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Large-scale web search engines are composed of multiple data centers that are geographi-
cally distant to each other. Typically, a user query is processed in a data center that is geo-
graphically close to the origin of the query, over a replica of the entire web index. Compared
to a centralized, single-center search engine, this architecture offers lower query response
times as the network latencies between the users and data centers are reduced. However,
it does not scale well with increasing index sizes and query traffic volumes because queries
are evaluated on the entire web index, which has to be replicated and maintained in all data
centers. As a remedy to this scalability problem, we propose a document replication frame-
work in which documents are selectively replicated on data centers based on regional user
interests. Within this framework, we propose three different document replication strate-
gies, each optimizing a different objective: reducing the potential search quality loss, the
average query response time, or the total query workload of the search system. For all three
strategies, we consider two alternative types of capacity constraints on index sizes of data
centers. Moreover, we investigate the performance impact of query forwarding and result
caching. We evaluate our strategies via detailed simulations, using a large query log and a
document collection obtained from the Yahoo! web search engine.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a large-scale web search engine architecture with multiple, geographically distributed data centers (Baeza-
Yates, Gionis, Junqueira, Plachouras, & Telloli, 2009; Cambazoglu, Plachouras, & Baeza-Yates, 2009). In this architecture, each
data center crawls and maintains the documents that are served by the web sites in its geographical region (Cambazoglu,
Plachouras, Junqueira, & Telloli, 2008). User queries are routed to data centers according to the regions they originate from.
For example, a data center in Madrid crawls the web sites in Spain and processes the queries submitted from Spain. As we
will discuss next, this architecture leads to two extremes for the placement of the web index and query processing.

At one extreme, a global index is built over the entire web collection, and this index is replicated on all data centers. Que-
ries are processed on the entire web index, and hence search result qualities are identical to those of a centralized search
architecture. However, this approach does not scale well since the global web index needs to be constructed from a distrib-
uted document collection and periodically maintained. Moreover, this approach requires major hardware investments and
results in high power consumption, which is an important issue for commercial search engines. Finally, processing queries
. All rights reserved.
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over an entire web index may be too costly to satisfy the tight response time constraints of large-scale web search engines
(Cambazoglu, Zaragoza, et al., 2010).

At the other extreme, each data center builds a regional web index on its local crawl and processes its queries over this
partial (local) index. This approach is highly scalable because partial indexes are locally maintained and less resources are
needed for query processing (alternatively, queries can be processed faster). However, as processing of queries is limited
to a partial index, some high-quality or best matching documents that are indexed by non-local data centers may be missing
in search results. This may lead to not affordable losses in search result qualities, negatively impacting the user satisfaction
and potentially the revenues of the search engine.

A search engine architecture based on selective replication of documents on data centers emerges as a feasible mid-
ground between these two extremes. The main idea in selective replication is to identify the documents that are of interest
to the users of each geographical region and replicate the documents on the data centers according to the user interest. If this
can be wisely done, queries can be locally processed in regional data centers, reducing the search quality loss relative to the
second extreme and providing better scalability compared to the first extreme. Selective replication can be further coupled
with selective forwarding of queries between data centers so that documents that are missing in the local top k results (with
respect to the global top k results) can be retrieved from non-local data centers, preventing any search quality loss (Baeza-
Yates et al., 2009; Cambazoglu, Varol, Kayaaslan, Aykanat, & Baeza-Yates, 2010).

In this paper, we propose strategies for selectively replicating documents in a geographically distributed search engine
setting. Our strategies identify the documents that are of interest to the users of certain geographical regions, based on
the occurrence frequencies of documents in past search results. The identified documents are then replicated and indexed
on non-local data centers so that future queries can be efficiently and effectively processed.

The outline of the paper is as follows. In Section 2, we provide the details of the search engine architecture that we con-
sider in this work and provide formal definitions for two variants of the document replication problem we aim to solve. Sec-
tion 3 describes the datasets used in our work and the setup of our simulations. In Sections 4–6, we propose various
replication algorithms, each optimizing different performance metrics under different constraints and assumptions. We
report the experimental results about the performance of our algorithms in the associated sections. In Section 7, we inves-
tigate the impact of query forwarding on the performance. We survey the related work in Section 8. The paper is concluded
in Section 9.

2. Preliminaries

2.1. Architecture

We consider a search engine architecture composed of multiple data centers. In this architecture, each data center crawls
and stores documents belonging to a disjoint subset of the Web. Each data center then builds a local web index over its
crawled documents, independent of the other data centers. We assume that IP addresses (or countries at a higher granular-
ity) are statically assigned to data centers according to their geographical proximity. Each data center is responsible for pro-
cessing queries that originate from its subset of IPs and is said to be the local data center for those queries.

In our architecture, certain documents are replicated on non-local data centers. Hence, in addition to its local index, each
data center maintains a replicated index, built over its non-local documents. The replication pattern of documents is peri-
odically determined based on the frequencies with which documents appear in the search results generated by individual
data centers.

Queries are evaluated as follows.2 A user query is first processed in the local data center associated with the user, over both
local and replicated indexes. A local top k result set is formed based on the estimated relevance scores of documents (Cambazo-
glu & Aykanat, 2006). At this point, this result set may be immediately returned to the user. Alternatively, the query may be
forwarded to a set of non-local data centers, hoping to retrieve some documents whose scores are higher than that of the lowest
scoring document in the locally computed top k set. Forwarded queries are concurrently processed over the local indexes of
non-local data centers, whose top k results are returned to the local data center. These results are then merged in decreasing
order of scores and the top k results are returned to the user.

Fig. 1 illustrates the process. In the figure, each data center is represented by a large box. The patterns indicate the original
assignment of documents to data centers. The box in the top row represents the local documents of a data center. The boxes
in the bottom row represent non-local documents that are locally replicated. The directed arcs show contributions of differ-
ent document collections to the final search results.

In this architecture, if a query is only locally processed, the search result quality may deteriorate as some of the docu-
ments that appear in the global top k result set may not be available in the local data center. On the other hand, if the query
is forwarded to non-local data centers, the query response time increases due to the network latency between the local and
non-local data centers (the workload may also increase). Readers may refer to (Cambazoglu, Varol, et al., 2010) for more
details about the architecture.
2 We assume that the global collection statistics are made available to all data centers so that the scores generated by different data centers are comparable.
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Fig. 1. Replication and query processing on the proposed web search architecture.

E. Kayaaslan et al. / Information Processing and Management 49 (2013) 51–66 53
We note that document replication and query forwarding are not competing strategies, but rather query forwarding is a
technique that is complementary to partial document replication. There are query forwarding algorithms (Baeza-Yates et al.,
2009; Cambazoglu, Varol, et al., 2010) that can obtain the result quality of the global ranking by forwarding queries to a sub-
set of non-local data centers instead of all.3 Query forwarding algorithms are beyond the scope of this paper. In this work, we
assume either no query forwarding or an oracle query forwarding algorithm that correctly predicts the non-local data centers
that will contribute to the global top k set and forwards queries to only those data centers.

2.2. Document replication framework

Our focus in this work is specifically on document replication, which may lead to efficiency and effectiveness improve-
ments in the above-mentioned search architecture. In our replication framework, the documents that are frequently
requested by the queries originating from a particular region are replicated on the data center responsible for that region.
This approach improves the search quality attained by the local data centers, assuming a scenario where queries are not for-
warded between data centers. This is because the overlap between the local and global top k sets is likely to increase as more
non-local documents are replicated on the local data centers. The replication of documents also leads to improvements in the
query processing efficiency, assuming a scenario where queries are forwarded between the data centers. This is because few-
er queries need to be forwarded and hence savings can be achieved in average query response times and the query workload
of the search engine. The former benefit is because the network latency overhead incurred by query forwarding is eliminated
for some queries. The latter benefit is since queries are processed over a smaller portion of the index.

Obviously, increasing the replication amount has a negative impact on query processing times of local data centers due to
the increase in their index sizes. One of the main goals of this paper is to observe the trade-off between replication and
search performance to identify the best replication strategies. In Sections 4–6, we investigate the impact of replication on
the search quality, average response time, and query workload, respectively.

In our document replication framework, we assume that the amount of compute resources made available to the search
engine remains the same after replicating documents.4 We also assume that the resources are distributed among the data cen-
ters in proportion to their index sizes, as an attempt to preserve the relative query processing performances of data centers.
These assumptions are necessary to draw sound conclusions about the query processing efficiency under document replication
since query processing times depend on both index sizes and computing powers of data centers.

We constrain the allowed replication amount in two different ways. In the first approach, a global capacity constraint
bounds the total size of the index obtained after document replication, over the entire search system. This approach requires
redistribution of the available hardware, after replication, among the data centers to preserve the ratio between the index
size and the amount of compute resources of each data center. In the second approach, a local capacity constraint bounds
the replicated index size of each data center relative to its local index size. This approach does not require redistribution
of the hardware because the ratio between the local and replicated index sizes is the same for all data centers.

In Fig. 2, we illustrate these two types of constraints by an example. Fig. 2a shows a distributed search engine with four
data centers, each initially having a local index of varying size and a fixed amount of hardware. Figs. 2b and 2c show the
indexes created after replication. In Fig. 2b, the total index size in the system doubles after replication. In Fig. 2c, the index
size of each data center individually doubles. We note that the distribution of compute resources among the data centers
changes in Fig. 2b, whereas it remains the same in Fig. 2c.

2.3. Formal problem definition

We are given a set D ¼ fd1; d2; . . . ; dNg of N documents, a set Q ¼ fq1; q2; . . . ; qMg of M queries, and a set
C ¼ fC1;C2; . . . ; CKg of K data centers. Every data center C‘ 2 C initially stores a disjoint set D‘ #D of documents and serves
to a disjoint set Q‘ #Q of queries. Moreover, each document dj 2 D is associated with a space overhead sj (e.g., the number of
postings the document contributes to the index) and the frequency fj with which the document appears in the relevant
results of queries in Q.
3 However, these algorithms cannot restrict the set of contacted non-local sites to only those that are guaranteed to contribute to the global top k result set.
4 If additional hardware is used in order to compensate the increase in the index size due to replication, the financial implications of this should be taken into

account.
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Fig. 2. A search engine with four data centers. Indexes: (a) before replication, (b) after replication under a constraint on the total index size (doubles the
total index size), (c) after replication under a constraint on individual index sizes of data centers (doubles the index size of each data center).
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Definition 1 (Document replication). A document replication U is a mapping from a document dj 2 D‘ to a set of data centers
in C � fC‘g, i.e., U(dj) denotes the set of non-local data centers on which document dj is replicated.

For a given document replication U, let DU
‘ denote the set of documents that are either initially stored or later replicated

on C‘, i.e.,
DU
‘ ¼ D‘ [ fdj 2 D : C‘ 2 UðdjÞg: ð1Þ
Let /j be the number of non-local data centers on which dj is replicated, i.e., /j = jU(dj)j. Given this notation, we define the
following two document replication problems. The first problem assumes a global capacity constraint on the replication
amount while the second assumes that each data center has a local capacity constraint.

Problem 1 (Replication under global capacity constraint (DR-G)). Given sets C, D, Q, and a global replication capacity G P 0,
find a document replication U such that the total replication amount does not exceed G, i.e.,
X

dj2D
sj/j 6 G; ð2Þ
while a given performance objective is optimized.
Problem 2 (Replication under local capacity constraints (DR-L)). Given sets C;D;Q, and a local replication capacity L‘ P 0 for
each data center C‘ 2 C, find a document replication U such that the replication amount on each C‘ 2 C does not exceed its
capacity L‘, i.e.,
X

dj2DU
‘
�D‘

sj 6 L‘; 8C‘ 2 C; ð3Þ
while a given performance objective is optimized.
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2.4. Baseline solutions

As a simple baseline solution for the DR-G problem, we use a modified version of the document replication heuristic used
in (Cambazoglu, Varol, et al., 2010). In this heuristic, each document dj is assigned a profit value pj, estimated by the ratio
between the past access frequency and the space overhead of dj, i.e., pj = fj/sj. The heuristic then iterates over all documents
in decreasing order of their profits. At each iteration, a document dj is inserted into an initially empty set G if the global
capacity check

P
dj2GsjðK � 1Þ 6 G does not fail. After the algorithm iterates on all documents, the documents in G are repli-

cated on all non-local data centers. We note that this heuristic slightly improves over a heuristic that terminates when the
capacity check first fails (Cambazoglu, Varol, et al., 2010). The complexity of this algorithm is O(NlgN + NK), where the former
term is the cost of sorting the documents and the latter is the cost of decoding the document replication solution.

For the DR-L problem, we use a baseline similar to the above-mentioned baseline. The sorted list of documents is tra-
versed once, performing for each document K separate checks on local capacities of data centers. Given a data center C‘, only
the documents that are non-local for C‘ (i.e., those in D�D‘) are considered for replication on C‘. Documents are inserted
into a separate set L‘ if the local capacity check

P
dj2L‘ sj 6 L‘ does not fail for data center C‘. Once the traversal terminates,

documents in each set L‘ are replicated on the respective data center C‘. The complexity of this algorithm is O(NlgN + NK),
similar to the DR-G problem.

3. Setup

For simulations, we create two different setups, referred to as Europe and World. Both setups simulate a geographically
distributed search engine with five data centers. In Europe, data centers are located in Germany, Spain, France, Italy, and UK.
In World, they are located in Australia, Brazil, Canada, Germany, and Mexico. The former simulates an architecture with low
network latencies between data centers while the data centers in the latter setup have high network latencies. We assume
that each data center is located in the capital city of the respective country. We also assume that queries are issued from the
five most populated cities in each country.

We predict the network latencies between the data centers (also, between the data centers and their users), using the
speed of light on copper wire (200,000 km/s) and the great-circle distance between data center locations. We then project
the predicted latencies to more accurate values by a formula obtained through regression between predicted and real-life
latency measurements (Cambazoglu, Varol, et al., 2010). The real-life latency values are obtained over several geographically
distant computers available to us.

The document collection contains about 200 million web pages crawled from the Web in 2009. This is a high-quality col-
lection obtained after various cleansing (e.g., spam filtering). Using a proprietary classifier, we determine an initial local
country assignment for every document. We limit our study to only the documents that are assigned to one of the selected
countries. We built separate local and replicated indexes, using Terrier (Ounis, Amati, Plachouras, He, Macdonald, & Johnson,
2005).

For each data center, we extract samples with about 8.5 and 7 million queries from the query logs of Yahoo!, for the
Europe and World setups, respectively. We preprocess queries in four steps: query terms are case-folded, stop-words are
eliminated, duplicate terms are uniqued, and query terms are alphabetically sorted.5 Finally, the queries are sorted in increas-
ing order of arrival timestamps and split into four pieces. The first three pieces form the training set. The final piece forms the
test set.

For both the training and test sets, we assume that the top k result sets obtained over the entire index form the relevant
documents. We evaluate the queries using a modified version of Terrier.6 The top k result sets of training queries are used as
inputs to the replication algorithms given in later sections. The top k result sets of test queries are used for evaluation.

According to Fig. 3, the occurrence frequencies of the documents in the top k search results follow a power-law distribu-
tion for both setups. In the Europe setup, the fraction of documents that appear in the top k result set of at least one query is
0.53 for the training query set and 0.32 for the test query set. For the World setup, the fractions are 0.61 and 0.40,
respectively.

In our simulations, we assume a setting where each node in a search cluster builds an index on three million documents.
We estimate the total number of processors available to the entire search system based on the same assumption. We assign
each data center a number of processors proportional to its index size. Hence, query processing times are comparable for
data centers. During our simulations, we assume that the indexes are maintained in the main memories of the search nodes.
The simulator assumes that the query processing cost is linearly proportional with the total number of postings associated
with the query terms. We set the time cost of processing a single posting to 200 ns, which is an empirical value obtained
from Terrier. We also assume a 20 ms preprocessing overhead per query. We omit all other costs as they are relatively less
important, especially for low k and K values.

Regarding caching of previous search results, we conduct our experiments under two different scenarios: no result cache
or an infinite result cache (Cambazoglu, Junqueira, et al., 2010). In the latter scenario, we assume that each data center
5 We use only the queries requesting the first result page.
6 We modified Terrier to support the true AND logic in document matching.
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Fig. 3. Number of documents that appear in search results with a given occurrence count (both axes are in log scale).
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maintains a result cache that stores the results of all queries that are previously issued from its region. In either scenario, the
results are reported over the entire (both hit and miss) set of test queries. The result cache hit ratios are 0.56 (0.54) for the
training query set and 0.51 (0.47) for the test query set in case of the Europe (World) setup.

In all plots, we use the tags DR-G and DR-L to denote the proposed replication algorithms, which use a global capacity
constraint or local capacity constraints, respectively. The baselines given in Section 2.4 are similarly named as B-G and
B-L. The default case with no replication is denoted by NR. We denote the scenario where the entire index is replicated
on all data centers by FR. The replication amounts reported in the plots represent the percent replication on the entire sys-
tem with respect to the replication amount in the FR scenario, i.e., ðK � 1Þ

P
dj2Dsj. In case of DR-G, 100% replication corre-

sponds to the FR scenario. We note that, in case of DR-L, the final replication amount on a data center may be lower
than the local replication capacity if the index becomes fully replicated on that data center before the local replication capac-
ity is reached. A single simulation run takes under an hour with the parameters in our experiments.

4. Optimizing search quality

4.1. Objective

Herein, we focus on replication algorithms for a specific search scenario where queries are processed only in their local
data centers without any forwarding to non-local data centers. In this scenario, search result qualities may degrade as que-
ries are processed over a subset of the entire index. The main idea behind our replication algorithms is to replicate, in a par-
ticular data center, the non-local documents that are frequently accessed by the users of that data center. As we replicate
more documents, the search quality achieved by processing queries only within the local data centers is expected to be closer
to that of a centralized search architecture.

We denote by Ri the set of relevant documents obtained by evaluating query qi on an index built over the entire docu-
ment collection D. Also, we denote by bCi the data center that serves query qi and by bDU

i the document collection on bCi after
documents are replicated via some U. We measure the result quality of a query by its precision, defined as follows.

Definition 2 (Precision of a query). For a given document replication U, the precision q(qi, U) of a query qi is defined as the
fraction of the relevant documents on bCi to all relevant documents, i.e.,
qðqi;UÞ ¼ bDU
i \ Ri

��� ���=jRij: ð4Þ
The total precision PðQ;UÞ of a document replication U is defined as a sum over the precisions of individual queries in Q, i.e.,
PðQ;UÞ ¼
X
qi2Q

qðqi;UÞ: ð5Þ
Given this definition, the problem is to find a feasible document replication U that maximizes PðQ;UÞ as the objective of the
DR-G and DR-L problems.

4.2. Solution

Our solution to the DR-G problem is based on a combinatorial reduction to the well-known 0–1 knapsack problem
(Cormen, Leiserson, Rivest, & Stein, 2009), where we are given a capacity W and a set T of n items, each associated with
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a positive weight and a positive value. The goal is to find a subset T � # T such that the total weight of items in T � does not
exceed W and their total value is maximized. For every pair of document dj 2 D and data center C‘ 2 C such that dj R D‘, we
introduce an item tj‘ into the item set T with an associated weight wj‘ = sj and value v j‘ ¼

P
qi2Q‘ ;dj2Ri

ð1=jRijÞ. The knapsack
capacity is set to the global replication capacity G. Based on the solution set T � of the knapsack problem, we form the set
U(dj) of data centers where document dj will be replicated as
UðdjÞ ¼ fC‘ : tj‘ 2 T �g: ð6Þ
Here, each item tj‘ 2 T � represents the replication of document dj on data center C‘. This replication increases the total pre-
cision by 1=jRij for each query qi 2 Q‘ such that dj 2 Ri, i.e., by vj‘. Replicating dj on C‘ consumes a space of sj from the avail-
able space, bounded by the global capacity G, i.e., we pick an item of weight wj‘ without exceeding the knapsack capacity W.
Hence, the proposed reduction correctly maximizes PðQ;UÞ.

For the DR-L problem, we use a slight variation of the above solution. Since each data center has its own local replica-
tion capacity, we solve a different knapsack problem instance for each data center C‘ as follows. For each document
dj 2 D �D‘, we introduce an item tj‘ into the item set T ‘ with the same weight and value used in the previous formulation.
The knapsack capacity is set to the local replication capacity L‘ of data center C‘. We then solve the knapsack problem in-
stance associated with each data center C‘ and obtain a solution set T �‘ . After we obtain all K solution sets, we form a doc-
ument replication U as
UðdjÞ ¼ C‘ : tj‘ 2 T �‘
� �

: ð7Þ
This reduction correctly maximizes PðQ;UÞ since replicating dj on C‘ consumes a space of sj from C‘’s available space,
bounded by the local capacity L‘, i.e., we pick an item of weight wj‘ without exceeding the knapsack capacity W‘ in the knap-
sack problem instance associated with C‘.

Since the 0–1 knapsack problem is NP-hard, we use a greedy approximation algorithm (Cormen et al., 2009) in our solu-
tion. The algorithm has a complexity of O(nlgn), where n refers to the number of items in the knapsack instance. In the algo-
rithm, each item is assigned a profit, set to the ratio between the item’s value and weight. The heuristic iterates over all items
in decreasing order of profits. At each iteration, an item is placed in the solution set if its placement does not violate the
capacity constraint.

Our solutions to the DR-G and DR-L problems have time complexities O(Mk + NKlg(NK)) and O(Mk + NKlgN), respectively.
In these complexities, the first term is the total cost of encoding the document replication instance as knapsack instance(s).
The second term is the cost of the greedy approximation algorithm as we solve one knapsack instance with O(NK) items in
the DR-G problem and K knapsack instances each with O(N) items in the DR-L problem. Since the cost of decoding the knap-
sack solution(s) as a document replication is O(NK), it is not shown in the complexities.

4.3. Performance evaluation

Fig. 4 shows the average precision values observed as the replication amount increases. The average precision over a test
query log Q0 is computed as PðQ0;UÞ=jQ0j. For a better visibility of the curves, the average precision values for NR (0.61 and
0.55, for Europe and World, respectively) are not displayed in the figure. Relative to these values, even with only 1% rep-
lication, considerable improvement in precision is observed (up to about 0.26 precision increase in either setup). When
16% of the index is replicated, the loss in the average precision is at most 10% with respect to the FR scenario, which naturally
achieves a precision of one. This behavior is mainly due to the power-law distribution in the occurrence frequencies of doc-
uments in search results (previously shown in Fig. 3).
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According to Fig. 4, both DR-G and DR-L achieve slightly better precision values than their respective baselines. As ex-
pected, the improvements over the baselines are less pronounced at high replication amounts. In general, DR-G has a rela-
tively better performance than DR-L since DR-G has a larger solution space due to the flexibility of reassigning the hardware.

The precision values in the World setup are lower than those in the Europe setup since the search results in the former
setup contain relatively more unique documents. Hence, the World setup requires larger amounts of replication to achieve
the same performance with the Europe setup. For example, achieving a precision of 0.92 requires more than 8% replication
in World, whereas it requires only 4% replication in Europe (assuming DR-G).

5. Optimizing response time

5.1. Objective

In this section, we consider a search architecture where queries are forwarded between the data centers to retrieve all
relevant documents so that there is no loss in the search quality, i.e., the precision is always one. We assume an oracle algo-
rithm that forwards the queries to only the non-local data centers that contain relevant documents. As the performance
objective in replicating documents, we try to reduce the average query response time.

In this scenario, the average query response time is determined by the time needed to compute the query results on
different indexes and the network latencies between the data centers. The main idea in the proposed replication algo-
rithm is to maximize the number of queries that can be entirely processed by the local data centers without any for-
warding, thus eliminating the network latency and the overhead of query processing on non-local data centers. If all
relevant results of a query are found in the local data center, the query is dubbed local. The locality of a query is defined
as follows.

Definition 3 (Locality of a query). For a given document replication U, the locality c(qi, U) of a query qi is defined as
7 The
cðqi;UÞ ¼
1; if Ri # bDU

i

0; otherwise:

(
ð8Þ
The total locality CðQ;UÞ of a document replication U is defined as a sum over the locality values of queries inQ, after the
documents are replicated via U, i.e.,
CðQ;UÞ ¼
X
qi2Q

cðqi;UÞ: ð9Þ
The goal is now to find a feasible document replication U that maximizes CðQ;UÞ as the objective of the DR-G and DR-L
problems.

5.2. Solution

We formulate the problem as a variation7 of the set union knapsack problem (Kellerer, Pferschy, & Pisinger, 2004). In our
problem, we are given a main set T of n items, where each item is associated with a positive weight. We are also given a family
F ¼ fS1; S2; . . . ; Smg of m sets, where each set Si is a subset of the main set, i.e., Si # T . The objective of the problem is to find a
subset T � of the main set T such that jfSi 2 F : Si # T �gj is maximized while the total weight of the items in T � does not exceed
a given capacity W.

Since our problem is NP-hard, we employ a heuristic solution (Ntoulas & Cho, 2007). This heuristic follows the maximum
benefit per unit cost policy (Cormen et al., 2009) and has no guarantee of optimality. In this heuristic, each item in T is as-
signed a profit value which is set to the ratio between the number of sets that contain the item and the item’s weight. The
heuristic then iterates over all items in decreasing order of their profits. At each iteration, an item is placed in T � if the capac-
ity constraint is not violated by the placement of the item. The heuristic has a complexity of O(m + v + nlgn), where v denotes
the sum of the sizes of the sets in F , i.e., v ¼

P
Si2F jSij. The first two complexity terms refer to the cost of computing the profit

values and the last term refers to the cost of sorting the items.
The solution we propose for the DR-G problem is based on a combinatorial reduction to our variation of the set union

knapsack problem. Let us consider every data center C‘ 2 C. For each document dj 2 D�D‘, we introduce an item tj‘ into
the main set T with an associated weight wj‘ ¼ sj. Moreover, for each query qi 2 Q‘, we introduce a set
Si ¼ ftj‘ : dj 2 Ri �D‘g into family F . The capacity W is set to the global replication capacity G. After obtaining solution
T �, we form the document replication U as
UðdjÞ ¼ fC‘ : tj‘ 2 T �g: ð10Þ
Here, each item tj‘ 2 T � represents the replication of document dj on data center C‘. Thus, each set Si # T � impliesRi # bDU
i for

the corresponding query qi 2 Q. Due to (8) and (9), the objective of the reduced problem corresponds to maximizing the total
same formulation is adopted by (Ntoulas & Cho, 2007) for static index pruning.
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locality CðQ;UÞ. Replicating dj on data center C‘ consumes a space of sj from the available space, bounded by the global
capacity G, i.e., we pick an item of weight wj‘ without exceeding the capacity W. Hence, the proposed formulation is correct.

For the DR-L problem, we use a minor variant of the above solution. Since each data center has its own local replication
capacity, we solve a separate problem instance for each data center C‘ 2 C. For each document dj 2 D �D‘, we introduce an
item tj‘ into the main set T ‘ with the same weight as before. For each query qi 2 Q‘, we introduce a set S‘i ¼ ftj‘ : dj 2 Ri �D‘g
into family F ‘. The capacity W‘ is set to the local replication capacity L‘. We then solve the problem instance associated with
each data center T ‘ and obtain a solution set T �‘ . After we obtain all K solution sets, we form a document replication U as
UðdjÞ ¼ fC‘ : tj‘ 2 T �‘g: ð11Þ
We omit a discussion on the correctness of this solution as it is very similar to the above discussion on the correctness of our
solution for the DR-G problem.

For both the DR-G and DR-L problems, the cost of encoding the document replication instance is O(NK + Mk). For the DR-G
problem, the complexity of the employed heuristic is O(Mk + NKlg(NK)) while, for the DR-L problem, the complexity of solv-
ing the K problem instances is O(Mk + NKlgN). In both problems, the decoding of the obtained solution(s) has O(NK)-time
complexity. Hence, our solutions to the DR-G and DR-L problems have overall time complexities of O(Mk + NKlg(NK)) and
O(Mk + NKlgN), respectively.

5.3. Performance evaluation

In Fig. 5, the average response times are shown for varying replication amounts, assuming that the previous search results
are not cached in the data centers. These response time values are obtained using the simulation setup described in Section 3.
They include the cost of processing queries over the indexes in the local and non-local data centers as well as the round-trip
network latencies between the data centers and the network latencies between users and their local data centers
(Cambazoglu, Varol, et al., 2010).

According to the figure, the best-performing replication strategy is DR-G, especially at low replication rates. In the World
setup, at 16% replication, it outperforms its respective baseline B-G by about 5%. The performance gap between DR-L and
B-L is relatively small.

The fraction of queries that can be fully answered by the local data centers increases as the replication amount increases
(see Fig. 6). Hence, replicating more documents implies savings in network latencies. On the other hand, replication leads to
an increase in local index sizes, implying an increase in query processing times. Consequently, the lowest average response
times are observed with replication amounts between no replication and full replication. The optimum replication amount
depends on the setup. In Europe, the lowest average response time is attained by DR-G with replication amounts in the 2–4%
range, achieving about 17% reduction over the average response time attained by NR (117 ms versus 141 ms). However, as
the replication amount further increases, the average response times start to increase. Beyond 32% replication, all strategies
result in average response times higher than that of NR. For the World setup, the lowest response times are achieved by DR-G
at relatively larger replication amounts. At 16% replication, the average response time saving relative to FR is about 19%.
Interestingly, the performance of the replication strategies relative to FR deteriorates if the replication amount goes below
1%.

It is interesting to observe that, in the Europe setup, NR achieves a considerably lower average response time than FR

(141 ms versus 206 ms), whereas FR performs better than NR in the World setup (209 ms versus 270 ms). This is because,
in the Europe setup, query response times are dominated by the cost of evaluating queries over the index, whereas network
latencies between the data centers form the main overhead in the World setup. Also, we observe that both the baseline and
proposed strategies can outperform the NR and FR strategies when the replication amounts are low.
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Fig. 7 shows the impact of using an infinite result cache on the average response times. As expected, there is a considerable
reduction in response times as many queries can be readily served by the cache, without incurring any processing or network
latency overheads. We observe that, in the Europe setup, the lowest response time is now achieved at slightly higher repli-
cation amounts. Similarly, in the World setup, more documents need to be replicated to perform better than the FR strategy.

6. Optimizing query workload

6.1. Objective

In this section, we continue to focus on a search architecture similar to the one described in Section 5, i.e., certain queries
are processed on non-local data centers that are determined by an oracle query forwarding algorithm. The performance
objective we consider is to reduce the query processing workload of the system. In particular, as a closely related optimiza-
tion objective, we aim to minimize the average number of non-local data centers that participate in processing of queries by
selectively replicating documents on data centers. We first provide some notation before presenting our solution. The remote
load incurred by a query is defined as follows.

Definition 4 (Remote load of a query). For a given document replication U, the remote load x(qi, U) of a query qi is defined as
the number of non-local data centers Cr 2 C � fbCig that contain at least one relevant document not available on local data
center bCi, i.e.,
xðqi;UÞ ¼ Cr 2 C : ðDr \RiÞ� bDU
i

n o��� ���: ð12Þ

The total remote load of a document replication U is defined as a sum over the remote loads of queries in a Q, after the

documents are replicated via U, i.e.,
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XðQ;UÞ ¼
X
qi2Q

xðqi;UÞ: ð13Þ
The goal now becomes to find a feasible document replication U that minimizes XðQ;UÞ as the objective of the DR-G and DR-
L problems.

6.2. Solution

Our solution to the DR-G problem is based on a combinatorial reduction to the adapted version of the set union knapsack
problem (see Section 5.2). For each pair of document dj 2 D and data center C‘ 2 C such that dj 2 D�D‘, we introduce an
item tj‘ in the main set T with an associated weight wj‘ ¼ sj. Moreover, for each pair of query qi 2 Q and non-local data center
Cr 2 C � fC‘g, we introduce a set Sir ¼ ftj‘ : dj 2 Dr \Ri;C‘ ¼ bCig into family F . The capacity W is set to the global replication
capacity G. After having a solution T � to the reduced problem, we form the document replication U as
UðdjÞ ¼ fC‘ : tj‘ 2 T �g: ð14Þ
In this formulation, each item tj‘ 2 T � represents the replication of document dj on data center C‘. Thus, each set Sir # T � im-
plies ðDr \RiÞ# bDU

i for query qi 2 Q. This, in turn, implies that qi is not forwarded to Cr, decreasing by 1 the remote workload
w(qi, U) incurred by qi. Due to (13), the objective of the reduced problem correctly captures the minimization of the total
remote load XðQ;UÞ. We omit a discussion on the capacity constraint since it is similar to the formulations in Sections 4
and 5.

For the DR-L problem, we use a modified version of the above solution. Because each data center has its own local rep-
lication capacity, we solve a separate problem for each data center C‘. For each document dj 2 D �D‘, we introduce an item
tj‘ in T ‘ with an associated weight wj‘ ¼ sj. For each pair of query qi 2 Q‘ and non-local data center Cr 2 C � fC‘g, we intro-
duce a set S‘ir ¼ ftj‘ : dj 2 Dr \Rig. The capacity W‘ is set to the local replication capacity L‘. After having every solution set T �‘
associated with each data center C‘, we form the document replication U as
UðdjÞ ¼ fC‘ : tj‘ 2 T �‘g: ð15Þ
For both the DR-G and DR-L problems, the encoding of the solution(s) has a complexity of O(NK + MK + Mk). The complex-
ity of the heuristic(s) for DR-G and DR-L are O(MK + Mk + NKlg(NK)) and O(MK + Mk + NKlgN), respectively. In both problems,
the decoding of the obtained solution(s) has O(NK)-time complexity. Hence, overall, the solutions to the DR-G and DR-L prob-
lems have time complexities of O(MK + Mk + NKlg(NK)) and O(MK + Mk + NKlgN), respectively.

We note that although the constructed problem instances are different in case of optimizing the average response time
and optimizing the workload, the solutions yield exactly the same replication pattern. This is because an item appears the
same number of times among the sets and the heuristic takes into account only this number to decide on the replication
pattern.

6.3. Performance evaluation

The workload values reported in this section are obtained by assuming that the workload incurred by a query on a data cen-
ter is proportional to the size of the posting lists that need to be processed in that data center. The values are normalized by the
workload estimated for query evaluation over the entire index. Hence, the normalized workload is 1.0 for the FR strategy.

Fig. 8 shows the normalized query workloads as the replication amount varies. According to the figure, with very little
replication (e.g., 1%), it is possible to obtain large savings in the query workload. These large savings are mainly due to
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the sharp decrease in the average number of data centers that are active in query processing (see Fig. 9). However, as we
replicate more documents, the local index sizes start to increase, diminishing the gains obtained by avoiding non-local
computation.

In general, the proposed algorithms perform similar to the baseline algorithms. In the Europe setup, we observe that it is
possible to decrease the workload by 21% (with 2% replication) relative to NR. In the World setup, the workload gain relative
to NR goes up to 24% (with 4% replication). In both setups, it is possible to reduce the workload relative to FR by more than a
half, replicating only a small fraction of the documents (e.g., 1%).

Fig. 10 shows the normalized query workload values assuming that an infinite result cache is deployed in data centers. In
general, the performance behavior is not affected much by the presence of the result cache. On the other hand, the result
cache has a major impact on the query workload. In case of the FR strategy, result caching leads to workload reductions
of about 48% and 41% in the Europe and World setups, respectively (these values are not displayed in the plots).

7. Impact of query forwarding

In Sections 5 and 6, where we tried to optimize the average query response time and the query workload, respectively, we
assumed that certain queries are forwarded between the data centers via an oracle query forwarding algorithm. However, in
Section 4, where we tried to optimize the search quality, we assumed that queries are not forwarded between the data cen-
ters. Hence, in this section, we separately investigate the impact of query forwarding on the trade-off between the search
quality and the average query response time.

Fig. 11 demonstrates the relative performance in precision and query response time values if we add query forwarding
capability to a search system where the queries are originally not forwarded. In the figure, the values on the x axes of the
two plots show the reciprocal of the average precision values attained by the search system where no queries are
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forwarded.8 The values on the y axes show the response times for the system with oracle query forwarding capability. These
values are normalized by the respective response times observed on the system that has no query forwarding capability. For
document replication, we use the respective heuristics proposed for the DR-G problem. The data points in the plots correspond
to particular replication amounts (left to right: 100%, 64%, 32%, 16%, 8%, 4%, 2%, 1%, and 0%).

As expected, when queries are forwarded, we observe gains in precision in exchange of an increase in average query re-
sponse time. In particular, in the World setup, when the replication amount is 1% (the second data point from the right), the
average response time almost doubles in exchange of about 25% increase in precision. In the same setup, achieving precision
improvements similar to those in the Europe setup leads to relatively higher response time increase and higher document
replication amounts. In general, result caching does not significantly affect the trade-off between search quality and re-
sponse time, except for very low replication amounts.

8. Related work

There has been much research on distributed web search engines (Baeza-Yates, Castillo, Junqueira, Plachouras, & Silvestri,
2007; Barroso, Dean, & Hölzle, 2003; Cacheda, Carneiro, Plachouras, & Ounis, 2007a, Cacheda, Carneiro, Plachouras, & Ounis,
2007b; Orlando, Perego, & Silvestri, 2001). However, the feasibility of multi-site, geographically distributed search engines
has not been studied until recently (Baeza-Yates et al., 2009; Cambazoglu, et al., 2008, 2009; Cambazoglu, Varol, et al., 2010).
Cambazoglu, et al. (2008) investigated the feasibility of geographically distributed web crawling. Reduced network latencies
between data centers and web sites are shown to bring significant performance benefits for geographically distributed web
crawling, compared to a centralized web crawling architecture. Baeza-Yates et al. (2009) conducted a study to demonstrate
the performance gains in multi-site web search engine architectures. A cost model is developed and some simulation results
are provided, illustrating the feasibility of multi-site web search. The same work also proposed a simple query forwarding
algorithm that guarantees the correctness of the top k search results, relative to the results obtained by a centralized archi-
tecture. Cambazoglu et al. (2009) investigated the trade-off in search efficiency and effectiveness in multi-site web search
architectures. An analytical cost model is developed to quantify the impact of replication and query forwarding on search
efficiency. The same work also reported some results about the impact of geographically distributed web crawling on search
quality, in particular, on the impact of web coverage on relevance. Using a setup similar to ours, Cambazoglu, Varol, et al.
(2010) proposed a linear-programming-based query forwarding algorithm that improves the performance of the query for-
warding algorithm proposed in (Baeza-Yates et al., 2009).

Both (Baeza-Yates et al., 2009) and (Cambazoglu, Varol, et al., 2010) employed simple replication algorithms in their per-
formance evaluations. The former work prioritizes documents for replication according to their popularity in past search
results. The latter work improves over the former work by also considering the space overheads of documents. We used a
slightly modified version of the algorithm in (Cambazoglu, Varol, et al., 2010) as our baseline.

To our knowledge, so far, no work has proposed sophisticated document replication algorithms for multi-site search
engines. However, replication is previously considered in many other contexts: content delivery networks (Kangasharju,
Roberts, & Ross, 2002; Rabinovich, Rabinovich, Rajaraman, & Aggarwal, 1999), distributed database systems (Apers, 1998;
Wolfson, Jajodia, & Huang, 1997; Deris, Abawajy, & Mamat, 2008; Loukopoulos & Ahmad, 2000; Plattner & Alonso, 2004),
8 Recall that the precision is always one under the oracle query forwarding assumption.
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multimedia databases (Kwok, Karlapalem, Ahmed, & Pun, 1996), the Grid (Ranganathan & Foster, 2001, 2003; Lamehamedi,
Shentu, Szymanski, & Deelman, 2003; Tang, Lee, Tang, & Yeo, 2006; Stockinger et al., 2002; Chang, Chang, & Lin, 2007; Tang,
Lee, Yeo, & Tang, 2005; Abiteboul, Bonifati, Cobéna, Manolescu, & Milo, 2003), wireless networks (Jin & Wang, 2005), P2P
(Sozio, Neumann, & Weikum, 2008; Cohen & Shenker, 2002; Yamamoto, Maruta, & Oie, 2005), and distributed web servers
(Zhuo, Wang, & Lau, 2003; Tenzakhti, Day, & Ould-Khaoua, 2004; Tse, 2005). There is also a body of literature on replication
for achieving fault-tolerance and consistency in distributed systems (Wolfson et al., 1997; Loukopoulos & Ahmad, 2000;
Khan & Ahmad, 2004) and on replica placement (i.e., mirroring) (Korupolu, Plaxton, & Rajaraman, 1998; Radoslavov, Govin-
dan, & Estrin, 2002; Qiu, Padmanabhan, & Voelker, 2001; Cronin et al., 2002). We omit these works here as they are not di-
rectly relevant to our context. Interested reader may refer to (Helal, Bhargava, & Heddaya, 1996) for an overview of data
replication in distributed systems and to (Rabinovich & Spatschek, 2002) for document replication in the Web. Karlsson, Kar-
amanolis, and Mahalingam (2002) provide a good classification of papers on document replication. There are also several
surveys on the topic (Loukopoulos, Ahmad, & Papadias, 2002; Saito & Shapiro, 2005; Rabinovich, 1998; Khan & Ahmad,
2008).

In the rest of the section, we summarize only the works that are most relevant to ours. We specifically focus on the algo-
rithmic aspects of previous work on data replication. Lu and McKinley (1999) investigate the problem of selecting relevant
partial replicas in an information retrieval (IR) system using the inference network. They also study how to improve the per-
formance of an IR system performance using partial replication and caching (Lu & McKinley, 2000). Baev and Rajaraman
(2001) propose an approximation algorithm for the object replication problem in parallel databases. Kangasharju et al.
(2002) provide several greedy document replication heuristics to minimize data transfer costs in CDNs. Zhuo et al. (2003)
present four different algorithms, which make use of past document access patterns, to replicate documents in a geograph-
ically distributed web server. Among the presented algorithms, the proximity-aware algorithm is similar to ours in that doc-
uments are replicated according to their popularities in different Internet regions. Tenzakhti et al. (2004) provide distributed
replication heuristics for dynamically changing web collections. Tse (2005) proposes a replication algorithm with an approx-
imation guarantee to balance the workload as its objective. Brefeld, Cambazoglu, and Junqueira (2011) develop a machine-
learned classification technique to replicate newly discovered web documents on data centers. Their problem is different
than ours because document access frequencies are not available in their scenario. Hence, the replication decisions are made
solely based on the features extracted from the documents (e.g., region and language). In a recent study, Blanco, Cambazoglu,
Junqueira, Kelly, and Leroy (2011) propose document assignment strategies for a multi-site search engine, aiming to assign
each document to single a data center responsible for indexing the document. That work, however, does not consider rep-
lication of documents.

The closest application of document replication to ours is that on geographically distributed web servers, where the
main objective is to prevent possible hot spots in accessing documents on a server and to provide a good load balance
across all servers. However, our problem setting differs in several ways. First, geographically distributed search engines
are likely to have their own private high-speed networks, like CDNs (Qiu et al., 2001). This implies that the communication
overhead incurred by data replication is not likely to be an issue. Therefore, in the replication algorithms, it is not vital to
take this overhead into account. Second, the objectives we try to optimize (e.g., search quality) are quite different than the
objectives in other works (e.g., balancing the workload (Zhuo et al., 2003), reducing the volume of data transfer (Apers,
1998; Kwok et al., 1996; Zhuo et al., 2003), increasing replica availability Tewari & Adam, 1992). Third, in case of geo-
graphically distributed search engines, processing of a query may be performed on multiple sites, each contributing some
documents to the final result set, whereas other works assume that a single document is requested from a single site.
Finally, in our case, every user issues his queries to a local data center, i.e., a content-aware request dispatcher is not used
(Zhuo et al., 2003).
9. Conclusions

In this work, we investigated the problem of replicating documents on a multi-site, geographically distributed web search
engine. We devised different heuristics aiming to improve various important performance criteria, such as search quality,
average query response time, and query workload. The proposed heuristics are shown to slightly improve over the baseline
replication algorithms used in previous works.

The main finding of our work is that replication can be a feasible alternative to fully partitioned or fully replicated multi-
site search engines. We demonstrated that the optimum performance is achieved at certain replication amounts. We exper-
imentally identified these optimum replication rates for different performance metrics and different search engine settings:
the best replication rates are between 4% and 16% for minimizing the average response time and between 2% and 4% for
minimizing the query workload. We also confirmed the performance benefits of result caching in multi-site search
architectures.

A possible extension is to investigate the performance of our replication heuristics on related search architectures (e.g.,
P2P). Another research direction is to combine the replication problem with the user-to-site assignment problem, where the
objective is to find a good static assignment between users and local data centers. Finally, the oracle query forwarding
algorithm used in our work can be replaced with a practical query forwarding algorithm and the impact on the optimum
replication rates can be observed.
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