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a b s t r a c t

In this study, we analyze the replenishment decision of a buyer with the objective of maximizing total

expected profits. The buyer faces stepwise freight costs in inbound transportation and a hybrid

wholesale price schedule given by a combination of all-units discounts with economies and

diseconomies of scale. This general cost structure enables the model and the proposed solution to be

also used for the supplier selection of a buyer under the single sourcing assumption. We show that the

buyer’s replenishment problem reduces to finding and comparing the solutions of the following two

subproblems: (i) a replenishment problem involving wholesale prices given by an all-units discount

schedule with economies of scale and a lower bound on the replenishment quantity, and (ii) a

replenishment problem involving wholesale prices given by an all-units discount schedule with

diseconomies of scale and an upper bound on the replenishment quantity. We propose solution

methods for these two subproblems, each of which stands alone as practical problems, and utilize these

methods to optimally solve the buyer’s replenishment problem.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction and literature

Transportation costs are one of the main cost drivers observed
in supply chain management. Research on integrated transporta-
tion and production/inventory decisions shows that companies
may increase total profits by simultaneous planning of transpor-
tation and production/inventory decisions (see Aucamp, 1982;
Hoque and Goyal, 2000; Lee, 1986; Tersine and Barman, 1994;
Toptal et al., 2003). As shipment by trucks is one of the most
common transportation modes, taking into account truck capa-
cities and costs explicitly in solving replenishment problems may
lead to competitive advantages for a company. In this study, we
consider a buyer subject to full truckload shipping as a mode of
inbound transportation and a hybrid wholesale price schedule. This
price schedule involves all-units quantity discounts with diseco-
nomies of scale up to a certain size of order quantity, followed by
all-units quantity discounts with economies of scale for larger
quantities.

In truckload (TL) transportation, each additional truck requires
a fixed payment as opposed to less-than-truckload (LTL) trans-
portation in which the related costs are in proportion to the
shipment quantity. Aucamp (1982), Lee (1986), Toptal et al.
(2003), Toptal and C- etinkaya (2006), and Toptal (2009) are some
ll rights reserved.

r),
examples of papers that model truck capacities and costs
explicitly within the context of integrated replenishment and
transportation decisions. Aucamp (1982) studies the classical
economic order quantity (EOQ) problem assuming that the
replenishment quantity is shipped via trucks having identical
capacities and costs. Lee (1986) extends this study by modelling
the availability of discounts on each additional truck used.
Lee (1989) and Toptal et al. (2003) study the dynamic lot sizing
problem and the single-warehouse, single-retailer replenishment
problem, respectively, under the same transportation cost struc-
ture as in Aucamp (1982).

In comparison to the studies that consider deterministic
demand (i.e., Aucamp, 1982; Lee, 1986, 1989; Toptal et al.,
2003), there are also papers modelling TL shipments for inventory
systems with stochastic demand (e.g., Toptal and C- etinkaya,
2006; Toptal, 2009; Ülkü and Bookbinder, 2012). Toptal and
C- etinkaya (2006) study the problem of coordinating the replen-
ishment decisions between a buyer and a vendor under transpor-
tation costs and capacities. Toptal (2009) proposes a solution for
finding the order quantity that maximizes the single period
expected profits of a company with stepwise freight costs and
procurement costs given by an all-units discount schedule. Ülkü
and Bookbinder (2012) study the shipment consolidation and
pricing decisions of a manufacturer with multiple buyers who are
sensitive to price and delivery time.

In this study, we consider a setting where the buyer is subject to
the same freight cost structure as in Aucamp (1982). Moreover, we
model a wholesale price schedule which exhibits a combination of
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economies of scale and diseconomies of scale over varying quantity
intervals. There are different types of wholesale price schedules
applied in practice and studied in the literature (see Benton and
Park, 1996; Munson and Rosenblatt, 1998). Discount schedules
with economies of scale, simply referred to as quantity discounts,
are the commonly prevailing ones. Typically, in these price
schedules (e.g., all-units, incremental), the unit price of an item is
less for larger orders. On the other hand, in a quantity discount
schedule with diseconomies of scale, the unit price of an item is
more for larger orders. The changes in prices are defined by
breakpoints in both of these schedules. Munson and Rosenblatt
(1998) report that all-units quantity discounts, in which the
discount is applied to all units in an order, is the most commonly
practiced price schedule in the industry.

Quantity discounts with diseconomies of scale are also referred
to as quantity premiums or quantity surcharges in the literature.
Quantity premiums are common for energy products such as
electricity usage and water consumption. Widrick (1985) notes
that a supplier may use quantity premiums as a demarketing tool
to discourage excessive consumption of a scarce resource such as
water and fuel. Das (1984) discusses that this form of price
schedule is also justifiable in case of limited supply, specifically,
in developing economies. Quantity premiums may also be an
efficient instrument for supply chain coordination when a supplier
observes diseconomies of scale in replenishment costs (see Tomlin,
2003; Toptal and C- etinkaya, 2006). Tomlin (2003) studies a two-
party, a manufacturer and a supplier, capacity procurement game
and shows that a quantity premium cost schedule may be optimal
for the manufacturer. Toptal and C- etinkaya (2006) consider a
buyer–vendor system and show that when the vendor has trans-
portation costs and capacities defined by a stepwise cost structure,
quantity premiums may optimally coordinate the supply chain.

Quantity discounts are studied from the perspectives of both the
buyers and the suppliers. While the former body of research focuses
on the replenishment decisions under a quantity discount schedule
(e.g., Abad, 1988; Arcelus and Srinivasan, 1995; Das, 1984; Hwang
et al., 1990; Tersine and Barman, 1994, 1995; Toptal, 2009), the
latter group investigates how a supplier should construct such price
schedules (e.g., Banerjee, 1986; Lal and Staelin, 1984; Lee and
Rosenblatt, 1986; Li and Liu, 2006; Monahan, 1984; Rubin and
Benton, 2003; Weng, 1995). Since our focus is solving a buyer’s
replenishment problem under a given wholesale price schedule, our
study falls into the first body of research. The wholesale price
schedule considered herein is significantly different from those in
earlier studies in its following feature: while the unit price of an
item is more for larger orders up to a certain size, subsequent unit
prices decrease with increasing order size. That is, the price
schedule exhibits either diseconomies of scale or economies of
scale over different quantity intervals. In order to emphasize this
distinctive characteristic, we use the term ‘‘hybrid’’ in classifying
the wholesale price schedule. It is important to note that quantity
discounts with economies/diseconomies of scale are special cases of
this general price schedule. There may exist several practical
circumstances for a buyer to have procurement costs given by a
hybrid price schedule. We show that an immediate context that a
hybrid wholesale price schedule prevails is in case of supplier
selection. More specifically, a profit maximizing buyer’s supplier
selection problem under the single sourcing assumption in a
multiple suppliers setting can be modeled as a replenishment
problem with a hybrid price schedule, if each supplier offers either
an all-units quantity discount or an all-units quantity premium.

Two main types of supplier selection problems are identified in
the literature, single-sourcing and multiple-sourcing. In single-
sourcing, the purchaser is restricted to replenish from a single
supplier whereas multiple-sourcing allows the replenishment quan-
tity to be fullfilled through more than one supplier. Chaudhry et al.
(1993) study a supplier selection problem allowing multiple sour-
cing in a setting where a supplier offers either quantity discounts or
quantity premiums. Xia and Wu (2007) also consider a multiple
sourcing scenario, and assume that the vendors have supply limita-
tions and they offer quantity discounts. Swift (1995) discusses
reasons why single sourcing may be preferred in practice, among
which, is developing long-term cooperative relations with a sup-
plier. We cite Aissaoui et al. (2007) for a review of studies on
supplier selection.

When single sourcing is assumed in a multiple supplier setting
with each supplier offering either quantity discounts or quantity
premiums, a buyer’s replenishment problem can be solved using
one of the two methods: (i) a replenishment problem can be
solved for each supplier separately and the supplier leading to the
maximum expected profits can be chosen; (ii) a single schedule
for wholesale prices can be constructed and a replenishment
problem can be solved under this new schedule. For the problem
of interest in this paper, we provide a complete analysis using
both methods. The first method requires solving two types of
replenishment problems; one with stepwise freight costs and
quantity discounts, and one with stepwise freight costs and
quantity premiums. In the setting that is of concern, the replen-
ishment problem has a nonrecurring nature and the buyer has
strictly concave production/inventory related profits for a fixed
purchasing price. It is important to note that, under these
considerations, the replenishment problem involving stepwise
freight costs and all-units quantity discounts has been solved by
Toptal (2009). To the best of our knowledge, the problem with
stepwise freight costs and all-units quantity premiums has not
been studied. The second method, on the other hand, requires
solving a replenishment problem with stepwise freight costs and
a hybrid wholesale price schedule. Again, our review of the
literature suggests that this problem has not been examined.

The contributions of this paper are as follows:

(C1) As part of the first method outlined above, we solve the
replenishment problem with quantity premiums and stepwise
freight costs.
(C2) As part of the second method, we extend the analysis in
Toptal (2009) to consider a lower bound on the order quantity.
Similarly, we extend our analysis in part (C1) to consider an
upper bound on the order quantity.
(C3) We combine the above results to work out the solution to
the replenishment problem with stepwise freight costs and a
hybrid wholesale price schedule.
(C4) We show that the supplier selection problem for a profit
maximizing purchaser under the single sourcing assumption,
reduces to the problem of interest in this paper. We also
describe how to construct a single hybrid price schedule out of
several price menus each of which is either an all-units
quantity discount or an all-units quantity premium.

It is important to note that, although our main objective is to
arrive at (C3), the solutions to the subproblems described in (C1)–
(C2) can be used on their own for practical purposes.

The rest of the paper is organized as follows. Section 2 presents
the notation used in the paper and provides a generic mathema-
tical formulation, which captures a wider class of problems than
the specific one under consideration. In Section 3, we provide our
analysis within the context of (C1)–(C3). Section 4 follows with a
detailed discussion of how a supplier selection problem under the
single sourcing assumption reduces to the problem studied in this
paper. In Section 5, the proposed solution methodology is illu-
strated over an application to the Newsvendor Model setting.
Section 6 concludes the paper with a discussion on possible future
research directions.



D. Konur, A. Toptal / Int. J. Production Economics 140 (2012) 521–529 523
2. Notation and problem formulation

We study the replenishment decision of a buyer who is subject
to an all-units discount schedule with economies and diseco-
nomies of scale in addition to stepwise freight costs. In particular,
the unit wholesale price, denoted by c(Q), is given by the
following expression:

cðQ Þ ¼

c0 q0rQ oq1

c1 q1rQ oq2

^ ^

ch qhrQ oqhþ1

^ ^

cn�1 qn�1rQ oqn

cn Q Zqn

8>>>>>>>>>>><>>>>>>>>>>>:
, ð1Þ

where q0 ¼ 0 and ch represents the wholesale price when the buyer’s
order quantity is in ½qh,qhþ1Þ. The expression for c(Q) pertains to a
hybrid wholesale price schedule, when an index h, 0ohon, exists
such that c0oc1o � � �och�1och and ch4chþ14 � � �4cn�14cn.
Note that if h¼0, c(Q) simply refers to an all-units discount schedule
with economies of scale, whereas the case of h¼n leads to an all-
units quantity discount schedule with diseconomies of scale. Fig. 1
illustrates the three possible forms that c(Q) may assume.

In this setting, the buyer pays for the transportation costs.
Specifically, dQ=PeR is incurred for shipping an order quantity of
Q, where P and R are the per truck capacity and the per truck cost,
respectively. The production/inventory related expected profits of
the buyer as a function of order quantity Q and wholesale price ci

are given by GðQ ,ciÞ. Here, GðQ ,ciÞ is a strictly concave function of
Q, for fixed value of ci. Accordingly, the buyer’s total expected
profits are given by

HðQ Þ ¼ GðQ ,cðQ ÞÞ�
Q

P

� �
R: ð2Þ

The terms of GðQ ,cðQ ÞÞ may include the buyer’s expected revenue
from sales and salvage, expected lost sales cost, fixed costs of
replenishment, procurement costs, etc. In Section 5, we provide
specific examples of this function.

Let Q ðiÞ denote the unique maximizer of GðQ ,ciÞ over Q Z0.
Q ðiÞ is classified as realizable if qirQ ðiÞoqiþ1. Note that the
buyer’s expected profit function consists of ðnþ1Þ pieces and its
value on the ðiþ1Þst piece is determined by Hi

ðQ Þ, where

Hi
ðQ Þ ¼ GðQ ,ciÞ�

Q

P

� �
R: ð3Þ

Suppose that ~Q
ðiÞ

is a maximizer of Hi
ðQ Þ over Q Z0. Similarly, ~Q

ðiÞ

is classified as realizable if ~Q
ðiÞ

falls into interval ½qi,qiþ1Þ

(i.e., qir ~Q
ðiÞ
oqiþ1). We assume that GðQ ,cðQ ÞÞ has the following

characteristics:

(A1) If ci4ðoÞciþ1 then Q ðiÞo ð4 ÞQ ðiþ1Þ. That is, the max-
imizer of GðQ ,ciÞ increases (decreases) as ci decreases
(increases).
Fig. 1. Illustration of the possible forms of c(Q). (a) All-units
(A2) If ci4ðoÞciþ1 then GðQ ,ciÞoð4 ÞGðQ ,ciþ1Þ. That is, for
fixed value of Q, GðQ ,ciÞ decreases (increases) as ci increases
(decreases).
(A3) If ci4ciþ1 then GðQ2,ciþ1Þ�GðQ2,ciÞ4GðQ1,ciþ1Þ�

GðQ1,ciÞ for Q1oQ2rQ ðiÞ. If ciociþ1, then GðQ2,ciÞ�GðQ2,
ciþ1Þ4GðQ1,ciÞ�GðQ1,ciþ1Þ for Q1oQ2rQ ðiÞ. That is, the
change in GðQ ,ciÞ when ci is decreased (increased), increases
(decreases) with respect to Q.

The buyer’s replenishment problem, which we refer to as Problem

HPTC (Hybrid Price Transportation Cost), is then given by the
following general formulation.

ðHPTCÞ
max HðQ Þ,
s:t: Q Z0:

As discussed earlier, an all-units hybrid price schedule consists of
two main parts: an all-units premiums up to the hth price interval
followed by an all-units discounts after the hth price interval,
where h is the price interval such that ch�1och and ch4chþ1.
The solution method we provide in the next section for Problem

HPTC, utilizes this characteristic of a hybrid price schedule. That is,
we consider the following two subproblems and we compare their
optimal solutions to arrive at a maximizer for Problem HPTC: a
replenishment problem involving stepwise freight costs and an all-
units discount schedule with a lower bound constraint on the order
quantity, that is Problem DPTCLB (Discounted Price Transportation
Cost with Lower Bound), and, a replenishment problem involving
stepwise freight costs and an all-units premium schedule with an
upper bound constraint on the order quantity, that is Problem

PPTCUB (Premium Price Transportation Cost with Upper Bound).
Our solution for Problem DPTCLB relies on an analysis for its

version with no positive lower bound on the order quantity, that is
Problem DPTC (Discounted Price Transportation Cost), discussed in
an earlier paper by Toptal (2009). In the current paper, we also
study the replenishment problem involving stepwise freight costs
and an all-units premium schedule, Problem PPTC (Premium Price
Transportation Cost). We then extend this analysis to consider an
upper bound on the order quantity, which we refer to as Problem

PPTCUB. Next, the notation used throughout the paper is summar-
ized. Additional notation will be defined as needed.
discounts. (
Q:
 Replenishment quantity of the buyer.

n:
 Number of price break points.

qi
 Quantity where the ith breakpoint appears, 0r irn.

c(Q):
 Unit wholesale price as a function of order quantity.

P:
 Per truck capacity.

R:
 Per truck cost.

HðQ Þ:
 Profit function of the buyer.
Hi
ðQ Þ:
 Profit function of the buyer at wholesale price level ci,

defined over Q Z0.

GðQ ,ciÞ:
 Buyer’s profit component defined over Q Z0 for price

level ci, without transportation costs.
Qn:
 Maximizer of HðQ Þ.

~Q
ðiÞ

:
 Maximizer of Hi
ðQ Þ.
Q ðiÞ:
 Maximizer of GðQ ,ciÞ.
b) All-units premiums. (c) All-units hybrid.
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3. Analysis of the problem
In this section, we propose a solution for Problem HPTC and
describe the analysis we follow to arrive at this solution (Qn). Based
on the fact that c(Q) is a hybrid price schedule, our solution
approach relies on finding and comparing the profits at the max-
imizers over the two quantity intervals for which the wholesale
prices exhibit either diseconomies of scale or economies of scale.

Our solution approach can be described in more detail as follows:
If Qnoqh, then Qn coincides with the optimizer QP (i.e., Qn

¼ QP) of
the following problem: maximizing the buyer’s expected profits
under the all-units premium schedule cP

ðQ Þ and stepwise freight
costs with the upper bound constraint Q oqh. Here, we define cP

ðQ Þ

as follows: cP
ðQ Þ ¼ cðQ Þ for Q A ½0,qhÞ and cP

ðQ Þ ¼ ch for Q A ½qh,1Þ.
Similarly, if Qn

Zqh, then Qn coincides with the optimizer QD

(i.e., Qn
¼ QD) of the following problem: maximizing the buyer’s

expected profits under the all-units discount schedule cD
ðQ Þ and

stepwise freight costs with the lower bound constraint Q Zqh. Here,
we define cD

ðQ Þ as follows: cD
ðQ Þ ¼ ch for Q A ½0,qhþ1Þ and cD

ðQ Þ ¼

cðQ Þ for Q A ½qhþ1,1Þ. In order to find QP, we consider a type of
replenishment problem which has been introduced in Section 2 as
Problem PPTCUB. Similarly, in order to reach a value for QD, we
consider a type of replenishment problem which has been introduced
in the same section as Problem DPTCLB. Finally, we set

Qn
¼ arg maxfHðQD

Þ,HðQP
Þg:

In mathematical terms, Problem PPTCUB and Problem DPTCLB can be
described as follows:

ðPPTCUBÞ
max HðQ Þ
s:t: 0rQ oUB,

and

ðDPTCLBÞ
max HðQ Þ
s:t: Q ZLB,

where LB and UB are nonnegative real numbers (note that in the
analysis of Problem HPTC, we take LB¼UB¼ qh). In Problem PPTCUB,
c(Q) is given by an all-units quantity premium schedule. In Problem

DPTCLB, c(Q) is given by an all-units quantity discount schedule. In
this section, we first begin with an analysis of Problem PPTCUB by
setting UB¼1, that is Problem PPTC (Premium Price Transportation
Cost). We then proceed with the case of 0oUBo1. This is followed
by an analysis of Problem DPTCLB. An important property that is
common to all these problems, which also is an underlying factor in
our solution approach, is that their objective functions have a
piecewise structure and the function value on the (iþ1)st piece is
determined by Hi

ðQ Þ as given in Expression (3). Therefore, some
structural properties of Hi

ðQ Þ function and the solution to the
following problem, i.e., Problem UPTC (Uniform Price Transportation
Cost), will be relevant to the upcoming analysis.

ðUPTCÞ
max Hi

ðQ Þ

s:t: Q Z0:

We report the following result from Toptal (2009), which provides
the solution to the above problem.

Result 1. The solution to Problem UPTC is given by

~Q
ðiÞ
¼

arg maxfHi
ðmPÞ,Hi

ððmþ1ÞPÞg if Fa|

arg maxfHi
ðQ ðiÞÞ,Hi

ððl�1ÞPÞg if F ¼ |

(
,

where
F ¼ fkAf0,1,2, . . .g : Gððkþ1ÞP,ciÞ�GðkP,ciÞrR,ðkþ1ÞPrQ ðiÞg,
l¼ dQ ðiÞ=Pe and m¼minfk s:t: kAF g when Fa|.
Result 1 indicates that ~Q
ðiÞ

is either equal to Q ðiÞ or an integer
multiple of a full truck load less than that. Note also that, in both
cases of the result, multiple solutions may exist. In the first case, if
Gððmþ1ÞP,ciÞ�GðmP,ciÞ ¼ R, then both mP and ðmþ1ÞP maximize
Hi
ðQ Þ. Similarly, in the second case, if GðQ ðiÞ,ciÞ�Gððl�1ÞP,ciÞ ¼ R, then

both Q ðiÞ and ðl�1ÞP maximize Hi
ðQ Þ.

3.1. Analysis of Problem PPTCUB: the case of UB¼1

In this section, we analyze Problem PPTCUB by setting h¼n in
Expression (1) and UB¼1. This problem has been referred to as
Problem PPTC earlier in the text. The solution relies on Result 1
which we cite from Toptal (2009) and the following structural
properties ofHðQ Þ. The proofs of Properties 1 and 2 will be omitted
as they are very similar to those of Properties 9 and 10 in Toptal
(2009). The proofs of all other results are presented in Appendix.

Property 1. Hi
ð ~Q
ðiÞ
Þ4Hiþ1

ð ~Q
ðiþ1Þ
Þ, 8i s.t. 0r irn�1. That is, the

optimal function values at consecutive Hi
ðQ Þ’s are decreasing.

Note that Property 1 implies H0
ð ~Q
ð0Þ
Þ4H1

ð ~Q
ð1Þ
Þ4 � � �4Hn

ð ~Q
ðnÞ
Þ.

The next property presents an ordinal relationship between the
maximizers of Hi

ðQ Þ functions at consecutive values of price index i.

Property 2. We have ~Q
ðiÞ
Z ~Q

ðiþ1Þ
, 8i s.t. 0r irn�1. In other words,

the maximizers of consecutive Hi
ðQ Þ functions are nonincreasing.

An implication of Property 1 is that, if a maximizer of Hi
ðQ Þ is

realizable, then Hð ~Q ðiÞÞZHðQ Þ,8Q 4 ~Q
ðiÞ

. Combining this with
Property 2 further leads to the fact that, in finding a maximizer
of HðQ Þ, we do not need to consider quantities larger than the
largest realizable ~Q

ðiÞ
, if there exists any.

Property 3. If there exists kA ½0,n�1� such that some maximizer of

Hk
ðQ Þ is less than qkþ1 (i.e., ~Q

ðkÞ
oqkþ1), then all maximizers of

Hj
ðQ Þ are less than qj (i.e., ~Q

ðjÞ
oqj) 8j4k.

Let F 2 ¼ fkAf0,1, . . . ,ng s.t. all maximizers of Hk
ðQ Þ are greater

than or equal to qkþ1g. If F2a|, define n2 ¼maxfk s:t: kAF 2g.
It then follows from Property 3 that the maximizers of Hk

ðQ Þ

functions for consecutive price indices k, such that 0rkrn2, are
all greater than or equal to qkþ1.

Property 4. If F2 ¼ |, then there exists a maximizer of H0
ðQ Þ, say

~Q
ð0Þ

, which is realizable and optimally solves Problem PPTC.

It should be noted that the solution to the classical economic order
quantity model with all-units discount schedule builds on the fact
that there exists at least one realizable EOQ (see Hadley and Whitin,
1963, pp. 62–66). It is shown in Toptal (2009) that the same result
holds for the Newsvendor Model and the generalization of the
Newsvendor Model including stepwise freight costs with all-units
discounts. On the other hand, while solving the classical economic
order quantity model with all-units premium schedule, existence of a
realizable EOQ is not guaranteed (see Das, 1984). The same result can
be easily shown for the Newsvendor Model with all-units quantity
premium. Property 5 proves this result for the generalization of
Newsvendor Model with stepwise freight costs and quantity
premiums.

Property 5. If F2a|, there exists at most one price index i such that

some maximizer of Hi
ðQ Þ is realizable and that can only be n2þ1.

Property 6. If F 2a| and
�
 If Hn2þ1
ðQ Þ has a realizable maximizer, say ~Q

ðn2þ1Þ
, then in

finding a solution for Problem PPTC, we can focus on Q r ~Q
ðn2þ1Þ

.

�
 If Hn2þ1

ðQ Þ has no realizable maximizer, then in finding a solution

for Problem PPTC, we can focus on Q oqn2þ1.
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Property 6 implies that an optimal solution to Problem PPTC
lies in ½0, ~Q

ðn2þ1Þ
� or in ½0,qn2þ1Þ depending on whether Hn2þ1

ðQ Þ

has a realizable maximizer or not. It further leads to the fact that,
we should consider at most n2þ1 subproblems where each
subproblem is in the form of Problem UPTC with the additional
constraint that qirQ oqiþ1, irn2. Next proposition charac-
terizes the solution of Problem UPTC with this additional
constraint.

Proposition 1. Let i be the index of a price interval such that irn2

and let Q
n

i be defined as follows:

Q
n

i ¼

qiþ1�E if qi
P

� �
¼

qiþ1�E
P

l m
,

arg max Hi
ðqiþ1�EÞ,H

i qiþ1�E
P

j k
P

� �n o
o:w:

8><>:
where E is a very small, positive number. We have Hi

ðQ
n

i ÞZHi
ðQ Þ,

8Q A ½qi,qiþ1Þ.

Note that Proposition 1 not only solves maxfHi
ðQ Þ : Q A

½qi,qiþ1Þ,irn2g but also maxfHi
ðQ Þ : Q Að0,qiþ1�,

~Q
ðiÞ
4qiþ1g. This

fact is also utilized in our analysis for Problem PPTCUB. In the next
corollary, which follows from Properties 4 and 6, Proposition 1
and Result 1, we introduce an algorithm for finding the smallest
maximizer of Problem PPTC, i.e., Q ðpÞ.

Corollary 1. The following algorithm gives an optimal solution for

Problem PPTC.
1.
 Form the set F 2. If F2 ¼ |, set Q ðpÞ to the smallest realizable

maximizer of H0
ðQ Þ and stop. Otherwise go to Step 2.
2.
 Find n2 and check if any maximizer of Hn2þ1
ðQ Þ is realizable.

(a) If there exists any realizable maximizer of Hn2þ1
ðQ Þ, set Q ðpÞ

to the smallest and go to Step 3.
(b) If no maximizer of Hn2þ1

ðQ Þ is realizable, set Q ðpÞ ¼ qn2þ1 and

go to Step 3.

3.
 Starting from i¼ n2 back to i¼0.

(a) Find Q
n

i using Proposition 1 (if there are alternative values for

Q
n

i , choose the smallest).
(b) If HðQ n

i ÞZHðQ
ðpÞ
Þ, set Q ðpÞ ¼Q

n

i .

4.
 Return Q ðpÞ.

It should be emphasized that while constructing the set F 2, one
should start from the first price index, and stop as soon as a price
index j such that some maximizer of Hj

ðQ Þ is less than qjþ1, is
reached.

3.2. Analysis of Problem PPTCUB: the case of UBo1

In this section, we consider Problem PPTCUB for the case of
UBo1 and when wholesale prices are given by Expression (1)
under h¼n. The next proposition presents an algorithm for
finding a solution to this problem (i.e., QP).

Proposition 2. Suppose that c(Q) represents an all-units premium

schedule and the buyer is subject to Q oUB. The following algorithm

gives an optimal solution for Problem PPTCUB with UBo1.
�
 Assume momentarily that UB¼1 and use Corollary 1 to find the

smallest maximizer Q ðpÞ.

�
 If Q ðpÞoUB, then set QP

¼Q ðpÞ.

�
 If Q ðpÞZUB, let w¼maxfi : qioUBg and redefine the ðwþ1Þst

interval to be ðqw,UBÞ. Then, QP
¼ arg maxfHðQ n

i Þ : 0r irwg,
where Q

n

i is determined by Proposition 1.

We note that, Proposition 2 characterizes a solution for
Problem PPTCUB for any given all-units premiums schedule and
upper bound. That is, UB does not have to coincide with a quantity
where a price breakpoint occurs.

3.3. Analysis of problem DPTCLB: the case of LB40

In this section, we consider Problem DPTCLB for the case of
LB40 and when wholesale prices are given by Expression (1)
under h¼0. The next proposition presents an algorithm for
finding a solution to this problem (i.e., QD).

Proposition 3. Suppose that c(Q) represents an all-units discount

schedule and the buyer is subject to Q ZLB. The following algorithm

gives an optimal solution for Problem DPTCLB with LB40.
�
 Assume momentarily that LB¼0 and use a modified version of

Corollary 4 in Toptal (2009) to find the largest maximizer Q ðdÞ.

�
 If Q ðdÞZLB, then QD

¼Q ðdÞ.

�
 If Q ðdÞoLB, let r1 and r2 be defined as in Toptal (2009). Moreover,

let w¼minfi : qiþ1ZLBg and redefine the ðwþ1Þst interval as

½LB,qwþ1Þ. Then wZr1.
J If w4r2, then QD

¼ arg maxfHðqiÞ : wr irng.
J If wrr2, then set QD

¼ arg maxfHðQn

i Þ : wr irr2g, where Qn

i

is determined by Proposition 2 in Toptal (2009). If r2on,
compute qmax ¼ argmaxfHðqr2þ1Þ,Hðqr2þ1Þ, . . . ,HðqnÞg. If H
ðqmaxÞ4 HðQD

Þ, let QD
¼ qmax.
We note that Corollary 4 and Proposition 2 in Toptal (2009)
can be easily modified to find the largest maximizer Q ðdÞ by
always choosing the larger quantity whenever alternative solu-
tions exist within the optimization algorithm.
4. A supplier selection problem

In this section, we show that the replenishment decision of a
buyer who orders from one of the sZ2 suppliers can be modeled
as Problem HPTC, under the single sourcing assumption. Suppose
that each supplier offers either an all-units quantity discount
schedule or an all-units quantity premium schedule. The buyer’s
wholesale price from supplier u (u¼ 1,2, . . . ,s), cuðQ Þ, is given by

cuðQ Þ ¼

cu
0 qu

0rQ oqu
1

cu
1 qu

1rQ oqu
2

cu
2 qu

2rQ oqu
3

^ ^

cu
nu�1 qu

nu�1rQ oqu
nu

cu
nu Q Zqnu ,

8>>>>>>>>><>>>>>>>>>:
ð4Þ

where qu
0 ¼ 0 8u¼ 1,2, . . . ,s. Here, cu

i represents the wholesale
price offered by supplier u when the buyer’s order quantity is in
½qu

i ,qu
iþ1Þ. Supplier u has nu (nu

Z1) price breakpoints. Let D and P
denote the set of suppliers who offer quantity discounts and
quantity premiums, respectively. That is, if uAD we have
cu

04cu
14 � � �4cu

nu . Similarly, if uAP we have cu
0ocu

1o � � �ocu
nu .

In this setting, the buyer has to decide jointly how much to order
and from which supplier to order.

Due to the single sourcing assumption, the outcome of the
supplier-selection problem is implied from the replenishment
quantity of the buyer. More specifically, given the replenishment
quantity of the buyer, the supplier who offers the minimum
wholesale price is selected. As discussed in Section 1, a method
for solving the buyer’s joint replenishment and supplier selection
problem is to find the optimal replenishment quantity for each
supplier separately and then, choose the solution which leads to
the maximum expected profits. The problem of the buyer, is then
to maxu ¼ 1,2,...,sfHuðQ

n

ðuÞÞg, where HuðQ Þ denotes the buyer’s
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expected profit under the price schedule offered by supplier u,
i.e., when cðQ Þ ¼ cuðQ Þ, and Qn

ðuÞ is the optimal replenishment
quantity to be ordered from supplier u. Note that, this method
utilizes the solution for Problem PPTC provided in Section 3.1 and
the solution for Problem DPTC proposed in Toptal (2009).

Another solution approach is to construct a unified price
schedule c(Q), based on the individual price schedules of the
suppliers, and then, to determine the optimal replenishment
quantity. The unified price schedule that the buyer faces is given
by cðQ Þ ¼min1rur sfc

uðQ Þ : Q Z0g. Once the buyer decides on the
optimal replenishment quantity under this price schedule, the
supplier who offers the minimum wholesale price for the optimal
replenishment quantity is selected. In the rest of this section, we
present some properties of c(Q). The proofs of Properties 7, 8 and
9 are omitted as they are trivial.

Property 7. If P ¼ | or D¼ |, then c(Q) corresponds to an all-units

discount or an all-units premium schedule, respectively.

It follows from Property 7 that the supplier selection problem
described above reduces to Problem DPTC when P ¼ | and,
it reduces to Problem PPTC when D¼ |. We note that the cases
highlighted in Property 7 are sufficient but not necessary for c(Q) to
be either an all-units discount or an all-units premium schedule. It
is still possible that c(Q) is in the form of either one of these price
schedules when both Pa| and Da|. In Property 8, we analyze
such cases. For simplicity, we utilize Property 7 in the following
way. Let cDðQ Þ be the all-units discount schedule constructed by
only considering those suppliers such that uAD, and let cD

i be the
price for interval ½qD

i ,qD
iþ1Þ. Also let nD be the number of break-

points for cDðQ Þ. Similarly, define cPðQ Þ, cP
i , ½qP

i ,qP
iþ1Þ and nP for the

all-units premium schedule constructed by only considering those
suppliers such that uAP, u¼ 1,2, . . . ,s. In other words, we reduce
the s-suppliers scenario to 2-suppliers scenario. One of these
suppliers offers an all-units discount schedule given by cDðQ Þ,
and we refer to this supplier as supplier D. The other supplier
offers an all-units premium schedule given by cPðQ Þ, and we refer
to this supplier as supplier P.

Property 8. Suppose that cDðQ Þ and cPðQ Þ are constructed for given

sets Da| and Pa|. If cD
0 rcP

0, then cðQ Þ ¼ cDðQ Þ, or, if cD
nD ZcP

nP ,
then cðQ Þ ¼ cPðQ Þ.

Given that one of the cases in Property 8 holds, the supplier
selection problem reduces to either Problem DPTC or Problem

PPTC. However, similar to Property 7, the conditions stated are
not necessary but only sufficient for the special cases to occur.

Property 9. Let bQ ¼ infQ Z0fc
DðQ ÞrcPðQ Þg. If 0o bQ o1, then c(Q)

corresponds to an all-units hybrid price schedule, where cðQ Þ ¼ cPðQ Þ

for Q o bQ and, cðQ Þ ¼ cDðQ Þ for Q Z bQ .

When the condition in Property 9 holds, the buyer faces a hybrid
price schedule and his/her replenishment problem can be for-
mulated as in Problem HPTC. In the next section, we present an
example of a supplier selection problem for a buyer that operates
under the conditions of the classical Newsvendor Model. We also
illustrate the applications of the solution procedures that have
been developed for the underlying subproblems.
5. Application to the Newsvendor setting

In this section, we study the supplier selection problem of a
buyer under single sourcing assumption, i.e., the buyer has to
choose one supplier among many to replenish from. For illustra-
tive purposes, a two-suppliers case where Supplier 1 offers an
all-units premium schedule and Supplier 2 offers an all-units
discount schedule, is considered. Note that, s-suppliers case for
s42 can be reduced to 2-suppliers case as implied by Property 7.
We assume that the company operates under the conditions of
the classical Newsvendor setting, and faces transportation costs
and capacities as in Expression (2). The buyer has a single
replenishment opportunity at the beginning of a period during
which he/she faces random demand. In case the ordered quantity
exceeds the demand, excess items are salvaged at $v=unit. On the
other hand, if the demand exceeds the ordered quantity, the
buyer incurs a loss of goodwill cost $b=unit. The retail price is
fixed at $r=unit. Let X and f(x) denote the random demand amount
and its probability density function, respectively. Then, the
expected profit of the buyer as a function of his/her order quantity
Q, is given by

HðQ Þ ¼ ðr�vÞm�ðcðQ Þ�vÞQþðrþb�vÞ

Z 1
Q
ðQ�xÞf ðxÞ dx�

Q

P

� �
R,

ð5Þ

where m is the expected value of demand. The summation of the
first three terms in the above expression is the expected profits in
the typical Newsvendor setting, except for the fact that the unit
procurement cost (i.e., cðQ Þ) is a function of Q. We refer to Silver
et al. (1998, pp. 404–406) for its derivation. The last term, which is
the cost of shipment, is subtracted to find the expected profits in
the setting of interest. Assume that the unified price schedule c(Q)
that the company faces as a result of individual price schedules
ciðQ Þ (i¼1, 2) has a hybrid structure. When the price level is fixed
at ci, the expected profit without the stepwise freight costs is

GðQ ,ciÞ ¼ ðr�vÞm�ðci�vÞQþðrþb�vÞ

Z 1
Q
ðQ�xÞf ðxÞ dx: ð6Þ

GðQ ,ciÞ is strictly concave with respect to Q and the unique
maximizer Q ðiÞ satisfies

FðQ ðiÞÞ ¼
rþb�ci

rþb�v
, ð7Þ

where Fð�Þ is the distribution function of demand.
It can be easily shown that Expressions (6) and (7) satisfy

assumptions (A1), (A2) and (A3) described in Section 2. Therefore,
the supplier selection problem of the buyer can be formulated and
solved using the methods proposed in this paper. In the next
example, for the purpose of illustration, we use Example 1 in
Toptal (2009) and extend it to two-suppliers case, where one
supplier offers a price given by an all-units discount schedule and
the other offers a price given by an all-units premium schedule.

Example 1. Consider a buyer with the following parameters:
r¼35, b¼0, v¼15, R¼150 and P¼100. The buyer may order from
Supplier 1 or Supplier 2, who charge c1ðQ Þ and c2ðQ Þ as given by

c1ðQ Þ ¼

18:9 0rQ o400

19:7 400rQ o675

20:5 675rQ o900

21:5 Q Z900,

8>>><>>>:
and

c2ðQ Þ ¼

21 0rQ o650

20 650rQ o701

19:9 701rQ o1200

19 Q Z1200:

8>>><>>>:
Demand is exponentially distributed with rate l¼ 0:002.

Solution: We will solve this example using both of the solution
methods. Recall that the first method involves solving two
replenishment problems, that is one for each supplier. The
second method requires forming the hybrid price schedule out
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of individual price menus, and solving a single replenishment
problem with this price schedule. Let us start with the first
method. The objective functions of the two replenishment pro-
blems can be obtained from Expression (5) by plugging in c1ðQ Þ

and c2ðQ Þ separately. That is, the buyer maximizes the following
two functions over Q Z0:

10 000�c1ðQ Þ � Qþ15Q�10 000e�0:002Q�
Q

100

� �
150, ð8Þ

and

10 000�c2ðQ Þ � Qþ15Q�10 000e�0:002Q�
Q

100

� �
150: ð9Þ

Since c1ðQ Þ refers to an all-units premium schedule, we follow the
steps of the algorithm provided in Corollary 1 for maximizing

Expression (8). We start with forming the set F 2. As ~Q
ð0Þ
¼ 700

and it is greater than q1
1 ¼ 400, the index of the first price interval

is included in set F 2. Continuing with the next lowest price, we

find that ~Q
ð1Þ
¼ 600. Since ~Q

ð1Þ
oq1

2 ¼ 675, we conclude that

F ¼ f0g. This implies n2 ¼ 0.
We next check if ~Q

ðn2þ1Þ
¼ ~Q

ð1Þ
is realizable. Since 400r ~Q

ð1Þ
¼

600o675, ~Q
ð1Þ

is realizable. We set Q ðpÞ ¼ 600 and proceed with
Step 3 of the algorithm. Proposition 1 implies that Q

n

0 is either
q1

1�E¼ 399:999 or b399:99=100c100¼ 300. As 399.99 results in
larger profits than 300 does, we conclude that Q

n

0 ¼ 399:999. The
second part of Step 3 involves comparing the function values that
600 and 399.999 yield in Expression (8). As a result, we find that
Q ðpÞ ¼ 399:99. Therefore, if the buyer orders from Supplier 1, he/
she will make a replenishment for 399.999 and expect to have
3346.705 money units of profit.

We refer to Example 1 in Toptal (2009) for the solution to the
buyer’s replenishment problem if the buyer orders from Supplier 2
(i.e., the solution to maximizing Expression (9)). It is reported that
if the buyer in this example chooses to order from Supplier 2, he/
she will make a replenishment for 693.147 units and expect a
profit of 2984.264 money units. As part of the first method, we
finally compare the buyer’s maximum expected profits if he/she
orders from Supplier 1 or Supplier 2. Since 3346:70542984:264,
we conclude that the buyer should choose Supplier 1 and order
399.999 units.

We next illustrate the solution to this example using the
second method. As a result of c1ðQ Þ and c2ðQ Þ, the buyer
practically faces the following hybrid price schedule:

cðQ Þ ¼

18:9 0rQ o400

19:7 400rQ o675

20 675rQ o701

19:9 701rQ o1200

19 Q Z1200:

8>>>>>><>>>>>>:
We first form cP

ðQ Þ and cD
ðQ Þ using c(Q). Since c1oc24c3, we

have h¼2 and

cP
ðQ Þ ¼

18:9 0rQ o400

19:7 400rQ o675

20 Q Z675,

8><>: cD
ðQ Þ ¼

20 0rQ o701

19:9 701rQ o1200

19 Q Z1200:

8><>:
As part of the second method, we solve the following two
subproblems: Problem PPTCUB with cðQ Þ ¼ cP

ðQ Þ and UB¼675,
and Problem DPTCLB with cðQ Þ ¼ cD

ðQ Þ and LB¼675. Using Propo-
sition 2, we find that the solution to Problem PPTCUB by setting
cðQ Þ ¼ cP

ðQ Þ and UB¼1 (i.e., 399.999) already satisfies the upper
bound constraint. Therefore, we conclude that QP

¼399.999. Using
Proposition 3, we find that the solution to Problem DPTCLB by
setting cðQ Þ ¼ cD

ðQ Þ and LB¼0 (i.e., 693.147) is already greater
than the lower bound 675. Therefore, we conclude that
QD
¼693.147. Finally, comparing the expected profits at 399.99

and 693.147, we find that Qn
¼ 399:999. Furthermore, since c1

ð399:999Þoc2ð399:999Þ, the buyer chooses Supplier 1.
The above example can also be used to illustrate the impact of

considering transportation costs and capacities explicitly on the
replenishment and supplier selection decisions of a buyer. We
next discuss the following three cases:
�
 The buyer does not take into account transportation costs and
capacities in his/her supplier selection and replenishment
decisions: In this case, if the buyer chooses Supplier 1, he/
she will order 674.999 units with expected profits amounting
to 4235.09 money units excluding truck costs. Similarly, if the
buyer chooses Supplier 2, he/she will order 1200 units with
expected profits amounting to 4292.82 money units excluding
truck costs. Hence, the buyer will choose Supplier 2 and order
1200 units. The expected profits of the buyer will then be
2492.82 money units including truck costs.

�
 The buyer does not take into account transportation costs and

capacities in his/her order replenishment decision, but in his/
her supplier selection decision: In this case, if the buyer
chooses Supplier 1, he/she will order again 674.999 units but
he/she is aware that his/her profit will be 3185.09 money units
including truck costs. Similarly, if the buyer chooses Supplier 2,
he/she will order again 1200 units but he/she is aware that his/
her profit will be 2492.82 money units including truck costs.
Hence, the buyer will choose Supplier 1 and order 674.999
units. The expected profits of the buyer will be 3185.09 money
units including truck costs.

�
 The buyer regards transportation costs and capacities expli-

citly in both of his/her decisions: In this case, we know from
the solution of the above example that, the buyer will choose
Supplier 1 and order 399.999 units. The expected profit of the
buyer will be 3346.705 money units including truck costs.

As it can be seen from the above three cases, consideration of
transportation costs and capacities explicitly in solving the joint
replenishment and supplier selection problem of the buyer, has a
significant impact on his/her expected profits. When this issue is
considered only for the supplier selection, not for the replenishment
decision, the buyer will achieve 27.77% (ð3185:09�2492:82Þ=
2492:82� 100%) savings compared to the case when it is not
considered at all. When transportation costs and capacities are
considered explicitly for both of the decisions, the buyer will achieve
34.25% (ð3346:705�2492:82Þ=2492:82� 100%) savings over the
case when they are not considered at all, and 5.07% (ð3346:705�
3185:09Þ=3185:09� 100%) savings over the case when they are
considered only for supplier selection.
6. Conclusion and future research

In this paper, we studied the replenishment problem of a buyer
by modeling transportation costs and capacities explicitly and
considering a general whole price structure. In the setting of
interest, the buyer pays for the inbound transportation of his/her
one-time inventory replenishment. The wholesale price schedule
exhibits economies and diseconomies of scale over varying quan-
tity intervals (i.e., a hybrid price schedule). The production/inven-
tory related expected profits of the buyer are modeled as a general
function of the order quantity. Solving the buyer’s replenishment
problem to maximize his/her expected profits in view of these
cost and profit structures exhibits certain challenges due to the
piecewise form of the objective function. Therefore, the proposed
solution is algorithmic and it relies on several structural properties
of the objective function, which are proved in the paper.



D. Konur, A. Toptal / Int. J. Production Economics 140 (2012) 521–529528
In order to arrive at a solution for finding the replenishment
quantity of the buyer in this setting, several subproblems are
defined and analyzed. First, a replenishment problem with trans-
portation considerations and wholesale prices given by quantity
premiums, is solved. Secondly, the solution is extended to consider
an upper bound on the order quantity. Thirdly, a previous study by
Toptal (2009) is extended to consider a lower bound on the order
quantity in a replenishment problem with transportation considera-
tions and wholesale prices given by quantity discounts. It is
important to emphasize that each of the solutions to these sub-
problems can be used alone for other practical problems.

In the paper, we also show within the context of a supplier
selection problem that, the wholesale price schedule that a buyer
practically faces under single sourcing assumption turns out to
have a hybrid structure. Therefore, we discuss how the solutions
to different subproblems studied in this paper can be utilized to
solve the joint supplier selection and replenishment decision of a
buyer. Based on some numerical instances, we also report our
results about the impact of modeling transportation costs and
capacities explicitly on these decisions.

In this study, inbound shipment costs are modeled assuming
truckload transportation. Some recent papers consider cases where
the replenishment quantity can be shipped using a combination of
truckload and less-than-truckload transportation (e.g., Mendoza
and Ventura, 2008; Rieksts and Ventura, 2010). Our study can also
be extended to consider different transportation modes. We note
that the types of wholesale price schedules considered in our study
(all-units discounts, all-units premiums, all-units hybrid) can
prevail as part of freight rate discounts in the context of less-
than-truckload transportation (e.g., Tersine and Barman, 1994).
Another direction for future research concerns solving the replen-
ishment decisions in multi-stage inventory systems where differ-
ent stages face transportation costs in the form of stepwise freight
costs and/or unit freight rate discounts (see Glock, 2012 for a
recent review of the literature on joint economic lot size models).
Appendix A

A.1. Proof of Property 3

Due to Property 2, we know that any maximizer ~Q
ðkþ1Þ

of

Hkþ1
ðQ Þ satisfies ~Q

ðkþ1Þ
r ~Q

ðkÞ
. Since ~Q

ðkÞ
oqkþ1, it follows that

~Q
ðkþ1Þ

oqkþ1. Using the fact that ~Q
ðkþ2Þ

r ~Q
ðkþ1Þ

and qkþ1oqkþ2,

we have ~Q
ðkþ2Þ

oqkþ2. Continuing in this fashion, it can be shown

that ~Q
ðjÞ
oqj for j¼ kþ3,kþ4, . . . ,n.

A.2. Proof of Property 4

F2 ¼ | implies that some maximizer of H0
ðQ Þ is less than q1

and hence realizable. Let us refer to this maximizer as ~Q
ð0Þ

. Since
~Q
ð0Þ

is realizable, we have Hð ~Q ð0ÞÞ ¼H0
ð ~Q
ð0Þ
Þ. It follows from

Property 1 that H0
ð ~Q
ð0Þ
Þ4Hi

ð ~Q
ðiÞ
Þ, 8iZ1. Therefore, Hð ~Q ð0ÞÞ4

HðQ Þ, 8Q Zq1. Combining this with the fact that Hð ~Q ð0ÞÞZHðQ Þ
for all Q such that q0rQ oq1, we conclude that ~Q

ð0Þ
is a

maximizer of HðQ Þ.

A.3. Proof of Property 5

Using the definition of n2 and Property 3, we have that if
F 2a|, all the maximizers of Hk

ðQ Þ are greater than or equal to
qkþ1 (i.e., ~Q

ðkÞ
Zqkþ1) 8kon2þ1. Therefore, there exists no

kon2þ1 such that some maximizer of Hk
ðQ Þ is realizable. Now,
consider the price index n2þ1. It follows from the definition of n2

that there exists a maximizer of Hn2þ1
ðQ Þ that is less than qn2þ1.

Due to Property 3, this further implies that all the maximizers of
Hk
ðQ Þ functions are less than qk 8k4n2þ1 (i.e., ~Q

ðkÞ
oqk, 8k4

n2þ1). Hence, there exists no k4n2þ1 such that some max-
imizer of Hk

ðQ Þ is realizable.

A.4. Proof of Property 6

Let us first prove the first part of the property. Since ~Q
ðn2þ1Þ

is a

realizable maximizer of Hn2þ1
ðQ Þ, we haveHð ~Q ðn2þ1Þ

ÞZHðQ Þ 8Q s.t.

~Q
ðn2þ1Þ

oQ oqn2þ2. Furthermore, it follows from Property 1 that

Hn2þ1
ð ~Q
ðn2þ1Þ

Þ4Hk
ð ~Q
ðkÞ
Þ 8k4n2þ1, and hence, Hð ~Q ðn2þ1Þ

Þ4HðQ Þ
8Q Zqn2þ2. SinceHð ~Q ðn2þ1Þ

ÞZHðQ Þ 8Q s.t. ~Q
ðn2þ1Þ

oQ oqn2þ2 and

Hð ~Q ðn2þ1Þ
Þ4HðQ Þ 8Q Zqn2þ2, we conclude that in finding a solu-

tion for Problem PPTC, we can focus on Q r ~Q
ðn2þ1Þ

.
The proof of the second part follows from the definition of n2.

Specifically, there exists a maximizer of Hn2þ1
ðQ Þ that is less than

qn2þ2, say ~Q
ðn2þ1Þ

(i.e., ~Q
ðn2þ1Þ

oqn2þ2). Since Hn2þ1
ðQ Þ has no

realizable maximizer, we must have ~Q
ðn2þ1Þ

oqn2þ1. Utilizing the

fact that Hi
ð ~Q
ðn2þ1Þ

Þ4Hn2þ1
ð ~Q
ðn2þ1Þ

Þ 8i s.t. ion2þ1, we have

Hð ~Q ðn2þ1Þ
Þ4Hn2þ1

ð ~Q
ðn2þ1Þ

Þ. Furthermore, it follows from Prop-

erty 1 that we have Hn2þ1
ð ~Q
ðn2þ1Þ

Þ4Hi
ð ~Q
ðiÞ
Þ 8i4n2þ1. Therefore,

Hð ~Q ðn2þ1Þ
Þ4HðQ Þ, 8Q Zqn2þ2. Since ~Q

ðn2þ1Þ
is a maximizer for

Hn2þ1
ðQ Þ, we also have Hn2þ1

ð ~Q
ðn2þ1Þ

ÞZHðQ Þ, 8Q such that

qn2þ1rQ oqn2þ2. This, in turn, implies that Hð ~Q ðn2þ1Þ
Þ4HðQ Þ,

8Q such that qn2þ1rQ oqn2þ2. Combining this with the result

that Hð ~Q ðn2þ1Þ
Þ4HðQ Þ, 8Q Zqn2þ2, we conclude that in finding a

solution for Problem PPTC, we can focus on Q oqn2þ1.

A.5. Proof of Proposition 1

It follows from the definition of n2 that all maximizers of Hi
ðQ Þ are

greater than or equal to qiþ1 (i.e., ~Q
ðiÞ
Zqiþ1) for irn2. We know

from Result 1 cited from Toptal (2009) that Hi
ðQ Þ is piecewise

increasing with respect to Q in ð0, ~Q
ðiÞ
� and Hi

ðkPÞoHi
ððkþ1ÞPÞ for

kAZþ s.t. ðkþ1ÞPr ~Q
ðiÞ

. Therefore, if dqi=Pe ¼ dðqiþ1�EÞ=Pe, we
have Hi

ðqiþ1�EÞ4Hi
ðQ Þ for all Q A ½qi,qiþ1Þ. If dqi=Peadðqiþ1�EÞ=Pe,

either qiþ1�E or bðqiþ1�EÞ=PcP or both maximize Hi
ðQ Þ over

½qi,qiþ1Þ.

A.6. Proof of Proposition 2

The proof will follow by considering the following two cases:
Q ðpÞoUB and Q ðpÞZUB. In the first case, the unconstrained
maximizer satisfies the upper bound constraint, therefore, it is
also an optimal solution to the constrained problem. In the second
case, Q ðpÞ is not feasible, therefore it is not optimal. In this case,
letting w¼maxfi : qioUBg so that qwrUBoqwþ1, we redefine
the (wþ1)st interval as ½qw,UBÞ. Now, any feasible solution to
Problem PPTCUB lies within the first ðwþ1Þ quantity intervals of
the updated price schedule. Since Q ðpÞZUB, we conclude, due to
Corollary 1, that wrn2þ1. Proposition 1 and its proof imply that
Q

n

i dominate all the other order quantities within ½qi,qiþ1Þ for all
0r irn2. Therefore, if wrn2, the optimal solution to PPTCUB is
given by the quantity among all Q

n

i s over 0r irw, which gives
the maximum objective function value. Furthermore, Corollary 1

implies that we have w¼ n2þ1 only if qwoUBrQ ðpÞ ¼ ~Q
ðn2þ1Þ

o
qwþ1. Since Q ðpÞZUB, Proposition 1 can again be used to find the
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maximizer over ½qw,UBÞ, that is Q
n

w. Thus, we have
QP
¼ arg maxfHðQ n

i Þ : 0r irwg, where Q
n

i is determined by Pro-
position 1.

A.7. Proof of Proposition 3

The proof will follow by considering the following two cases:
Q ðdÞZLB and Q ðdÞoLB. In the first case, the nonnegative maximizer
satisfies the positive lower bound constraint, therefore, it is an
optimal solution. In the second case, Q ðdÞ is not feasible, therefore it
is not optimal. In this case, letting w¼min fi : qiþ1ZLBg we

redefine the (wþ1)st interval as ½LB,qwþ1Þ. Since Q ðdÞZ ~Q
ðr1Þ

, it

turns out that wZr1. If w4r2, Property 7 in Toptal (2009) implies
that we should only consider the breakpoints qw, qwþ1, . . . ,qn. If

wrr2, we analyze the following two parts of the feasible region
separately: LBrQ oqr2þ1 and Q Zqr2þ1. Again, Property 7 in

Toptal (2009) implies that we should only consider the breakpoints
qr2þ1, qwþ1, . . . ,qn in the latter part of the feasible region. On the

other hand, since ~Q
i
oqi, for i s.t. wr irr2, the maximizer over

each quantity interval ½qi,qiþ1Þ (i.e., Qn

i ) in the first part of the

feasible region can be found using Proposition 2 in Toptal (2009).
Reducing the feasible region to these finite number of solutions,
the required value QD can be found by comparing and choosing the
one which yields the maximum expected profits.
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