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a b s t r a c t

In this paper, we consider an inventory problem with two demand classes having

different priorities. The appropriate policy of rationing the available stock, i.e. reserving

some stock for meeting prospective future demand of preferred customers at the

expense of deliberately losing some of the currently materialized demand of lower

demand class(es), relies on the estimation of the future demand. Utilizing current

signals on future demand, which we refer to as imperfect advance demand information

(ADI), decreases uncertainty on future demand and may help to make better decisions

on when to start rejecting lower class demand. We develop a model that incorporates

imperfect ADI with inventory ordering (replenishment) decision and rationing available

stock. In a two-period setting, we show some structural properties, solve the rationing

problem, and propose solution methods based on Monte Carlo simulation for the

ordering problem. We conduct numerical tests to measure the impact of system

parameters on the expected value of imperfect ADI, and provide useful managerial

insights.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction and related literature

In this paper, we analyze a generic problem that
incorporates imperfect advance demand information in
inventory replenishment and rationing decisions. Con-
sider the following example of a style goods manufacturer
delivering shipments for two distinct markets (say, to
local retailers and to overseas buyers), where local retail
stores have priority over the overseas buyers. The
manufacturer’s planning horizon is divided into two
periods with possibly different lengths. At the beginning
of the first period, the manufacturer has pre-season order
information from his customers in the form of soft
ll rights reserved.
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commitments that are subject to revisions within the
terms of their mutual contracts. Based on this order
information and the on-hand available inventory pro-
duced during the pre-season, the manufacturer makes a
decision on how many additional goods to produce within
the first period for availability in the second period. After
the customer order information is transformed into hard
order commitments, the manufacturer decides on how
much of the overseas customers’ demand to satisfy and
how much stock to reserve for the second period, by also
taking into account the order information for the second
period. We analyze such quantity flexibility environments
with different customer priorities and availability of order
information.

The order information in the example above is a form
of advance demand information (ADI), which is a term
that refers to the information on future demand in
general. If the customers place their orders prior to their
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requirements, this constitutes perfect ADI. In many cases,
however, the available information on future demand—or
the information that can be collected and processed in
rather easy and inexpensive ways particularly due to
advances in information technologies—includes impurity
and uncertainty. We refer to this kind of ADI, where there
is an early indication of prospective future orders, as
‘‘imperfect ADI’’. A simple example is a company that uses
sales representatives to market his products, in which case
the collection of sales representatives’ information as to
the number of customers interested in a product provides
an indication about the future sales of that product, hence
it constitutes imperfect ADI. Other applications include
internet retailing, vendor managed inventory (VMI)
applications and collaborative planning, forecasting, and
replenishment (CPFR) environments. In the remainder of
the text—unless noted otherwise—we use the terms ADI
and imperfect ADI interchangeably, since we consider the
imperfect case in this paper.

The second important aspect of our paper is modeling
customer differentiation. In the style goods manufacturer
example above, local retailers may have priority over the
overseas customers—or the other way around—for rea-
sons such as higher sales volume or contractual agree-
ments that guarantee some high service level. Customers
are differentiated according to the importance assigned to
not being able to meet their demand. Differentiated
customer classes may not only have relative priority over
each other, but they may also have different ADI
structures.

In our problem environment, there are two demand
classes (or customer classes). We refer to the preferred
customer class as class-1 and the other one as class-2.
An appropriate policy to handle the problem of facing
demand from different classes is to reserve some part of
the stock for the use of higher priority customers only;
this is known as (inventory) rationing policy. According to
this policy, demands from both classes are met until the
inventory level drops down to a critical rationing level, but
if the inventory level is below critical rationing level, only
class-1 demand is met. This results in backordering
or losing some class-2 demand with the intention of
avoiding (or decreasing the number of) probable class-1
backorders or lost sales. Rationing policy is shown to be
optimal for some problem environments under different
demand classes (see, for example, Topkis, 1968; Ha,
1997b). However, an optimal rationing policy, which is
the amount to be rationed and its dynamic relation with
some other possible factors (time, lead times, remaining
lead times, ADI, number and importance of demand
classes, etc.) depends on the problem environment and
it remains an open question in a general context.

While making the critical decision of starting to reject
customers with an expectation of future demand from
preferred customers, it may be very important to know
more about future demand. Therefore, current signals on
future demand could be utilized for making better
decisions on when to start rejecting lower class demand.
In this paper, we investigate the impact of using imperfect
ADI in a production/inventory system when two distin-
guished demand classes exist. In particular, we analyze a
single-item two-decision epoch problem with the objec-
tive of minimizing the expected total costs, under the
assumption that unmet demand is lost. The questions that
we attempt to answer are: What is the optimal way to
allocate the inventory among the demand classes under
imperfect ADI? How can the ordering policies be deter-
mined in such a case? How do the system parameters
affect the value of imperfect ADI?

Our work relates to the existing body of the literature
on two main aspects: modeling ADI in production/
inventory decisions and rationing of available inventory.
In what follows, we first review the related literature on
modeling ADI, and then discuss the literature on inventory
rationing. We differ from the papers reviewed, mainly by
taking ADI into account in rationing available inventory.

Hariharan and Zipkin (1995) showed that perfect ADI
improves the performance of a continuous-time inventory
system in the same way as a reduction in lead times.
Gallego and Özer (2001) modeled perfect ADI through a
vector of future demands and showed the optimality of a
state-dependent order-up-to policy in a discrete-time
setting. Dellaert and Melo (2003) dealt with the lot-sizing
problem in a similar environment. Karaesmen et al. (2002)
considered a capacitated problem under perfect ADI and
stochastic lead times. They modeled the problem via a
discrete time make-to-stock queue. We refer the reader
to Karaesmen et al. (2003) for a literature survey and
treatment of perfect ADI in production/inventory systems.

The literature on different forms of imperfect ADI has
been increasing rapidly in the recent years. Treharne and
Sox (2002) considered a problem where the demand in
any given period arises from one of a finite collection of
probability distributions. DeCroix and Mookerjee (1997)
considered a periodic-review problem in which there is an
option of purchasing demand information at the begin-
ning of each period. Van Donselaar et al. (2001) investi-
gated the effect of sharing imperfect ADI between the
installers of a project and the manufacturers, in a project-
based supply chain. Thonemann (2002) elaborated
further on a similar problem in which there is a single
manufacturer and a number of installers. Zhu and
Thonemann (2004) considered a problem that consists
of a number of customers who may provide their demand
forecasts. Benjaafar et al. (2007) considered a continuous
review production–inventory system with imperfect ADI
and updates. Liberopoulos and Koukoumialos (2008)
modeled a two-customer-class system via simulation
where the customers in the second class provide im-
perfect ADI. Tan et al. (2007) considered an imperfect ADI
situation where information is modeled in a rather
general way. All the above studies utilize ADI in their
respective settings, propose inventory policies (in some
cases optimal inventory policies), and show the benefits of
imperfect ADI.

In the content of supply chain contracts, Tsay
et al. (1999) referred to inventory rationing problems
as extremely difficult and considered them as generally
intractable. De Véricourt et al. (2002) stated that the
rationing problem is often viewed as an operational
decision rather than a strategic one, and hence disre-
garded in the contracts. According to their empirical
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results, however, inventory rationing turns out to be
important. One of the pioneering studies that models
different demand classes is by Veinott (1965). He
considered a periodic review model in which each period
is divided into smaller subperiods. Production or procure-
ment decisions can only take place at the beginning of a
(major) period. He introduced the concept of ‘‘critical
levels’’ describing a possible critical level rationing policy
without analyzing it. Topkis (1968) elaborated on this idea
and proved that the optimal policy can be described by a
base stock ordering amount in a period and a set of critical
rationing levels in each subperiod. Another study (Evans,
1968) confirms the results of Topkis in an environment
with two customer classes. They both assume zero lead
time for ordering. The critical rationing levels in each
subperiod depend on the remaining time until the end of
the period. Nahmias and Demmy (1981) compared the
effect of rationing on the fill rate against a traditional
system with no rationing, for two demand classes. Cohen
et al. (1988) considered a discrete time (s,S) inventory
model with two demand classes, but without ration-
ing. Moon and Kang (1998), Melchiors et al. (2000),
Deshpande et al. (2003), and Teunter and Klein Haneveld
(1999) are among the studies on rationing problems under
continuous review, mostly based on the ideas of Nahmias
and Demmy (1981). Kranenburg and Van Houtum (2007)
developed accurate and efficient heuristics to find the
critical levels and the base-stock level in an (S-1,S) lost
sales model with multiple demand classes.

Under periodic review setting, Sobel and Zhang (2001)
considered a model with two demand classes with the
difference that class-1 demand is deterministic and must
be met whereas class-2 demand is stochastic and can
be backordered (without rationing). Frank et al. (2003)
extended their analysis to the case where rationing of the
stochastic demand is possible.

Another branch of rationing literature relies on queu-
ing theory. Ha (1997b) modeled a rationing problem with
several demand classes and lost sales as a single server
make-to-stock queue, and showed the optimality of a set
of monotone rationing levels with Poisson arrivals and
exponential production times, i.e. in an M/M/1 setting. Ha
(1997a), Dekker et al. (2002), de Véricourt et al. (2001,
2002) are other relevant studies in the same line. Finally,
Enders et al. (2008) considered a model where excess
demand for class-1 demand is lost and that for class-2
demand is backlogged. The authors developed an exact
evaluation procedure by modeling the problem as a level
dependent quasi-birth–death process.

Note that our work relates weakly with the literature
on dynamic pricing with inventory considerations (or
similarly to revenue management), as a part of that
literature focuses on market environments where there
is no opportunity for inventory replenishment over the
remaining part of the period or selling season (see
Elmaghraby and Keskinocak, 2003 for a review). Under
such an environment, the rationing policy reserves the
available stock for the preferred customers, without
considering a price change.

To our knowledge, our work is the first attempt to
model imperfect ADI structure together with rationing
and inventory decisions. During the revision of an earlier
version of this article we came across a paper by Gayon
et al. (2008) that considers a similar environment, but
employs a different treatment. Gayon et al. (2008)
considered Markovian customer arrival and supply pro-
cesses that allow them to model the problem as a
continuous time Markov decision process and showed
the properties of the optimal policy. Our treatment does
not require distributional restrictions and uses a discrete
time model.

The contribution of this study can be summarized as
follows:
(a)
 We present and analyze a model that incorporates the
use of imperfect ADI in the presence of customer
classes. In particular, we model a decision problem in
which the rationing decision follows the ordering
decision (with a time lag).
(b)
 We show the effect of using imperfect ADI on the
rationing decision.
(c)
 We characterize the behavior of the optimal rationing
policy under imperfect ADI. Additionally, we obtain
useful structural properties of the problem posed.
(d)
 We present computational analysis that provides
valuable managerial insight for the design and opera-
tion of such systems.
The rest of this paper is organized as follows. In Section
2 we discuss our problem environment and present the
solution to the inventory rationing problem under
imperfect ADI when two demand classes exist. Given the
optimal solution to the rationing problem, we obtain
the optimal order quantity in Section 3. We examine the
value of information aspect of ADI on the rationing
decision in Section 4. Finally, we present our conclusions
and discuss possible extensions in Section 5.

2. Modeling framework

In this section we introduce the two-period decision
framework. We define notation as need arises, but a list
of most important notation is presented in Table 1 for
convenience. We analyze the problem by considering a
two-period model. Two streams of customers (high
priority and low priority) generate independent stochastic
demand in both periods. Class-1 demand (the demand
class with higher priority) is either immediately satisfied
or lost. Class-2 demand is accumulated until the end of
each period and unmet demand at the end of the period is
lost. Each unit of lost demand from a class-1 customer
incurs a cost of b1 to the system, and that from a class-2
customer incurs a cost of b2, such that b14b2. Each unit of
unsold item incurs a cost of h per period. One can also use
salvage cost instead of h at the end of the second period to
take the end-of-horizon effect into consideration. Let Kn

be the random variable denoting the ADI that is available
at the beginning of period n, whose realization is kn, for
n ¼ 1;2. Let Di

nðknÞ be the continuous random variable that
denotes the demand from class-i customers that occurs
in period n, for i ¼ 1;2 and n ¼ 1;2, and let di

n denote the
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Table 1
Relevant notation.

Kn: Random variable denoting the ADI that is available at the

beginning of period n ðn ¼ 1;2Þ

kn: Realization of Kn

Di
nðknÞ: Random variable denoting the demand from class-i customers

that occurs in period n ði ¼ 1;2; n ¼ 1;2Þ

DnðknÞ: Random variable denoting the total demand in period

n ðn ¼ 1;2Þ

di
n: Realization of Di

n ðknÞ

dn: Realization of Dn ðknÞ

Gi
nðwjknÞ: Distribution function of Di

n ðknÞ ði ¼ 1;2; n ¼ 1;2Þ

GnðwjknÞ: Distribution function of Dn ðknÞ ðn ¼ 1;2Þ

x: Starting inventory level in the system

Q: Initial order quantity

y: Inventory position at the beginning of the second period

bi: Stock-out cost per unit lost sale for demand class i ði ¼ 1;2Þ

h: Inventory holding cost per unit per period

R̃: Critical rationing level

R: Reserve level, i.e. the net reserved amount at the end of the

first period
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realization of Di
nðknÞ. Note that we consider kn as all of the

available ADI on both class-1 and class-2 demands. For
instance, there can be separate information on each
demand class, which may be correlated. We also note
that kn is the information available at the beginning of
period n for the (total) demand that will be realized at the
end of period n. For modeling purposes, we do not impose
a particular relation between the available information
and the demand realization. For instance, in the extreme
case, kn may be the exact number of demands that will be
realized (perfect ADI), or it may just be a parameter (such
as the mean) of the demand distribution. In order to
simplify the notation, we suppress kn and denote the
random variable for demand as Di

n. We define Dn ¼ D1
n þ

D2
n to denote the total demand in period n, for n ¼ 1;2. The

periods are not necessarily of the same duration.
There are two decision epochs in the planning horizon.

Production (or procurement) lead time is one period.
There is a starting inventory of x on hand.

The following order of events takes place:
(A)
 At the beginning of the first period
(1) available on-hand inventory x, and the ADI for the

first period k1 are observed,
(2) a replenishment order of size Q , due to arrive at

the beginning of the second period, is given.

(B)
 At the end of the first period

(1) the available stock x is made available to meet d1
1

as much as possible,
(2) k2 is observed,
(3) rationing decision is made and d2

1 is met to the
extent allowed by the rationing decision,

(4) inventory related costs are incurred.

(C)
1 The subscripts of E are the random variables over which the

expectation is taken.
At the beginning of the second period
(1) Q is received,
(2) inventory level is raised to y ¼ Rþ Q , where R is

the reserve level.
(D)
 At the end of the second period
(1) d1

2 is met as much as possible, and d2
2 is met to the

extent of available inventory,
(2) inventory related costs are incurred.
Note that the information as to the future demand is
available in the system at both decision epochs, namely k1

at the point of ordering decision, and k2 at the point of
rationing decision. This information should be utilized to
make better ordering and rationing decisions. We sche-
matically describe the collection of ADI and realization of
demands in Fig. 1.

The model of our paper fits better to products with a
short life cycle, such as the style goods example described
in Section 1. Demand signals for such products may be of
crucial importance, especially if the possible number of
replenishments is few. Our model considers such a
product with two epochs of ordering. The first ordering
decision that is made with little or no information on
future demand (or future fashion) determines the initial
inventory. As more information on demand is collected,
the decisions (second replenishment, and rationing avail-
able inventory during the lead time of this second
replenishment) are made by utilizing this information.
In such environments, it is more likely that unmet
demand is lost due to competitive market conditions.

While we discuss our model in detail and show some
structural properties in the rest of this paper, the objective
function can be summarized as1:

min
Q

EK2 ;D
1
1 ;D

2
1
½min

y
fTRC1 þ ED1

2 ;D
2
2
½TRC2�g� (1)

where y, as will be shown later, is an inventory level that
can be interpreted as the rationing-adjusted order-up-to
level when combined with Q and demand realizations of
the first period, and TRC1 and TRC2 are the total relevant
costs for the system at the end of the first and the second
period, respectively. In Sections 2.1 and 2.2 we analyze
the rationing problem which is depicted as the inner
minimization over y in (1), and subsequently we
analyze optimal selection of the initial order quantity Q

in Section 3.
We note that the inner minimization problem in (1)

depends on the realization of ðK2;D
1
1;D

2
1Þ. Therefore,

for each such realization, we have a corresponding
optimal rationing level, and hence an optimal order-up-
to level. Due to the nature of the system (rationing) these
optimal levels cannot be explicitly characterized. Hence,
we either need to use numerical integration, or need to
use a Monte Carlo-based method for the evaluation of the
expected total cost. In this article we choose to apply an
integrated approach where a Monte Carlo method based
on the analytical findings obtained in Theorems 1–3 is
used.
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2

Q

Collection of k1

d1
2d1

1 d2
1 d2

2

Collection of k2

0 1

Fig. 1. Ordering and rationing problem with ADI.

2 We use the notation ‘‘E½TRC2jk2; d
1
1; d

2
1�’’ to refer to E½TRC2jK2 ¼

k2;D
1
1 ¼ d1

1 ;D
2
1 ¼ d2

1�, and similar notation for the conditional part

whenever there is no ambiguity.
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2.1. Rationing problem and derivation of the expected cost

function

We elaborate on the problem using a backward
recursion and first handle the rationing problem at the
end of the first period for a given set of parameters: x, Q ,
d1

1, d2
1, k2. Note that d1

1, d2
1, and k2 have already been

observed at the beginning of the second period and that d1
1

and d2
1 depend on k1, which was observed at the beginning

of the first period.
Let R̃ be the non-negative critical rationing level such

that if the inventory on hand after meeting class-1
demand at the end of the first period is less than R̃, then
all of d2

1 is lost; otherwise, class-2 demand is met as long
as on hand inventory does not drop to a level less than R̃.
Topkis (1968) showed that after making an ordering
decision, the optimal policy to allocate the available stock
to different classes of customers is of rationing type under
possibly non-stationary demand distributions. For the
problem environment that we consider, the existence of
ADI leads to non-stationary demand. Given the quantity Q

to be received at the beginning of the second period, one
can show that the structure of the optimal policy is still
of rationing type, but as we discuss below the rationing
amount is affected by Q and other parameters.

We note that the problem has a trivial solution if
d1

1 � x, as in this case all of the initial stock will be used to
satisfy class-1 customers.

Although it is possible to formulate the cost terms
and hence the expected cost by making use of R̃, the
formulation gets rather complicated then. Therefore we
consider another variable, R, which is the inventory level
right after meeting first period demand. Note that R is
related to R̃ in the following way:

R ¼

0 if xod1
1;

x� d1
1 if x� R̃ � d1

1 � x;

R̃ if x� R̃� d2
1 � d1

1ox� R̃;

x� d1 if d1
1 � x� R̃� d2

1:

8>>>>>>><
>>>>>>>:

(2)

R is the net reserved amount at the end of the first
period, either due to deliberate rationing or due to
excessive or insufficient demand. Therefore, we refer to
R as the ‘‘reserve level’’. The relation defined in (2)
translates into the following:

R ¼maxfminfR̃; ½x� d1
1�
þg; ½x� d1�

þg

¼minfðx� d1
1Þ
þ; R̃g þ ðx� d1 � R̃Þþ. (3)

We refer to the optimal value of R as R�, which is a
function of x;Q ;d1

1; d
2
1; k2, distribution functions of period-

2 demands, and cost parameters b1; b2; and h, as we derive
in what follows.

Upon arrival of Q at the beginning of the second period,
the system adjusts its inventory level, which equals
inventory position at that point, to

y ¼ Q þ R. (4)

But since Q is known at this point, finding the optimal
value of R is equivalent to finding the optimal value of y.
Therefore, the rationing problem reduces to a modified
newsboy problem with the cost function as derived below.

Inventory and lost sales costs at the end of the first
period, TRC1, can be stated as

TRC1 ¼ b1ðd
1
1 � xÞþ þ b2½R� ððx� d1

1Þ
þ
� d2

1Þ� þ hR. (5)

Note that there is no stochastic term in TRC1. We can
substitute (4) in (5) to obtain

TRC1 ¼ b1ðd
1
1 � xÞþ þ b2½ðy� Q Þ � ððx� d1

1Þ
þ
� d2

1Þ� þ hðy� Q Þ.

(6)

Inventory and lost sales costs at the end of the second
period, TRC2, can be stated as

TRC2 ¼ b1ðD
1
2 � yÞþ þ b2½D

2
2 � ðy� D1

2Þ
þ
�þ þ hðy� D2Þ

þ,

(7)

which simplifies into

TRC2 ¼ ðb1 � b2ÞðD
1
2 � yÞþ þ b2ðD2 � yÞþ þ hðy� D2Þ

þ. (8)

Combining (6) and (8), the inventory rationing problem
at the end of the first period can be formulated as2

Minimize
y

E½TRCjk2; d
1
1; d

2
1� ¼ TRC1 þ E½TRC2jk2; d

1
1; d

2
1�

subject to Q þ ðx� d1Þ
þ
� y � Q þ ðx� d1

1Þ
þ, (9)
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where TRC1 and TRC2 are as defined in Eqs. (6) and (8),
respectively, and both depend on y and Q . In our notation,
we suppress this dependency for brevity.

The constraints in (9) define the lower and upper
bounds on the inventory level upon arrival of Q at the
beginning of the second period, respectively. Eq. (3)
reveals that R � ðx� d1Þ

þ and R � ðx� d1
1Þ
þ. In other

words, the minimum amount that must be reserved
is what remains after meeting all of the demand in
the first period, and the maximum amount that can be
reserved is what remains after meeting class-1 demand in
the first period, as discussed after defining R. Since
y ¼ Q þ R, the constraints in (9) follow.

We refer to E½TRCjk2; d
1
1; d

2
1� as the ‘‘expected total

conditional cost’’ (ETCC) and for ease of notation we drop
d1

1; d
2
1 terms in E½TRC2jk2; d

1
1; d

2
1�. Consequently,

ETCC ¼ TRC1 þ E½TRC2jk2�.

In particular,

E½TRC2jk2� ¼ ðb1 � b2Þ

Z 1
y
ðw� yÞdG1

2ðwjk2Þ

þðb2 þ hÞ

Z 1
y
ðw� yÞdG2ðwjk2Þ þ hy� hE½D2jk2�,

where G1
2ðwjk2Þ and G2ðwjk2Þ are the distribution functions

of D1
2 and D2, respectively. We note that while the demand

may be discrete, for ease of exposition we assume that
demand distributions are continuous and E½TRC2jk2� is
twice differentiable.

2.2. Properties of the expected total conditional cost

function and the optimal reserve level

We first state the following theorem, which is used for
solving the optimization problem presented in (9).

Theorem 1. ETCC is convex in y, and hence in R, for a given

Q � 0 and for all k2, d1
1, and d2

1.

Proof. E½TRC2jk2� is convex in y for all k2, d1
1, and d2

1 since
TRC2 can be considered as the sum of two newsboy type
functions (one with costs b2 and h, and distribution G2,
and the other with costs b1 � b2 and 0, and distribution
G1

2), and TRC1 is linear in y. Therefore, their sum is convex
in y for all k2, d1

1, and d2
1. (See, e.g., Heyman and Sobel,

1984.) The same argument holds for R for any given Q � 0,
since y ¼ Q þ R. &

One can find the optimal reserve level at the end of the
first period as stated in the following theorem.

Theorem 2. The optimal reserve level at the end of the first

period is

R� ¼ MaxfMinfðy� � Q Þ; ðx� d1
1Þ
þ
g; ðx� d1Þ

þ
g, (10)

where

y� ¼minfyjðb2 � b1Þð1� G1
2ðyjk2ÞÞ þ ðb2 þ hÞG2ðyjk2Þ þ h ¼ 0g

(11)

is the ideal inventory position at the beginning of the second

period.
Proof. The first order condition is sufficient to find y�, the
minimizer of ETCC, due to Theorem 1. Then,

dETCC

dy
¼

dTRC1

dy
þ

dE½TRC2jk2�

dy

¼ðb2 þ hÞ þ ðb1 � b2ÞG
1
2ðyjk2Þ þ ðb2 þ hÞG2ðyjk2Þ � b1,

which results in (11). Combining this with the boundary
conditions that are defined in (9), we obtain (10). We also
note that there exists a solution to (11), because
limy!�1ðdETCC=dyÞ ¼ �b1 þ b2 þ ho0, and limy!þ1

ðdETCC=dyÞ ¼ b2 þ 2h40. &

Theorem 2 enables us to characterize the relation
between optimal reserve level R� versus Q and x, given
that the rest of the system remains the same. We
enumerate some of those characterizing properties that
relate R� with Q in Corollary 1, and those with x in
Corollary 2.

Corollary 1. The following properties hold.
1.
 R� is a non-increasing function of Q, and

limQ!1R� ¼ ðx� d1Þ
þ.
2.
 If 0 � Qoðy� � ðx� d1
1Þ
þ
Þ
þ, then R� ¼ ðx� d1

1Þ
þ

�
(

3.
 dR

dQ
¼

0 if QoQl or Q4Qu;

1 if Q loQoQu;
(12)

where

Ql ¼ ðy
� � ðx� d1

1Þ
þ
Þ
þ; Qu ¼ ðy

� � ðx� d1Þ
þ
Þ
þ.
Property 1 is self-explanatory. Property 2 states that all
that can be reserved should be reserved if Q is not
sufficient to reach the ideal inventory position at the
beginning of the second period. Finally, property 3 states
that for insufficient or abundant Q , marginal change in Q

does not affect R�, since R� is solely determined by the
initial inventory and first period demand in that case. For
any Q in between, the system reacts to a unit increase in Q

by a unit decrease in R� to maintain the ideal inventory
position at the beginning of the second period, which is
feasible in this region.

Corollary 2. The following properties hold.
1.
 R� is a non-decreasing function of x, and limx!1R� ¼ 1.

2.
 If x � d1

1, then R� ¼ 0
�

(

3.
 dR

dx
¼

0 if xoxl or xmoxoxu;

1 if xloxoxm or x4xu;

where

xl ¼ d1
1; xm ¼ d1

1 þ R̃
�

and xu ¼ d1 þ R̃
�
.

Properties 1 and 2 are self-explanatory. Property 3
translates into the following: if x is less than class-1
demand, then a marginal change in x does not affect R�,
since nothing is reserved anyway. If x is more than class-1
demand but not sufficient to reach the ideal inventory
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Fig. 2. Change of optimal reserve level versus order quantity and initial inventory.
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position y�, then the system will reserve all that it can. If x

is sufficient to reach y�, then any x in excess will be used
to meet class-2 demand and hence will not be reserved,
until all the demand is met. If x is any larger than that,
then it will have to be left over to the second period.

With the help of Corollaries 1 and 2, the relation
between R� and Q for a given x, and the relation between
R� and x for a given Q can be illustrated as in Fig. 2,
where Ru ¼maxfðminfy�; ðx� d1

1Þ
þ
gÞ; ðx� d1Þ

þ
g and Rl ¼

ðx� d1Þ
þ. If Ql40, as in the illustration, then it turns out

that Ru ¼ ðx� d1
1Þ
þ.

Finally, we consider the special case of perfect ADI on
class-1 demand, that is, when d1

2 is known with certainty
prior to the rationing decision at the end of the first
period. For this case we obtain

dETCC

dy
¼

b2 þ h� b1 if y � d1
2;

ðb2 þ hÞðG2
2ðy� d1

2jk2ÞÞ þ h if y4d1
2:

8<
:

This function is negative for the region y � d1
2 since

b14b2 þ h and positive for the region y4d1
2 since G2

2 is a
distribution function. Consequently, y� ¼ d1

2. This means
that the ideal inventory level that the system would like to
dedicate to the second period is the class-1 demand that
will be materialized in the second period, which in this
case is known with certainty just before the rationing
decision. Reserving below it would result in unmet class-1
demand in the second period, and reserving above it
would result in reserving for class-2 demand in the second
period (i.e., possibly losing actual class-2 customers in the
first period with an anticipation of class-2 demand in the
second period).
3. Determination of the initial order quantity

Now we proceed to the problem of deciding how much
to order at the beginning of the first period that minimizes
the expected total inventory related costs for both periods,
E½TRCðQ Þ�, for a given k1 and x. Note that E½TRCðQ Þ� ¼

EK2 ;D
1
1 ;D

2
1
½TRC1 þ E½TRC2jk2; d

1
1; d

2
1��. We first state the follow-

ing theorem.

Theorem 3. E½TRCðQ Þ� is convex in Q under the optimal

reserve level policy that is defined in Theorem 2.

Proof. Proof is provided in the Appendix.
Theorem 3 holds for any R, provided that R is twice
differentiable (piecewise) with respect to Q and the
second derivative is zero, as shown in the Appendix.

It is also interesting to observe that substituting (12)
into (14) of the Appendix results in

dE½TRC2jk2�

dQ

����
R¼R�
¼

ðb1 � b2ÞG
1
2ðQ þ R�jk2Þ;

þðb2 þ hÞG2ðQ þ R�jk2Þ

�b1 if QoQl or Q4Qu;

0 if QloQoQu

8>>>><
>>>>:

for the optimal reserve level. This result reveals that the
marginal contribution of Q to E½TRC2jk2� within the limits
QloQoQu is zero. In other words, a decrease (or increase)
of Q� by a marginal unit (as long as it is still in the limits
mentioned) will result in the same E½TRC2jk2�, because the
system will adjust itself to exactly the same inventory
position by reserving a unit more (or less) for the second
period.

We note that explicit evaluation of E½TRCðQ Þ� is difficult,
mainly due to the dependence of R� on d1

1, d2
1, and k2.

Therefore, we propose an approximate cost evaluation
procedure (ACEP) based on Monte Carlo simulation in
order to calculate approximate expected total inventory
related costs. ACEP approximates the value of E½TRCðQ Þ� for
a given Q � 0, by generating a large number of realizations
of K2;D

1
1, and D2

1, and taking the average of the optimal
E½TRCjk2;d

1
1; d

2
1� values that are calculated for each realiza-

tion. The remaining issue is to search for the optimal order
quantity, Q�, that minimizes E½TRCðQ Þ�. Theorem 3 enables
the use of any search algorithm that is designed for convex
functions.

Instead of approximating the expected total cost
function E½TRCðQ Þ�, one can also approximate the deriva-
tive of E½TRCðQ Þ� with respect to Q , again using Monte
Carlo simulation. The idea is similar to that of ACEP, the
difference being that the derivative of the optimal ETCC

(see Eq. (15) in the Appendix) is computed this time for
each set of realizations of K2;D

1
1, and D2

1. Finally, the
optimal order quantity is the value of Q for which
dE½TRCðQ Þ�=dQ is sufficiently close to zero.
4. Value of information

In this section we consider the value of information
aspect of ADI on rationing decisions. We conduct
numerical tests to find out under which circumstances a
higher value of ADI exists.
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Fig. 3. Optimal reserve level versus ADI.

3 While Fig. 3 gives the impression that the optimal reserve level is

piecewise linear in k2 in the ADI-case, it is actually (very slightly)

nonlinear.
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4.1. Problem setting

We note that we have assumed the demand distribu-
tions to be continuous in our analysis—while similar
derivations could have been done for the discrete demand
case as well—so we confine ourselves to continuous
demand distributions in our numerical experiments. In
the tests that we conduct, we consider a structure in
which ADI is available on class-1 customers only. The
distribution of class-2 demand in the second period
is taken to be normal with mean m2 and variance s2

2,
independent of class-1 demand and ADI. We assume
the conditional distribution of class-1 demand in the
second period to be normal with mean k2p and variance
k2pð1� pÞ, where k2 represents the maximum class-1
demand that may be materialized in the second period,
and p is a probability measure that represents the
reliability of ADI. Our motivation for considering this
distribution is the following information collection pro-
cess: by the end of the first period, there may exist
information on the potential number of customers in the
system, k2, each of which will generate a demand of size
one with probability p in the second period. In this case,
the demand distribution upon realization of k2 would be
binomial with parameters k2 and p, resulting in the mean
k2p and variance k2pð1� pÞ. Due to our continuous
demand distribution assumption, we consider normal
distribution with this mean and variance. The probability
of demand realization, p, may be referred to as ‘‘customer
reliability level’’, as well. While we assume homogeneity
of customer reliability levels for simplification, this is not
a restrictive assumption because non-homogeneous
customer reliability levels can easily be accommodated in
the model by segmenting the market according to the
reliability levels as discussed by Tan et al. (2007). In
the extreme case, a segment can be made up of a single
customer.

We compare two policies for operating the system
of concern in order to reveal the value of information:
ADI-case and NoADI-case. In both cases the decisions are
made in an optimal manner, but only in the ADI-case is
the system operated under advance demand information.
For the sake of comparisons, the distribution of ADI is
assumed to be known in the NoADI-case. We assume a
normal distribution with mean mK and variance s2

K for
ADI. Our general approach is to obtain expected inven-
tory-related costs for both of the cases and compare them.

Optimal reserve level under lack of ADI : In order to find
the optimal reserve level for the NoADI-case at the end of
period 1, we use Theorem 2 as in the ADI-case, with the
difference that the demand distributions are observed as
G1

2ðyÞ and G2ðyÞ, instead of G1
2ðyjk2Þ and G2ðyjk2Þ, respec-

tively, since ADI is not collected. The mean and the
variance of D1

2 can be evaluated by conditioning on K2, as
E½D1

2� ¼ pmK and V ½D1
2� ¼ pð1� pÞmK þ p2s2

K . Thus, class-1
demand distribution in the NoADI-case can be reflected by
D1

2�NðpmK ; pð1� pÞmK þ p2s2
K Þ, and the total demand in

the second period under NoADI-case is normally distrib-
uted as well, since it is the sum of two independent
normal distributions. Hence, D2�NðpmK þ m2; pð1� pÞmKþ

p2s2
K þ s2

2Þ. As a result, there exists a unique reserve level
for any given set of parameters at the end of the first
period, as opposed to a variable reserve level that depends
on k2 in the ADI-case. Fig. 3 illustrates this point, where
the change of optimal reserve level as a function of ADI
size is plotted for ADI- and NoADI-cases under a certain
set of parameters and a given Q .3
4.2. Experimentation

Computation of the value of information: The system
state at the instance of the rationing decision is defined by
x; d1

1;d
2
1;Q ; and k2, as well as cost parameters b1;b2;h; and
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distribution parameters p;mK ;m2;sK ; and s2. The approach
we follow in order to reveal the value of information
aspect of ADI in rationing decisions is to generate a large
enough number of k2 realizations, calculate corresponding
optimal reserve levels and relevant costs, average the
costs out, and compare. The performance measure that we
consider is the expected percent penalty of not utilizing
ADI, which we refer to as %VoI. That is,

%VoI ¼ 100 �
E½TRCjd1

1; d
2
1�NoADI � E½TRCjd1

1; d
2
1�ADI

E½TRCjd1
1; d

2
1�ADI

where E½TRCjd1
1; d

2
1�NoADI and E½TRCjd1

1;d
2
1�ADI denote the

expected total relevant costs for the NoADI- and ADI-
cases, respectively, for given realizations of the first period
demands. Since there is a fixed reserve level for the given
input parameters in the NoADI-case independent of the
value of k2, TRC1 in the NoADI-case does not change with
k2, therefore it suffices to compute it once. However,
optimal reserve level depends on k2 in the ADI-case,
so TRC1 is a function of k2. Therefore we take the average
of TRC1 values conditioned on k2 realizations in this case.

Description of the tests conducted: We conduct tests to
examine the value of ADI on the rationing decision as a
function of problem parameters. We first investigate
which factors influence the value of ADI. Then we conduct
tests for a range of values of some parameters in order
not only to comprehend the effect of different values
of those parameters on the value of information, but also
to observe the sensitivity of the %VoI.

We try different values of input parameters to
investigate which values yield to increased %VoI. We
consider every combination of some fixed values of the
input parameters, hence our experimental design follows
a full-factorial fixed-effects model. The values of the input
parameters (i.e., the levels of the factors) that we utilize in
the experiment are provided in Table 2.

We fix h ¼ 1 and set the cost parameters according to
two considerations: b1=b2 being close to 1 (since b14b2 þ

h must hold, we set b1=b2 ¼ 1:3) and being 10; and the
trade-off between class-2 lost sales and inventory holding
costs (i.e., b2=ðb2 þ hÞ, which we refer to as ‘‘b2FR’’,
resembling approximate ‘‘fill rate’’ as if there are no
demand classes) being 0.8 or 0.95. The resulting sets
of cost parameters are ðb1; b2Þ ¼ ð5:2;4Þ; ð40;4Þ; ð24:7;19Þ,
and ð190;19Þ. The coefficient of variation, CV, is taken
as common to K2 distribution and D2

2 distribution at the
same time. That is, sK=mK ¼ s2=m2 ¼ CV . We set d1

1 ¼ 0 in
all sets, because d1

1 is to be met from x in all cases and if
Table 2
Values of input parameters.

p 0.1, 0.5, 0.9

Q 0, 100, 200

x 10, 100

b1=b2 1.3, 10

b2FR 0.8, 0.95

mK 20, 200

m2 10, 100

CV 0.05, 0.25

d2
1

10, 100
d1
14x then there would be no inventory left to ration at

the end of the first period, and the value of information
would trivially be zero.

These values of parameters result in 27
� 32

¼ 1152
sets. Since we are interested in revealing the character-
istics of parameter sets that yield high %VoI rather than
obtaining confidence intervals on %VoI for each set, we
only evaluate point estimates. Nevertheless, we note that
one might construct confidence intervals as well.

Discussion of the results: We conduct an analysis of
variance (ANOVA) for this experiment on a model that
includes all of the main and two-way interaction effects.
The main effects that are significant on %VoI at 95%
confidence level (and their respective p-values4) are mK

(0.001), b1=b2 (0.003), m2 (0.004), x (0.005), d2
1 (0.017), p

(0.023), and CV (0.028).
For this set of parameters, we deduce from main effects

plots that there is a higher expected value of information
on rationing decision when ADI signals a high demand,
relative importance of class-1 customers (i.e., b1=b2) is
high, expected class-2 demand of the second period is
low, initial inventory level is high, class-2 demand of the
first period is high, customer reliability level is high, and
system variability (induced by k2 and D2

2) is high. These
results are mostly in line with intuition, as we briefly
discuss in what follows. It should be noted that none of
the factors that lead to higher %VoI can be effective only
by themselves. For example, if there is no initial inventory,
then the value of information will be zero, independent of
all other factors, since there will be nothing to ration.

Observation 1: When class-1 is not significantly more
important than class-2, and especially when both lost
sales costs are relatively low, it does not pay off to collect
ADI, because the rationale for rationing (losing a class-2
demand deliberately and also facing a holding cost to
avoid a possible loss of class-1 demand) diminishes.

Observation 2: Higher values of mK and p stand for a
higher expectation for class-1 demand in the second
period. In that case, reservation for the second period gets
more critical, hence the value of information. We discuss
this issue later in this section. We note that ADI is not only
important when it signals a higher prospective demand,
because when the ADI signals a lower prospective class-1
demand, it alerts the system accordingly, despite high
expectation prior to ADI realization (i.e., when E½K2� ¼ mK

is high but realized k2 is relatively low). These arguments
hold in a stronger sense when the variance of the ADI and
the variance of class-2 demand are higher, hence the
variance of the second period demand is high.

Observation 3: A low level of initial inventory (relative
to d2

1) leaves less room for rationing, and therefore the
expected value of information is less. A similar reasoning
holds for the amount of class-2 demand in the first period,
d2

1 (relative to x).
Observation 4: When the expected class-2 demand of

the second period is low, then the second period demand
4 ‘‘p-value’’ is the smallest level of significance that would lead to

rejection of ANOVA null hypothesis, and it should not be confused with

customer reliability level, p.



ARTICLE IN PRESS

Fig. 4. Order quantity versus E½TRCjd1
1 ; d

2
1�.

5 There are insignificant differences due to the simulation-based

calculation of the expected costs.

T. Tan et al. / Int. J. Production Economics 121 (2009) 665–677674
is mostly defined by class-1 demand. Therefore, ADI
(which is on class-1 demand in this experiment) becomes
more important.

The impact of Q and x on the %VoI: The previous
experiment does not make it very clear how the value
of ADI changes as a function of Q . Nevertheless, in most of
the results with higher %VoI it appears that Q is close to
the expected class-1 demand of the second period (E½D1

2�).
Therefore, we conduct another ANOVA, this time with
the factor E½D1

2�ð¼ pmK Þ instead of the factors p and mK . The
main effects that are significant on %VoI at 95% confidence
level (and their respective p-values) are E½D1

2� (0.000),
b1=b2 (0.003), m2 (0.004), x (0.005), d2

1 (0.016), and CV

(0.026). The most significant interaction effect is between
Q and E½D1

2� with a p-value of 0.000.
We present the expected total cost figures,

E½TRCjd1
1; d

2
1�, for ADI- and NoADI-cases with p ¼ 0:9;

CV ¼ 0:25, mK ¼ 200, m2 ¼ 10, x ¼ 100, d1
1 ¼ 0, d2

1 ¼ 100,
b1 ¼ 12, b2 ¼ 5, h ¼ 1 in Fig. 4. Expected total costs when
rationing is not allowed (ETRCNo-Rat) are also presented
on the same graph for comparison purposes.

Observation 5: As Fig. 4 reveals, the penalty paid for not
rationing compared to the optimal rationing policy is
significant especially when the order quantity is smaller
than optimal. Moreover, for order quantities that are much
smaller than the optimal, the majority of the penalty is
due to not rationing, whereas for the rest it is due to not
employing imperfect ADI in the rationing decision. There
are still considerable savings if rationing and imperfect
ADI are used with the optimal ordering quantity.

We extend our analysis by examining the relation
between Q and %VoI for different values of initial
inventory level x, because x and Q interact in determining
the reserve level. The values of the parameters in this
set are p ¼ 0:9; CV ¼ 0:25, mK ¼ 200, m2 ¼ 100, d1

1 ¼ 0,
d2

1 ¼ 100, b1 ¼ 190, b2 ¼ 19, h ¼ 1. The %VoI versus Q for
different values of x � d1 are presented in Fig. 5, and those
for x � d1 are presented in Fig. 6. We note that when x �

d1 (where d1 ¼ d2
1 in our current setting), the individual

values of x� d1 and Q are irrelevant as long as their sum
remains unchanged, because xþ Q � d1 is the lower
bound on feasible y. Therefore, the absolute value of
information is the same5 for the same xþ Q � d1 values,
and %VoI changes only due to their relative levels. For the
case where x � d1, %VoI increases as x increases for all
values of Q .

Observation 6: In Figs. 4–6 we observe that the
percentage VoI is relatively higher when Q þ ðx� d1Þ

þ is
not much larger or smaller than the expected value of the
second period class-1 demand, and in particular when it is
slightly higher than the expected value of the second
period class-1 demand. These constitute the cases where
ADI (and the rationing decision as a function of ADI)
becomes very valuable as a non-trivial decision is
required. When Q þ ðx� d1Þ

þ is much larger or smaller
than the expected second period class-1 demand, the
relative importance of information disappears as there is
not much to do. We note that the quantity rationed in
excess of E½D1

2� acts like a safety stock, being a function of
demand variability and cost parameters in the system.

The impact of CV and p on the %VoI: We conduct further
tests to investigate the behavior of %VoI as customer
reliability level (p) and the coefficient of variation (CV)
change. The input parameters are mK ¼ 200;m2 ¼ 10; x ¼
100; d1

1 ¼ 0; d2
1 ¼ 100; b1 ¼ 12; b2 ¼ 5;h ¼ 1. We let p vary

between 0.1 and 1, and CV between 0.05 and 0.25. We also
fix Q at 100. The results of these tests are summarized in
Fig. 7.
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Fig. 7. Customer reliability level and coefficient of variation versus %VoI.
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Observation 7: ADI increases as the coefficient of
variation, hence the demand variance increases.

Observation 8: Other parameter levels are critical to
draw any conclusion about p. %VoI is zero for small values
of p in Fig. 7, because the current value of Q ¼ 100 covers
for class-1 demand in the second period (with E½D1

2�o40
for po0:2) and the optimal policy is not to ration. On
the other hand, the percent penalty of not utilizing
ADI decreases for high values of p in this setting, since
the gap between the expected class-1 demand of the
second period and Q decreases the relative importance of
information.
5. Conclusions and future research

The main motivation of employing imperfect advance
demand information in an inventory/production system in
general is that it can improve the performance of the
system through decreasing uncertainty on future demand.
When there are multiple demand classes of different
priorities, then the appropriate policy of rationing the
available inventory comes at the expense of possibly
losing some of the currently materialized demand of
lower demand classes. This delicate issue, after all, relies
heavily on the estimation of the future demand. Therefore,
utilizing current signals on future demand may be
extremely important to make better decisions on when
to start rejecting current demand.

In this paper we have developed a model that helps us
investigate this problem in a simplified environment. We
analyzed a system that is made up of one ordering and
one rationing decision under two demand classes. Conse-
quently, the rationing problem is solved analytically.
A Monte Carlo simulation-based procedure is developed
to evaluate the total expected inventory-related costs.
Showing that expected cost function is convex in terms
of order quantity, two methods are suggested for
determining the optimal order level. A procedure is built
to evaluate the expected value of imperfect ADI on the
rationing decision. Numerical tests are conducted
to measure the impact of system parameters on the
expected value of imperfect ADI. Under the parameters we
considered, the results of these tests revealed that
imperfect ADI is more valuable when the demand
variance is high, relative importance of class-1 demand
is high, there is sufficient class-2 demand at the first
period and sufficient initial inventory to increase the
flexibility to ration, and the order quantity plus the initial
inventory in excess of the first period demand is close to
the expected class-1 demand of the next period plus some
safety stock.

This study presents some issues of relevance with
respect to the design and operation of such systems. The
following is a relevant list of issues for managerial insight:
(a)
 Rationing is a difficult decision to apply in practice, as
it may have an undesired influence on low-priority
customer demand. On the other hand, if the return of
such an action is significant then some incentives can
be designed to prevent those undesirable influences.
We show that, in the environment we have described,
the benefits can be sufficiently large, even though ADI
is imperfect.
(b)
 The rationing decision is generally considered to be an
operational decision. However, as shown in the
computational analysis, especially if the system is
operating with order quantities that are smaller than
optimal, the penalty paid for not applying the optimal
rationing policy can be significant. For order quantities
that are much smaller than the optimal, the majority
of the penalty is due to not rationing, whereas for the
rest the majority of the penalty is due to not employ-
ing imperfect ADI in the rationing decision. There are
still considerable savings if rationing and imperfect
ADI are used with the optimal ordering quantity.
(c)
 Imperfect ADI and rationing are two important
characteristics that will improve system performance
where uncertainty, non-stationarity and long lead
times are important features of the inventory system
considered.
We note that although we have assumed no set-up cost
in the analysis, our model can be extended to cover a
positive set-up cost as well. Nevertheless, extending the
model into a longer or infinite horizon multi-period
structure is not as straightforward. Under a general lead
time assumption, increased dimensionality becomes an
important issue. A multi-period structure disallows con-
sidering the ordering and rationing decisions distinctly as
we do in this paper, because optimality should be on both
of those decisions in every period. A possible approach
could be to pre-set a rationing policy as a function of
ADI and then solve for Q, or vice versa. Another issue in
the multi-period setting is the modeling of the ADI
structure. While increasing the complexity of the problem,
a possible solution or characterization could provide
further insight. A natural extension is to handle the case
of several customer classes, which may be necessary both
for generalization purposes and for some possible appli-
cations. Instead of a single reserve level, there would be a
reserve level for each class in this case, except for class-1.
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Appendix A. Proof of Theorem 3

We first show that E½TRCjk2; d
1
1; d

2
1� ¼ TRC1 þ

E½TRC2jk2; d
1
1; d

2
1� is convex in Q for a given set of k2, d1

1,
and d2

1. The cost terms TRC1 and TRC2 are as stated in (6)
and (8), and they can be stated in terms of Q by noting
that y ¼ Q þ R, with R ¼ R� in case of optimal reserve
policy. Hence,
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E½TRC2jk2; d
1
1; d

2
1� ¼ ðb1 � b2Þ

Z 1
QþR
ðw� ðQ þ RÞÞdG1

2ðwjk2Þ

þ ðb2 þ hÞ

Z 1
QþR
ðw� ðQ þ RÞÞdG2ðwjk2Þ

þ hðQ þ RÞ � hE½D2jk2�. (13)

Note that R is a function of Q , so the derivation of (13)
requires derivation of R with respect to Q as well. (The
derivative is given in (12) for R ¼ R�.) Let R0 ¼ dR=dQ .
Then,

dE½TRC2jk2; d
1
1; d

2
1�

dQ
¼ �ðb1 � b2Þ

Z 1
QþR
ð1þ R0ÞdG1

2ðwjk2Þ

�ðb2 þ hÞ

Z 1
QþR
ð1þ R0ÞdG2ðwjk2Þ þ hð1þ R0Þ

¼ð1þ R0Þ½ðb1 � b2ÞG
1
2ðQ þ Rjk2Þ

þðb2 þ hÞG2ðQ þ Rjk2Þ � b1�. (14)

We also have dTRC1=dQ ¼ ðb2 þ hÞR0. Therefore,

dE½TRCjk2; d
1
1; d

2
1�

dQ
¼ ð1þ R0Þ½ðb1 � b2ÞG

1
2ðQ þ Rjk2Þ

þðb2 þ hÞG2ðQ þ Rjk2Þ � b1� þ ðb2 þ hÞR0.

(15)

If d2R=dQ2
¼ 0, which is the case for R ¼ R�, we obtain

d2E½TRCjk2; d
1
1; d

2
1�

dQ2
¼ ð1þ R0Þ2½ðb1 � b2Þg

1
2ðQ þ Rjk2Þ

þ ðb2 þ hÞg2ðQ þ Rjk2Þ�,

which is non-negative for all k2, because ð1þ R0Þ2 �

0; b14b2, and g1
2ðQ þ Rjk2Þ and g2ðQ þ Rjk2Þ are density

functions. Consequently, E½TRCjk2; d
1
1; d

2
1� is convex in Q for

a given set of d1
1; d

2
1, and k2.

Finally, we note that E½TRCðQ Þ� ¼ EK2 ;D
1
1 ;D

2
1
½E½TRCj

k2; d
1
1; d

2
1��. Consequently, since expectations can be writ-

ten as the limits of Riemann–Stieltjes sums, and the
positive-weighted sum of convex functions are convex—

see, e.g. Heyman and Sobel (1984)—we conclude that
E½TRCðQ Þ� is convex in Q .
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Tan, T., Güllü, R., Erkip, N., 2007. Modelling imperfect advance demand
information and analysis of optimal inventory policies. European
Journal of Operational Research 177, 897–923.

Teunter, R.H., Klein Haneveld, W.K., 1999. Reserving spare parts
for critical demand. Research Report, Graduate School/Research
Institute System, Organisations and Management (SOM), University
of Groningen.

Thonemann, U.W., 2002. Improving supply-chain performance by
sharing advance demand information. European Journal of Opera-
tional Research 142, 81–107.

Topkis, D.M., 1968. Optimal ordering and rationing policies in a
nonstationary dynamic inventory model with n demand classes.
Management Science 15, 160–176.

Treharne, J.T., Sox, C.R., 2002. Adaptive inventory control for nonsta-
tionary demand and partial information. Management Science 48,
607–624.

Tsay, A.A., Nahmias, S., Agrawal, N., 1999. Modeling supply chain
contracts: a review. In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.),
Quantitative Models for Supply Chain Management. Kluwer’s
International Series, Boston, MA.

Van Donselaar, K., Kopczak, L.R., Wouters, M., 2001. The use of advance
demand information in a project-based supply chain. European
Journal of Operations Research 130, 519–538.

Veinott Jr., A.F., 1965. Optimal policy in a dynamic, single product,
nonstationary inventory model with several demand classes. Opera-
tions Research 13, 761–778.

de Véricourt, F., Karaesmen, F., Dallery, Y., 2002. Assessing the benefits of
different stock-allocation policies for a make-to-stock production
system. Manufacturing & Service Operations Management 3,
105–121.

de Véricourt, F., Karaesmen, F., Dallery, Y., 2002. Optimal stock alloca-
tion for a capacitated supply system. Management Science 48,
1486–1501.

Zhu, K., Thonemann, U.W., 2004. Modeling the benefits of sharing future
demand information. Operations Research 52, 136–147.


	Using imperfect advance demand information in ordering and rationing decisions
	Introduction and related literature
	Modeling framework
	Rationing problem and derivation of the expected cost function
	Properties of the expected total conditional cost function and the optimal reserve level

	Determination of the initial order quantity
	Value of information
	Problem setting
	Experimentation

	Conclusions and future research
	Acknowledgements
	Proof of Theorem 3
	References




