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a b s t r a c t

The need to have efficient storage schemes for spatial networks is apparent when the

volume of query processing in some road networks (e.g., the navigation systems) is

considered. Specifically, under the assumption that the road network is stored in a

central server, the adjacent data elements in the network must be clustered on the disk

processing of network queries. In this work, we introduce the link-based storage scheme

for clustered road networks and compare it with the previously proposed junction-

based storage scheme. In order to investigate the performance of aggregate network

queries in clustered road networks, we extend our recently proposed clustering

hypergraph model from junction-based storage to link-based storage. We propose

techniques for additional storage savings in bidirectional networks that make the link-

based storage scheme even more preferable in terms of the storage efficiency. We

evaluate the performance of our link-based storage scheme against the junction-based

storage scheme both theoretically and empirically. The results of the experiments

conducted on a wide range of road network datasets show that the link-based storage

scheme is preferable in terms of both storage and query processing efficiency.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

An important issue involved in large-scale spatial
network database design is storage modeling, which
directly affects the performance of query processing on
spatial network data. Spatial networks, which include
network elements such as data nodes and their pairwise
connections, are generally represented as directed graphs,
where vertices correspond to nodes and edges correspond
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to connections between the nodes. In this work, without
loss of generality, we focus on road networks, a typical
type of spatial networks. A road network is represented as
a two-tuple ðT;LÞ, where T and L, respectively,
indicate the junctions and the road segments (links)
between pairs of junctions.

In road networks, search queries form a major portion
of the overall cost of daily queries since these networks
have static topologies and hence the maintenance queries
are rare. Basic search queries include aggregate network
queries, i.e., route evaluation and path computation
queries, which are processed to derive an aggregate
property over the network elements. In processing
aggregate network queries, a vast amount of data must
be iteratively accessed and retrieved from the disk to the
memory. Concurrently accessing the data of the connected
elements is expected to decrease the disk access cost of
the queries.
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The disk access cost in large databases is higher than the
cost of in-memory computations even in multi-dimensional
data processing. If the access frequencies of the network
elements can be modeled from past query logs, storing
frequently and concurrently accessed data in the same disk
pages can decrease the total disk access cost in query
processing. This can be achieved by data clustering, with an
upper bound (equal to the disk page size) on individual
cluster sizes. For large networks, this type of clustering can
yield data allocations that ensure good performance in
query processing. The performance may be maintained by
periodically reclustering the data based on the access
statistics available in the past query logs.

In the literature, for efficient query processing in
road networks, extensive studies have been carried
out on indexing [17,21–23,35] and data allocation
schemes [13,25,33]. Efficient storage schemes should also
be adopted to increase the query performance along with
efficient data allocation schemes and index structures.
However, so far, disk storage schemes are not explored
separately from indexing.

1.2. Related work

There are a few works that study the disk-based
storage schemes for road networks. In the storage scheme
of [16], links of the network are stored in a separate link
table. The link table is clustered in disk pages such that
pages store the links of which origin nodes are closely
located. This approach is based on spatial locality, and
clustering does not utilize the connectivity information.

In the following studies, the importance of connectiv-
ity information in networks is realized, and graph
clustering models [25,33] are proposed to partition the
data into disk pages. In [25], the authors propose the
junction-based storage scheme, in which each record
corresponds to a junction together with its connectivity
information in the network. They evaluate their graph
clustering model for the junction-based storage scheme
by both uniform access frequencies and frequencies
extracted from the past query logs, yielding better
performance results. In [33], in clustering the network,
the minimum number of disk pages is achieved based on
the assumption that records have fixed size. The graph
clustering models for the junction-based storage scheme
are used in the recent spatial query processing and
clustering papers [1,18,34,35].

Recently, in [13], we showed that graph clustering
models do not correctly capture the disk access cost of
aggregate network operations. We proposed a clustering
hypergraph model that captures this cost correctly for the
junction-based storage scheme. In this model, records
are clustered in disk pages by hypergraph partitioning,
where the partitioning objective corresponds to minimiz-
ing the disk access cost of aggregate network operations in
network queries.

1.3. Contributions

In this work, our contributions are fivefold. First, we
introduce the link-based storage scheme. In this storage
scheme, each record stores the data associated with a link
together with the link’s connectivity information. Second,
we introduce a clustering hypergraph model for the link-
based storage scheme to partition the network data to
disk pages. Third, we present a detailed comparative
analysis on the properties of the junction- and link-based
storage schemes and show that the link-based storage
scheme is more amenable to clustering. Fourth, we
introduce storage enhancements for bidirectional net-
works. We show that the link-based storage scheme is
more amenable to our enhancements than the junction-
based storage scheme and results in better data allocation
for processing aggregate network queries. Finally, exten-
sive experimental comparisons are carried out on the
effects of page size, buffer size, path length, record size,
and dataset size for the junction- and link-based storage
schemes. Each parameter is explored for both storage
schemes, and relative improvements are observed on real-
life datasets with synthetic queries. According to the
experimental results, the link-based storage scheme can
be a good alternative to the widely used junction-based
storage scheme.

The rest of this paper is organized as follows: Section 2
presents some background material. In Section 3, the link-
based storage scheme and its advantages over the
junction-based storage scheme are discussed. Section 4
presents our clustering hypergraph model for the link-
based storage scheme. Section 5 overviews the experi-
mental framework and presents the experimental results.
Finally, we conclude the paper in Section 6.
2. Preliminaries

2.1. Hypergraph partitioning

The proposed clustering model heavily relies on
hypergraph partitioning. Here, we provide a brief descrip-
tion of hypergraphs and hypergraph partitioning. A
hypergraph H ¼ ðV;NÞ consists of a set of vertices V
and a set of nets N [5]. Each net nj 2N connects a subset
of vertices in V, which are referred to as the pins of nj and
denoted as Pins(nj). The size of a net nj is the number of
vertices connected by nj, i.e., jnjj ¼ jPinsðnjÞj. The size of a
hypergraph H is defined as the total number of its pins,
i.e., jHj ¼

P
nj2N
ðjnjjÞ. Each vertex vi has a weight wðviÞ,

and each net nj has a cost cðnjÞ.
P ¼ fV1;V2; . . . ;VKg is a K-way vertex partition if

each part Vk is non-empty, parts are pairwise disjoint,
and the union of parts gives V. In a given K-way vertex
partition P, a net is said to connect a part if it has at least
one pin in that part. The connectivity set LðnjÞ of a net nj is
the set of parts connected by nj. The connectivity lðnjÞ ¼

jLðnjÞj of a net nj is equal to the number of parts connected
by nj. If lðnjÞ ¼ 1, then nj is an internal net. If lðnjÞ41, then
nj is said to be cut.

In K-way hypergraph partitioning, the partitioning
objective is to minimize a cutsize metric defined over
the cut nets. In the literature, a number of cutsize metrics
are employed. In connectivity-1 metric, which is widely
used in VLSI layout design [2,12] and in scientific
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Fig. 1. A sample road network.
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computing [3,10,27,28,36–40], each net nj contributes
cðnjÞðlðnjÞ � 1Þ to the cutsize of a partition P. That is,

CutsizeðPÞ ¼
X

nj2N

cðnjÞðlðnjÞ � 1Þ. (1)

The partitioning constraint is to maintain an upper bound
on the part weights, i.e., WkpWmax, for each k ¼ 1; . . . ;K ,
where Wk ¼

P
vi2Vk

wðviÞ denotes the weight of part Vk

and Wmax denotes the maximum allowed part weight.
The multi-level framework [8] has been successfully

adopted in hypergraph partitioning leading to successful
hypergraph partitioning tools hMeTiS [19] and PaToH [11].
In multi-level hypergraph partitioning, the original hyper-
graph is coarsened into a smaller hypergraph after a series
of coarsening levels. At each coarsening level, highly
coherent vertices are grouped into supervertices by using
various matching heuristics. After the partitioning of the
coarsest hypergraph, the generated coarse hypergraphs
are uncoarsened back to the original, flat hypergraph. At
each uncoarsening level, a refinement heuristic (e.g., FM
[14] or KL [20]) is applied to minimize the cutsize while
maintaining the partitioning constraint.

Although direct K-way hypergraph partitioning [4] is
feasible, the Recursive Bipartitioning (RB) paradigm is
widely used in K-way hypergraph partitioning and known
to be amenable to produce good solution qualities. This
paradigm is especially suitable for partitioning hyper-
graphs when K is not known in advance. In the RB
paradigm, first, a two-way partition of the hypergraph is
obtained. Then, each part of the bipartition is further
bipartitioned in a recursive manner until the desired
number K of parts is obtained or part weights drop below
a given maximum allowed part weight, Wmax. In RB-based
hypergraph partitioning, the cut-net splitting scheme [10]
is adopted to capture the connectivity-1 cutsize metric
given in Eq. (1).

2.2. Aggregate network queries in road networks

Route evaluation and path computation queries are
shown to be highly frequent in intelligent transportation
systems [24]. In route evaluation queries, a prespecified
path is traversed to compute an objective function
(e.g., the total travel time). In path computation queries,
a path which satisfies a given objective function (e.g., the
shortest path in terms of travel time) is determined. These
two types of queries are named as aggregate network
queries as they depend on the evaluation of a number of
nodes at a time.

There are two network operations specific to aggregate
queries: Get-a-Successor GaS(ti; tj) operation retrieves the
network element tj among the successors of ti and
Get-Successors GSs(ti) operation retrieves all successor
elements of ti. GaS operations are used in route evaluation
queries, where a Find operation is followed by a sequence
of GaS operations. Here, the Find operation returns the
given junction from the memory if it resides in the buffer,
otherwise retrieves this junction from the secondary
storage using an index. GSs operations are used in path
computation queries, where a sequence of Find and GSs

operation pairs is performed.
Fig. 1 illustrates a sample network with 8 junctions and
15 links, where squares represent the junctions
and directed edges represent the links. In the figure, the
access frequencies of GaS and GSs operations are,
respectively, given on the directed edges and inside the
squares. These values indicate the number of operations
performed on the corresponding network elements.
Typically, distribution of queries over the network
elements is not uniform, and individual access frequencies
of the network elements are different. Hence, if the past
query logs are available, they can be utilized to estimate
the access frequencies of the network elements that will
be retrieved by the future queries.

2.3. Junction-based storage scheme

A frequently used approach for storing a road network
in the secondary storage is to use the adjacency list data
structure, where a record is allocated for each junction of
the network. Each record ri stores the data associated with
junction ti and its connectivity information including the
predecessor and successor lists. The data associated with
junction ti contains the coordinate of junction ti and its
attributes. The predecessor list PreðtiÞ denotes the list of
incoming links of ti, whereas the successor list SuccðtiÞ

denotes the list of outgoing links of ti. Each element in the
predecessor list stores the coordinates of the source
junction th of an incoming link ‘hi . The predecessor lists
are used in maintenance operations to update the
successor lists. In the successor list, each element stores
the coordinates of the destination junction tj of an
outgoing link ‘ij as well as the attributes of ‘ij. The record
sizes are not fixed because of the variation in the
predecessor and successor list sizes. If all links of a
junction ti are bidirectional, a storage saving can be
achieved since the predecessor and successor lists of ti

contain exactly the same set of junctions. Hence, it
suffices to store only the successor list of ti.

2.4. Data allocation problem in road networks

The record-to-page allocation problem that we focus
on can be defined as follows: given a road network and
data access frequencies extracted from the past query
logs, allocate a set of data records R ¼ fr1; r2; . . .g to a set
of disk pages P ¼ fP1;P2; . . .g such that the expected disk
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access cost is minimized as much as possible while the
number of allocated disk pages is kept reasonable.
Typically, allocation of data to disk pages can be modeled
as a clustering problem, where the clustering objective is
to try to store the records that are likely to be concurrently
accessed in the same pages. This way, efficiency in query
processing can be achieved since the records relevant to
the query can be fetched with fewer disk accesses.
2.5. Clustering hypergraph model for the junction-based

storage scheme

In our earlier study [13], we proposed a clustering
hypergraph model for the junction-based storage scheme.
The proposed model is shown to eliminate the flaws of the
clustering graph model [25,33] and to yield effective
results in minimizing the number of disk page accesses.
Here, we briefly summarize this model.

For a given road network, a clustering hypergraph is
created, where a vertex exists for each record of the
junction-based storage scheme. Each vertex has a weight
denoting the size of the corresponding record. The set of
GaS(ti; tj) and GaS(tj; ti) operations invoked between
junctions ti and tj is modeled as a two-pin net nij. The
net nij connects the pair of vertices that correspond to ti

and tj, and it is associated with a cost which is equal to the
total number of GaS(ti; tj) and GaS(tj; ti) operations. The set
of GSs(ti) operations invoked from a junction ti is modeled
by a multi-pin net ni. The net ni connects the vertices that
correspond to the junctions in the successor list of ti

together with the vertex corresponding to ti, and it is
associated with a cost which is equal to the total number
of GSs(ti) operations.

After representing the network as a clustering hyper-
graph, we partition the hypergraph with the disk page size
being the upper bound on part weights. A K-way partition
of this hypergraph is decoded as assigning the set of
records corresponding to the vertices in each vertex part
to a distinct page of the K-pages to be allocated for the
road network. The partitioning constraint corresponds to
enforcing the page size limit on the record-to-page
allocation. As shown in [13], the partitioning objective
corresponds to minimizing the total number of disk
accesses due to GaS and GSs operations under the single-
page buffer assumption.

In [13], we proposed two RB schemes, namely RB1 and
RB2 for partitioning the clustering hypergraph, since the
number of parts is not known in advance. RB1 and RB2 are
based on different bipartitioning constraints. The con-
straint in RB1 is to obtain nearly equal part weights,
whereas the constraint in RB2 is to obtain a bipartition
such that one of the part weights is nearly a multiple of
page size. After the RB-based partitioning, we pack lightly
loaded parts to decrease the number of pages. The
algorithm utilized for page packing is based on the best-
fit heuristic used in solving the bin-packing problem. The
RB2 scheme is found to benefit more from this packing
process since it generates a large number of lightly loaded
parts/pages. Experimental results show that RB2 performs
slightly better than RB1.
3. Link-based storage scheme

3.1. Definition

In the proposed link-based storage scheme, a record is
allocated for each link of the network. Each record rij

stores the data associated with link ‘ij and its connectivity
information. The data associated with a link ‘ij typically
contain the coordinates of junctions ti and tj, attributes of
the destination junction tj and attributes of ‘ij. The
connectivity information includes the predecessor and
successor lists. The predecessor list Preð‘ijÞ includes
the set of incoming links of the source junction ti of ‘ij,
whereas the successor list Succð‘ijÞ includes the set of
outgoing links of the destination junction tj of ‘ij. Each
element in the predecessor list of a link ‘ij stores the
coordinates of the source junction th of an incoming link
‘hi, whereas each element in the successor list stores the
coordinates of the destination junction tk of an outgoing
link ‘jk.

In this scheme, storage savings can be achieved if the
network contains bidirectional links where the link
attributes are the same for both directions. For example,
if ‘ij; ‘ji 2L, the information in records rij and rji can be
stored as a single record, where the predecessor and
successor lists are updated accordingly. Further savings
can be achieved if all links of both junctions of a
bidirectional link are also bidirectional. In that case, the
predecessor and successor lists of both ‘ij and ‘ji can be
stored only once since the predecessor list of ‘ij corre-
sponds to the successor list of ‘ji and vice versa.
3.2. Comparison of storage schemes

In practice, the storage size of the link attributes is
greater than that of the junction attributes, and the
number of links is greater than the number of junctions.
Depending on these network-specific parameters, one of
the two storage schemes may be favorable in terms of the
total storage size and/or the average record size. The role
of average record size in the disk access cost of network
queries can be explained as follows. For a given query
distribution, the sum of the frequencies of the GSs

operations to be invoked from the outgoing links of
junction tj in the link-based storage scheme is equal to the
frequency of the GSs operations to be invoked from tj in
the junction-based storage scheme. Hence, in processing a
query, the number of records to be retrieved in both
storage schemes is the same. Since smaller average record
size enables clustering more records to a page, the query
overhead is expected to decrease with decreasing average
record size. Below, we provide a detailed comparative
analysis of the storage schemes in terms of both the total
storage size and average record size.

The total storage sizes ST and SL of the junction- and
link-based storage schemes can be computed as

ST ¼
X
t2T

ðCid þ CT þ jPreðtÞjCid þ jSuccðtÞjðCid þ CLÞÞ

¼ jTjðCid þ CTÞ þ jLjð2Cid þ CLÞ (2)
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and

SL ¼
X
‘2L

ð2Cid þ CL þ CT þ jPreð‘ÞjCid þ jSuccð‘ÞjCidÞ

¼ jLjð2Cid þ CL þ CTÞ þ Cid

X
‘2L

ðjPreð‘Þj þ jSuccð‘ÞjÞ, (3)

where Cid denotes the storage size of junction coordinates.
CT and CL refer to the fixed storage size of junction and
link attributes, respectively. The difference between the
total storage sizes of the two schemes is

SL � ST ¼Cid

X
‘2L

ðjPreð‘Þj þ jSuccð‘ÞjÞ þ jLjCT � jTjðCid þ CTÞ

¼CTðjLj � jTjÞ þ Cid

X
‘2L

ðjPreð‘Þj þ jSuccð‘ÞjÞ � jTj

 !
.

(4)

In a typical road network, the number of links is greater
than the number of junctions (i.e., jLj4jTj), and
each link has at least one predecessor or successor
(i.e., jPreð‘Þj þ jSuccð‘ÞjX1 for each ‘). Hence, both terms
in (4) are always positive. As a result, the link-based
storage scheme requires more disk space than the
junction-based storage scheme.

The average record sizes sT and sL of the junction- and
link-based storage schemes can be computed as follows
under the simplifying assumption that the number of
incoming and outgoing links for each junction are both
equal to davg ¼ jLj=jTj. Under this assumption, ST

remains the same while SL and SL � ST, respectively,
become

SL ¼ jLjð2Cid þ CL þ CTÞ þ 2CidjLjdavg (5)

and

SL � ST ¼ CTðjLj � jTjÞ þ Cidð2jLjdavg � jTjÞ. (6)

Hence, the average record sizes are

sT ¼
ST

jTj
¼ Cid þ CT þ davgð2Cid þ CLÞ (7)

and

sL ¼
SL

jLj
¼ 2Cid þ CL þ CT þ 2Ciddavg. (8)

The difference between the average record sizes of the
two schemes is

sT � sL ¼ CLðdavg � 1Þ � Cid. (9)

In a typical road network, davg41 and CL4Cid. Hence, the
average record size in the link-based storage scheme is
always smaller than that of the junction-based storage
scheme under the given simplifying assumption. As seen
from this comparative analysis, although the link-based
storage scheme requires more disk space, its average
record size is likely to be smaller. Thus, the link-based
storage scheme can be expected to perform better than
the junction-based storage scheme in terms of disk access
cost.

In bidirectional networks, the storage savings de-
scribed in Sections 2.3 and 3.1 are expected to increase
the efficiency of both storage schemes. The link-based
storage scheme is expected to benefit more from the
storage savings compared to the junction-based storage
scheme since, in the link-based storage scheme, we
combine the records storing the two directional links
between two junctions into a single record and hence
halve the number of records. The total storage size
decreases for both schemes as shown below:

Sb
T ¼ jTjðCid þ CTÞ þ jLjðCid þ CLÞ (10)

and

Sb
L ¼
jLj

2
ð2Cid þ CL þ 2CTÞ þ 2CidjLjðdavg � 1Þ. (11)

Note that (11) is derived by using the simplifying
assumption mentioned earlier. The difference between
the total storage sizes of the two schemes becomes

Sb
L � Sb

T ¼ CTðjLj � jTjÞ þ Cidð2jLjðdavg � 1Þ � jTjÞ � CL
jLj

2
.

(12)

The comparison of (6) and (12) shows that the total
storage size difference between the two schemes de-
creases in favor of the link-based scheme by
jLjð2Cid þ CL=2Þ. As seen in (12), the link-based scheme
may require even less total disk space than the junction-
based scheme for large CL values.

In bidirectional networks, the average record sizes
become

sb
T ¼

Sb
T

jTj
¼ Cid þ CT þ davgðCid þ CLÞ (13)

and

sb
L ¼

Sb
L

jLj=2
¼ CL þ 2CT þ 2Cidð2davg � 1Þ. (14)

The difference between the average record sizes of the
two schemes is

sb
T � sb

L ¼ CLðdavg � 1Þ � 3Cidðdavg � 1Þ � CT. (15)

The comparison of (9) and (15) shows that the difference
between the average record sizes decreases in bidirec-
tional networks in general. As seen in (15), the average
record size of the link-based scheme remains to be less
than that of the junction-based scheme for typical
networks, where davg41, CL43Cid, and CT is quite small.

Even though the average record size difference be-
tween the two schemes decreases in bidirectional net-
works, the link-based storage scheme is still more
amenable to record clustering compared to the junction-
based scheme. We will explain this advantage of the
link-based storage scheme over the junction-based
storage scheme for a junction tj with d links all of which
are bidirectional. In the junction-based storage scheme,
junction tj will have d successors. We should cluster
record rj storing tj together with all the records storing the
d successor junctions to the same page to avoid the page
access cost for the GSsðtjÞ operation. That is, these dþ 1
records need to be clustered in the same page. On the
other hand, in the link-based storage scheme, each link
incident to junction tj has d� 1 successors excluding
itself. Since rij stores both ‘ij and ‘ji, we should cluster
record rij together with d� 1 records storing the links
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incident to tj other than ‘ji in the same page to avoid the
page access cost for the GSsð‘ijÞ operation. This holds for all
records storing the links incident to junction tj. Hence, it is
sufficient to cluster these d records in the same page to
avoid the page access cost for the GSs operations invoked
from the links incident to junction tj. Therefore, in the
link-based scheme, each GSs operation invoked from a
junction connected by only bidirectional links can be
accomplished by accessing one less record than the
junction-based scheme.

Figs. 2(a) and (b), respectively, show the junction- and
link-based storage schemes for a sub-network consisting
of a junction t1 connected by four bidirectional links.
The data records are shown in the right sides of Fig. 2,
where the successors are separated by bold lines and
additional successors are appended as dotted parts to
represent the neighbor junctions/links not shown in the
figure. In the junction-based storage scheme, d ¼ 5
records (i.e., r1; r2; r3; r4; and r5), whereas in the link-
based storage scheme d� 1 ¼ 4 records (i.e., r12; r13; r14;

and r15) need to be clustered in a page to avoid the page
access cost for the same number of GSs operations. This
explains why the link-based storage scheme will be more
amenable to clustering than the junction-based storage
scheme even when the average record sizes are equal in
the two storage schemes.

In addition to the above-mentioned advantages in
storage size and clustering, the link-based storage scheme,
as in the dual network concept, which was originally
proposed in [9] and later used in [31] and [32], expresses
the relations between consecutive links along paths and is
more suitable to capture the restrictions in networks such
as turn restrictions.
3.3. Auxiliary index structures

A hash-based index structure is used to locate the
network elements in both storage schemes. Data retrieval
(i.e., Find, GaS, and GSs) operations needed for querying
network elements in the course of execution are per-
Fig. 2. Storage of records in a bidirectional sub-network using (a)
formed by using this hash-based index with an average
cost of single disk access for each retrieval request if the
network element does not already reside in the memory.
The storage cost of a hash-based index is in the order of
number of network elements to be indexed. So, the
storage cost of the hash-based index is in the order of
jTj and jLj in the junction- and link-based storage
schemes, respectively. That is, the hash-based index,
respectively, requires an additional storage of size Shash ¼

jTjCptr and Shash ¼ jLjCptr in the junction- and link-based
storage schemes, where Cptr denotes the size of a pointer
to a data record.

In general, the route evaluation or path computation
queries are submitted to the GIS systems as point queries,
which contain the ðx; yÞ coordinates of a source and a
destination point. It is more likely that the query points
lie on the links rather than junctions. Here, we refer to the
link that a source point lies on as the source link. In the
link-based storage scheme, route evaluation and path
computation start from the source link, whereas, in the
junction-based storage scheme, they start from the
destination junction of the source link. In both cases,
the source link must be identified. In our architecture, an
R-tree index on links is used as an additional index in both
storage schemes and the sole purpose of this index is to
locate the source link. The R-tree has two types of nodes:
non-leaf nodes and leaf nodes [15]. Non-leaf nodes
contain index record entries of the form hMBR, ptri where
MBR is the minimum bounding rectangle of all rectangles
stored in the entries of the lower level child node pointed
to by ptr. The only minor difference between the R-tree
implementation in the two storage schemes is the data
stored in the leaf nodes. Each leaf node stores an
hMBR, ptri pair for a link, where MBR corresponds to the
minimum bounding rectangle of the link and ptr is the
disk page address of the respective record. This record
stores data associated with the respective link in the link-
based storage scheme, whereas it stores data associated
with the endpoint junction of the respective link in the
junction-based storage scheme. As the leaf nodes deter-
mine the overall storage complexity of the index, both
the junction-based and (b) the link-based storage schemes.
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Fig. 3. The clustering hypergraph construction: (a) two-pin net n123 for the GaS(‘12; ‘23) operations, (b) coalescence of two two-pin nets incurred by

GaS(‘12; ‘21) and GaS(‘21; ‘12) into net n121, (c) multi-pin net n12 for the GSs(‘12) operations.
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storage schemes require an additional storage of size
SRtree ¼ jLjCRnode for indexing the links of the network.
Here, CRnode denotes the size of each leaf node.
4. Clustering hypergraph model for the link-based
storage scheme

In this section, we present our clustering hypergraph
model for the general case of directed networks, where an
individual record is stored for each directed link. This
model can easily be extended to the bidirectional case,
where a single record is stored for each bidirectional link.
4.1. Hypergraph construction

A clustering hypergraph HL ¼ ðVL;NLÞ is created to
model the network ðT;LÞ. In HL, a vertex vij 2VL exists
for each record rij 2R storing the data associated with
link ‘ij 2L. The size of a record rij is assigned as the
weight wðvijÞ of vertex vij. The net set NL is the union of
two disjoint sets of nets, NGaS

L and NGSs
L , which,

respectively, encapsulate the disk access costs of GaS

and GSs operations, i.e., NL ¼NGaS
L [NGSs

L .
In NGaS

L , we employ two-pin nets to represent the cost
of GaS operations. For each incoming and outgoing link
pair ‘hi and ‘ij of each junction ti, GaS(‘hi; ‘ij) operations
incur a two-pin net nhij with PinsðnhijÞ ¼ fvhi;vijg. If the
source junction of the incoming link is the same as
the destination junction of the outgoing link (i.e., h ¼ j),
the two two-pin nets incurred by the GaS(‘hi; ‘ij) and
GaS(‘ij; ‘hi) operations can be coalesced into a single two-
pin net with appropriate cost adjustment. Thus, the cost
cðnhijÞ associated with net nhij can be written as

cðnhijÞ ¼
f ð‘hi; ‘ijÞ if ‘hi; ‘ij 2L ^ haj;

f ð‘hi; ‘ijÞ þ f ð‘ij; ‘hiÞ if ‘hi; ‘ij 2L ^ h ¼ j:

(
(16)

Here, f ð‘hi; ‘ijÞ denotes the total access frequency of path
h‘hi; ‘iji in GaS(‘hi; ‘ij) operations. Fig. 3(a) shows the two-
pin net construction for a pair of neighbor links ‘12 and
‘23, and Fig. 3(b) shows the two-pin net construction for
the cyclic paths h‘12; ‘21i and h‘21; ‘12i.
In NGSs
L , we employ multi-pin nets to represent the

cost of GSs operations. For each link ‘hi with a destination
junction ti having doutðtiÞ40 successor(s), GSs(ti) opera-
tions incur a (doutðtiÞ þ 1)-pin net nhi, which connects
vertex vhi and the vertices corresponding to the records of
the links that are in the successor list of ‘hi. That is,

PinsðnhiÞ ¼ fvhig [ fvij : tj 2 SuccðtiÞg. (17)

Each net nhi is associated with a cost

cðnhiÞ ¼ f ð‘hiÞ (18)

for capturing the cost of GSs(‘hi) operations. Here, f ð‘hiÞ

denotes the total access frequency of link ‘hi in GSs(‘hi)
operations. Fig. 3(c) displays the multi-pin net construc-
tion for link ‘12, which has the successor list f‘23; ‘24; ‘25g.

4.2. Clustering hypergraph model

After HL ¼ ðVL;NLÞ is constructed, it is partitioned
into a number of parts P ¼ fV1;V2; . . .g using the
recursive bipartitioning paradigm mentioned in Section
2.1. Here, each part Vk 2 P corresponds to the subset of
records to be assigned to disk page Pk 2 P. The
partitioning constraint is to enforce the page size as
the upper bound on the weight of the vertex parts so that
the disk page size is not exceeded in record allocation. The
partitioning objective is to minimize the cutsize according
to the connectivity-1 metric as defined in Section 2.1.
Under the single-page buffer assumption, the connectiv-
ity-1 cost incurred to the cutsize by the two-pin cut nets
in NGaS

L and multi-pin cut nets in NGSs
L exactly corre-

sponds to the disk access cost incurred by the GaS

operations in the route evaluation queries and GSs

operations in the path computation queries, respectively.
Thus, in our model, minimizing Cutsize ðPÞ given in (19)
exactly minimizes the total number of disk accesses. In
the following two paragraphs, we show the correctness of
our model for the GaS and GSs operations:

CutsizeðPÞ ¼
X

ni2N
GaS
L

cðniÞðlðniÞ � 1Þ þ
X

ni2N
GSs
L

cðniÞðlðniÞ � 1Þ

¼
X

ni2NL

cðniÞðlðniÞ � 1Þ. (19)
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Consider a partition P and a two-pin net nhij 2N
GaS
L with

PinsðnhijÞ ¼ fvhi;vijg. If nhij is internal to a part Vk, then
records rhi and rij both reside in page Pk. Since both rhi

and rij can be found in the memory when Pk is in the page
buffer, neither GaSð‘hi; ‘ijÞ nor GaSð‘ij; ‘hiÞ operations incur
any disk access. Note that GaSð‘ij; ‘hiÞ operations are
possible only if h ¼ j. If nhij is a cut net with connectivity
set LðnhijÞ ¼ fVk;Vmg, rhi and rij reside in separate pages
Pk and Pm. Without loss of generality, assume that rhi 2

Pk and rij 2 Pm. In this case, GaSð‘hi; ‘ijÞ operations incur
f ð‘hi; ‘ijÞ disk accesses in order to replace the current page
Pk in the buffer with Pm in the disk. In a similar manner,
GaSð‘ij; ‘hiÞ operations incur f ð‘ij; ‘hiÞ disk accesses in order
to replace the current page Pm in the buffer with Pk in
the disk. Hence, cut net nhij incurs a cost of cðnhijÞ to the
cutsize since lðnhijÞ � 1 ¼ 1.

Now, consider the same partition P and a multi-pin
net nij 2N

GSs
T . If nij is internal to a part Vk, then record rij

and all records storing the links in the successor list of ‘ij

reside in page Pk. Consequently, GSsð‘ijÞ operations do not
incur any disk access since page Pk is already in the page
buffer. If nij is a cut net with connectivity set LðnijÞ, record
rij and the records storing the links in the successor list of
‘ij are distributed across the pages corresponding to the
vertex parts that belong to LðnijÞ. Without loss of
generality, assume that rij resides in page Pk, where Vk

must be in LðnijÞ. In this case, each GSsð‘ijÞ operation
incurs lðnijÞ � 1 page accesses in order to retrieve the
records storing the links in the successor list of ‘ij by
fetching the pages corresponding to the vertex parts in
LðnijÞ � fVkg. Hence, cut net nij incurs a cost of
cðnijÞðlðnijÞ � 1Þ to the cutsize.
Fig. 4. The clustering hypergraph HL for the network given in Fig. 1 and a 4-w

ðVL ;N
GaS
L Þ and (b) ðVL;N

GSs
L Þ, respectively, modeling the disk access cost of G
Fig. 4 shows the clustering hypergraph HL for the
network given in Fig. 1 in two parts, which separately
show the net sets NGaS

L and NGSs
L with the associated

costs of GaS and GSs operations shown in parentheses. In
Fig. 4(a), consider two-pin cut net n246 with Pinsðn246Þ ¼

fv24;v46g and Lðn246Þ ¼ fV1;V3g. Since v24 is in vertex
part V1, page P1 must be the single page in the buffer
when GSs(‘24) operations are invoked. Since v46 is in part
V2, lðn246Þ � 1 ¼ 2� 1 ¼ 1 disk access is required to
retrieve record r46 into the buffer. Similarly, in Fig. 4(b),
consider multi-pin cut net n24 with Pinsðn24Þ ¼

fv24;v45;v46g and Lðn24Þ ¼ fV1;V2;V3g. Since v24 is in
vertex part V1, page P1 must be the single page in the
buffer when GSs(‘24) operations are invoked. Since v45 and
v46 are, respectively, in parts V2 and V3, each of the four
GSs(‘24) operations will incur lðn24Þ � 1 ¼ 3� 1 ¼ 2 disk
accesses for pages P2 and P3 to bring them into the buffer
for processing records r45 and r46. Note that internal nets
do not incur any cost for neither GaS nor GSs operations
since they have a connectivity of 1. The total cost of GaS

operations, due to the cut nets fn134;n146;n245;n246;n345;

n346;n512;n675;n678;n686;n745;n751;n867g, is ð1þ 2þ 1þ
5þ 1þ 1þ 3þ 3þ 9þ 4þ 1þ 7þ 3Þ � ð2� 1Þ ¼ 41 and
the total cost of GSs operations, due to the cut nets
fn13;n14;n24;n34;n51;n67;n68;n74;n75;n86g, is 3� ð2� 1Þþ
3�ð2�1Þþ4�ð3�1Þþ2�ð3�1Þþ11�ð2�1Þþ9�ð2�1Þþ
7�ð2�1Þþ1� ð2� 1Þ þ 7� ð2� 1Þ þ 4� ð2� 1Þ ¼ 57.

The clustering hypergraph models for the junction-
and link-based storage schemes are accurate as long as the
queries in the past query log tend to reappear in the
current time window. Disk pages can be periodically
reorganized to capture the characteristics of query logs in
ay vertex partition separately shown on net-induced subhypergraphs (a)

aS and GSs operations.
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Fig. 5. (a) A sub-network with GSsðt3Þ, (b) HT: a four-pin net n3 for the GSs(t3) operations with f ðt3Þ ¼ 10, (c) HL: two four-pin nets n13 for the GSsð‘13Þ

operations with f ð‘13Þ ¼ 5 and n23 for the GSsð‘23Þ operations with f ð‘13Þ ¼ 5.
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different time windows. Furthermore, incremental clus-
tering approaches can be adapted to reflect the changes in
time.

4.3. Comparison of clustering hypergraph models

The clustering hypergraph models for the junction-
and link-based storage schemes are closely related in
representing a given road network for solving the record-
to-page allocation problem under the respective storage
scheme. In both clustering hypergraphs, vertices represent
the records, whereas nets represent the aggregate net-
work operations. The set of vertices connected by a net
correspond to the set of records concurrently accessed by
the respective operation. Vertex weights correspond to
records sizes, whereas net costs correspond to the
frequency of the respective network operation. In both
models, records are clustered into disk pages by partition-
ing the respective hypergraph, where the partitioning
objective corresponds to minimizing the disk access cost
of aggregate network operations in network queries. The
topological difference between these two hypergraph
models stems from the difference between the two
storage schemes. Topologically, vertices correspond to
junctions and links in the former and latter hypergraph
models, respectively.

The sizes of the constructed hypergraphs in our
clustering models play an important role in computational
and space requirements of the partitioning process. These
sizes depend on the topological properties of the network.
In the clustering hypergraph HT for the junction-based
storage scheme, the number jNGaS

T j of two-pin nets varies
between djLj=2e and jLj. The number jNGSs

T j of multi-pin
nets is equal to jTj � a, where a ¼ jfti : doutðtiÞ ¼ 0gj is the
number of dead ends. The number of pins introduced by
multi-pin nets is jLj þ jTj � a. Hence, we have

jVTj ¼ jTj,

djLj=2e þ jTj � apjNTjpjLj þ jTj � a,

2d1:5 jLje þ jTj � apjHTjp3jLj þ jTj � a. (20)

In the clustering hypergraph HL for the link-based storage
scheme, the number jNGaS

L j of two-pin nets isP
ti2T
ðdinðtiÞ � doutðtiÞÞ � b, where dinðtiÞ denotes the num-

ber of predecessors of ti and b ¼ jf‘ij : ‘ij 2L ^ ‘ji 2Lgj is
the number of bidirectional links. The number jNGSs

L j of
multi-pin nets is equal to jLj �
P

ti2T;doutðtiÞ¼0dinðtiÞ. The
number of pins introduced by multi-pin nets isP

ti2T;doutðtiÞ40dinðtiÞ � ðdoutðtiÞ þ 1Þ. Hence, we have

jVLj ¼ jLj,

jNLj ¼
X
ti2T

ðdinðtiÞ � doutðtiÞÞ � bþ jLj �
X

ti2T;doutðtiÞ¼0

dinðtiÞ,

jHLj ¼ 3
X
ti2T

ðdinðtiÞ � doutðtiÞÞ þ
X

ti2T;doutðtiÞ40

dinðtiÞ � 2b.

(21)

In this work, we claim that the clustering hypergraph
model provides more flexibility in partitioning for the
link-based storage scheme compared to the junction-
based storage scheme. We illustrate this by the following
example. Fig. 5(a) shows a sample sub-network ðT;LÞ
with a junction t3 having two incoming and three
outgoing links. Figs. 5(b) and (c) show the net-induced
subhypergraphs ðVT;N

GSs
T Þ and ðVL;N

GSs
L Þ corresponding

to the sub-network given in Fig. 5(a) for the junction- and
link-based storage schemes, respectively. Ten GSs opera-
tions are assumed to be performed on junction t3, five GSs

operations for each incoming link of t3. As seen in the
figure, junction t3 induces only one net n3 in HT, whereas
the two incoming links ‘13 and ‘23 of t3 induce nets n13

and n23 in HL. Figs. 5(b) and (c) also show 2-way
partitions for HT and HL. In this example, if there were
no part size constraints, moving vertex v3 from V1 to V2

would remove net n3 from the cut, thus reducing the
cutsize by 10. However, this move may not be feasible due
to the maximum part size constraint on V2. Since the
record sizes in the link-based storage scheme are less than
those in the junction-based storage scheme as shown in
Section 3.2, either v13 or v23 can move to V2 without
violating the maximum part size constraint, respectively,
removing n13 or n23 from the cut with a saving of 5 on the
cutsize. In general, the partitioning of the clustering
hypergraph for the link-based storage scheme has a better
solution space as there is greater flexibility in moving
vertices between parts.

In bidirectional networks, the storage saving in the
link-based scheme results in higher improvements in
query processing performance compared to the junction-
based scheme. We provide Fig. 6 to validate this claim.
Fig. 6(a) shows a sample sub-network ðT;LÞ with a
junction t1 having four bidirectional incoming/outgoing
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Fig. 6. (a) A bidirectional sub-network with GSsðt1Þ, (b) HT: a five-pin net n1 for the GSs(t1) operations with cðn1Þ ¼ f ðt1Þ, (c) HL: four identical four-pin

nets n12 ;n13 ;n14, and n15 for GSsð‘12Þ, GSsð‘13Þ, GSsð‘14Þ, and GSsð‘15Þ, respectively, (d) HL: identical nets n12;n13;n14; and n15 coalesced into net n01 with

cost cðn01Þ ¼ cðn1Þ.

Table 1
Properties of road network datasets.

Tag Dataset Road network

jTj jLj davg

D1 California HPN 10 141 28 370 2.80

D2 SanJoaquin 17444 45 974 2.64

D3 Minnesota7 34 222 92 206 2.69

D4 Sanfrancisco 166 558 426 742 2.56
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links. Figs. 6(b) and (c) show the net-induced subhyper-
graphs ðVT;N

GSs
T Þ and ðVL;N

GSs
L Þ corresponding to the

sub-network for the junction- and link-based storage
schemes, respectively. Note that the sum of the number of
GSs operations performed on the incoming links
of junction t1 in the link-based storage scheme is equal
to the number of GSs operations performed on junction t1.
That is, f ð‘21Þ þ f ð‘31Þ þ f ð‘41Þ þ f ð‘51Þ ¼ f ðt1Þ.

As seen in Fig. 6(b), in HT, for the GSsðt1Þ operation,
there is a five-pin net with Pinsðn1Þ ¼ fv1;v2;v3;v4;v5g

and cðn1Þ ¼ f ðt1Þ. In the construction of the clustering
hypergraph for the link-based storage scheme, two
directional links between the same junctions (i.e., ‘ij and
‘ji) are represented with a bidirectional link ‘ij, where ioj.
Hence, a vertex vij exists for each record rij storing link ‘ij.
As seen in Fig. 6(c), HL has four four-pin nets n12;n13;n14;

and n15 to capture the costs of the GSsð‘21Þ, GSsð‘31Þ,
GSsð‘41Þ, and GSsð‘51Þ operations, respectively. Note that
these four four-pin nets connect the same set of pins,
i.e., Pinsðn12Þ ¼ Pinsðn13Þ ¼ Pinsðn14Þ ¼ Pinsðn15Þ ¼ fv12;

v13;v14;v15g. Such nets, which connect exactly the same
set of pins, are called identical nets. Identical nets can be
coalesced into a single representative net. The represen-
tative net’s cost is set to the total cost of all constituting
nets. Here, n12;n13;n14; and n15 can be coalesced into a
representative net n01 with Pinsðn01Þ ¼ fv12;v13;v14;v15g

and cðn01Þ ¼ cðn12Þ þ cðn13Þ þ cðn14Þ þ cðn15Þ as shown in
Fig. 6(d). Comparison of Figs. 6(b) and (d) shows that, for
GSs operations, the clustering hypergraphs for the two
storage schemes have the same set of nets with equal
costs. However, the size of each net in HL is one less than
the size of the respective net in HT. This finding conforms
with the fact that, in query processing, each GSs operation
in the link-based storage scheme accesses one record less
compared to the junction-based storage scheme. Thus, the
partitioning of HL is expected to lead to smaller cutsizes
compared to that of HT because of smaller net sizes in the
link-based storage scheme.

In bidirectional networks, the sizes of the clustering
hypergraphs for the two storage schemes become

jVTj ¼ jTj,

jNTj ¼ jLj=2þ jTj,

jHTj ¼ 2jLj þ jTj (22)
and

jVLj ¼ jLj=2,

jNLj ¼
X
ti2T

dðtiÞ
2
� jLj þ jTj � t,

jHLj ¼ 2
X
ti2T

dðtiÞ
2
� jLj � t, (23)

where dðtiÞ ¼ dinðtiÞ ¼ doutðtiÞ and t ¼ jfti : dðtiÞ ¼ 1gj.

5. Experimental results

5.1. Experimental setup

In order to show the validity of the proposed link-
based storage scheme and the clustering model, we have
conducted a wide range of experiments on four real-life
road network datasets collected from U.S. Tiger/Line [26]
(Minnesota7 including 7 counties Anoka, Carver, Dakota,
Hennepin, Ramsey, Scott, Washington; Sanfrancisco), U.S.
Department of Transportation [29] (California Highway
Planning Network), and Brinkhoff’s data files [7] (SanJoa-
quin). We eliminate the self-loops and multi-links in the
datasets through a preprocessing step. The properties of
the preprocessed datasets are given in Table 1. In the table,
davg refers to the average number of links per junction.

It is important to note that all links in our datasets are
bidirectional. This enables the use of the storage savings
mentioned in Sections 2.3 and 3.1. In the junction-based
storage scheme, we store only the successor list of each
junction. In the link-based storage scheme, we combine
the records storing the two directional links between two
junctions into a single record and hence halve the number
of records.
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Table 2
Storage requirements of junction- and link-based storage schemes (in bytes).

Dataset CT ¼ 0

CL ¼ 16 CL ¼ 28 CL ¼ 40

Sb
T Sb

L
sb

T sb
L Sb

T Sb
L

sb
T sb

L Sb
T Sb

L
sb

T sb
L

D1 607 964 813 624 60.0 57.4 948 404 983 844 93.5 69.4 1 288 844 1154 064 127.1 81.4

D2 989 256 1 298 856 56.7 56.5 1540 944 1574 700 88.3 68.5 2 092 632 1850 544 120.0 80.5

D3 1981008 2 650 184 57.9 57.5 3 087480 3 203 420 90.2 69.5 4193 952 3 756 656 122.6 81.5

D4 9 201072 11850 952 55.2 55.5 14 321976 14 411404 86.0 67.5 19 442 880 16 971856 116.7 79.5

Averages normalized w.r.t. storage sizes of the junction-based scheme

1.00 1.29 1.00 0.99 1.00 1.01 1.00 0.77 1.00 0.87 1.00 0.67

Sb
T and Sb

L denote the total storage sizes for the junction- and link-based storage schemes, respectively. sb
T and sb

L denote the average record sizes for the

junction- and link-based storage schemes, respectively.
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In the experiments, 4 bytes are reserved for the
coordinates of a junction (i.e., Cid ¼ 4) and no space is
reserved for junction attributes (i.e., CT ¼ 0). We used
three different sizes of 16, 28, and 40 bytes for the link
attributes (i.e., CL ¼ 16, 28, and 40) in both storage
schemes. These attribute sizes, which are even smaller
than the recent proposals [30], are selected to show the
actual pattern of performance difference between the two
storage schemes. This way, we are able to evaluate the
effect of the average record size and total storage size on
the relative performance of the two storage schemes.
Table 2 displays the total storage sizes and the average
record sizes for the junction- and link-based storage
schemes for each dataset and link attribute size pair. The
Sb

T and sb
T values given in Table 2 are exactly the same with

those that can be obtained by substituting the network-
specific parameters in Table 1 and the appropriate CL, Cid,
and CT values into (10) and (13). However, the Sb

L and sb
L

values computed by using (11) and (14) differ by 10%
(on the average) from the values in Table 2 because of the
simplifying assumption used in these equations.

As seen in Table 2, for CL ¼ 16, the average record sizes
are almost equal in the two storage schemes, whereas the
link-based scheme requires 29% more total storage than
the junction-based scheme, on the average. For CL ¼ 28,
the total storage sizes are almost equal in the two storage
schemes, whereas the average record size of the link-
based scheme is 23% less than that of the junction-based
scheme, on the average. For CL ¼ 40, both the total storage
size and the average record size of the link-based scheme
are less than those of the junction-based scheme (on the
average 13% and 33%, respectively). Although, in general,
the link-based scheme requires more storage than the
junction-based scheme, the link-based scheme becomes
more favorable than the junction-based scheme for
CL ¼ 40. This is mainly due to the fact that the proposed
way of handling bidirectional links enables higher storage
savings in the link-based scheme compared to the
junction-based scheme. Note that the link-based storage
scheme has a slightly larger average record size than the
junction-based storage scheme for D4 with CL ¼ 16. This
does not comply with the analytical evaluation given in
Section 3.2 because of the underlying assumption on the
average record size.

The clustering hypergraphs for the two storage
schemes are constructed as described in [13] and
Section 4.1. The vertex weights are set to be equal to the
size of the respective records. We generated synthetic
query sets for each dataset in order to be able to obtain
a cost distribution over the nets of the constructed
hypergraphs. For this purpose, a set of source and
destination junction pairs, which have a predetermined
shortest path length, is generated by slightly modifying
the network-based node selection option of Brinkhoff’s
Network Generator for Moving Objects [6]. Queries that
traverse the junctions on the shortest paths between the
source and destination junction pairs are added into the
query set as route evaluation queries. Queries that seek
the shortest paths (using Dijkstra’s algorithm) are added
into the query set as path computation queries. The
number of queries is set to be the same in both route
evaluation and path computation queries.

In order to span most network elements in the network
and hence to create a hypergraph large enough to
represent the network, we adaptively determined a
separate query count and a path length for each dataset.
According to the path lengths in the queries, we formed
three query sets: Q short, Qmedium, and Q long. We selected
the path lengths and the number of queries in each query
set as follows: for Q short, Qmedium, and Q long, the path
length is, respectively, set to the 1

18 ;
1
6, and 1

2 of the diameter
of the road network. The number of queries in each
dataset is picked linearly proportional to the number of
junctions. For Q short, Qmedium, and Q long, the number of
queries is, respectively, set to the 5

10 ;
3

10, and 1
10 of the

number of junctions in the network. Table 3 displays the
path length and the number of queries used for each
dataset and query set pair. Table 3 also displays the
number of GaS and GSs operations, respectively, invoked
by the route evaluation and path computation queries for
each dataset and query set pair. Although the total
number of queries is set to be equal in both query types,
GSs operations constitute 97.7% of all operations in the
query workload. This is because of the fact that, for a given
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Table 3
Properties of query sets.

Dataset Q short Q medium Q long

Path length Number of Path length Number of Path length Number of

queries GaS GSs queries GaS GSs queries GaS GSs

D1 8 5071 30 420 498 478 25 3042 69 943 3108 062 75 1014 74 022 3 977 814

D2 8 8722 52 230 823 121 25 5233 119 572 4 830 266 76 1744 127 948 9 033 815

D3 26 17 111 405 910 14 583 559 78 10 267 766 892 61064163 233 3422 774 053 70 111055

D4 27 83 279 2 080 352 129 398 112 81 49 967 3 944 006 604 478 026 242 16 656 3 995 328 959 588 281

Table 4
Properties of the clustering hypergraphs for the junction- and link-based storage schemes.

Dataset jVj Q short Q medium Q long

jNj jHj jnjavg jNj jHj jnjavg jNj jHj jnjavg

Junction-based storage scheme

D1 10 141 19 344 56 913 2.9 15 691 49 607 3.2 14 576 47 376 3.3

D2 17444 30 033 88 575 2.9 25 926 80 359 3.1 23 987 76 449 3.2

D3 34 222 50 970 159 836 3.1 49 439 156 747 3.2 45128 148 033 3.3

D4 166 558 250 116 760 252 3.0 243 853 747 713 3.1 225 476 710 905 3.2

Link-based storage scheme

D1 14185 18 400 45 302 2.5 14 553 37603 2.6 13 092 34 680 2.6

D2 22 987 28 768 72 090 2.5 22 991 60 526 2.6 20 423 55 367 2.7

D3 46 103 47 080 125 054 2.7 44 659 120 200 2.7 38 581 107 968 2.8

D4 213 371 222 231 576 712 2.6 211869 555 947 2.6 186 466 504 947 2.7
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source and destination junction pair, the number of
GSs operations in the path computation queries using
Dijkstra’s algorithm is much larger than the number of
GaS operations in the route evaluation queries. Here, we
should note that the total net costs in the clustering
hypergraphs generated for the two storage schemes are
exactly equal for a given query set. This enables a fair
comparison between the clustering hypergraph models
for the two storage schemes.

Table 4 displays the properties of the clustering
hypergraphs used in the experiments for the junction-
and link-based storage schemes. In this table, jnjavg ¼

jHj=jNj denotes the average net size of a hypergraph.
Since the GaS and GSs operations incurred by the
generated queries may not traverse all network elements,
the number of nets for each hypergraph is less than the
number of all possible nets that can be induced. As
mentioned in Section 4.3, bidirectional links lead to
identical nets in both storage schemes. These nets are
detected and eliminated by a preprocessing step. Table 4
displays the values after this identical net elimination
step.

As seen in Table 4, HL contains considerably more
(25.1% on the average) vertices than HT. Note that the
total number of vertices corresponds to the number of
records in a storage scheme. In a bidirectional road
network, the junction- and link-based storage schemes,
respectively, have jTj and jLj=2 records, and typically
jTjojLj=2 since davg42. In terms of the number of nets,
HL contains fewer (10.5% on the average) nets than HT.
This is mainly due to the junctions with degree one, which
do not incur multi-pin nets in HL. In Table 4, the average
net size in HL is smaller than that of HT in accordance
with the discussion given in Section 4.3 on multi-pin nets.

As in our earlier proposal for the junction-based
storage scheme [13], we use a recursive bipartitioning
scheme to partition HL into parts (see Section 2.5).
Similar to the results in our previous work, the RB2
scheme is experimentally found to give slightly better
results than the RB1 scheme. The slightly better perfor-
mance of RB2 in the link-based storage scheme is again
due to the fact that it benefits more from page packing as
it generates more lightly loaded pages after partitioning.
Hence, in our implementation, we adopt the recursive
bipartitioning scheme RB2 and page packing approach
described in [13].

For bipartitioning the hypergraphs, we use the state-
of-the-art multi-level hypergraph partitioning tool PaToH
[10,11]. Partitioning quality for each dataset is evaluated
for four different page sizes of P ¼ 1, 2, 4, and 8 KB. Due to
the randomized nature of the heuristics used in PaToH,
the experiments are repeated 100 times, and the average
performance results are reported in the following figures
and tables.

The running time of the hypergraph partitioning tool
PaToH is Oðlog jVj

P
nj2N
jnjj

2Þ at each bisection step of the
RB2 scheme, where V and N denote the vertex and net
sets of the remaining hypergraph at that bisection step
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(see the net splitting process used in RB in [11]). In terms
of network parameters, the running time of the first
bisection step is Oðd2

avg jTj log jTjÞ and Oðd2
avg jLj log jLjÞ

for the junction- and link-based storage schemes, respec-
tively, under the simplifying assumption that the number
of incoming and outgoing links for each junction are both
equal to davg ¼ jLj=jTj. Assuming a balanced recursive
bisection tree for the RB2 scheme, the overall running
time becomes Oðd2

avg jTj log jTj log KÞ and Oðd2
avg jLj log

jLj log KÞ for the junction- and link-based storage
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Fig. 7. Partitioning quality of the clustering hypergraph models for the junctio

number of total disk accesses for the GaS and GSs operations under the single-
schemes, respectively. However, these are rather loose
upper bounds and the partitioning tool PaToH is quite fast
while generating high quality results. For example, the
overall RB2-based partitioning times for the D1, D2, D3,
and D4 datasets are, respectively, 3.2, 5.6, 26.7, and 317.1 s,
on the average, including the read/write operations of
input/output files. These timings are reported on a PC that
is equipped with an Intel Pentium IV 2.6 GHz processor
and 2 GB of RAM, and hypergraph representations for all
datasets and parameters fit into the main memory.
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page buffer assumption.
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Table 5
Averages for percent K and cutsize improvements of the link-based storage scheme over the junction-based storage scheme.

Query set P CT ¼ 0

CL ¼ 16 CL ¼ 28 CL ¼ 40

K Cutsize K Cutsize K Cutsize

Q small 1 �30.9 42.2 �1.6 51.6 12.8 56.4

2 �31.0 42.6 �1.9 52.1 12.0 56.8

4 �31.6 42.1 �2.2 52.0 11.6 57.0

8 �31.2 41.5 �2.2 51.3 11.6 56.4

Qmedium 1 �30.8 43.7 �1.5 53.0 13.0 57.4

2 �31.1 44.4 �1.9 53.7 12.1 58.2

4 �31.5 44.0 �1.8 53.5 11.6 58.2

8 �31.3 44.0 �2.0 53.0 11.5 57.8

Q long 1 �30.7 44.8 �1.5 53.7 12.9 58.0

2 �31.1 45.8 �1.8 54.8 12.1 59.3

4 �31.1 45.6 �2.1 55.0 11.6 59.7

8 �31.6 45.7 �2.4 54.9 11.2 59.4
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Query processing simulations are performed using
page buffers with a size of B ¼ 1, 2, 4, and 8 pages. Our
selection of buffer sizes may look small for a realistic
setting; however, they are proportional with the dataset
sizes we have. The buffer sizes are selected such that only
a small portion of a dataset resides in the memory at any
time. The Least Recently Used (LRU) page replacement
algorithm is employed as the caching algorithm. Our
intention is not to show the effects of buffer replacement
policies and cache mechanisms used in the systems.
Instead, the experiments are conducted to show that it is
still viable to use the clustering approach for increasing
number of buffer pages. The synthetic queries used for
query log generation are also used in simulations for
measuring the total disk access cost.

We evaluate the performance of the clustering hyper-
graph models for the junction- and link-based storage
schemes in two aspects. First, we evaluate the partition
quality in terms of cutsize, which corresponds to the total
number of disk accesses incurred by GaS and GSs

operations under the single-page buffer assumption.
Second, we assess the total number of disk accesses in
aggregate network queries through simulations.
5.2. Partitioning quality

Fig. 7 displays the partitioning quality of the clustering
hypergraph models for the junction- and link-based
storage schemes with the link attribute sizes CL ¼ 16
and 28. These experiments are conducted on the hyper-
graphs generated using the query sets Q short and Q long. As
seen in Fig. 7, in all cases, the link-based storage scheme
achieves smaller cutsize values than the junction-based
storage scheme. As expected, the cutsize values decrease
with increasing page size in both storage schemes,
whereas the performance gap between these two schemes
does not vary significantly with varying page size.
Table 5 shows the average performance improvements
of the clustering hypergraph model for the link-based
storage scheme over that for the junction-based storage
scheme for all query sets and CL values. In the table,
positive values indicate percent decrease in the K and
cutsize values, whereas negative values indicate percent
increase in the K values, achieved by the link-based
storage scheme compared to the junction-based storage
scheme. As seen in Table 5, the two storage schemes
achieve almost equal K values for the CL ¼ 28 case. The
junction-based storage scheme achieves 31.2% smaller K

values for the CL ¼ 16 case, whereas the link-based
storage scheme results in 12.0% smaller K values for the
CL ¼ 40 case, on the average. These percent differences are
approximately equal to the percent differences for the
total storage sizes reported in Table 2.

As seen in Table 5, for the CL ¼ 28 case, which incurs
almost equal K values for both storage schemes, the link-
based storage scheme achieves 53.2% less cutsize values
than the junction-based storage scheme, on the average.
The relative performance improvement of the link-based
storage scheme over the junction-based storage scheme
increases to 57.9% when the size of the link attributes
increases to CL ¼ 40. These experimental findings are in
accordance with our expectations discussed in Section 4.3.
However, it is interesting to note that, for CL ¼ 16,
although the link-based storage scheme leads to con-
siderably higher K values, it achieves considerably lower
cutsize values (43.9% on the average). This can be
attributed to the properties of the clustering hypergraphs
modeling the networks with bidirectional links.

The effect of query sets on the relative performance
between the two storage schemes is also important. As
seen in Table 5, for fixed page size and CL values, the
performance gap between the two storage schemes
increases as the path length increases in favor of the
link-based storage scheme. This finding can be attributed
to the increase in the number of GSs operations with
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increasing path length. As mentioned in Section 4.3, the
performance difference between the two storage schemes
is expected to be higher for GSs operations compared to
the GaS operations.
5.3. Disk access simulations

Figs. 8 and 9 display the relative performance compar-
isons of the two storage schemes in terms of the number
of disk accesses for both route evaluation and path
computation queries. The simulation results in these
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Fig. 8. Disk access comparisons of the two storage schemes in aggregat
figures are presented for the link attribute sizes CL ¼ 16
and 28 with the varying page and buffer sizes. The query
sets Q short and Q long are, respectively, evaluated in Figs. 8
and 9 to show the effect of path length and number of
queries in simulations. The average improvements over all
datasets are given in Table 6 for all query sets and all CL

values.
As seen in Figs. 8 and 9, the link-based storage scheme

outperforms the junction-based storage scheme for al-
most all simulation cases. In Figs. 8 and 9, for the CL ¼ 16
case with a single-page buffer, the link-based storage
scheme performs better than the junction-based storage
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Fig. 9. Disk access comparisons of the two storage schemes in aggregate network query simulations for the Q long query set and CT ¼ 0.
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scheme in all simulations except for the case of D1 with
P ¼ 8 and Q short. For the CL ¼ 16 case with larger page and
buffer sizes, especially with short queries, the junction-
based storage scheme performs slightly better than the
link-based storage scheme. This is due to the fact that
average record sizes are almost equal, but the total storage
of the link-based storage scheme is 29% larger than that of
the junction-based storage scheme.
The comparison of the two storage schemes in Table 6
is consistent with the results presented in Table 5.
However, the final improvements in the simulations are
less than the improvements in actual total costs of GaS

and GSs operations. As seen in Table 5, the average
improvement in the total disk access cost of GaS and GSs

operations for a single-page buffer is 43.9% and 53.2% for
CL ¼ 16 and for CL ¼ 28, respectively. Nevertheless, in
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Table 6
Averages for percent performance improvement of the link-based storage scheme over the junction-based storage scheme for CT ¼ 0.

B P CL ¼ 16 CL ¼ 28 CL ¼ 40

Q short Qmedium Q long Q short Qmedium Q long Q short Qmedium Q long

1 1K 20.7 20.9 21.2 28.5 27.9 27.8 33.4 32.6 32.5

2K 17.0 17.9 18.2 24.3 23.6 23.6 28.6 27.5 27.4

4K 13.6 15.3 16.1 21.0 20.4 20.5 25.3 23.6 23.6

8K 10.2 13.6 14.7 18.3 18.0 18.4 22.6 20.8 20.8

2 1K 19.7 20.6 21.0 29.1 28.2 28.2 34.5 33.1 33.0

2K 15.0 17.1 17.7 24.8 23.9 23.9 30.1 28.1 28.0

4K 9.8 13.7 15.0 21.4 20.5 20.6 27.0 24.3 24.2

8K 4.4 11.1 12.8 17.9 17.8 18.3 24.5 21.6 21.4

4 1K 16.9 19.5 20.3 29.3 28.5 28.4 35.6 33.7 33.4

2K 10.3 15.2 16.3 24.8 24.2 24.1 31.7 29.1 28.8

4K 2.7 10.1 12.4 20.8 20.5 20.7 29.2 25.6 25.3

8K �4.3 5.4 8.3 16.3 17.2 17.9 26.2 23.1 22.6

8 1K 11.0 17.2 18.6 28.7 28.9 28.8 36.7 34.9 34.3

2K 2.4 10.8 12.9 23.3 24.5 24.4 33.1 31.0 30.2

4K �4.7 1.3 5.9 18.3 20.5 20.6 29.9 28.1 27.2

8K �10.7 �10.3 �3.4 13.3 15.9 16.8 24.7 26.2 24.9

Table 7
Averages for percent performance improvement of the link-based storage scheme over the junction-based storage scheme for CL ¼ 28.

B P CT ¼ 4 CT ¼ 8 CT ¼ 16

Q short Qmedium Q long Q short Qmedium Q long Q short Qmedium Q long

1 1K 28.5 29.6 27.7 26.5 26.3 26.3 25.0 25.0 25.1

2K 24.2 24.4 23.4 22.4 22.2 22.4 20.9 21.1 21.3

4K 21.0 20.8 20.3 19.0 19.1 19.4 17.3 18.1 18.5

8K 18.4 18.2 18.2 15.9 16.6 17.3 14.0 15.6 16.3

2 1K 29.1 29.1 28.0 26.7 26.4 26.5 24.8 24.9 25.2

2K 24.8 23.4 23.7 22.2 22.2 22.5 20.1 20.8 21.2

4K 21.4 19.8 20.4 17.9 18.8 19.2 15.4 17.4 18.0

8K 18.1 16.6 18.0 14.0 15.6 16.7 10.6 14.1 15.3

4 1K 29.3 30.4 28.3 25.8 26.2 26.4 23.2 24.4 24.8

2K 24.8 25.0 23.9 20.7 21.7 22.2 17.5 19.8 20.5

4K 20.9 20.7 20.4 15.2 17.8 18.5 11.0 15.7 16.7

8K 16.5 17.4 17.5 10.2 13.5 15.1 4.4 10.8 12.8

8 1K 28.7 31.1 28.6 23.7 25.7 26.0 19.7 23.2 24.0

2K 23.3 25.5 24.1 17.2 20.7 40.0 12.2 17.7 18.9

4K 18.5 20.9 20.1 10.6 15.5 35.8 4.1 11.8 13.8

8K 13.3 16.1 16.3 5.4 8.3 30.9 �1.6 2.7 6.9
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Table 6, the average improvement in the total disk access
cost of aggregate network queries for a single-page buffer
is 11.7% and 22.6% for CL ¼ 16 and for CL ¼ 28, respec-
tively. This is mainly due to the additional overhead
of Find operations incurred by the internal steps of
the shortest path algorithm used in path computation
queries.
According to Figs. 8 and 9, as expected, increasing page
size and increasing buffer size independently decrease the
number of disk accesses in the two storage schemes. The
performance gap between the storage schemes decreases
with increasing P. For CL ¼ 16, there are even cases where
the junction-based storage scheme performs better than
the link-based storage scheme. This experimental finding



ARTICLE IN PRESS

E. Demir et al. / Information Systems 35 (2010) 75–9392
can be attributed to the total number of records fetched to
the memory for query processing and the total storage
size difference between the two schemes. As seen from
Table 3, the length of queries is quite small in D1 and D2
for Q short, and hence the hit rate for records in the buffer
increases with increasing page and buffer sizes. On the
other hand, for CL ¼ 16, the total number of records and
the total storage size of the junction-based scheme is
smaller than the link-based scheme and thus the junction-
based scheme is expected to perform better with large
buffers that can store a considerable portion of the
dataset.

Recall that CT and CL are two important factors that
affect the average record size and total storage size. The
experimental results reported and discussed so far were
obtained for a fixed CT ¼ 0 with varying CL values of 16,
28, and 40 bytes. In order to represent a study on varying
CT, we also conducted a set of experiments for a fixed
CL ¼ 28 with varying CT values of 4, 8, and 16 bytes. The
total disk access simulation results of these experiments
are displayed in Table 7. As seen in the table, the link-
based scheme performs better than the junction-based
scheme for every combination of simulation parameters
except for B ¼ 8, P ¼ 8K , CT ¼ 16 and Q short. The perfor-
mance gap between the two storage schemes decreases
with increasing CT values, as expected. However, even for
the largest CT value of 16 bytes, the link-based storage
scheme, respectively, incurs 14.9%, 17.7%, and 18.7% less
disk accesses than the junction-based storage scheme for
Q short, Qmedium, and Q long query sets, on the average.
6. Concluding remarks

We introduced the link-based storage scheme for
efficient aggregate query processing on clustered road
networks. In this storage scheme, each record stores the
data associated with a link together with the link’s
connectivity information. We introduced a clustering
hypergraph model for the link-based storage scheme to
partition the network data to disk pages where data
would be periodically reorganized using the past query
logs. Our detailed comparative analysis on the properties
of the junction- and link-based storage schemes showed
that the link-based storage scheme is more amenable to
clustering. Moreover, we introduced storage enhance-
ments for bidirectional networks. We showed that the
link-based storage scheme is more amenable to our
enhancements than the junction-based storage scheme
and results in better data allocation for processing
aggregate network queries. Extensive experimental com-
parisons were carried out on the effects of page size,
buffer size, path length, record size, and dataset size for
the junction- and link-based storage schemes. Experi-
mental results showed that the link-based storage scheme
outperforms the widely-used junction-based storage
scheme in terms of both storage and query processing
efficiency.

Although this work focused on route evaluation and
path computation queries, the developed framework can
easily be applied to other types of network queries such as
dynamic path computation [30], nearest neighbor [1],
range search and closest pairs [23]. Some of these types of
queries such as variants of nearest neighbors and closest
pairs require storing points-of-interests (POIs). The sto-
rage of POIs is generally handled separately from the
network topology, as the updates on POIs are frequent
when compared to the changes in the network topology.
To handle such queries, we are also conducting research
on embedding POIs into our storage schemes. The storage
schemes mentioned in this work are generic representa-
tions of networks, and hence any index can be built on top
of these storage schemes. Application of the link-based
storage scheme in graph topologies may also be beneficial
for research problems in other fields.
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