
a

ct of
er
er 2
unit

1984]

the

he
d

Journal of Algebra 289 (2005) 105–127

www.elsevier.com/locate/jalgebr

An induction theorem for the unit groups
of Burnside rings of 2-groups

Ergün Yalçın

Department of Mathematics, Bilkent University, Ankara 06800, Turkey

Received 11 May 2004

Communicated by Michel Broué

Abstract

Let G be a 2-group andB(G)× denote the group of units of the Burnside ring ofG. For each
subquotientH/K of G, there is a generalized induction map fromB(H/K)× to B(G)× defined
as the composition of inflation and multiplicative induction maps. We prove that the produ
generalized induction maps

∏
B(H/K)× → B(G)× is surjective when the product is taken ov

the set of all subquotients that are isomorphic to the trivial group or a dihedral 2-group of ordn

with n � 4. As an application, we give an algebraic proof for a theorem by Tornehave [The
group for the Burnside ring of a 2-group, Aarhus Universitet Preprint series 1983/84 41, May
which states that tom Dieck’s exponential map from the real representation ring ofG to B(G)× is
surjective. We also give a sufficient condition for the surjectivity of the exponential map from
Burnside ring ofG to B(G)×.
 2005 Elsevier Inc. All rights reserved.

Keywords:Units of Burnside ring; Real representation ring

1. Introduction

The Burnside ring of a finite groupG is defined to be the Grothendieck ring of t
semi-ring generated by isomorphism classes of finite (left)G-sets where the addition an
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multiplication are given by disjoint unions and cartesian products. We denote the Bu
ring of G by B(G), and its unit group byB(G)×. The Burnside ring ofG can be imbedded
as a subring, into the ring of superclass functionsC(G) = ZCl(G) whereCl(G) denotes the
set of conjugacy classes of subgroups ofG, andZCl(G) denotes the ring of functions from
Cl(G) to Z. So, the unit group ofB(G), being isomorphic to a subgroup ofC(G)× =
{±1}Cl(G), is an elementary abelian 2-group. Our ultimate goal is to relate the 2-ra
B(G)× to other well known group theoretical invariants.

Throughout the paper we assumeG is a 2-group. The reasons for restricting oursel
to 2-groups are as follows: First, the unit groupB(G)× is quite difficult to understand fo
a composite group. For example, the assertion thatB(G)× ∼= Z/2 whenG is an odd order
group is equivalent to the odd order theorem. On the other hand, whenG is a p-group
with p > 2, it is easy to show thatB(G)× = {±1}, and so there is nothing to study. W
also believe that the unit group functorB(−)× over 2-groups is an interesting object in t
category of biset functors over 2-groups.

We use mainly two ingredients for studyingB(G)×. One is a complete characterizati
of B(G)× as a subgroup ofC(G)× given by Yoshida [12]. We explain this characterizat
in detail at the end of Section 2. The other ingredient is the structure ofB(G)× as a Mackey
functor together with appropriate restriction, induction and conjugation maps. The
also inflation and deflation maps defined in a suitable sense. These maps are defi
studied in detail in [12] and we give an overview in Section 3.

The induction map is particularly interesting since we are using a multiplicativ
duction map instead of the usual induction map on the Burnside ring. Given a sub
H � G, the multiplicative induction map jndGH :B(H)× → B(G)× is defined on the Burn
side ring as the polynomial extension of the assignmentX → MapH (G,X) whereX is an
H -set, and MapH (G,X) is the set ofH -mapsf :G → X. Note that given a normal sub
groupK �H , we have a homomorphism, called the inflation map, infH

H/K :B(H/K)× →
B(H)× defined by considering aH/K-set as anH -set through the quotient mapH →
H/K . We call the composition jndGH infHH/K the generalized induction map from subqu
tientH/K to G. The main result of the paper is the following induction theorem:

Theorem 1.1.Let G be a2-group, and letH denote the collection of all subquotients
G which are isomorphic to the trivial group or a dihedral group of order2n with n � 4.
Then, the product of generalized induction maps

∏
H/K∈H

jndG
H infHH/K :

∏
H/K∈H

B(H/K)× → B(G)×

is surjective.

One of the ways to obtain units in the Burnside ring ofG is to construct exponentia
maps from the Burnside ringB(G) or from the real representation ringR(G,R) to the unit
group of superclass functionsC(G)×, and then show that they actually lie inB(G)×. For
example, given a real representationV of G, we can define a unit superclass functionH →
sgn(dimV H ) for all H � G where sgn(n) = (−1)n for n ∈ Z. Tom Dieck showed tha

these superclass functions lay in the Burnside ring, so one gets an exponential map from
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the real representation ringR(G,R) to B(G)× which is now referred to as tom Dieck
homomorphism (see [8, p. 242] for details). As a corollary of Theorem 1.1, we obta
algebraic proof for the following result:

Corollary 1.2 (Tornehave [11]). LetG be a2-group. Then, tom Dieck’s homomorphism

Θ :R(G,R) → B(G)×

is surjective.

There is a similar exponential map from the Burnside ringB(G) to its unit group
B(G)×. Given aG-setX, consider the superclass functionfX :H → sgn(|X/H |) for all
H � G. The exponential map exp: B(G) → B(G)× is defined as the linear extension
the assignmentX → fX for G-sets. This map is closely related to theB(G)-module struc-
ture onB(G)× which has been studied extensively by Matsuda in [9,10]. The conne
comes from the fact that the exponential map can be defined also as exp(x) = (−1) ↑ x

where(−1) ↑ x denotes the action ofx ∈ B(G) on −1 ∈ B(G)× (see Section 7 for mor
details). We prove

Corollary 1.3. If G is a 2-group which has no subquotients isomorphic to the dihe
group of order16, then the exponential map

exp :B(G) → B(G)×

is surjective. In this case,B(G)× is generated by−1 as a module overB(G).

Corollary 1.3 applies, in particular, to all 2-groups of exponent 4. This include
2-groups which can be expressed as an extension of an elementary abelian 2-grou
elementary abelian 2-group. Also, it is well known that the exponential map is not s
tive whenG is a dihedral 2-group of order at least 16 (see Matsuda [10]). So, the cor
cannot be improved further using the induction theorem. On the other hand, the co
of the corollary does not hold either: There are 2-groups where the exponential m
surjective although they have a dihedral section of order 16. So, Corollary 1.3 prov
sufficient condition for surjectivity of exponential map, which is not a necessary cond

2. Superclass functions and idempotent basis

Let G be a finite group. The Burnside ringB(G) is defined as the Grothendieck rin
of the semi-ring generated byG-isomorphism classes of finite (left)G-sets where the ad
dition and multiplication are given by disjoint unions and cartesian products. So,
abelian groupB(G) is generated by isomorphism classes of (left)G-sets, and isomorphism
classes of transitiveG-sets form a basis forB(G). A transitiveG-set is isomorphic to
G/H := {gH | g ∈ G} as aG-set, and any two suchG-setsG/H andG/K are isomorphic

if and only if H andK are conjugate to each other. Therefore,B(G) is a free abelian group
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with basis{[G/H ] | [H ] ∈ Cl(G)}, whereCl(G) is the set of conjugacy classes[H ] of sub-
groupsH � G. In other words,B(G) decomposes as the direct sum of cyclicZ-modules

B(G) =
⊕

[H ]∈Cl(G)

Z[G/H ].

The multiplicative structure can be explained in terms of the basis by the following d
coset formula:

[G/H ][G/K] =
∑

HgK∈H\G/K

[
G/(H ∩ gK)

]

wheregK = gKg−1.
A superclass functionis a map from the set of subgroups ofG to Z which is con-

stant on conjugacy classes of subgroups. We will denote the set of superclass funct
C(G) := ZCl(G). It is easy to see thatC(G) is a ring under the usual addition and multip
cation of functions. For eachH � G, consider the mapsH :B(G) → Z defined as the linea
extension of the assignmentsH (X) = |XH | where|XH | denotes the number of points inX
fixed byH . It is easy to see thatsH (X × Y) = sH (X)sH (Y ), hencesH is a ring homomor-
phism. It is well known that the ring homomorphismssH andsK are equal if and only ifH
andK are conjugate. Therefore, for each elementx ∈ B(G), one can define a supercla
functionfx ∈ C(G) by settingfx(H) = sH (x). This defines a ring homomorphism

ϕ :B(G) → C(G) := ZCl(G)

which is injective. The injectivity follows from the fact that if|XH | = |YH | for each
H � G, thenX andY are isomorphic asG-sets. We sometimes identifyB(G) with its
image inC(G), and writex(H) = sH (x) for x ∈ B(G).

The image ofϕ is characterized by the following theorem:

Theorem 2.1(tom Dieck [7, Section 1.3]). Let G be a finite group. For eachH � G, let
WG(H) denote the quotient groupNG(H)/H . Then, the following sequence of abeli
groups is exact:

0→ B(G)
ϕ−→C(G)

ψ−→
∏

[H ]∈Cl(G)

(
Z/|WG(H)|Z) → 0

whereϕ is the injective ring homomorphism defined above, and the[H ] component ofψ
is defined by

ψ(f )H =
∑

gH∈WG(H)

f (〈g〉H) (mod|WG(H)|).

Let QB(G) and QC(G) denoteQ ⊗Z B(G) and Q ⊗Z C(G), respectively. By ten

soring the exact sequence in the above lemma withQ, one gets a ring isomorphism
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Qϕ :QB(G) → QC(G). For each[H ] ∈ Cl(G), let eG
H ∈ QB(G) be the element define

by the condition thatsK(eG
H ) is equal to unity when[H ] = [K] and zero otherwise. It i

easy to see thatQϕ maps{eG
H | H ∈ Cl(G)} to primitive idempotents ofQC(G) := QCl(G),

hence they are primitive idempotents ofQB(G). Observe that each elementx ∈ QB(G)

has a coordinate decomposition

x =
∑

[H ]∈Cl(G)

sH (x)eG
H .

Theghost ringof G is defined by

β(G) = (Qϕ)−1C(G) =
⊕

[H ]∈Cl(G)

ZeG
H .

We often will identifyβ(G) with C(G) and use the notationu(H) for u ∈ β(G) and write

u =
∑

[H ]∈Cl(G)

u(H)eG
H .

The Burnside ringB(G) is a subring ofβ(G). Therefore the group of units ofB(G) is
a subgroup of the group of units

β(G)× =
⊕

[H ]∈Cl(G)

{−1,1}eG
H

which is an elementary abelian 2-group of rank|Cl(G)|. ThusB(G)× is an elementary
abelian 2-group of rank at most|Cl(G)|.

Notice that Theorem 2.1 can be used to characterize the subringB(G)× in β(G)×. An
elementx ∈ β(G)× is in B(G)× if and only if

∑
gH∈WG(H)

x(〈g〉H) = 0 (mod|WG(H)|)

for all [H ] ∈ Cl(G). But, this characterization is quite inconvenient for calculations.
often thinkβ(G)× as a vector space overF2 andB(G)× as a subspace, so the charac
izations given in terms of linear equations overF2 are usually more convenient. Such
characterization is given by Yoshida [12]:

Proposition 2.2 (Yoshida [12, Proposition 6.5]). Let u ∈ β(G)×. Then,u is contained in
B(G)× if and only if for each subgroupH of G, the map

gH → u(〈g〉H)

u(H)
, gH ∈ WG(H),
is a linear character ofWG(H).
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Notice that we can rephrase Yoshida’s characterization as follows:

Corollary 2.3. Let u ∈ β(G)×. Then,u is contained inB(G)× if and only if for each
subquotientH/K of G, and for everyxK,yK ∈ H/K ,

u(K) · u(〈x〉K) · u(〈y〉K) · u(〈xy〉K) = 1.

In the rest of the paper, we will considerB(G)× as the subspace ofβ(G)× satisfying
the linear equations given in Corollary 2.3.

3. Maps between unit groups of Burnside rings

In this section, we briefly explain the maps between unit groups of Burnside ring
give some of the formulas involving these maps. A full account of this material ca
found in [12].

Let G be a finite group,H be a subgroup andN be a normal subgroup ofG, and
f :G′ → G be an isomorphism. LetX be aG-set,Y be anH -set, andZ be aG/N -set.
Then, we have

isoG
G′ :X → X as anG′-set throughf :G′ → G (isomorphism map),

infGG/N :Z → Z as aG-set throughG → G/N (inflation map),

invG
G/N :X → XN (invariant map),

resGH :X → X as anH -set(restriction map),

jndG
H :Y → MapH (G,Y ) (multiplicative induction map), (1)

where MapH (G,Y ) is the set of mapsα :G → X such thatα(h ·g) = h ·α(g) for all h ∈ H ,
g ∈ G, with the action ofG defined by(k · α)(g) = α(gk) for k ∈ G.

Notice that isomorphism, inflation, invariant, and restriction maps are additive and
tiplicative, and hence they extend linearly to ring homomorphisms on the Burnside
and induce group homomorphisms on the unit group of Burnside ring. However, the
tiplicative induction map is not linear, so it has to be considered separately.

Let Z+ denote the set of non-negative integers, and

B(G)+ =
∑

[H ]∈Cl(G)

Z+[G/H ]

be the free monoid ofG-sets. The assignment jndG
H :Y → MapH (G,Y ) defines a multi-

plicative map fromB(H)+ to B(G) which is not additive. In [5], Dress considers this m
and observes that the multiplicative induction is an algebraic map, and describes h
can extend it to map jndGH :B(H) → B(G). Unfortunately, Dress does not give many d

tails for his arguments in [5]. A more detailed description of multiplicative induction can
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be found in Yoshida [12]. There is also a recent paper by Barker [1] where the multi
tive induction is defined more generally for monomial Burnside rings. Barker’s pape
includes some further details on algebraic functions.

Another way to define the multiplicative induction map is to use tom Dieck’s defin
of the Burnside ring. In Chapter IV of [8], the Burnside ringB(G) is defined as the ring o
equivalence classes of finite (left)G-complexes under the equivalence relation define
follows: X ∼ Y if and only if for everyH � G, the spacesXH andYH have the same Eule
characteristic. Notice that now−[X] can be expressed as[Y ×X] whereY is aG-complex
with trivial action and with Euler characteristic−1.

Given anH -complexX, one can define jndGH X = MapH (G,Y ) as the set of map
α :G → X such thatα(hg) = hα(g) for all h ∈ H andg ∈ G, with the action ofG defined
by kα :g → α(gk) for k ∈ G. To show that the assignmentX → jndG

H X from the set
of H -complexes to the set ofG-complexes induces a well defined map on the Burn
ring, one just needs to check that ifX and Y are H -complexes such thatX ∼ Y , then
jndG

H X ∼ jndG
H Y . For this consider the following calculation (see [8, p. 244]):

sK
(
jndG

H X
) = sK

(
MapH (G,X)

) = χ
[(

MapH (G,X)
)K]

= χ
[
MapG

(
G/K,MapH (G,X)

)] = χ
[
MapH

(
resGH (G/K),X

)]

= χ

[
MapH

( ∐
HgK∈H\G/K

H/(H ∩ gK), X

)]

=
∏

HgK∈H\G/K

sH∩gK(X). (2)

Hereχ(X) denotes the Euler characteristic of theG-complexX, andsK(X) is defined as
χ(XK) for everyK � G. So, the assignmentX → jndG

H X induces a well-defined map o
the Burnside ring. It is clear from the definition that this map is multiplicative, hen
induces a group homomorphism on the unit group of the Burnside ring. (There is a s
construction for bisets, using posets with group actions, in [2, Section 4.1].)

Considering an elementx ∈ B(G) as a class function throughx(K) = sK(x), we have
the following formulas:

isoG
G′(x)(H ′) = x(H) wheref (H ′) = H,

infGG/N(z)(K) = z(KN/N),

invG
G/N(x)(K/N) = x(K),

resGH (x)(K) = x(K),

jndG
H (y)(K) =

∏
HgK∈H\G/K

y(H ∩ gK). (3)

Using the definitions of these maps onG-sets (or onG-complexes), one obtains man

composition formulas, such as the Mackey formula for the composition of multiplicative
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induction and restriction maps. These formulas are listed in Lemmas 3.1, 3.3, and
[12]. For example, ifN is a normal subgroup ofG, andH is a subgroup ofG containingN ,
we have:

resGH infGG/N = infHH/N resG/N
H/N,

jndG
H infHH/N = infGG/N jndG/N

H/N,

invH
H/N resGH = resG/N

H/N invG
G/N,

invG
G/N jndG

H = jndG/N
H/N invH

H/N . (4)

Notice that using the formulas in Eq. (3) as a definition, we can extend all the maps
list to C(G) or equivalently toβ(G), and hence obtain group homomorphisms onC(G)×
or on β(G)× as the extension of group homomorphisms onB(G)×. SinceB(G) has a
finite index inβ(G), the extended maps will also have the same composition formula

Another way to define these maps on the unit group ofβ(G) is to consider the duality
pairing

( , ) :β(G)× ⊗ F2B(G) → {±1}

defined by

(u, x) =
∏

H∈Cl(G)

(γH )αH

whereu = ∑
[H ]∈Cl(G) γH eG

H ∈ β(G)× andx = ∑
[H ]∈Cl(G) αH [G/H ] ∈ F2B(G). Here

F2B(G) denotes the mod 2 reduction of the Burnside ring, i.e.,F2B(G) = F2 ⊗Z B(G).
Note that the group homomorphisms we defined above as extensions of maps onB(G)×
can also be defined as duals of maps between the Burnside rings. To illustrate this
we will show that

jndG
H :β(H)× → β(G)×

is dual to the restriction map

resGH :F2B(G) → F2B(H).

First observe that for everyu ∈ β(G)×, we haveu(K) = (u, [G/K]). So, for somey ∈
β(G)×, the last formula in Eq. (3) gives

(
jndG

H y, [G/K]) =
(

y,
∑

HgK∈H\G/K

[
H/(H ∩ gK)

]) = (
y, resGH [G/K]).
So, by linearity, we get(jndG
H y,x) = (y, resGH x) for everyy ∈ β(G)× andx ∈ F2B(G).
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4. The proof of the induction theorem

The aim of this section is to prove Theorem 1.1 stated in the introduction. In the p
we will be using Yoshida’s characterization of units inB(G)× given in Corollary 2.3. We
first state a proposition from which Theorem 1.1 follows as a corollary:

Proposition 4.1.LetG be a nontrivial2-group which is not isomorphic to a dihedral grou
of order2n with n � 4. Then, the map

∏
H/K 
=G/1

jndG
H infHH/K :

∏
H/K 
=G/1

B(H/K)× → B(G)×

is surjective, where the sum is over all proper subquotients ofG.

This is a general strategy for proving induction theorems. To see that Theore
follows from Proposition 4.1, one just needs to check that the generalized inductio
jndG

H infHH/K is transitive. This follows from the following calculation: LetH ′/K ′ and
H/K be two subquotients ofG such thatK � K ′ � H ′ � H . Then, applying the secon
equation in Eq. (4), we get

jndG
H infHH/K jndH/K

H ′/K infH
′/K

H ′/K ′ = jndG
H jndH

H ′ infH
′

H ′/K infH
′/K

H ′/K ′ = jndG
H ′ infH

′
H ′/K ′ .

To prove the proposition, we use a well known argument used to prove similar r
(see, for example, [3,4]). The idea is to reduce the proof to the case whereG has no norma
subgroups isomorphic toZ/2× Z/2, and then use the classification of such 2-groups.

We first consider the case whereG has a central subgroup isomorphic toZ/2× Z/2.

Lemma 4.2.LetG be a2-group which includes a central subgroupE isomorphic toZ/2×
Z/2. LetH1,H2, andH3 be the distinct subgroups ofE of order2. Then,

3∏
i=1

infGG/Hi
:

3∏
i=1

B(G/Hi)
× → B(G)×

is surjective.

Proof. Let c1 andc2 be the generators ofH1 andH2, respectively. Takeu ∈ B(G)×, and
let ui = infGG/Hi

invG
G/Hi

u. Consider the elementw = uu1u2u3. For everyH � G, we have

w(H) = u(H) · u1(H) · u2(H) · u3(H)

= u(H) · u(H1H) · u(H2H) · u(H3H)

= u(H) · u(〈c1〉H) · u(〈c2〉H) · u(〈c1c2〉H).

If c1, c2, or c1c2 is in H , then it is clear thatw(H) = 1. So, assume thatH is a subgroup

such thatE ∩ H = {1}. Then,EH/H is a subquotient ofG isomorphic toZ/2× Z/2, and
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we again getw(H) = 1 by Corollary 2.3. This shows thatw = 1, and henceu = u1u2u3.
Therefore,u is in the image of

∏3
i=1 infGG/Hi

. �
If G is a 2-group which has no centralZ/2×Z/2, then the centerZ(G) must be cyclic.

In this case,G has a unique central element of order 2, which we usually denote byc. We
have the following decomposition forB(G)×.

Lemma 4.3.LetG be a2-group with cyclic center and letc be the unique central eleme
of order2. Then,B(G)× = im{infGG/〈c〉} × B(G,c)× whereB(G,c)× is the set of all units

u ∈ B(G)× such thatu(H) = 1 for everyH � G such thatc ∈ H .

Proof. Note that for every normal subgroupK � G, we have

B(G)× ∼= im
{
infGG/K :B(G/K)× → B(G)×

} × ker
{
invG

G/K :B(G)× → B(G/K)×
}
.

This is because the composite invG
G/K infGG/K is the identity homomorphism. Applying th

to K = 〈c〉, we get

B(G)× = im
{
infGG/〈c〉

} × ker
{
invG

G/〈c〉
}
.

If c ∈ H � G, then we haveu(H) = sH (u) = sH/〈c〉(invG
G/〈c〉 u) for everyu ∈ B(G)×. It

follows thatu ∈ ker{invG
G/〈c〉} if and only if u(H) = 1 for everyH � G such thatc ∈ H .

Thus, ker{invG
G/〈c〉} = B(G,c)×. �

Lemma 4.4.LetG be a2-group with cyclic center. Assume thatG has a normal subgroup
E ∼= Z/2 × Z/2 generated bya, c ∈ E wherec is central. LetH be the centralizer ofE.
Then,

B(G,c)× ⊆ im
{
jndG

H infHH/〈a〉 :B(H/〈a〉)× → B(G)×
}
.

Proof. Let u ∈ B(G,c)×, thenu(H) = 1 for everyH � G such thatc ∈ H . Define

w = jndG
H infHH/〈a〉 invH

H/〈a〉 resGH u.

We will show thatu = w. First note thatH = CG(E) is a normal subgroup ofG with
index 2. This is becauseAut(E) = GL(2,2) has order(22 − 1)(22 − 2) = 6.

For everyK � G, we have

w(K) = [
jndG

H infHH/〈a〉 invH
H/〈a〉 resGH u

]
(K)

=
∏

HgK∈H\G/K

[
infHH/〈a〉 invH

H/〈a〉 resGH u
]
(H ∩ gK)

=
∏

u
(〈a〉(H ∩ gK)

)

HgK∈H\G/K
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=
∏

gHK∈G/HK

u
(〈ag〉(H ∩ K)

)
.

Now, we consider the following two cases:

Case 1.Assume thatK � H . ThenHK = G andw(K) = u(〈a〉(H ∩K)). If K ∩E = 〈a〉
or 〈ac〉, thena will be central inK , contradicting the assumptionK � H = CG(E). So,
we either havec ∈ K or K ∩ E = {1}.

If c ∈ K , thenc ∈ H ∩ K , and hencew(K) = 1 = u(K). So, assumeE ∩ K = {1}.
Consider the subgroup series(H ∩ K) � EK � G. Pick an elementk ∈ K − (K ∩ H),
and letk, a, c denote the images ofk, a, c in the quotient groupEK/(H ∩ K). We have
(k)2 = (a)2 = 1 and[a, k] = c. So,EK/(H ∩ K) ∼= D8, the dihedral group of order 8. B
Corollary 2.3, we get

u(H ∩ K) · u(〈a〉(H ∩ K)
) · u(〈k〉(H ∩ K)

) · u(〈ak〉(H ∩ K)
) = 1. (5)

Since(ak)2 = c, we havec ∈ 〈ak〉(H ∩ K), and henceu(〈ak〉(H ∩ K)) = 1. Note also
thatK = 〈k〉(H ∩ K), so Eq. (5) reduces to

u(H ∩ K) · w(K) · u(K) = 1. (6)

To finish the proof we need to showu(H ∩K) = 1. For this, we consider the subquotie
E(H ∩ K)/(H ∩ K) which is isomorphic toZ/2× Z/2. By Corollary 2.3, we have

u(H ∩ K) · u(〈a〉(H ∩ K)
) · u(〈c〉(H ∩ K)

) · u(〈ac〉(H ∩ K)
) = 1.

Sincea is conjugate toac, this equation reduces tou(H ∩ K) = u(〈c〉(H ∩ K)). It is clear
thatc ∈ 〈c〉(H ∩ K), so we conclude thatu(H ∩ K) = 1.

Case 2.Assume thatK � H . ThenHK = H andw(K) = u(〈a〉K) · u(〈ac〉K). If c ∈ K ,
then bothw(K) andu(K) are equal to 1. IfK ∩ E = 〈a〉 or 〈ac〉, thenw(K) = u(K) ·
u(〈c〉K) = u(K). Finally, if K ∩ E = {1}, then we considerK � KE � G, and apply
Corollary 2.3. This gives

u(K) · u(〈a〉K) · u(〈c〉K) · u(〈ac〉K) = 1

from which we obtain

w(K) = u(〈a〉K) · u(〈ac〉K) = u(K).

This completes the proof of the lemma.�
For the proof of Proposition 4.1, it remains to consider the case whereG is a 2-group

which has no normal subgroups isomorphic toZ/2 × Z/2. In this case,G is said to have
normal 2-rank one. Note that a 2-groupG has normal 2-rank one if and only if eve

abelian normal subgroup ofG is cyclic.
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The classification of 2-groups with no non-cyclic abelian subgroups is given in C
ter 5 of Gorenstein [6] as Theorem 4.10. We quote this result here:

Theorem 4.5.LetG be a2-group with normal2-rank equal to one. Then,G is isomorphic
to one of the following groups:

(a) cyclic groupC2n (n � 0);
(b) generalized quaternion groupQ2n (n � 3);
(c) dihedral groupD2n (n � 4);
(d) semi-dihedral groupSD2n (n � 4).

We have the following lemma:

Lemma 4.6.LetG be a2-group isomorphic to one of the following groups:

(a) cyclic groupC2n (n � 2);
(b) generalized quaternion groupQ2n (n � 3);
(c) semi-dihedral groupSD2n (n � 4).

Then,B(G,c)× = {1}.

Proof. Let G be a cyclic group or a generalized quaternion group. Then,G has no sub-
groups isomorphic toZ/2 × Z/2, so the unique central elementc is the only elemen
of order 2 inG. This implies, in particular, thatc is included in every non-trivial sub
group ofG. So, if u is a unit inB(G,c)×, thenu(H) = 1 for every non-trivial subgroup
H � G. We claim that if |G| > 2, thenu({1}) is also unity. Observe that if|G| > 2,
thenG must include an elementg of order 4, such thatg2 = c. Now, consider the sub
group series{1} � 〈g〉 � G. Applying Corollary 2.3 forK = {1} andx = y = g, we get
u({1}) = u(〈g2〉) = 1, henceu = 1.

Now assume thatG ∼= SD2n (n � 4). A presentation forG can be given as

G = 〈
b, z | z2n−1 = b2 = 1, bzb = z−1+2n−2〉

.

Note thatc = z2n−2
is the unique central element of order 2. Takeu ∈ B(G,c)×. If H is

a subgroup ofG such thatH ∩ 〈z〉 
= {1}, thenc ∈ H , and henceu(H) = 1. So, assume
H ∩〈z〉 = {1}. Since〈z〉 has index 2 inG, the order ofH is 2. LetH = 〈h〉. Then,h = bzm

for somem. Since

(bzm)2 = bzmbzm = z(−1+2n−2)mzm = z2n−2m = cm,

m must be an even integer. Note that(hz)2 = (bzm+1)2 = cm+1 = c, soc ∈ 〈hz〉.
Applying Corollary 2.3 to the subquotientG/{1} we get
u({1}) · u(〈h〉) · u(〈z〉) · u(〈hz〉) = 1
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which reduces tou(〈h〉) = u({1}). Similarly, Corollary 2.3 applied to the subquotie
〈c, b〉/{1} givesu({1}) = u(〈c〉) = 1. Combining these, we getu(〈h〉) = 1. Thus,u(H) = 1
for all H � G, giving u = 1 as desired. �

Lemma 4.6, together Theorem 4.5, completes the proof of Proposition 4.1 for all
except the caseG ∼= C2. Note that in this case

B(G)× = β(G)× = {
α1e

G
1 + α2e

G
G | α1, α2 = ±1

} ∼= Z/2× Z/2

and

B(G,c)× = {
αeG

1 + eG
G | α = ±1

} ∼= Z/2.

It is easy to see that

jndG
{1}(−1) · infGG/G(−1) = −eG

1 + eG
G.

So, the map

(
jndG

{1}, infGG/G

)
:B({1})× × B(G/G)× → B(G)×

is surjective. This completes the proof of Proposition 4.1, and hence the proof of
rem 1.1. We end this section with two refinements of Theorem 1.1 which we use la
applications.

Corollary 4.7. Theorem1.1still holds if we replace eachB(H/K)× with B(H/K,cH/K)×
for every subquotientH/K ∈ H with |H/K| > 1, wherecH/K denotes the unique centr
element of order2 in H/K .

Proof. By Lemma 4.3, for each subquotient for everyH/K ∈H with |H/K| > 1, there is
a decomposition

B(H/K)× = im
{
infH/K

(H/K)/〈cH/K 〉
} × B(H/K,cH/K)×

wherecH/K is the unique central element of order 2 inH/K . Let I (H/K)× denote the
image of inflations in the above decomposition. By the transitivity of generalized indu
map jndGH infHH/K , it is easy to see that for everyH/K ∈ H with |H/K| > 1, the subgroup

jndG
H infHH/K(I (H/K)×) is included in the image of the map

∏
H/K∈H′

jndG
H ′ infH

′
H ′/K ′ :

∏
H ′/K ′∈H′

B(H ′/K ′)× → B(G)×

whereH′ = {H ′/K ′ ∈ H | H ′/K ′ < H/K}. So, starting from the subquotients with bigg
× ×
order we can replaceB(H/K) with B(H/K,cH/K) whenever|H/K| > 1. �
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Corollary 4.8. Theorem1.1 still holds if we replace the collectionH with a collection of
representatives of conjugacy classes of subquotients inH.

Proof. We say two subquotientsH/K andH ′/K ′ are conjugate if there is an elemen
g ∈ G such thatH ′ = Hg andK ′ = Kg . Note that in this case the images of jndG

H infHH/K

and jndG
H ′ infH

′
H ′/K ′ are equal, so it is enough to take one representative from each conj

class.

5. The surjectivity of tom Dieck’s homomorphism

The main purpose of this section is to prove Corollary 1.2 stated in the introdu
First we recall the definition of tom Dieck’s homomorphism.

Let G be a finite group, and letR(G,R) denote the Grothendieck ring of isomorphis
classes of (left)RG-modules where addition and multiplication are defined by direct s
and tensor products. Given anRG-moduleV , consider the following element inβ(G)×
defined as

Θ(V ) =
∑

[H ]∈Cl(G)

sgn
(
dimR V H

)
eG
H

where sgn(n) = (−1)n. Using a geometric argument, tom Dieck [8] proved thatΘ(V )

actually lies inB(G)×. Later, Yoshida [12] gave an algebraic proof (for a more gen
statement which holds for real valued characters) which uses the characterization g
Proposition 2.2. It is clear thatΘ(V ⊕W) = Θ(V )Θ(W), soΘ defines a group homomo
phism

Θ :R(G,R) → B(G)×

from the underlying additive group ofR(G,R) to the multiplicative groupB(G)× which
is usually referred as tom Dieck’s homomorphism.

Similar to the maps defined on unit group of the Burnside ring, there are restri
induction, isomorphism, inflation, and invariant maps defined on group rings. Giv
mapf :H → K , anRK-moduleV can be considered as anRH -module through the ma
f :H → K . This gives a ring homomorphismΦf :R(K,R) → R(H,R). If f :H → G is
an inclusion map of a subgroupH � G, then this ring homomorphism is calledrestriction
mapand is denoted by resG

H . Whenf :G → G/N is a quotient map for a normal subgro
N � G, then the ring homomorphism we obtain is calledinflation map and it is denoted
by infGG/N . Finally, if f :G′ → G is an isomorphism, we get theisomorphism mapwhich

is denoted by isoG
G′ .

Aside from these maps, we have two more maps, induction and invariant maps,
are not ring homomorphisms, but group homomorphisms of the underlying additive g
The induction mapindG

H :R(H,R) → R(G,R) is the linear extension of the assignme
V → RG ⊗RH V defined for everyRH -moduleV whereH � G. The invariant map

invG

G/N :R(G,R) → R(G/N,R) is defined as the linear extension of the assignment
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W → WN whereW is anRG-module andN is a normal subgroup ofG. We will need the
following result from Yoshida [12].

Lemma 5.1 (Yoshida [12, Lemma 3.5]). The tom Dieck homomorphism commutes w
induction, restriction, isomorphism, inflation, and invariant maps.

Now, we are ready to prove Corollary 1.2.

Proof of Corollary 1.2. Consider the following diagram:

⊕
H/K∈H R(H/K,R)

∏
ΘH/K

⊕
indG

H infHH/K

R(G,R)

ΘG

∏
H/K∈H B(H/K)×

∏
jndG

H infHH/K

B(G)×.

By Lemma 5.1, this diagram commutes. By Corollary 4.7, the horizontal map o
bottom is surjective even when eachB(H/K)× is replaced withB(H/K,cH/K)× for sub-
quotientsH/K ∈ H with |H/K| > 1. WhenH = K , we haveB(H/H)× = {±1}, which
is the image of trivialRH/H -moduleR underΘH/H . So, to prove thatΘG is surjective, it
is enough to show thatB(G,cH/K) is in the image ofΘH/K for all H/K ∈ H isomorphic
to a dihedral group of order 2n with n � 4. Hence, the proof follows from the followin
lemma. �
Lemma 5.2.Let G be a2-group isomorphic to a dihedral group of order2n with n � 4.
Then,B(G,c)× ∼= Z/2, and the generator ofB(G,c)× is an element of the formΘ(V ) for
someV ∈ R(G,R).

Proof. Let G ∼= D2n with n � 4. Consider the following presentations

G = 〈
b, z

∣∣ z2n−1 = b2 = 1, bzb = z−1〉 = 〈
a, b

∣∣ a2 = b2 = (ab)2n−1 = 1
〉

wherez = ab. Note thatc = z2n−2
is a central element. Ifg is an elementG which is not

in 〈z〉, theng = bzi for somei, and

(
bzi

)zj = z−j bzi+j = (
bzjb

)
bzi+j = bzi+2j .

Hence every elementg ∈ G is either conjugate tob or a = bz−1. Let H be a non-trivial
subgroup ofG such thatc /∈ H . Then,H ∩ 〈z〉 = {1}, and henceH is a cyclic subgroup o
order 2. Ifh is a generator ofH , thenh is conjugate toa or b, and thereforeH is conjugate
to 〈a〉 or 〈b〉.

Let V be 2-dimensional real representation ofG wherez action is a rotation byπ/2n−2
andb action is a reflection around thex-axis. Thenc acts by multiplication with−1, so
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dimV H = 0 if c ∈ H . If c is not inH , thenH is conjugate to〈a〉 or 〈b〉. It is obvious that
dimR V a = dimR V b = 1. So,Θ(V ) = 1− 2(eG〈a〉 + eG

〈b〉).
We claim thatΘ(V ) is the only non-trivial unit inB(G,c)×. Let u ∈ B(G,c)×. Then,

u(H) = 0 for everyc ∈ H . If c is not inH , thenH is conjugate to〈a〉 or 〈b〉. So,

u = 1− 2
(
α〈a〉eG〈a〉 + α〈b〉eG

〈b〉
)

for someα〈a〉, α〈b〉 ∈ {0,1}. We will show thatα〈a〉 = α〈b〉. For this, we apply Corollary 2.
to subquotientsG/{1} and〈a, c〉/{1}, and get

u({1}) · u(〈a〉) · u(〈b〉) · u(〈ab〉) = 1 and u({1}) = u(〈c〉) = 1.

These giveu(〈a〉) = u(〈b〉), and henceα〈a〉 = α〈b〉. Thus, the proof is complete.�

6. The unit group as aB(G)-module

In this section we define an action ofB(G) onB(G)×. The material is well-known, an
can be found in Yoshida [12] and Dress [5]. We include it here for convenience, a
introduce the notation.

Let G be a finite group. For leftG-setsX andY , let [Y ] ↑ [X] := [Map(X,Y )] denote
the equivalence class of theG-set consisting of all maps fromX to Y with G action defined
by

(g · α)(x) = gα
(
g−1x

)

for α :X → Y , g ∈ G, andx ∈ X. As before letB(G)+ be the monoid generated byG-sets.
The assignment([Y ], [X]) → [Y ] ↑ [X] gives a map

( ) ↑ ( ) :B(G)+ × B(G)+ → B(G)+

satisfying

([Y1] · [Y2]
) ↑ [X] = ([Y1] ↑ [X])([Y2] ↑ [X]),

[Y1] ↑ ([X1] + [X2]
) = ([Y ] ↑ [X1]

)([Y ] ↑ [X2]
)
,

[Y ] ↑ ([X1] · [X2]
) = ([Y ] ↑ [X1]

) ↑ [X2]. (7)

WhenX is a transitiveG-set, say[X] = [G/H ], we have

[Y ] ↑ [X] = [
Map(G/H,Y )

] = [
MapH

(
G, resGH Y

)] = jndG
H resGH [Y ],

so the assignment[Y ] → [Y ] ↑ [G/H ] can be extended to a map
( ) ↑ [G/H ] :B(G) → B(G)
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defined byy ↑ [G/H ] = jndG
H resGH y. Hence, we obtain a map

( ) ↑ ( ) :B(G) × B(G)+ → B(G)

such that

y ↑ x =
∏

H∈Cl(G)

(
jndG

H resGH y
)αH for x =

∑
H∈Cl(G)

αH [G/H ] ∈ B(G)+. (8)

Note that this equation makes sense only whenαH is non-negative for allH � G, so the
action ofB(G)+ onB(G) cannot be extended to aB(G)-action.

On the other hand, wheny is a unit, then the formula fory ↑ x given in Eq. (8) makes
sense even whenαH is a negative integer for someH � G. So, we have a map

( ) ↑ ( ) :B(G)× × B(G) → B(G)×

which defines aB(G)-module structure forB(G)×. Note thatB(G)× ↑ 2B(G) = {1}, so
B(G)× can also be considered as a module overF2B(G) := F2 ⊗Z B(G).

Proposition 6.1.There is aB(G)-action onB(G)× derived from the pairingY ↑ X :=
Map(X,Y ) onG-sets satisfying the following formula:

sK(u ↑ x) =
∏

[H ]∈Cl(G)

{ ∏
KgH∈K\G/H

[
u(Kg ∩ H)

]xH

}
(9)

whereu ∈ B(G)× andx = ∑
[H ]∈Cl(G) xH [G/H ] ∈ B(G).

We can extend theB(G)-action onB(G)× to an action onβ(G)× (or equivalently on
C(G)×). For this, we first extend the map( ) ↑ ( ) :B(G) × B(G)+ → B(G) to a map
( ) ↑ ( ) :β(G) × B(G)+ → β(G). SinceB(G) has a finite index inβ(G), the extension
also satisfies the identities in Eq. (7). Repeating the arguments used above, we o
B(G) action onβ(G)×. Note thatB(G) action onβ(G)× also satisfies the formula give
in Eq. (9).

In Section 2, we introduced a duality pairing〈·, ·〉 :β(G)× ⊗ F2B(G) → {±1} where

〈u,x〉 =
∏

[H ]∈Cl(G)

(γH )αH

for u = ∑
[H ]∈Cl(G) γH eG

H ∈ β(G)× andx = ∑
[H ]∈Cl(G) αH [G/H ] ∈ F2B(G). Note that

this is the bilinear map of elementary abelian 2-groups (written multiplicatively on the
entry and additively on the second) which satisfies

〈
G

〉 {
1 if [H ] = [K],
eK, [G/H ] =
0 if [H ] 
= [K].
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This means that for everyu in β(G)×, we have〈u, [G/H ]〉 = sH (u). On the other hand
by Proposition 6.1, we havesG(u ↑ [G/H ]) = sH (u). So, we conclude the following:

Lemma 6.2.The pairing〈· , ·〉 :β(G)× ⊗ F2B(G) → {±1} can expressed by the formula

〈u,x〉 = sG(u ↑ x)

for everyu ∈ β(G)× andx ∈ F2B(G).

As a consequence of this we obtain the following:

Proposition 6.3.As aF2B(G)-moduleβ(G)× is isomorphic toHom(B(G),F2). So, as a
B(G)-module,B(G)× is a submodule ofHom(B(G),F2).

Proof. This follows from the identity

〈(u ↑ x), y〉 = sG
(
(u ↑ x) ↑ y

) = sG
(
u ↑ (xy)

) = 〈u,xy〉. �

7. The surjectivity of the exponential map

In this section, we define the exponential map, and study some basic properties
map. The main objective of this section is to prove Corollary 1.3 stated in the introdu
We start with the definition of exponential map.

Definition 7.1.The map exp :B(G) → B(G)× defined by exp(x) = (−1) ↑ x is called the
exponential map.

Notice that for aG-setX = ∑
H�GG xH [G/H ], we have

sK
[
exp(X)

] =
∏

H�GG

{ ∏
KgH∈K\G/H

(−1)xH

}
= (−1)|X/K|.

One can consider the exponential map as a map exp: F2B(G) → β(G)×, where the
image is inB(G)×. Then, it is possible to describe this map as a linear transforma
where the matrix of the transformation with suitable choice of basis is the mod-2 redu
of the matrix of double cosets. So, the rank of the image of the exponential map is eq
the rank of mod-2 reduction of matrix of double cosets.

Recall that, for everyx, y ∈ B(G), we have

exp(x) ↑ y = (
(−1) ↑ x

) ↑ y = (−1) ↑ (xy) = exp(xy),

so the exponential is aB(G)-module map. In particular, the image of the exponential ma
the submodule ofB(G)× generated by(−1). The image of the exponential map is usua
denoted by(−1) ↑ B(G).
The exponential map is related to the tom Dieck’s homomorphism in the following way:
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Lemma 7.2.LetG be a2-group, and letπR : B(G) → R(G,R) be the linearization map
Then

exp= Θ ◦ πR

whereΘ :R(G,R) → B(G)× is tom Dieck’s homomorphism.

Proof. For everyG-setX and[K] ∈ Cl(G), we have

sK
[
exp(X)

] = (−1)|X/K| = sgn
[
dimR

(
πR(X)

)K]
.

So, the result follows. �
Let R(G,Q) denote the ring of rational representations ofG. We can considerR(G,Q)

as a subring ofR(G,R) through linear extension of the mapV → R ⊗Q V . In particular
tom Dieck’s homomorphism restricts to map

ΘQ :R(G,Q) → B(G)× wheresK
[
ΘQ(V )

] = sgn
[
dimQ V K

]
.

We have the following:

Lemma 7.3.LetG be a2-group. Then,

(−1) ↑ B(G) = im(ΘQ).

Proof. This follows from the Ritter–Segal theorem which states that the linearization
πQ :B(G) → R(G,Q) is surjective whenG is ap-group (see [3] for a new proof).�

Finally, we have

Lemma 7.4.The exponential map commutes with induction, restriction, conjugation
flation, and invariant maps.

Proof. This follows from Lemmas 7.2 and 5.1.�
Note thatB(G) is an abelian group generated by{[G/H ] | [H ] ∈ Cl(G)}, so the image

of the exponential map,(−1) ↑ B(G), will be generated by(−1) ↑ [G/H ]. Note that for
each[H ] ∈ Cl(G), we can express[G/H ] as indGH [H/H ], and by Lemma 7.4, we have

(−1) ↑ indG
H [H/H ] = jndG

H

(
(−1) ↑ [H/H ]) = jndG

H (−1).

Thus,(−1) ↑ B(G) is generated by the set{jndG
H (−1) | [H ] ∈ Cl(G)}. So, we proved the
following:
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Lemma 7.5.LetG be a2-group. Then,

(−1) ↑ B(G) = im

{ ∏
[H ]∈Cl(G)

jndG
H infHH/H :

∏
[H ]∈Cl(G)

B(H/H)× → B(G)×
}
.

Now, we are ready to prove Corollary 1.3 stated in the introduction. In fact we will
a slightly more general version of Corollary 1.3 which will be easier to prove.

Theorem 7.6.If G is a 2-group which has no subquotients isomorphic toD2n of order2n

with n � 4, then

(i) the exponential mapexp :B(G) → B(G)× is surjective,
(ii) B(G)× is generated by(−1) as a module overB(G),

(iii) ΘQ :R(G,Q) → B(G)× is surjective,
(iv)

∏
jndG

H infHH/H :
∏

B(H/H)× → B(G)× is surjective where the product is over a
[H ] ∈ Cl(G).

Proof. First observe that (i) and (ii) are equivalent because of the way we define
exponential map. By Lemma 7.3, (iii) is equivalent to (i) and (ii). Similarly, (iv) is equ
lent to first three statements by Lemma 7.5. Now, by Theorem 1.1 the last statemen
wheneverG does not have a subquotient isomorphic toD2n of order 2n with n � 4. So, the
proof is complete. �
Remark 7.7.Note that we could give a direct proof for the surjectivity of the exponen
map using the same argument used for the surjectivity of tom Dieck’s homomorphism
this consider the following diagram

⊕
H/K∈H B(H/K)

∏
expH/K

⊕
indG

H infHH/K

B(G)

expG

∏
H/K∈H B(H/K)×

∏
jndG

H infHH/K

B(G)×.

SinceG has no subquotients isomorphic toD2n of order 2n with n � 4, we can take
H as the collection of subquotients ofG which are isomorphic to the trivial group. B
Lemma 7.4, this diagram commutes, and by Theorem 1.1, the horizontal map on the
is surjective. So, to show that expG is surjective, it is enough to show that the exponen
map is surjective for the trivial group which is obvious.

Theorem 7.6 applies, in particular, to a group with exponent less than or equa
It is well known that the exponential map is not surjective in general, even for 2-gr
For example, Matsuda in [10] shows that whenG is a dihedral group of order 2n, the
exponential map is surjective if and only ifn = 2,4,pr or 2pr , wherep is an odd prime

such thatp = 3 mod 4. In particular, whenG ∼= D2n with n � 4, the exponential map
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is not surjective. For convenience of the reader, we include a short argument for th
statement.

Proposition 7.8.If G is a2-group such thatG ∼= D2n with n � 4, then the exponential ma
exp :B(G) → B(G)× is not surjective.

Proof. Let G ∼= D2n for somen � 4, and letc be the unique central element inG of
order 2. We will be using the presentation given in the proof of Lemma 5.2, and carry
the calculations already done there.

Let I (G)× denote the image of the inflation map infG
G/〈c〉 :B(G/〈c〉)× → B(G)×, and

B(G,c)× denote the group of unitsu ∈ B(G) such thatu(H) = 1 for everyH which
includes the unique central elementc ∈ G. By Lemma 4.3, we have a decompositi
B(G)× ∼= I (G)× × B(G,c)×. In Lemma 5.2, we have shown thatB(G,c) is a cyclic
group of order 2, generated by the unitu = 1 − 2(eG〈a〉 + eG

〈b〉). We will show thatu is
not in the image of the exponential map, by showing that exp([G/H ]) ∈ I (G)× for every
[H ] ∈ Cl(G).

It is clear that if c ∈ H , then exp(G/H) lies in I (G)×. So, assumec /∈ H . Then
H is conjugate to〈a〉 or 〈b〉. We complete the proof by showing that exp([G/〈a〉] +
[G/〈a, c〉]) = 1. The argument forG/〈b〉 is similar.

Recall that for a transitiveG-setG/L, we have

sK
[
exp(G/L)

] = sgn
∣∣(G/L)/K

∣∣ = sgn|L\G/K|
where|L\G/K| denotes the number of double cosets ofL andK in G. So, we just need
to show thatnK := |〈a〉\G/K| − |〈a, c〉\G/K|) is even for every[K] ∈ Cl(G). Applying
the formula

|H\G/K| = 1

|H |
∑
h∈H

∣∣(G/K)h
∣∣

andH = 〈a〉 and〈a, c〉, we get

nK = 1

4

(|G/K| − ∣∣(G/K)c
∣∣).

If c ∈ K , thennK = |G/K| − |(G/K)c| = 0. If c /∈ K , then|K| = 2 and|(G/K)c| = 0.
So,nK = 1

4(|G/K| − |(G/K)c|) = |G|/8 which is even sinceG ∼= D2n with n � 4. This
completes the proof of the proposition.�

We have shown that the exponential map is not surjective whenG is a dihedral 2-group
of order at least 16. However, there exist 2-groups where the exponential map is sur
even though they have a dihedral section of order 16. The smallest 2-group with
properties is of order 32, and below we give an example of such a 2-group.

Lemma 7.9.There exists a2-groupG such thatG has a subquotient isomorphic toD16,

and the exponential mapexp :B(G) → B(G)× is surjective.
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Proof. Let G be the 2-group of order 32 generated byg1, g2, g3 subject to following rela-
tions: [g1, g3] = g4, [g1, g2] = [g3, g4] = [g1, g4] = g5, g2

2 = g2
3 = g2

4 = g5, g2
1 = g2

5 = 1,
[g2, g3] = [g2, g4] = [gi, g5] = 1 for every 1� i � 4. It is easy to see thatG has a
unique central element of order 2 which isg5, so the only quotient group of order 1
is G/〈g5〉 ∼= D8 × C2. The Frattini subgroup ofG is the cyclic group generated byg4
which is of order 4. We haveG/〈g4〉 ∼= (Z/2)3, so the group has 7 maximal subgrou
Out of these 7, only two of them are isomorphic toD16, namelyH1 = 〈g1, g1g2g3〉, and
H2 = 〈g1g2, g1g3〉. So,G has two subquotients isomorphic toD16.

Now, we will show that the exponential map is surjective. For this, we will use L
mas 4.3 and 4.4. Recall that by these lemmas, there is a surjective map

infGG/〈c〉 × jndG
H infHH/〈a〉 :B(G/〈c〉)× × B(H/〈a〉)× → B(G)×

where〈c〉 is a central element,E = 〈c, a〉 is a non-central normal subgroup isomorphic
Z/2 × Z/2, andH is the centralizer ofE in G. Takec = g5 anda = g2g4. Then,H =
〈g1, g2, g4〉 ∼= C2 × D8, andH/〈a〉 ∼= D8. We have already observed above thatG/〈c〉 ∼=
C2 × D8. Since the exponential map is surjective forD8 andC2 × D8, it is also surjective
for G. �

We have seen that Corollary 1.3 provides a sufficient condition for the surjectiv
exponential map, but it is not a necessary condition. To find a necessary and su
condition, one needs to understand the contribution of each subquotient in Theore
This can be done by consideringB(G)× as a module over the ring of(QG,QG)-bimodules
and using an idempotent decomposition for this ring. We leave this to another pape
it requires some background on bisets and their actions on the unit group.
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