 3: Set Q1 ¼ Q1+DQ. If Q1rQf, repeat Steps 1 and 2.

Otherwise, stop.

The retailer’s maximal expected profit is given by
maxprofit at the end of Algorithm 1. In Step 1, Q2i ¼ 0 if
Y(i)rQ1 since in this case the marginal benefit of ordering
an extra unit at time 2 is less than the marginal cost of an
extra unit c2i. If Q1 ¼ Qf, the retailer is able to set the
capacity-unconstrained optimal price pf, and maximizes
his expected profit by selling Qf units. On the other hand, if
Q1oQf, to maximize the profit, the retailer chooses the
price pi that will liquidate all the available stock. If the
optimal Q1 is not zero, because of the concavity of RP(Q1),
as Q1 increases RP(Q1) first increases and then decreases.
In Step 2, the search is finished when the profit is less than
the profit at the previous iteration; at this point it is not
necessary to consider higher values of Q1 since the
retailer’s profit RP(Q1) will decrease as we continue to
increase Q1.

5.2. Stochastic demand

The joint inventory and pricing problem under sto-
chastic demand can be solved by using an approach
similar to that in the deterministic demand case. As in the
deterministic demand case, we consider that an appro-
priate selling price needs to be specified in each state i

at time 2, i ¼ 1,y, n. The optimal price to charge in each
state p�i does not have an easily computed closed-form
expression when demand is stochastic. Hence, more
computational effort is required when demand is not
deterministic.

The expected demand for the product equals the
deterministic part (a�bp) plus the estimated mean of
the error term. To calculate the retailer’s expected profit
at time 1, we combine the profit resulting from the
deterministic part of demand (a�bp), and the profit
resulting from the inventory Q1�(a–bp). In the new
model, m1 corresponds to the estimated mean of the error
distribution at time 1. Basically, at time 2 the retailer will
use the market information to update the estimate of the
mean of the error distribution.

We now outline the procedure for finding the optimal
solution. Suppose Q1 is given and there is only one state i

at time 2 with purchase cost c2i, i.e., we consider a two-
stage problem with a single state at time 2. Although price
is a continuous variable, we find a nearly optimal price by
considering a finite number of values in a search region
which is known to contain the optimal price. During the
search the expected profit for a particular price, denoted
as EP(Q1, p, i), is computed using the expression for B1 (Q1)
given by (1). Now suppose there is a single state of the
world at time 2, say state j with purchase cost c2j, jai. For
a given Q1 the optimal selling price in this state can be
found in the same manner as in state i. Using the same Q1

value for each state i, i ¼ 1,y, n, we conduct this search
for optimal price and also record the optimal expected
profit at time 1, say profit(Q1, i), at each of the n iterations.
Combining the solutions found for n problems with a
single state at time 2, we can specify the optimal solution
(set of optimal prices) for the problem with n states given
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a specific Q1 value. The weighted sum of profit(Q1, i) using
the weight wi for state i yields the expected profit at time
1 for a given Q1 in the two-stage problem involving n

states at time 2. The expected profit at time 1 for a given
Q1 is referred to as B(Q1) in the algorithm used. Repeating
the procedure described above we can compute the
expected profit at time 1 for different Q1 values. Based
on these computations, the optimal Q1 is found by a grid
search over a region which is known to contain the
optimal Q1.

In order to find the optimal solution, we modify
Algorithm 1 by adding an inner loop that searches the
best price given Q1 and the supply cost at time 2. To define
this loop, the lowest and highest feasible prices, pl and pu,
respectively, should be specified by the user.

Algorithm 2 presented below can be used to determine
the optimal inventory and pricing decisions under
stochastic demand. The main idea is first to find the
optimal price and profit for each Q1 value in the search
space, and then determine the optimal Q1 by using those
profits computed. The algorithm finds the best price in
each state at time 2 for a given Q1. Then the retailer’s
expected profit for a given Q1 is computed based on the
optimal actions planned for each state at time 2. The
optimal Q1 is determined by comparing those expected
profits calculated for different Q1 values. The optimal price
in state i at time 2 for a given Q1 is denoted by p0i in
Algorithm 2 whereas p�i indicates the optimal price in
state i associated with the optimal Q1. B(Q1) in Algorithm 2
represents the retailer’s expected profit at time 1 (includ-
ing the profit associated with the deterministic part of
demand).

The search regions for p and Q1 must be defined by the
user. For example, the lower limit on price, pl can be set
equal to the minimum possible unit purchase cost, i.e.,
pl
¼ cmin ¼ min (c1, c21, c22,y, c2n). The upper limit on

price can be selected such that the expected demand (at
time 1) for that price is zero, i.e., pu

¼ (a+m1)/b. A loose
upper limit on Q1, Q1

u, can be determined according to the
newsvendor critical fractile solution at time 1, i.e.,
Q1

u
¼ a�bpl+N�1[(pu

�cmin)/(pu+h)], where N�1( � ) is the
inverse cdf of a normally distributed random variable with
mean m1 and variance s1

2+d1. The user also needs to input
the increment Dp used in the search for optimal p,
Dp ¼ (pu

�pl)/(k�1) where k gives the number of possible
values of price for which the expected profit EP(Q1, p, i)
is computed in Step 2 in Algorithm 2. By decreasing the
grid width parameter Dp, we can improve the accuracy
of the result. Similarly, DQ is used to discretize the search
region for Q1.

Algorithm 2 (Optimal solution–stochastic demand). Step

0: Set Q1 ¼ 0, maxprofit ¼ 0, the state index i ¼ 0.

Step 1: Set p ¼ pl, i ¼ i+1, profit(Q1, i) ¼ 0.

Step 2: Set p ¼ p+Dp. Calculate Q2i and the retailer’s

expected profit EP(Q1, p, i) by assuming n ¼ 1, and the

purchase cost at time 2 is c2i. If EP(Q1, p, i)4profit(Q1, i), set

profit(Q1, i) ¼ EP(Q1, p, i), and p0i ¼ p. If EP(Q1, p, i)rpro-

fit(Q1, i), take no action. Repeat this step while prpu.

Step 3: If ion, go to Step 1. Otherwise, go to Step 4.
Step 4: Calculate the retailer’s expected profit B(Q1) ¼P
i ¼ 1
n wiprofit(Q1, i). If B(Q1) 4maxprofit, set maxprofit ¼

B(Q1), Q�1 ¼ Q1, p�j ¼ p0j (for j ¼ 1 to n). If B(Q1)rmaxprofit,

go to Step 5.

Step 5: Set Q1 ¼ Q1+DQ, and set the state index i ¼ 0. If

Q1rQ1
u, go to Step 1. Otherwise, stop.

In Step 2, the expected profit in the two-stage, single-
state problem associated with a given pair of initial order
Q1 and price p is referred to as EP(Q1, p, i). Note that as
different from Algorithm 1, for finding Q�1 we calculate the
expected profit for all possible values of Q1 between 0 and
Qu

1. In Algorithm 1 we stop the search when expected
profit starts to decrease as we increase Q1.

Algorithm 2 can also be used if the deterministic
part of the demand function a�bp is replaced by any
other function of p. Some researchers have assumed that
the random demand Y depends on a multiplicative error
term: Y(p, z) ¼ y(p)z, where y(p) is the deterministic part
of the demand. The solution procedure for the additive
error model can be adapted to the multiplicative error
case as long as y(p) is assumed to be known. In the
multiplicative error model, the variance of demand
decreases as price increases. Given a selling price p, the
mean demand is y(p)me and the demand variance is
[y(p)]2se

2. To use Algorithm 2 in the multiplicative error
case, we obtain the posterior distribution of me from the
market signal in a manner similar to that in the additive
error case. We calculate the mean and standard deviation
of the predictive demand distribution at time 2 by y(p)
m2 and y(p) s2, respectively. Hence we use these
price-dependent values for demand mean and demand
standard deviation in calculating the retailer’s expected
profit B(Q1).

6. Order-cancellation flexibility

In some cases, at time 2 it may be possible for the
retailer to cancel all or part of his order previously
committed at time 1. However, the refund per unit r given
by the supplier for the cancelled units may be less than
the price paid at time 1, c1. Order-cancellation flexibility
was incorporated into a two-period model with a constant
purchase price in the second period in Milner and
Rosenblatt (2002). In a two-stage purchase contract,
Huang et al. (2005) assume that order adjustment at time
2 incurs both a fixed and a variable cost. However in our
study, purchase price at time 2 is assumed to be uncertain.
In this section we first determine the optimal ordering
policy under order-cancellation option given the fixed
selling price, and subsequently discuss the solution
procedure in the more complicated case of joint ordering
and pricing problem.

6.1. Fixed selling price

We first consider the case of a fixed selling price; later
we will discuss the case of price-sensitive demand. We
assume that before placing the initial order at time 1, the
retailer and the supplier agree that the retailer will be
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refunded r for each unit cancelled at time 2. Alternatively,
it can be thought that at time 1 the retailer buys Q1 call
options which give him the right to order up to Q1 units at
a predetermined unit purchase (exercise) cost of r at time
2; the cost of the option is c1–r per unit.

In order to solve the retailer’s problem in this new
scenario, we begin by considering the retailer’s decision at
time 2. After observing the purchase price c2i at time 2, the
retailer has the option of cancelling any portion of the
initial order Q1. Regardless of the demand signal received
between time 1 and time 2, the retailer will cancel all of
Q1 if the purchase cost realized at time 2 c2i is less than or
equal to the refund r; all cancelled units can be easily
replaced by the cheaper units purchased at time 2. If
c2iZr, the retailer will decide the new stocking level based
on the market information obtained; the new stocking
level can be below or above Q1. Let Q be the total inventory
that the retailer has after cancellation or additional
ordering at time 2. When c2irr, the retailer’s expected
profit will be

B2iðQ1;Q Þ ¼ rQ1 � c2iQ þ pE½minðQ ;YÞ� � hE½Q � Y �þ.

(15)

Using the first-order condition, the optimal order
quantity at time 2, Q*, is given by

Q� ¼ m2 þ ðd2 þ s2
1Þ

0:5F�1
ðsiÞ. (16)

Thus, when c2irr, the retailer’s expected profit at time 2

A1iðQ1;m2Þ ¼ rQ1 þ ðp� c2iÞm2 � ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5CðF�1
ðsiÞÞ.

Let Qpi equal the RHS of (16). We now consider the
states where c2i4r. When c2i4r, the retailer’s expected
profit function will be different depending on whether
QZQ1, or QoQ1. When QZQ1, the retailer adds (Q�Q1)
units to inventory at time 2, and we have

B2iðQ1;Q Þ ¼ �c2iðQ � Q1Þ þ pE½minðQ ;YÞ� � hE½Q � Y�þ.

(17)

The value of Q maximizing (17) is given by

Q� ¼ maxfQ1;m2 þ ðd2 þ s2
1Þ

0:5F�1
ðsiÞg. (18)

If QoQ1, it means the retailer cancels (Q1�Q) units, and
its profit function is written as

B2ðQ1;Q Þ ¼ rðQ1 � Q Þ þ pE½minðQ ;YÞ� � hE½Q � Y�þ, (19)

which is maximized by

Q� ¼ m2 þ ðd2 þ s2
1Þ

0:5F�1
½ðp� rÞ=ðpþ hÞ�. (20)

Let Qmi equal the RHS of (20). Note that when c2i4r, (16)
and (20) imply that QmiZQpi. Combining results for the
cases QZQ1 and QoQ1, the retailer’s optimal policy when
c2i4r is

Q� ¼

Qpi if Q1oQpi;

Q1 if Qpi � Q1 � Qmi;

Qmi if Q14Qmi:

2
64

Thus, in state i at time 2 the retailer compares the initial
order Q1 with the two state-dependent thresholds Qpi

and Qmi. If Q1oQpi, (Qpi�Q1) units are ordered. If Q14Qmi,
(Q1�Qmi) units are cancelled. If Q1 is between the thresh-
old values, no ordering or cancelling is made at time 2.
Observe from (16) and (20) that as the demand signal x

increases, the mean of the predictive distribution m2

increases, which leads to an increase in Qpi and Qmi.
In light of the retailer’s optimal policy, we now write

the retailer’s expected profit expressions in the states
where c2i4r. If Q1oQpi, i.e., m2 4Q1�(d2+s1

2)0.5F�1 (si),

A2iðQ1;m2Þ ¼ ðp� c2iÞm2 � ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5CðF�1
ðsiÞÞ þ c2iQ1.

Define sr ¼ (p�r)/(p+h). If Q1�(d2+s1
2)0.5 F�1

(sr)rm2rQ1�(d2+s1
2)0.5 F�1(si),

A3ðQ1;m2Þ ¼ pm2 þ hðm2 � Q1Þ

� ðpþ hÞðd2 þ s2
1Þ

0:5C½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
�.

And finally, if m2oQ1�(d2+s1
2)0.5F�1 (sr),

A4ðQ1;m2Þ ¼ r½Q1 � m2 � ðd2 þ s2
1Þ

0:5F�1
ðsrÞ�

þ pm2 � hðd2 þ s2
1Þ

0:5F�1
ðsrÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5C½F�1
ðsrÞ�.

We now combine the results for all states to derive the
expected profit function at time 1. Define the sets
V1 ¼ {i:c2irr}, and V2 ¼ {i: c2i4r}. The retailer’s expected
profit at time 1, B1, can be expressed as

B1ðQ1Þ ¼
X
i2V1

wi

Z 1
�1

A1iðQ1;m2Þgðm2Þ dm2

þ
X
i2V2

wi

Z 1
Q1�ðd2þs2

1
Þ
0:5F�1

ðsiÞ

A2iðQ1;m2Þgðm2Þdm2

(

þ

Z Q1�ðd2þs2
1
Þ
0:5F�1

ðsiÞ

Q1�ðd2þs2
1
Þ
0:5F�1

ðsr Þ

A3ðQ1;m2Þgðm2Þdm2

þ

Z Q1�ðd2þs2
1
Þ
0:5F�1

ðsr Þ

�1

A4ðQ1;m2Þgðm2Þdm2

)
� c1Q1.

(21)

Differentiating (21), we have

@B1=@Q1 ¼
X
i2V1

wir þ
X
i2V2

wifc2i þ ðp� c2iÞ

FððQ1 � ðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� m1Þ=½d
2
1=ðd1 þ s2

1Þ�
0:5Þ þ ðr � pÞFððQ1

� ðd2 þ s2
1Þ

0:5F�1
ðsrÞ � m1Þ=½d

2
1=ðd1 þ s2

1Þ�
0:5Þ

�ðpþ hÞ

Z Q1�ðd2þs2
1
Þ
0:5F�1

ðsiÞ

Q1�ðd2þs2
1
Þ
0:5F�1

ðsr Þ

F½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
�

� gðm2Þdm2g � c1. (22)

After some algebra, we obtain

@2B1=@Q2
1 ¼

X
i2V2

wif�ðpþ hÞT4½FððQ1

� ðd2 þ s2
1Þ

0:5F�1
ðsiÞ � T2Þ=T0:5

1 Þ

�FððQ1 � ðd2 þ s2
1Þ

0:5F�1
ðsrÞ � T2Þ=T0:5

1 Þ�g,

(23)



ARTICLE IN PRESS

Table 1
Optimal price and order quantity with additive price-sensitive demand

for the single-stage problem (a ¼ 30, b ¼ 1.6, c1 ¼ 5, h ¼ 2, s1
2
¼ 2).

m1 d1 Q1 (ss) P (ss) B (Q1 (ss))

10 10 17.2 14.7 137.3

20 17.6 14.5 129.3

15 10 20.0 16.3 189.6

20 20.5 16.2 181.1

20 10 22.7 17.9 250.0

20 23.3 17.8 240.9
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where

T1 ¼ ½d
2
1ðd2 þ s2

1Þ�=½d
2
1 þ ðd1 þ s2

1Þðd2 þ s2
1Þ�,

T2 ¼ ½d
2
1Q1 þ m1ðd1 þ s2

1Þðd2 þ s2
1Þ�=½d

2
1 þ ðd1 þ s2

1Þðd2 þ s2
1Þ�,

T3 ¼ ½d
2
1Q2

1 þ m
2
1ðd1 þ s2

1Þðd2 þ s2
1Þ�=½d

2
1 þ ðd1 þ s2

1Þðd2 þ s2
1Þ�,

T4 ¼ ð½T1ðd1 þ s2
1Þ�=½2pd2

1ðd2 þ s2
1Þ�Þ

0:5 exp½ðT2
2 � T3Þ=2T1�:

Since @2B1/@Q1
2r0, B1 is concave in Q1, and the optimal

Q1 can be found by setting (22) to zero. We can use (3)
to evaluate the integral term on the RHS of (22).
The retailer’s expected profit at time 1, B1(Q1), can be
evaluated in a manner similar to that in the no-cancellation
case. The details are in Appendix B. For completeness, the
retailer’s profit function under order-cancellation flexibil-
ity and deterministic demand of m1 is given by

RPd
c ðQ1Þ ¼

X
i2V1

wi½ðr � c1ÞQ1 þ ðp� c2iÞm1�

þ
X
i2V2

wi½ðc2i � c1ÞQ1 þ ðp� c2iÞm1�. (24)

6.2. Price-sensitive demand

With slight modifications, we can use Algorithms 1 and
2 to solve the retailer’s problem when demand is price-
dependent and order-cancellation flexibility exists. After
observing the random purchase price c2i at time 2, the
retailer decides how much of the initial order to cancel
(if any), and how much to buy additionally. As in the
problem where order cancellation is not allowed, the selling
price is chosen according to the state of the world at time 2.

If demand is deterministic, we first compare the refund
r and the purchase cost c2i in state i. If rrc2i, cancelling
any unit ordered at time 1, and substituting it by a new
unit purchased at price c2i will decrease the retailer’s
profit. Hence, the retailer’s optimal action in this state is
same as that in the problem with no cancellation, and the
retailer’s profit in state i is found by following the same
steps for the no-cancellation case described in Algorithm
1. However, if r4c2i, it is also true that c2ioc1, and the
retailer can increase its profit by replacing the units
ordered at time 1 by new purchases at time 2. Hence,
when r4c2i, the retailer cancels all of Q1, orders Y(i) units
at time 2, and sets the selling price to pi given by (5).

To write the retailer’s profit in the deterministic
demand case, we divide set V2 into two disjoint sets V21

and V22 which are defined by V21 ¼ {i: c2i4r, Q1oY(i) } and
V22 ¼ {i: c2i4r, Q1ZY(i)}. Then, the retailer’s profit function
with order-cancellation flexibility is

RPcðQ1Þ ¼ �c1Q 1 þ
X
i2V1

wi½rQ1 þ ðpi � c2iÞY
ðiÞ
�

þ
X
i2V21

wi½piY
ðiÞ
� c2iðY

ðiÞ
� Q 1Þ� þ

X
i2V22

wi
aþ me � Q1

b

� �
Q1.

(25)

Differentiating (25), we obtain

@RPcðQ 1Þ

@Q 1
¼ �c1 þ

X
i2V1

wir þ
X
i2V21

wic2i þ
X
i2V22

wiðaþ me � 2Q 1Þ

b
.

(26)
RPc(Q1) is concave in Q1 since

@2RPcðQ1Þ

@Q2
1

¼
X
i2V22

�2wi

b
� 0. (27)

Thus, when set V22 is not empty at the optimal solution,
the optimal order quantity Q�1 is given by

Q�1 ¼
�bc1 þ b

P
i2V1

wir þ b
P

i2V21
wic2i þ ðaþ meÞ

P
i2V22

wi

2
P

i2V22
wi

.

(28)

Since set V22 is empty when Q1 ¼ 0, we have

@RPcðQ1Þ

@Q1

				
Q1¼0

¼ �c1 þ
Xn

i¼1

wi maxðr; c2iÞ. (29)

Correspondingly, similar to the no-cancellation case,
when c14

P
i ¼ 1
n wi max(r, c2i), the optimal solution is

Q�1 ¼ 0, Q�2i ¼ Y ðiÞ and p�i ¼ pi, i ¼ 1,y, n.
To integrate order-cancellation feature in the stochas-

tic demand scenario, we can incorporate (21) into
Algorithm 2. For a given selling price and Q1, the retailer’s
expected profit in the single-state problem is now
computed in accordance with (21) after identifying the
sets V1 and V2 based on comparison of r and c2i. For the
states in set V1, cancelling all of Q1 and reordering up to
the optimal stocking level Qpi at unit price c2i is optimal.
For the states in set V2, the state-dependent policy
parameters Qpi and Qmi define the retailer’s optimal action
at time 2. As in the no-cancellation scenario discussed in
Section 5.2, m1 in (21) represents the estimated error mean
at time 1, and we identify the optimal solution by grid
search on Q1 and prices.
7. Numerical examples

In this section we provide some numerical examples to
illustrate the methodology we have developed. In the
computational study, we use the following set of para-
meters: h ¼ 2, s1

2
¼ 2, m1A{10, 15, 20}, d1A{10, 20}. In all

examples except those in Section 7.5, the randomness in
demand is considered to be additive. For the additive
price-sensitive demand, we use a linear demand function
y(p) ¼ a�bp with a ¼ 30, b ¼ 1.6. There are two possible
states of the world at time 2 with probabilities
w1 ¼ w2 ¼ 0.5, and the purchase costs c21 ¼ 4, c22 ¼ 7.
The unit wholesale price at time 1 c1 ¼ 5. The search
algorithms are implemented using DQ ¼ Dp ¼ 0.1.
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7.1. Single-stage problem

Before exploring the two-stage problem, we first
present the optimal solution for the single-stage problem
with stochastic demand in Table 1; in this scenario, we
assume that the retailer orders are placed at time 1 only,
and ordering at time 2 is not possible. In Table 1, p(ss) and
Q1(ss) indicate the optimal price and order quantity,
respectively, selected according to demand forecast at
time 1. The optimal expected profit is given by B(Q1(ss)).
For a given order quantity Q1, the optimal price p(ss) in the
single-stage problem satisfies the equation

pðssÞ ¼ ½aþ m1 þ bc1 �YðzÞ�=2b, (30)

where z ¼ Q1�[a�bp(ss)], YðzÞ ¼
R1

z ðz� zÞoðzÞdz, and
o(z) is the pdf of the error term (Lemma 1, Petruzzi
and Dada, 1999). Thus, using (30), the optimal price is
expressed in terms of the order quantity. After this step,
the order quantity maximizing the expected profit in the
single-stage problem can be determined by conducting
one-dimensional search on Q1. The case d1 ¼ 20 compared
to d1 ¼10 indicates a higher uncertainty in demand. The
results in Table 1 imply that the optimal price (order
quantity) decreases (increases) as demand uncertainty
(d1) increases.

7.2. Price-sensitive demand

We now return to the two-stage problem. Implement-
ing Algorithm 1, the optimal first-stage order Qd

1 and the
optimal price in state i at time 2 pi

d when demand is
deterministic are listed in Table 2. The optimal solution
Table 2
Optimal prices and order quantities with additive price-sensitive

demand for the two-stage problem (a ¼ 30, b ¼ 1.6, c1 ¼ 5, w1 ¼ 0.5,

w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s1
2
¼ 2).

m1 d1 Qd
1 RPðQd

1Þ pd
1 pd

2
Qs

1 BðQs
1Þ ps

1 ps
2

10 10 15.2 160.4 14.5 15.5 13.0 145.9 14.3 15.3

20 15.2 160.4 14.5 15.5 11.0 144.4 14.3 15.4

15 10 17.7 214.3 16.1 17.1 15.5 198.9 15.9 16.9

20 17.7 214.3 16.1 17.1 13.6 197.4 15.8 17.0

20 10 20.2 276.0 17.6 18.6 18.1 259.9 17.4 18.5

20 20.2 276.0 17.6 18.6 16.3 258.3 17.4 18.5

10
12
14
16
18
20

0
d1

Q
1

Optimal initial order (order cancellation is not
allowed) 

5 10 15 20 25 30

Fig. 2. Impact of demand variance on the initial order quantity when

order cancellation at time 2 is not allowed (a ¼ 30, b ¼ 1.6, c1 ¼ 5,

w1 ¼ 0.5, w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s1
2
¼ 2, m1 ¼ 20).
when demand is stochastic is described by Qs
1, ps

1, and ps
2,

and is obtained using Algorithm 2. It can be seen from
Table 2 and Fig. 2 that the initial order Qs

1 decreases as d1

increases. Thus, higher demand uncertainty causes the
retailer to reduce the first-stage order, and adopt a wait-

and-see strategy. On the other hand, in the single-stage
problem (Table 1), there is a positive relationship between
d1 and the order quantity Q1.

Table 2 also lists the retailer’s maximal profit under
deterministic demand, RPðQd

1Þ, and under stochastic
demand, BðQs

1Þ. As expected, the profit is higher when
demand is known. The results indicate that the difference
between the optimal prices in state 1 and state 2 is greater
in the stochastic demand case compared to the determi-
nistic demand case. In the traditional single-stage price-
dependent newsvendor model with an additive error term
(e.g., Petruzzi and Dada, 1999), the optimal price in the
stochastic demand scenario is lower than in the determi-
nistic demand scenario. In our model we also observe a
similar pattern in both states at time 2.

The difference in the retailer’s expected profit between
Tables 1 and 2 is more pronounced when demand
uncertainty (d1) is higher. It is also observed that the
order amount at time 1, Q1 decreases when a second-order
opportunity exists at time 2.
7.3. Order cancellation (fixed price case)

Table 3 shows the retailer’s optimal order quantity and
expected profit in the order-cancellation case with a fixed
selling price. As expected, as the unit refund r increases,
the retailer’s expected profit increases. The initial order
quantity Q1 is positively related to the selling price.
Results in Table 3 indicate that changes in demand
uncertainty have a limited effect on the retailer’s expected
profit. Thus, order-cancellation flexibility mitigates the
negative impact of demand uncertainty on the retailer’s
expected profit. We note that d1 is also a measure of
expected improvement in the demand forecast. Between
time 1 and time 2, the variance of demand is reduced by
Table 3
Optimal retailer policy when order cancellation is possible and selling

price is fixed (c1 ¼ 5, w1 ¼ 0.5, w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s1
2
¼ 2).

r p m1 d1 Q1 B(Q1)

3 10 10 10 7.2 39.6

20 6.1 38.4

15 10 12.2 64.6

20 11.1 63.4

15 10 10 8.1 85.7

20 6.9 84.5

15 10 13.1 135.7

20 11.9 134.5

4.5 10 10 10 10.0 42.4

20 10.3 41.5

15 10 15.0 68.6

20 15.3 67.7

15 10 10 10.9 88.7

20 11.3 87.8

15 10 15.9 140.0

20 16.3 139.1
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Table 4
Optimal prices and order quantities with additive price-sensitive

demand and order cancellation (a ¼ 30, b ¼ 1.6, c1 ¼ 5, w1 ¼ 0.5,

w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s1
2
¼ 2).

r m1 d1 Qd
1 RPðQd

1Þ pd
1 pd

2
Q s

1 BðQs
1Þ ps

1 ps
2

3 10 10 15.2 160.4 14.5 15.5 13.8 146.2 14.3 15.3

20 15.2 160.4 14.5 15.5 12.7 145.0 14.3 15.3

15 10 17.7 214.3 16.1 17.1 16.4 199.2 15.9 16.9

20 17.7 214.3 16.1 17.1 15.3 198.0 15.9 16.9

20 10 20.2 276.0 17.6 18.6 19.0 260.2 17.5 18.5

20 20.2 276.0 17.6 18.6 17.9 258.9 17.4 18.5

4.5 10 10 15.6 164.3 14.5 15.3 16.8 150.6 14.3 15.1

20 15.6 164.3 14.5 15.3 17.3 149.7 14.3 15.0

15 10 18.1 218.8 16.1 16.8 19.6 204.3 15.9 16.6

20 18.1 218.8 16.1 16.8 19.9 203.3 15.9 16.6

20 10 20.6 281.1 17.6 18.4 22.1 265.9 17.5 18.2

20 20.6 281.1 17.6 18.4 22.5 264.9 17.5 18.2
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(in percentage)

ðs2
1 þ d1 � s2

2Þ=ðs
2
1 þ d1Þ ¼ d2

1=ðs
2
1 þ d1Þ

2.

Let w(d1) ¼ d1
2/(s1

2+d1)2. It can be shown that

@wðd1Þ=@d1 ¼ 2d1s2
1=ðs

2
1 þ d1Þ

340.

Thus, a higher d1 corresponds to a greater improvement
in the demand forecast as a result of new market
information. Hence, a higher d1 value implies not only a
higher demand uncertainty, but also a larger reduction
in demand uncertainty between time 1 and time 2. The
retailer can use the order-cancellation tool more effec-
tively when the potential improvement in the demand
forecast (d1) is high and demand forecasts differ sig-
nificantly between time 1 and time 2.
Optimal initial order (order cancellation
is possible)

17
18
19
20
21
22
23

0
d1

Q
1 r = 4.5

r = 3

10 20 30

Fig. 3. Impact of demand variance and refund value on the initial order

quantity when order cancellation at time 2 is allowed (a ¼ 30, b ¼ 1.6,

c1 ¼ 5, w1 ¼ 0.5, w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s2
1 ¼ 2, m1 ¼ 20).

Optimal prices

17.2
17.4
17.6
17.8

18
18.2
18.4
18.6
18.8

0
d1

p1

p2

5 10 15 20 25 30

Fig. 4. Impact of demand variance on the selling prices when order

cancellation at time 2 is not allowed (a ¼ 30, b ¼ 1.6, c1 ¼ 5, w1 ¼ 0.5,

w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s2
1 ¼ 2, m1 ¼ 20).
7.4. Order cancellation (price-sensitive demand case)

Numerical examples for the problem involving both
price-sensitive demand and order-cancellation flexibility
are reported in Table 4. In comparing Tables 2 and 4, under
stochastic demand, we see that both the retailer’s
expected profit and the initial order amount increase
when the order-cancellation option at time 2 is allowed. If
the refund is high enough, the same pattern also occurs in
the deterministic demand case. The optimal prices do not
change significantly whether order cancellation is possi-
ble or not. When d1 increases, the retailer’s expected profit
decreases slightly, and the optimal prices change negli-
gibly. As expected, higher refund values lead to higher
initial orders and expected profits.

In Tables 3 and 4, the relationship between the demand
variance and the initial order quantity varies as the refund
value r changes. An increase in the demand variance
reduces the initial order when refund is low, but the effect
of the demand variance on the initial order is the opposite
when refund is high. Note that as the refund value
decreases, the problem with order-cancellation option
becomes more similar to the problem without order-
cancellation option. Hence, it is not surprising that the
impact of d1 on Q1

s in Table 2 and that in Table 4 (when
r ¼ 3) are consistent. For a given refund value, Fig. 3 shows
the change in the optimal initial order Q1

s in response to
changes in d1. As pointed out by a referee, a potential
future research topic is to further characterize the
threshold point of refund where the impact of demand
variance on the initial order has a regime change.

In Tables 2 and 4, the retailer mainly adjusts the order
quantity in response to changes in the demand variance,
and the change in the optimal price is insignificant. These
effects are similar to the impact of demand variance in the
traditional single-stage problem studied in the previous
research of Lau and Lau (1988). The impact of d1 on
the optimal prices ps

1 and ps
2 is shown in Fig. 4 (order

cancellation is not allowed). We also observe that the
optimal initial order quantity and price both increase
as the estimated mean of the error term at time 1 (m1)
increases.
7.5. Multiplicative price-sensitive demand

Finally, we present some examples for the multiplicative
demand model. We use the log-linear demand function
y(p) ¼ ap�b (a40, b41), which implies that the price
elasticity of demand is constant. We also use a ¼ 1000,
b ¼ 2, m1A{3, 4, 5}, d1A{0.5, 1}, s1

2
¼ 0.25. The remaining

parameters are the same as the additive error scenario.
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Table 5
Optimal prices and order quantities with multiplicative price-sensitive

demand for the two-stage problem (a ¼ 1000, b ¼ 2, c1 ¼ 5, w1 ¼ 0.5,

w2 ¼ 0.5, c21 ¼ 4, c22 ¼ 7, h ¼ 2, s1
2
¼ 0.25).

m1 d1 Qs
1 BðQs

1Þ ps
1 ps

2

3 0.5 13.5 124.3 9.0 13.9

1 11.0 121.9 9.0 14.4

4 0.5 20.2 175.8 8.7 13.3

1 17.3 173.3 8.7 13.7

5 0.5 27.0 227.5 8.5 13.0

1 24.0 225.0 8.5 13.3

Table 6
Impact of higher error variance d1 at time 1 on the order quantity, price

and expected profit.

Additive linear

model

Multiplicative log-

linear model

Order quantity (single-stage

problem)

Increases Decreases

Price (single-stage problem) Decreases Increases

Expected profit (single-stage

problem)

Decreases Decreases

Initial order Q1 (two-stage

problem)

Decreases Decreases

Expected profit (two-stage

problem)

Decreases Decreases
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The optimal prices and order quantities for the multi-
plicative demand examples are given in Table 5. The
results are similar to that in the additive error case. Higher
demand variability (d1) results in a decrease in the initial
order amount Q1. The optimal prices do not change
significantly as d1 changes. We note that when we
disallow ordering at time 2 and solve the multiplicative
demand examples as a single-stage problem, as different
from the single-stage problem with additive linear
demand in Section 7.1, we have observed that the optimal
price (order quantity) increases (decreases) as demand
uncertainty increases. Thus, when we employ the multi-
plicative log-linear demand function, the impact of
demand uncertainty on the initial order is similar for
the single-stage and two-stage problems. These results are
summarized in Table 6.
8. Conclusion

The effect of demand forecast updating in a quick
response environment has been analyzed based on news-
vendor-like models in the literature. In this paper we have
studied the optimal ordering decisions in a quick response
system for a product with price-sensitive demand. The
quick response system allows the retailer to update his
prior beliefs about average demand level after collecting
market information, and thus determine the final stocking
level based on an improved demand forecast. The
uncertainty in demand can be incorporated into the
model either in an additive or a multiplicative fashion.
The problem has also been extended to the case with an
order-cancellation feature. Following the earlier research,
we have assumed normally distributed demand in the
Bayesian updating procedure. We have presented a
practical method to compute the retailer’s expected profit,
thus obviating the need for simulation. The models
presented in this paper can be expected to be helpful to
practitioners who want to implement a two-stage order-
ing policy in a quick response environment, and need to
choose the best price to maximize expected profit.

In the numerical examples, we have considered
additive error with a linear demand function and multi-
plicative error with a log-linear demand function. Some
conclusions from the numerical study are as follows.
Changes in the variance of the error distribution have
mainly caused the order quantity to change, and the
impact on price has been observed to be weaker. This
impact of demand variability on the optimal order
quantity and price resembles that in the traditional
single-stage newsvendor problem. When the optimal
values of decision variables in the single-stage and two-
stage problems are compared, we have observed that the
initial order in the two-stage problem is smaller than the
order amount in the single-stage problem. In the single-
stage problem with additive error, increasing demand
variability causes the order amount to increase. On the
contrary, in the two-stage problem, increasing demand
variability leads to a decrease in the first-stage order.
The benefit of using a two-stage ordering system instead
of a single-stage system is higher when demand varia-
bility is higher.

In the additive error model, the behavior of the optimal
price in deterministic and stochastic demand cases has a
pattern similar to that seen in the traditional single-stage
newsvendor problem: the optimal price in all states of the
world in the stochastic demand case turns out to be less
than that in the deterministic demand case. We have
observed that the negative impact of demand variability
on the retailer’s expected profit is alleviated when the
order-cancellation option is introduced. The introduction
of order-cancellation flexibility also results in an increase
in the initial order quantity. When order cancellation at a
later time is allowed, the impact of demand variability on
the initial order depends on the refund value; initial order
increases with demand variance when the retailer receives
a relatively high refund for the units cancelled later.

Future research may consider investigating the effect
of modifying some of the modeling assumptions, for
example, specifying the relationship between demand and
price using different types of functions. In this paper we
have considered that the retailer learns about the mean of
the error distribution from the demand signal. It is also of
interest to study the case where both the mean and
variance of the error distribution are unknown and the
demand signal is used to update the estimates of these
two parameters.
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Appendix A. Calculation of the retailer’s expected profit

We first rewrite Eq. (1) as

B1ðQ1Þ ¼
Xn

i¼1

wif

Z 1
ki

½ðp� c2iÞm2 � ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5CðF�1
ðsiÞÞ þ c2iQ1�gðm2Þdm2

þ

Z ki

�1

½pm2 þ hðm2 � Q1Þ � ðpþ hÞðd2 þ s2
1Þ

0:5

�CððQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
Þ�gðm2Þdm2g � c1Q1.

(A1)

Using the properties of the normal distribution (e.g.,
Silver et al., 1998)

K1i � ðp� c2iÞ

Z 1
ki

m2gðm2Þdm2 ¼ ðp� c2iÞ½sfðziÞ þ m1ð1�FðziÞÞ�;

where zi ¼ (ki�m1)/s. We have

K2i � ½�ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ þ c2iQ1�

Z 1
ki

gðm2Þdm2

¼ ½�ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ þ c2iQ1�½1�FðziÞ�.

Since

CðuÞ ¼ fðuÞ � u½1�FðuÞ�,

K3i � �ðpþ hÞðd2 þ s2
1Þ

0:5CðF�1
ðsiÞÞ

Z 1
ki

gðm2Þdm2

¼ �ðpþ hÞðd2 þ s2
1Þ

0:5
½fðF�1

ðsiÞÞ �F�1
ðsiÞ þ siF

�1
ðsiÞ�½1�FðziÞ�:

Similarly, we define

K4i � ðpþ hÞ

Z ki

�1

m2gðm2Þdm2 ¼ ðpþ hÞ½m1FðziÞ � sfðziÞ�;

K5i � �hQ1

Z ki

�1

gðm2Þdm2 ¼ �hQ1FðziÞ:

Let

Mi ¼ �ðpþ hÞðd2 þ s2
1Þ

0:5
Z ki

�1

C½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
�gðm2Þdm2.

Substituting

C½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
� ¼ f½ðQ1 � m2Þ=ðd2 þ s2

1Þ
0:5
�

� ½ðQ1 � m2Þ=ðd2 þ s2
1Þ

0:5
�f1�F½ðQ1 � m2Þ=ðd2 þ s2

1Þ
0:5
�g

and m2 ¼ m1+gs, we obtain

Mi ¼ K6i þ K7i þ K8i þ K9i þ K10i,

where

K6i � �ðpþ hÞðd2 þ s2
1Þ

0:5
Z zi

�1

f
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg,

K7i � ðpþ hÞQ1FðziÞ,

K8i � �ðpþ hÞ½m1FðziÞ � sfðziÞ�,

K9i � �ðpþ hÞðQ1 � m1Þ

Z zi

�1

F
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg,
K10i � ðpþ hÞs
Z zi

�1

gF Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ s2

1

q
0
B@

1
CAfðgÞdg.

For K6i:

Z zi

�1

f
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞ dg

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
q f

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
0
B@

1
CAF zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
þ

abffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
0
B@

1
CA.

K9i can be evaluated using (3). We can evaluate K10i by

Z zi

�1

gF Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ s2

1

q
0
B@

1
CAfðgÞdg

¼
bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
q � f

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
0
B@

1
CAF zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
þ

abffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
0
B@

1
CA

�Fðaþ bziÞfðziÞ

Thus, B1 (Q1) is computed by

B1ðQ1Þ ¼
Xn

i¼1

wi

X10

j¼1

Kji

0
@

1
A� c1Q1. (A2)

Hence, the retailer’s expected profit can be computed in
a straightforward manner by using the special functions
related to the standard normal distribution, f( � ), F( � ),
and F�1( � ), and the cdf of standard bivariate normal
distribution.

Appendix B. Calculation of the retailer’s expected profit in
the model with order-cancellation option

Define zc ¼ [Q1�(d2+s1
2)0.5F�1(sr)�m1]/[d1

2/(d1+s1
2)]0.5.

After some algebra, we rewrite (21) as

B1ðQ1Þ ¼
X
i2V1

wiDi þ
X
i2V2

wi

X10

j¼1

Kji �
X10

j¼4

Lj þ
X3

j¼1

Nj

0
@

1
A� c1Q1,

(B1)

where

Di ¼ rQ1 þ ðp� c2iÞm1 � ðhþ c2iÞðd2 þ s2
1Þ

0:5F�1
ðsiÞ

� ðpþ hÞðd2 þ s2
1Þ

0:5
½fðF�1

ðsiÞÞ �F�1
ðsiÞ þ siF

�1
ðsiÞ�,

L4 ¼ ðpþ hÞ½m1FðzcÞ � sfðzcÞ�,

L5 ¼ �hQ1FðzcÞ,

L6 ¼ �ðpþ hÞðd2 þ s2
1Þ

0:5
Z zc

�1

f
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg,

L7 ¼ ðpþ hÞQ1FðzcÞ,

L8 ¼ �ðpþ hÞ½m1FðzcÞ � sfðzcÞ�,
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L9 ¼ �ðpþ hÞðQ1 � m1Þ

Z zc

�1

F
Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ s2
1

q
0
B@

1
CAfðgÞdg,

L10 ¼ ðpþ hÞs
Z zc

�1

gF Q1 � m1 � gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ s2

1

q
0
B@

1
CAfðgÞdg,

N1 ¼ f�ðpþ hÞðd2 þ s2
1Þ

0:5
½fðF�1

ðsrÞÞ �F�1
ðsrÞ þ srF�1

ðsrÞ�gFðzcÞ,

N2 ¼ ½rQ 1 � ðr þ hÞðd2 þ s2
1Þ

0:5F�1
ðsrÞ�FðzcÞ,

N3 ¼ ðp� rÞ½m1FðzcÞ � sfðzcÞ�.

The terms L6, L9, and L10 can be evaluated similar to
their counterparts K6i, K9i, and K10i defined in Appendix A.
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