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Abstract

Let G be a 2-group and(G)* denote the group of units of the Burnside ring®@f For each
subquotientH /K of G, there is a generalized induction map frahiH/K)* to B(G)* defined
as the composition of inflation and multiplicative induction maps. We prove that the product of
generalized induction magdg B(H/K)>* — B(G)* is surjective when the product is taken over
the set of all subquotients that are isomorphic to the trivial group or a dihedral 2-group of 8rder 2
with n > 4. As an application, we give an algebraic proof for a theorem by Tornehave [The unit
group for the Burnside ring of a 2-group, Aarhus Universitet Preprint series 1983/84 41, May 1984]
which states that tom Dieck’s exponential map from the real representation riigoB(G)* is
surjective. We also give a sufficient condition for the surjectivity of the exponential map from the
Burnside ring ofG to B(G)*.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Burnside ring of a finite groug is defined to be the Grothendieck ring of the
semi-ring generated by isomorphism classes of finite (téfgets where the addition and
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multiplication are given by disjoint unions and cartesian products. We denote the Burnside
ring of G by B(G), and its unit group by3(G)*. The Burnside ring oG can be imbedded,

as a subring, into the ring of superclass functioii&) = Z"©) whereCI(G) denotes the

set of conjugacy classes of subgroupgofandZc©) denotes the ring of functions from
CI(G) to Z. So, the unit group oB(G), being isomorphic to a subgroup 6f(G)* =
{£1}°MP is an elementary abelian 2-group. Our ultimate goal is to relate the 2-rank of
B(G)* to other well known group theoretical invariants.

Throughout the paper we assuifigs a 2-group. The reasons for restricting ourselves
to 2-groups are as follows: First, the unit groBpG)* is quite difficult to understand for
a composite group. For example, the assertion Biat) * = Z/2 whenG is an odd order
group is equivalent to the odd order theorem. On the other hand, @hisna p-group
with p > 2, it is easy to show thaB(G)* = {£1}, and so there is nothing to study. We
also believe that the unit group functBt—)>* over 2-groups is an interesting object in the
category of biset functors over 2-groups.

We use mainly two ingredients for studyi®yG)*. One is a complete characterization
of B(G)* as a subgroup af (G)* given by Yoshida [12]. We explain this characterization
in detail at the end of Section 2. The other ingredient is the structuB¢@j > as a Mackey
functor together with appropriate restriction, induction and conjugation maps. There are
also inflation and deflation maps defined in a suitable sense. These maps are defined and
studied in detail in [12] and we give an overview in Section 3.

The induction map is particularly interesting since we are using a multiplicative in-
duction map instead of the usual induction map on the Burnside ring. Given a subgroup
H < G, the multiplicative induction map jrﬁi: B(H)* — B(G)* is defined on the Burn-
side ring as the polynomial extension of the assignment Mapy (G, X) whereX is an
H-set, and Map (G, X) is the set ofH-mapsf : G — X. Note that given a normal sub-
groupK < H, we have a homomorphism, called the inflation maﬁ{}r,}f: B(H/K)* —

B(H)* defined by considering & /K -set as anH -set through the quotient mafi —
H/K. We call the composition jrﬁlian/K the generalized induction map from subquo-
tient H/K to G. The main result of the paper is the following induction theorem:

Theorem 1.1.Let G be a2-group, and letH{ denote the collection of all subquotients of
G which are isomorphic to the trivial group or a dihedral group of ord®rwith n > 4.
Then, the product of generalized induction maps

[T indGinti, x: [] B(H/K)*— B(G)*
H/KeH H/KeH

is surjective.

One of the ways to obtain units in the Burnside ring(fis to construct exponential
maps from the Burnside rinB(G) or from the real representation rify G, R) to the unit
group of superclass functiod®(G)*, and then show that they actually lie B{G)*. For
example, given a real representatiorof G, we can define a unit superclass functién—
sgndimV ) for all H < G where sgw) = (—1)" for n € Z. Tom Dieck showed that
these superclass functions lay in the Burnside ring, so one gets an exponential map from
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the real representation rinQ(G, R) to B(G)* which is now referred to as tom Dieck’s
homomorphism (see [8, p. 242] for details). As a corollary of Theorem 1.1, we obtain an
algebraic proof for the following result:

Corollary 1.2 (Tornehave [11])Let G be a2-group. Then, tom Dieck’'s homomorphism
®:R(G,R) — B(G)*
is surjective.

There is a similar exponential map from the Burnside riB@5) to its unit group
B(G)*. Given aG-set X, consider the superclass functigk : H — sgn(|X/H|) for all
H < G. The exponential map expB(G) — B(G)* is defined as the linear extension of
the assignmenX — fx for G-sets. This map is closely related to tBéG)-module struc-
ture onB(G)* which has been studied extensively by Matsuda in [9,10]. The connection
comes from the fact that the exponential map can be defined also &9 exp—1) 1 x
where(—1) 1 x denotes the action of € B(G) on —1 € B(G)* (see Section 7 for more
details). We prove

Corollary 1.3. If G is a 2-group which has no subquotients isomorphic to the dihedral
group of orderl6, then the exponential map

exp:B(G) — B(G)*
is surjective. In this cas&3(G)* is generated by-1 as a module oveB(G).

Corollary 1.3 applies, in particular, to all 2-groups of exponent 4. This includes all
2-groups which can be expressed as an extension of an elementary abelian 2-group by an
elementary abelian 2-group. Also, it is well known that the exponential map is not surjec-
tive whenG is a dihedral 2-group of order at least 16 (see Matsuda [10]). So, the corollary
cannot be improved further using the induction theorem. On the other hand, the converse
of the corollary does not hold either: There are 2-groups where the exponential map is
surjective although they have a dihedral section of order 16. So, Corollary 1.3 provides a
sufficient condition for surjectivity of exponential map, which is not a necessary condition.

2. Superclass functions and idempotent basis

Let G be a finite group. The Burnside ring(G) is defined as the Grothendieck ring
of the semi-ring generated ly-isomorphism classes of finite (lef§j-sets where the ad-
dition and multiplication are given by disjoint unions and cartesian products. So, as an
abelian groupB(G) is generated by isomorphism classes of (I&fiyets, and isomorphism
classes of transitivé&s-sets form a basis foB(G). A transitive G-set is isomorphic to
G/H :={gH | g € G} as aG-set, and any two suafi-setsG/H andG/K are isomorphic
if and only if H andK are conjugate to each other. Therefd8é() is a free abelian group
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with basis{[G/H] | [H] € CI(G)}, whereCI(G) is the set of conjugacy classgg] of sub-
groupsH < G. In other words B(G) decomposes as the direct sum of cy@ienodules

BG) = @ zG/H]

[H1eCI(G)

The multiplicative structure can be explained in terms of the basis by the following double
coset formula:

[G/HIG/K1= Y [G/(HN4K)]

HgKeH\G/K

wheresK = gKg L.

A superclass functioiis a map from the set of subgroups 6fto Z which is con-
stant on conjugacy classes of subgroups. We will denote the set of superclass functions by
C(G) :=Z% |tis easy to see that(G) is a ring under the usual addition and multipli-
cation of functions. For eacH < G, consider the mapy : B(G) — Z defined as the linear
extension of the assignmesnj (X) = | X | where| X | denotes the number of points ih
fixed by H. It is easy to see thaly; (X x Y) =sy(X)sy (Y), hencesy is a ring homomor-
phism. It is well known that the ring homomorphismgandsk are equal if and only i
and K are conjugate. Therefore, for each elemeiwt B(G), one can define a superclass
function £, € C(G) by settingf(H) = sy (x). This defines a ring homomorphism

¢:B(G) — C(G) := 7%

which is injective. The injectivity follows from the fact that ji | = |Y#| for each
H < G, thenX andY are isomorphic ag-sets. We sometimes identif§(G) with its
image inC(G), and writex(H) = sy (x) for x € B(G).

The image ofp is characterized by the following theorem:

Theorem 2.1(tom Dieck [7, Section 1.3])Let G be a finite group. For eaclt’ < G, let
W (H) denote the quotient grouNg(H)/H. Then, the following sequence of abelian
groups is exact

0— B(G) -2 c6) L [l @nweniz)—o
[H1eCI(G)

whereg is the injective ring homomorphism defined above, and Bhecomponent offs
is defined by

v(Hu= Y, [fUH) (mod|Ws(H)).

gHeWg(H)

Let QB(G) andQC(G) denoteQ ®yz B(G) and Q ®z C(G), respectively. By ten-
soring the exact sequence in the above lemma Withone gets a ring isomorphism
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Qe:QB(G) — QC(G). For each H] € CI(G), let ef, € QB(G) be the element defined
by the condition thakK(e,?,) is equal to unity wheiH] = [K] and zero otherwise. It is
easy to see thdly maps{e$ | H e CI(G)} to primitive idempotents o C(G) := Q1®,
hence they are primitive idempotents@B(G). Observe that each element QB(G)
has a coordinate decomposition

X = Z sH(x)eg.

[H]eCI(G)

Theghost ringof G is defined by

BG) =Qu)CG = D Zef.

[H]eCI(G)

We often will identify 8(G) with C(G) and use the notatiam(H) for u € 8(G) and write

u= Z u(H)eg.

[H]eCI(G)

The Burnside ringB(G) is a subring of8(G). Therefore the group of units d#(G) is
a subgroup of the group of units

BG = P (-L1ef

[H]eCI(G)

which is an elementary abelian 2-group of rd@k(G)|. Thus B(G)* is an elementary
abelian 2-group of rank at mosEI(G))|.

Notice that Theorem 2.1 can be used to characterize the suB(Gy* in S(G)*. An
elementx € 8(G)* isin B(G)* if and only if

Y x(g)H)=0 (mod|Wg(H)l)
gHeWG(H)

for all [H] € CI(G). But, this characterization is quite inconvenient for calculations. We
often think 8(G)* as a vector space ov&p and B(G)* as a subspace, so the character-
izations given in terms of linear equations o¥&ér are usually more convenient. Such a
characterization is given by Yoshida [12]:

Proposition 2.2 (Yoshida [12, Proposition 6.5]}etu € 8(G)*. Then,u is contained in
B(G)* if and only if for each subgrou@/ of G, the map

u((g)H)
_, 2We/H)

w(H) gH € Wg(H),

is a linear character ofWg (H).
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Notice that we can rephrase Yoshida’s characterization as follows:

Corollary 2.3. Letu € B(G)*. Then,u is contained inB(G)* if and only if for each
subquotient? /K of G, and for every K, yK € H/K,

u(K) - u((x)K) - u((y)K) -u((xy)K) = 1.

In the rest of the paper, we will consid8(G)* as the subspace @f(G)* satisfying
the linear equations given in Corollary 2.3.

3. Maps between unit groups of Burnside rings

In this section, we briefly explain the maps between unit groups of Burnside rings and
give some of the formulas involving these maps. A full account of this material can be
found in [12].

Let G be a finite group,H be a subgroup an@/ be a normal subgroup af, and
f:G" — G be an isomorphism. LeX be aG-set,Y be anH-set, andZ be aG/N-set.
Then, we have

isof,: X — X as anG’-set throughf : G’ — G (isomorphism map
infg v:Z—Z asaG-setthroughG — G/N (inflation map,
invg i X — X" (invariant map,

res;: X — X as anH-set(restriction map,

jndf, 'Y — Mapg (G,Y) (multiplicative induction map (1)

where Mag, (G, Y) is the setof maps : G — X suchthawe(h-g) =h-a(g) forallh € H,
g € G, with the action ofG defined by(k - «)(g) = a(gk) fork € G.

Notice that isomorphism, inflation, invariant, and restriction maps are additive and mul-
tiplicative, and hence they extend linearly to ring homomorphisms on the Burnside ring,
and induce group homomorphisms on the unit group of Burnside ring. However, the mul-
tiplicative induction map is not linear, so it has to be considered separately.

Let Z* denote the set of non-negative integers, and

B(G)T = Z Z¥(G/H]

[H]eCI(G)

be the free monoid of;-sets. The assignment jﬁdY — Mapy (G, Y) defines a multi-
plicative map fromB(H)* to B(G) which is not additive. In [5], Dress considers this map,
and observes that the multiplicative induction is an algebraic map, and describes how one
can extend it to map jrﬁi: B(H) — B(G). Unfortunately, Dress does not give many de-
tails for his arguments in [5]. A more detailed description of multiplicative induction can
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be found in Yoshida [12]. There is also a recent paper by Barker [1] where the multiplica-
tive induction is defined more generally for monomial Burnside rings. Barker’s paper also
includes some further details on algebraic functions.

Another way to define the multiplicative induction map is to use tom Dieck’s definition
of the Burnside ring. In Chapter IV of [8], the Burnside riBgG) is defined as the ring of
equivalence classes of finite (leff)-complexes under the equivalence relation defined as
follows: X ~ Y ifand only if for everyH < G, the spacex  andY* have the same Euler
characteristic. Notice that now[ X ] can be expressed g8 x X] whereY is aG-complex
with trivial action and with Euler characteristiel.

Given an H-complex X, one can define jr@lX = Mapy (G, Y) as the set of maps
a:G — X such thate(hg) = ha(g) forall h € H andg € G, with the action ofG defined
by ka:g — a(gk) for k € G. To show that the assignmeft — jndf, X from the set
of H-complexes to the set af-complexes induces a well defined map on the Burnside
ring, one just needs to check thatXf andY are H-complexes such that ~ Y, then
jndg X ~jndg Y. For this consider the following calculation (see [8, p. 244]):

sk (ind% X) = sx (Mapy (G, X)) = x[(Mapy (G, X))*]
= x[Mapg (G/K, Mapy (G, X))] = x[Mapy (res; (G/K), X)]

:X[MapH( [I H/ENK), X)]

HgKeH\G/K

= ] swrex0). 2

HgKeH\G/K

Here x (X) denotes the Euler characteristic of tiecomplexX, andsg (X) is defined as
x (XK for everyK < G. So, the assignmenk — jndg X induces a well-defined map on
the Burnside ring. It is clear from the definition that this map is multiplicative, hence it
induces a group homomorphism on the unit group of the Burnside ring. (There is a similar
construction for bisets, using posets with group actions, in [2, Section 4.1].)

Considering an elemente B(G) as a class function through K) = sg (x), we have
the following formulas:

isoZ, (x)(H') =x(H) wheref(H')=H,
infg v (2)(K) =2(KN/N),
invg y (x)(K/N) = x(K),
resy; (x)(K) = x(K),

ndGmE)= [  yHNEK). 3
HgKeH\G/K

Using the definitions of these maps Ghsets (or onG-complexes), one obtains many
composition formulas, such as the Mackey formula for the composition of multiplicative
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induction and restriction maps. These formulas are listed in Lemmas 3.1, 3.3, and 3.4 in
[12]. For example, itV is a normal subgroup @, andH is a subgroup ofs containing¥,
we have:

reg; infg. y =inff resf//%,

. . . . G/N

jnd% infff  =infg  ind/ .

vy yreg; = resg//% invg .

. . . ,G/N -

|nvg/NJndg :jndH//N mv’;,’/N. (4)

Notice that using the formulas in Eq. (3) as a definition, we can extend all the maps in the
list to C(G) or equivalently to3(G), and hence obtain group homomorphismsidr) *
or on B(G)* as the extension of group homomorphismsR(G)*. Since B(G) has a
finite index in8(G), the extended maps will also have the same composition formulas.
Another way to define these maps on the unit groug @) is to consider the duality
pairing

(.):B(G)* ®@F2B(G) — {£1}

defined by

wx= [] o™

HeCl(G)

whereu = 3" yiccie) Yeesy € B(G)* andx = Y yiccie) @n[G/H] € F2B(G). Here
F2B(G) denotes the mod 2 reduction of the Burnside ring, FeB(G) = F2 ®7z B(G).

Note that the group homomorphisms we defined above as extensions of mape& ph

can also be defined as duals of maps between the Burnside rings. To illustrate this duality,
we will show that

jndf; : B(H)* — B(G)*
is dual to the restriction map
re :F2B(G) — F2B(H).

First observe that for everny € 8(G)*, we haveu(K) = (u, [G/K]). So, for somey €
B(G)*, the last formula in Eq. (3) gives

(ind, y.[G/K1) = (y, > [H/HN gK)]) — (v, re$;[G/K)).

HgKeH\G/K

So, by linearity, we geind? y, x) = (y, res; x) for everyy € (G)* andx € F2B(G).
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4. The proof of the induction theorem

The aim of this section is to prove Theorem 1.1 stated in the introduction. In the proof,
we will be using Yoshida’s characterization of unitsBG)* given in Corollary 2.3. We
first state a proposition from which Theorem 1.1 follows as a corollary:

Proposition 4.1.Let G be a nontrivial2-group which is not isomorphic to a dihedral group
of order2" with n > 4. Then, the map

[] indGinfii: [] B@H/K)*— BG)*
H/K#G/1 H/K#G/1

is surjective, where the sum is over all proper subquotient.of

This is a general strategy for proving induction theorems. To see that Theorem 1.1
follows from Proposition 4.1, one just needs to check that the generalized induction map
jndg infg/,( is transitive. This follows from the following calculation: Léf’/K’ and
H/K be two subquotients af such thatk < K’ < H' < H. Then, applying the second
equation in Eq. (4), we get

H/K
H'/K

H'/K

fH' /K
H' /K’

indg inf  indy! % inf /%, =indg indf infff, inf /%, = jndG infll

To prove the proposition, we use a well known argument used to prove similar results
(see, for example, [3,4]). The idea is to reduce the proof to the case @heas no normal
subgroups isomorphic t6/2 x Z/2, and then use the classification of such 2-groups.

We first consider the case wheagehas a central subgroup isomorphicig2 x Z /2.

Lemma 4.2.LetG be a2-group which includes a central subgro@pisomorphic taz,/2 x
7Z./2. Let H1, H>, and H3 be the distinct subgroups @f of order2. Then,

3 3
[[inf&,n - [[BG/HY* — B(G)*
i=1 i=1

is surjective.

Proof. Letc1 andc, be the generators df; and Ha, respectively. Take € B(G)*, and
letu; = infg/H[ invg/H[_ u. Consider the elememt = uuquouz. For everyH < G, we have
w(H)=u(H) -u1(H) u2(H) -uz(H)
=u(H) u(H1H) -u(HoH) - u(HzH)
=u(H) u((c1)H) -u((c2)H) -u({c1c2)H).

If c1, c2, OF c1c2 isin H, then it is clear thatv(H) = 1. So, assume thdf is a subgroup
such thatE N H = {1}. Then,E H/H is a subquotient of; isomorphic toZ/2 x Z/2, and
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we again gew(H) = 1 by Corollary 2.3. This shows that = 1, and hence = ujuous.
Thereforeu is in the image of [._, inf§ ,, . O

If G is a 2-group which has no centfaf2 x 7Z/2, then the centeZ (G) must be cyclic.
In this case(G has a unique central element of order 2, which we usually denate\vg
have the following decomposition f&(G)*.

Lemma 4.3.Let G be a2-group with cyclic center and let be the unique central element
of order2. Then,B(G)* = im{infg/“,)} x B(G, c)* whereB(G, c¢)* is the set of all units
u € B(G)* such thatu(H) = 1 for everyH < G such thatc € H.

Proof. Note that for every normal subgroup < G, we have
B(G)* =im{infg x : B(G/K)* — B(G)*} x ker{invg « : B(G)* — B(G/K)*}.

This is because the compositeﬁ)y( infg/K is the identity homomorphism. Applying this
to K = (c), we get

B(G)* =im{infg, .} x ker{invg, ., }.
If c e H< G, then we havei(H) = sy (u) = sH/@(invg/(C> u) for everyu € B(G)*. It

follows thatu < ker{invg/<c)} if and only if u(H) = 1 for everyH < G such thatc € H.
Thus, ketinvg/<c>} =B(G,¢c)*. O

Lemma 4.4.Let G be a2-group with cyclic center. Assume th@thas a normal subgroup
E =7/2 x 7Z/2 generated by:, ¢c € E wherec is central. LetH be the centralizer of.
Then,

B(G.c)* cim{jnd§inff}, i B(H/(a))* — B(G)*}.
Proof. Letu € B(G, ¢)*, thenu(H) = 1 for everyH < G such that € H. Define
w =jnd inffj ) INVE ., e u.
We will show thatu = w. First note thatd = C;(E) is a normal subgroup o with

index 2. This is becauskut(E) = GL(2, 2) has order2? — 1)(22 — 2) = 6.
For everyK < G, we have

= [ [infilminvii, . res; u](H N¢K)
HgKeH\G/K

= [] u(@Hn2K))

HgKeH\G/K
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= ] u(e)HNnK)).

gHKeG/HK

Now, we consider the following two cases:

Case 1Assume thak £ H. ThenHK = G andw(K) =u((a)(HNK)).If KNE = (a)
or (ac), thena will be central inK, contradicting the assumptiaki £ H = Cg(E). So,
we either have € K or K N E = {1}.

If ce K,thenc e HN K, and hencav(K) =1 =u(K). So, assume&Z N K = {1}.
Consider the subgroup seriéd N K) < EK < G. Pick an element € K — (K N H),
and letk, a, ¢ denote the images @f a, c in the quotient grougE K /(H N K). We have
(k)2 = (@)2=1and[a, k] =¢. So,EK /(H N K) = Dg, the dihedral group of order 8. By
Corollary 2.3, we get

u(HNK)-u({a)(HNK))-u((k)(HNK))-u({ak)(HN K)) =1. (5)

Since(ak)? = ¢, we haver € (ak)(H N K), and hence ((ak)(H N K)) = 1. Note also
thatK = (k)(H N K), so Eq. (5) reduces to

u(HNK) w(K) u(K) =1 (6)

To finish the proof we need to shawH N K) = 1. For this, we consider the subquotient
E(H N K)/(H N K) which is isomorphic t&/2 x Z/2. By Corollary 2.3, we have

w(HNK) - u({a)(HNK))-u({c)(HNK))-u((ac)(HNK)) =1

Sincea is conjugate tac, this equation reduces id H N K) = u({c)(H N K)). Itis clear
thatc € (¢)(H N K), so we conclude that(H N K) =1.

Case 2 Assume thak < H. ThenHK = H andw(K) =u({(a)K) - u({ac)K). If c € K,
then bothw(K) andu(K) are equal to 1. IfK N E = (a) or {ac), thenw(K) = u(K) -
u({c)K) = u(K). Finally, if K N E = {1}, then we consideK < KE < G, and apply
Corollary 2.3. This gives

u(K)-u((a)K) -u({c)K) -u({ac)K) =1
from which we obtain
w(K)=u((a)K) -u({ac)K) =u(K).
This completes the proof of the lemman
For the proof of Proposition 4.1, it remains to consider the case widsea 2-group
which has no normal subgroups isomorphit@® x Z/2. In this case( is said to have

normal 2-rank one. Note that a 2-grodp has normal 2-rank one if and only if every
abelian normal subgroup @f is cyclic.
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The classification of 2-groups with no non-cyclic abelian subgroups is given in Chap-
ter 5 of Gorenstein [6] as Theorem 4.10. We quote this result here:

Theorem 4.5.Let G be a2-group with normaPR-rank equal to one. Thei is isomorphic
to one of the following groups

(a) cyclic groupCa: (n > 0);

(b) generalized quaternion grou@o: (n > 3);
(c) dihedral groupDa: (n > 4);

(d) semi-dihedral grouggDo: (n = 4).

We have the following lemma:
Lemma 4.6.Let G be a2-group isomorphic to one of the following groups

(a) cyclic groupCo (n > 2);
(b) generalized quaternion grou@o: (n > 3);
(c) semi-dihedral grou$ D» (n > 4).

Then,B(G, ¢)* = {1}.

Proof. Let G be a cyclic group or a generalized quaternion group. Tliehas no sub-
groups isomorphic t&/2 x Z/2, so the unique central elementis the only element
of order 2 inG. This implies, in particular, that is included in every non-trivial sub-
group of G. So, ifu is a unit in B(G, ¢)*, thenu(H) = 1 for every non-trivial subgroup
H < G. We claim that if|G| > 2, thenu({1}) is also unity. Observe that ifG| > 2,
then G must include an element of order 4, such thag? = c. Now, consider the sub-
group serieq1} < (g) < G. Applying Corollary 2.3 forK = {1} andx = y = g, we get
u({1) =u((g?)) =1, hencar = 1.
Now assume thar = SDx (n > 4). A presentation fotG can be given as

G= <b, 4 | ZZ"—l — bZ =1, bzh= Z_1+2n—2>.

Note thatc = zzn_z is the unique central element of order 2. Take B(G,c)*. If H is
a subgroup ofG such thatH N (z) # {1}, thenc € H, and hence((H) = 1. So, assume
H N {z) ={1}. Since(z) has index 2 irG, the order ofH is 2. LetH = (h). Then,h = bz™
for somem. Since

_ n—2
(bzm)z — meme — Z( 1+2 )mzm =z m_ .m

m must be an even integer. Note thiat)? = (bz"+1)? = "1 = ¢, soc € (hz).
Applying Corollary 2.3 to the subquotiet/{1} we get

u({1)) -u((h)) -u((z)) -u((hz)) =1
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which reduces ta:((h)) = u({1}). Similarly, Corollary 2.3 applied to the subquotient
(¢, b)/{1} givesu({1}) = u({c)) = 1. Combining these, we get(h)) = 1. Thusu(H) =1
forall H < G, givingu =1 as desired. O

Lemma 4.6, together Theorem 4.5, completes the proof of Proposition 4.1 for all cases
except the cas€ = C». Note that in this case

B(G)* = B(G)* = |anel +azel |, a0 = +1} = 7/2 x 7,/2
and
B(G,0)* = {ael + e |a =21} =7/2.
It is easy to see that
jnd, (=1) - infg (1) = —ef + €.
So, the map
(jnd{Gl}, infg/G) :B{1)* x B(G/G)* — B(G)*

is surjective. This completes the proof of Proposition 4.1, and hence the proof of Theo-
rem 1.1. We end this section with two refinements of Theorem 1.1 which we use later for
applications.

Corollary 4.7. Theorem. 1still holds if we replace eacB(H/K)* with B(H /K, cy k)™
for every subquotient! /K € ‘H with |H/K| > 1, wherecy,x denotes the unique central
element of ordeR in H/K.

Proof. By Lemma 4.3, for each subquotient for evétly K € H with |[H/K| > 1, there is
a decomposition

H/K

N
B(H/K) _Im{lnf(H/K)/(CH/K)

} x B(H/K, cr/g)*
wherecg,k is the unique central element of order 2AfyK . Let I (H/K)* denote the
image of inflations in the above decomposition. By the transitivity of generalized induction

map jncg, ian/K, it is easy to see that for evely/K € H with |H/K| > 1, the subgroup

jnd3 inf7 (1 (H/K)*) is included in the image of the map

[T indGintfh o J] BH/K)Y = BG)*
H/KeH' H'/K'eH'

whereH' = {H'/K' e H | H'/K' < H/K}. So, starting from the subquotients with bigger
order we can replacB(H/K)* with B(H/K,cn/x)* whenevelH/K|>1. O
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Corollary 4.8. Theoreml.1 still holds if we replace the collectioi with a collection of
representatives of conjugacy classes of subquotiertts in

Proof. We say two subquotientd /K and H'/K' are conjugate if there is an elements
g € G such that’ = H¢ andK’ = K¢. Note that in this case the images of fihf;

and jn@, ianﬁ/K, are equal, so itis enough to take one representative from each conjugacy
class.

5. The surjectivity of tom Dieck’s homomorphism

The main purpose of this section is to prove Corollary 1.2 stated in the introduction.
First we recall the definition of tom Dieck’s homomorphism.

Let G be a finite group, and IR (G, R) denote the Grothendieck ring of isomorphism
classes of (leftRG-modules where addition and multiplication are defined by direct sums
and tensor products. Given &G-moduleV, consider the following element iA(G)*
defined as

OW)= > sgr(dimgV¥)ef
[H1eCI(G)

where sgin) = (—1)". Using a geometric argument, tom Dieck [8] proved thatV)
actually lies inB(G)*. Later, Yoshida [12] gave an algebraic proof (for a more general
statement which holds for real valued characters) which uses the characterization given in
Proposition 2.2. Itis clearth&(V & W) = ©(V)O® (W), so® defines a group homomor-
phism

O :R(G,R) — B(G)*

from the underlying additive group a&t(G, R) to the multiplicative group3(G)* which
is usually referred as tom Dieck’s homomorphism.

Similar to the maps defined on unit group of the Burnside ring, there are restriction,
induction, isomorphism, inflation, and invariant maps defined on group rings. Given a
map f : H — K, anRK-moduleV can be considered as & -module through the map
f:H — K. This gives a ring homomorphista;: R(K,R) - R(H,R). If f:H— G is
an inclusion map of a subgroup < G, then this ring homomorphism is callegstriction
mapand is denoted by rgs Whenf :G — G/N is a quotient map for a normal subgroup
N < G, then the ring homomorphism we obtain is calleflation map and it is denoted
by infg/N. Finally, if f: G’ — G is an isomorphism, we get thgomorphism mamvhich
is denoted by is@,.

Aside from these maps, we have two more maps, induction and invariant maps, which
are not ring homomorphisms, but group homomorphisms of the underlying additive group.
Theinduction mapindf, :R(H,R) — R(G,R) is the linear extension of the assignment
V — RG ®grpy V defined for everyRH-module V where H < G. The invariant map
invg/N:R(G,}R) — R(G/N,R) is defined as the linear extension of the assignment
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W — WV whereW is anRG-module andV is a normal subgroup af. We will need the
following result from Yoshida [12].

Lemma 5.1 (Yoshida [12, Lemma 3.5])The tom Dieck homomorphism commutes with
induction, restriction, isomorphism, inflation, and invariant maps.

Now, we are ready to prove Corollary 1.2.

Proof of Corollary 1.2. Consider the following diagram:

@indf; inff]

D /er RUH/K,R)

lH@H/K Og
[Tindg inff
[14/ken B(H/K) ——— B(G)*.

R(G,R)

By Lemma 5.1, this diagram commutes. By Corollary 4.7, the horizontal map on the
bottom is surjective even when eaBlH /K)* is replaced withB(H /K, ¢,k ) for sub-
quotientsH /K € H with |[H/K| > 1. WhenH = K, we haveB(H/H)* = {£1}, which

is the image of triviaR H/ H-moduleR under®py,x . So, to prove thabg is surjective, it

is enough to show tha&&(G, cx/x) is in the image oy, for all H/K e H isomorphic

to a dihedral group of order*2with n > 4. Hence, the proof follows from the following
lemma. O

Lemma 5.2.Let G be a2-group isomorphic to a dihedral group of ordéf with n > 4.
Then,B(G, ¢)* = Z/2, and the generator aB(G, ¢)* is an element of the for@ (V) for
someV € R(G, R).

Proof. Let G = Do with n > 4. Consider the following presentations
G=(b.z| " =bP=1 bb=z"Y=(a.b|a®=1?=(@)? " =1)

wherez = ab. Note thatc = 22""% is a central element. I is an elemenG which is not
in (z), theng = bz' for somei, and

(bzi)zj =z b7t = (bz-/b)bzi+-j = b7t

Hence every element € G is either conjugate tb or a = bz~ 1. Let H be a non-trivial
subgroup ofG such that ¢ H. Then,H N (z) = {1}, and henced is a cyclic subgroup of
order 2. Ifh is a generator off, thenh is conjugate ta or b, and therefordd is conjugate
to (a) or (b).

Let V be 2-dimensional real representationtfvherez action is a rotation byt /2”2
andb action is a reflection around theaxis. Thenc acts by multiplication with—1, so
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dmV¥# =0ifce H.If cisnotinH, thenH is conjugate tda) or (b). It is obvious that
dimg V¢ =dimp V2 =1. S0,0(V)=1— Z(e G 7))

We claim that® (V) is the only non- tr|V|aI unlt mB(G, ¢)*. Letu € B(G,c)*. Then,
u(H) =0 for everyc € H. If cis notin H, thenH is conjugate tda) or (b). So,

u:l—Z( a>e y o G>)

for somex ) y € {0, 1}. We will show thatx,) = ay. For this, we apply Corollary 2.3
to subquoUentS;/{l} and(a, c)/{1}, and get

w({1D) - u((@)) -u(()) -u((ab)) =1 and u({1}) =u((c)) =

These giver({a)) = u((b)), and hencer,y = o). Thus, the proof is complete.O

6. The unit group as aB(G)-module

In this section we define an action Bf G) on B(G)*. The material is well-known, and
can be found in Yoshida [12] and Dress [5]. We include it here for convenience, and to
introduce the notation.

Let G be a finite group. For lefG-setsX andY, let[Y] 1 [X] := [Map(X, Y)] denote
the equivalence class of tlig-set consisting of all maps frod to Y with G action defined

by
(g-0)(x) = ga(gtx)

fora: X — Y, g € G,andx € X. As before letB(G)™* be the monoid generated Gi+sets.
The assignment Y], [X]) — [Y] 1 [X] gives a map

O1O:BG)T x B(G)T — B(G)*

satisfying
(Y1l - [Y2]) 1 [X]= ([Y2] 1 [X1)([Y2] 1 [X]),
[Y1] 1 (X121 + [X2]) = (Y11 [Xl])([Y] 1+ [X21),
(Y11 (IX1]- [X2]) = (IY]1 4 [X1]) 1 [X2l. 7

WhenX is a transitiveG-set, say{ X] = [G/H], we have
(Y11 [X]=[Map(G/H,Y)] = [Mapy (G, res; Y)] = nd§ res; Y],
so the assignmenfy] — [Y] 1 [G/H] can be extended to a map

()1 [G/H]:B(G) — B(G)
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defined byy 1 [G/H] =jndg res y. Hence, we obtain a map
()1 ):B(G) x B(G)" — B(G)
such that

ytx= [] (ndGreg;y)* forx= > aulG/HleB(G)". (8)

HeCI(G) HeCI(G)

Note that this equation makes sense only whgnis non-negative for al < G, so the
action of B(G)* on B(G) cannot be extended toB(G)-action.

On the other hand, whenis a unit, then the formula foy 4 x given in Eq. (8) makes
sense even whemny is a negative integer for sonfé < G. So, we have a map

O 1 O:B(G)* x B(G) > B(G)"

which defines aB(G)-module structure foB(G)*. Note thatB(G)* 1 2B(G) = {1}, so
B(G)* can also be considered as a module &8 (G) :=F> ®7 B(G).

Proposition 6.1. There is aB(G)-action on B(G)* derived from the pairing’ 1+ X :=
Map(X, Y) on G-sets satisfying the following formula

skwrn =[] { [ [u(Kgmm]"”} 9)

[H1eCl(G) \KgHeK\G/H
whereu € B(G)™ andx = Z[H]ECI(G) xg[G/H] € B(G).

We can extend thé(G)-action onB(G)* to an action org(G)* (or equivalently on
C(G)*). For this, we first extend the map) 1 ( ): B(G) x B(G)™ — B(G) to a map
()1 ():B8(G) x B(G)t — B(G). SinceB(G) has a finite index iB(G), the extension
also satisfies the identities in Eq. (7). Repeating the arguments used above, we obtain a
B(G) action ong(G)*. Note thatB(G) action ong(G)* also satisfies the formula given
in Eq. (9).

In Section 2, we introduced a duality pairifg-) : 8(G)* ® F2B(G) — {£1} where

wxy=[] @m*™

[H]eCI(G)

for u =Y yiecic) vres; € B(G)* andx =Yy cciq) @ulG/H] € F2B(G). Note that
this is the bilinear map of elementary abelian 2-groups (written multiplicatively on the first
entry and additively on the second) which satisfies

1 if [H]=[K],
<eIG<’[G/H]>={0 if{H};ﬁ%K}.
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This means that for eveny in 8(G)*, we have{u, [G/H]) = sy (u). On the other hand,
by Proposition 6.1, we hawg; (u 1+ [G/H]) = sy (u). So, we conclude the following:

Lemma 6.2.The pairing(-, -) : B(G)* ® F2B(G) — {£1} can expressed by the formula
(u,x) =sGu 1t x)
for everyu € 8(G)* andx € F2B(G).
As a consequence of this we obtain the following:

Proposition 6.3.As alF2B(G)-moduleg(G)* is isomorphic totHom(B(G), F2). So, as a
B(G)-module,B(G)* is a submodule dflom(B(G), ).

Proof. This follows from the identity

(@t x),y) =s6(utx)1y)=sc(ut (xy)=(u,xy). O

7. The surjectivity of the exponential map

In this section, we define the exponential map, and study some basic properties of this
map. The main objective of this section is to prove Corollary 1.3 stated in the introduction.
We start with the definition of exponential map.

Definition 7.1. The map expB(G) — B(G)* defined by expr) = (—1) 1 x is called the
exponential map

Notice that for aG-setX = ZH<GG xy[G/H], we have

S[([EX[XX)]: 1_[ { l_[ (_1)XH}=(_1)|X/K.

H<GG ‘KgHeK\G/H

One can consider the exponential map as a map BxB(G) — B(G)*, where the
image is inB(G)*. Then, it is possible to describe this map as a linear transformation,
where the matrix of the transformation with suitable choice of basis is the mod-2 reduction
of the matrix of double cosets. So, the rank of the image of the exponential map is equal to
the rank of mod-2 reduction of matrix of double cosets.

Recall that, for every, y € B(G), we have

explx) 1y = ((=1 1 x) ty = (=1 1 (xy) = explxy),

so the exponential is A(G)-module map. In particular, the image of the exponential map is
the submodule oB(G)* generated by—1). The image of the exponential map is usually
denoted by(—1) 1 B(G).

The exponential map is related to the tom Dieck’s homomorphism in the following way:
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Lemma 7.2.Let G be a2-group, and lettr : B(G) — R(G, R) be the linearization map.
Then

exp= 0O onr
where® : R(G,R) — B(G)* is tom Dieck’s homomorphism.
Proof. For everyG-setX and[K] € CI(G), we have
sk[expX)] = ()Y = sgr{dimg (e (X)) .
So, the result follows. O
Let R(G, Q) denote the ring of rational representationg;ofWe can consideR(G, Q)
as a subring oR(G, R) through linear extension of the map— R ®g V. In particular
tom Dieck’s homomorphism restricts to map
Og:R(G,Q) — B(G)* wheresg[Og(V)] = sgr{dimg VX].
We have the following:
Lemma 7.3.Let G be a2-group. Then,
(=1 1 B(G) =im(Bq).

Proof. This follows from the Ritter—Segal theorem which states that the linearization map
g B(G) — R(G, Q) is surjective wherG is a p-group (see [3] for a new proof). O

Finally, we have

Lemma 7.4.The exponential map commutes with induction, restriction, conjugation, in-
flation, and invariant maps.

Proof. This follows from Lemmas 7.2 and 5.1.0

Note thatB(G) is an abelian group generated §%;/H] | [H] € CI(G)}, so the image
of the exponential mag—1) + B(G), will be generated by—1) 1+ [G/H]. Note that for
each[H] € CI(G), we can expresigG/H] as in(j’;[H/H], and by Lemma 7.4, we have

(=D 1 ind§[H/H] =jnd$ ((=1) 4 [H/H]) = jnd§ (- 1).

Thus,(—1) 1 B(G) is generated by the s(ajhdf,(—l) | [H] € CI(G)}. So, we proved the
following:
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Lemma 7.5.Let G be a2-group. Then,

(—1)TB(G)=im{ ]_[ jndf infff ]_[ B(H/H)X—>B(G)X}.
[H]1eCl(G) [H]1eCl(G)

Now, we are ready to prove Corollary 1.3 stated in the introduction. In fact we will state
a slightly more general version of Corollary 1.3 which will be easier to prove.

Theorem 7.6.If G is a 2-group which has no subquotients isomorphidig of order2”
with n > 4, then

() the exponential mapxp:B(G) — B(G)* is surjective,
(i) B(G)* is generated by—1) as a module oveB(G),
(i) ®g:R(G,Q) — B(G)* is surjective,
(iv) TTind%inf}; . :T1B(H/H)* — B(G)* is surjective where the product is over all
[H] € CI(G).

Proof. First observe that (i) and (ii) are equivalent because of the way we defined the
exponential map. By Lemma 7.3, (iii) is equivalent to (i) and (ii). Similarly, (iv) is equiva-
lent to first three statements by Lemma 7.5. Now, by Theorem 1.1 the last statement holds
whenevelG does not have a subquotient isomorphi@te of order 2 with n > 4. So, the

proof is complete. O

Remark 7.7.Note that we could give a direct proof for the surjectivity of the exponential

map using the same argument used for the surjectivity of tom Dieck’s homomorphism. For
this consider the following diagram

@indfj inffy

D ken BH/K) B(G)
il’[expﬁ/x exp;
[Tindf; inff} «
HH/KeH B(H/K)* B(G)*.

Since G has no subquotients isomorphic . of order 2 with n > 4, we can take

‘H as the collection of subquotients 6f which are isomorphic to the trivial group. By
Lemma 7.4, this diagram commutes, and by Theorem 1.1, the horizontal map on the bottom
is surjective. So, to show that exps surjective, it is enough to show that the exponential
map is surjective for the trivial group which is obvious.

Theorem 7.6 applies, in particular, to a group with exponent less than or equal to 4.
It is well known that the exponential map is not surjective in general, even for 2-groups.
For example, Matsuda in [10] shows that wh@nis a dihedral group of ordern? the
exponential map is surjective if and onlyrif=2, 4, p” or 2p”, wherep is an odd prime
such thatp = 3 mod 4. In particular, wheis = D2 with n > 4, the exponential map
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is not surjective. For convenience of the reader, we include a short argument for this last
statement.

Proposition 7.8.1f G is a2-group such thatG = D withn > 4, then the exponential map
exp:B(G) — B(G)* is not surjective.

Proof. Let G = Dy for somen > 4, and letc be the unique central element @& of
order 2. We will be using the presentation given in the proof of Lemma 5.2, and carry over
the calculations already done there.

Let 7(G)* denote the image of the inflation map@){c) 'B(G/{c)* — B(G)*, and
B(G, ¢)* denote the group of unitg € B(G) such thatu(H) = 1 for every H which
includes the unique central element G. By Lemma 4.3, we have a decomposition
B(G)* = I1(G)* x B(G,c)*. In Lemma 5.2, we have shown th&(G, c¢) is a cyclic
group of order 2, generated by the unit=1 — 2(eg) + eg,)). We will show thatu is
not in the image of the exponential map, by showing tha([gxpH]) € 1(G)* for every
[H] € CI(G).

It is clear that ifc € H, then exgG/H) lies in I(G)*. So, assume ¢ H. Then
H is conjugate to{a) or (b). We complete the proof by showing that éxg/(a)] +
[G/{a, c)]) = 1. The argument foG /(b) is similar.

Recall that for a transitivé;-setG /L, we have

sk[exp(G/L)] = sgn(G/L)/K | = sgriL\G/K]|

where|L\G/K | denotes the number of double cosetd.cdind K in G. So, we just need
to show thatug := [(a)\G/K| — |{a, c)\G/K]) is even for every K] € CI(G). Applying
the formula

1
H\G/K|= o D IG/K)|

heH

andH = (a) and{a, c), we get
1 c
ng = Z(IG/KI —[(G/K)°|).

If ce K, thenng =|G/K|—|(G/K)‘|=0.1f c¢ K, then|K| =2 and|(G/K)‘| =0.
So,ng = 711(|G/K| — [(G/K)¢|) = |G|/8 which is even sinc& = D2 with n > 4. This
completes the proof of the propositiont

We have shown that the exponential map is not surjective whira dihedral 2-group
of order at least 16. However, there exist 2-groups where the exponential map is surjective
even though they have a dihedral section of order 16. The smallest 2-group with these
properties is of order 32, and below we give an example of such a 2-group.

Lemma 7.9.There exists @-group G such thatG has a subquotient isomorphic ¢,
and the exponential magxp :B(G) — B(G)* is surjective.
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Proof. Let G be the 2-group of order 32 generatedday gz, g3 subject to following rela-
tions: [g1, g3] = g4, (g1, 821 = [g3, 841 = [g1. 84l = g5, 85 =85 =85 = g5, g5 = g = 1,
lg2, g3] = [g2, g4] = [gi, gs] = 1 for every 1< i < 4. It is easy to see that has a
unique central element of order 2 which gs, so the only quotient group of order 16
is G/(gs) = Dg x C». The Frattini subgroup o& is the cyclic group generated ky,
which is of order 4. We have&/(g4) = (Z/2)2, so the group has 7 maximal subgroups.
Out of these 7, only two of them are isomorphicldag, namely H1 = (g1, g1¢2¢3), and
Hy = (g1g2, g1£3)- S0,G has two subquotients isomorphic fn .

Now, we will show that the exponential map is surjective. For this, we will use Lem-
mas 4.3 and 4.4. Recall that by these lemmas, there is a surjective map

infG ., xjndfinffl < B(G/(c)* x B(H/(a)* — B(G)*

where(c) is a central elemeng = (c, a) is a hon-central normal subgroup isomorphic to
7Z/2 x 7./2, and H is the centralizer ot in G. Takec = g5 anda = gog4. Then, H =
(g1, 82, g4) = C2 x Dg, andH/{a) = Dg. We have already observed above t&atc) =

C2 x Dg. Since the exponential map is surjective fag andC2 x Dg, it is also surjective
forG. O

We have seen that Corollary 1.3 provides a sufficient condition for the surjectivity of
exponential map, but it is not a necessary condition. To find a necessary and sufficient
condition, one needs to understand the contribution of each subquotient in Theorem 1.1.
This can be done by consideriBgG)* as a module over the ring (@G, QG)-bimodules
and using an idempotent decomposition for this ring. We leave this to another paper since
it requires some background on bisets and their actions on the unit group.
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