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Abstract

We develop a Clifford theory for Mackey algebras. For simple Mackey functors, using their classification
we prove Mackey algebra versions of Clifford’s theorem and the Clifford correspondence. Let ;g (G) be
the Mackey algebra of a finite group G over a commutative unital ring R, and let 1, be the unity of
M R(N) where N is a normal subgroup of G. Observing that 1yur(G)1y is a crossed product of G/N
over (L g(N), a number of results concerning group graded algebras are extended to the context of Mackey
algebras, including Fong’s theorem, Green’s indecomposibility theorem and some reduction and extension
techniques for indecomposable Mackey functors.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of a Mackey functor, introduced by J.A. Green [11] and A. Dress [7], plays an
important role in representation theory of finite groups, and it unifies several notions like repre-
sentation rings, G-algebras and cohomology. During the last two decades, the theory of Mackey
functors has received much attention. In [27,28], J. Thévenaz and P. Webb constructed the simple
Mackey functors explicitly. Also, they introduced the Mackey algebra p r (G) for a finite group G
over a commutative unital ring R. The left ;1 g (G)-modules are identical to the Mackey functors
for G over R.

Let N be a normal subgroup of G. A classical topic in the representation theory of finite
groups is Clifford theory initiated by A.H. Clifford [2]. It consists of the repeated applications of
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three basic operations on modules of group algebras, namely restriction to RN, induction from
RN and extension from RN. Later, E.C. Dade [3-5] lifted much of the theory to a more general
abstract system called now group graded algebras.

The goal of this paper is to develop a Clifford theory for Mackey functors. The paper can
be roughly divided into three parts. The first part, the Sections 3 and 4, analyzes restriction and
induction of simple Mackey functors, and the second part, the Sections 5 and 6, is concerned with
the structure of Mackey algebras and Clifford type results for indecomposable Mackey functors,
and the third part, the last section, deals with extension of G-invariant Mackey functors.

One of the main differences between the Mackey algebra ;r(G) and the group algebra RG
is that in the former wg (N) is a nonunital subalgebra of ;r(G) and if we want to get a unitary
WRr(N)-module after restricting a ug(G)-module M to wgr(N), we must define the restriction of
M as 1y M where 1y denotes the unity of g (N). For this reason the restriction of a Mackey
functor may be 0.

We attack the problem in two ways. Our first approach uses the classification of simple
Mackey functors and Clifford theory for group algebras which leads to elementary proofs if sim-
ple Mackey functors are concerned. We show in Section 5 that 1y ug(G)1y is a crossed product
of G/N over ug(N) where N is a normal subgroup of G and 1y is the unity of g (N), and this
result allows us to attack the problem by using Clifford theory for group graded algebras. But
this approach relates modules of g (N) and 1y (G)1y, and for this reason Section 5 contains
some results relating modules of 1yug(G)1y and ug(G).

A number of results pertaining to Clifford theory for group algebras are extended to the con-
text of Mackey algebras. The results 3.10, 4.4, 5.2, 5.4, 6.1 and 6.3 are among the most important
results obtained here. They include Mackey functor versions of Clifford’s theorem, the Clifford
correspondence, Fong’s theorem and Green’s indecomposibility theorem.

Character ring and Burnside ring functors are Mackey functors satisfying a special property
which is not shared with some other Mackey functors, namely each coordinate module of them is
a free abelian semigroup such that restriction of basis elements are nonzero. In [19], motivated by
these functors, a notion of a based Mackey functor for G is defined which is a Mackey functor M
for G such that each coordinate module M (H), H < G, is a free abelian semigroup with a basis
B(H) satisfying some conditions. In [19], Clifford’s theorem and the Clifford correspondence
for based Mackey functors are studied. It is shown that Clifford’s theorem holds between G
and its normal subgroup N for a based Mackey functor M for G and for a « € B(G) if either
rg (o) = np for some B € B(N) and natural number # or « appears in tg (8) for some subgroup
K with N < K < G and § € B(K). One may consider the Grothendieck rings 991(H) of Mackey
functors for H, H < G. Then 9 is a based Mackey functor for G. Given a simple Mackey
functor M for G and a normal subgroup N of G our result 3.10 holds if 91 satisfies the above
property given in [19], however checking this property is not easier than proving the result itself.
In particular, 3.10 and 4.4 show that the property given in [19] holds in 9)t for a simple Mackey
functor M for G and a normal subgroup N of G such that 1M is nonzero. Finally, it must
be remarked that the results 6.1(i) and some parts of 6.2 follow from [19, 1.5 and 2.6] because
N -projectivity implies the property.

Throughout the paper, G denotes a finite group, R denotes a commutative unital ring and
K denotes a field. We write H < G (respectively H < G) to indicate that H is a subgroup of
G (respectively a proper subgroup of G), and we write H < G if it is a normal subgroup. Let
H < G > K. The notation H =g K means that K is G-conjugate to H and H <g K means
that H is G-conjugate to a subgroup of K. By the notation gH € G we mean that g ranges
over a complete set of representatives of left cosets of H in G, and by HgK € G we mean
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that g ranges over a complete set of representatives of double cosets of (H, K) in G. Also we
put Ng(H) = Ng(H)/H, 8H = gHg~! and H% = g~'Hg for g € G. Lastly for any natural
numbers a and b, (a, b) denotes their greatest common divisor.

2. Preliminaries

In this section, we briefly summarize some crucial material on Mackey functors. For the
proofs, see Thévenaz—Webb [27,28]. Let x be a family of subgroups of G, closed under sub-
groups and conjugation. Recall that a Mackey functor for x over R is such that, for each H € y,
there is an R-module M (H); for each pair H, K € x with H < K, there are R-module ho-
momorphisms rII_I( :M(K) — M(H) called the restriction map and tg :M(H) - M(K) called
the transfer map or the trace map; for each g € G, there is an R-module homomorphism
cf{ :M(H) — M (8 H) called the conjugation map. The following axioms must be satisfied for
any g,he Gand H,K, L € x [1,11,27,28]:

M) if HKK <L, rh=rErL and th, =tLtK; moreover rfl =t =idp(my;
M) czl"(h = chc};{;

Mz) ifthe H, CZIM(H) — M (H) is the identity;

My) it H<K, cf;rg :rifgci and c‘;;tg :tfgczl’;;

(Ms) (Mackey axiom) if H <L > K, rlflt}; = ZHgKgL tgmgKr;]%chi.

When y is the family of all subgroups of G, we say that M is a Mackey functor for G over R.
A homomorphism f:M — T of Mackey functors for x is a family of R-module homomor-
phisms fu:M(H) — T (H), where H runs over x, which commutes with restriction, trace and
conjugation. In particular, each M (H) i_s an RNg(H)-module via g.x = c‘;’_[ (x) for g € Ng(H)
and x € M(H). Also, each fg is an RNg(H)-module homomorphism. By a subfunctor N of a
Mackey functor M for x we mean a family of R-submodules N(H) € M (H), which is stable
under restriction, trace, and conjugation. A Mackey functor M is called simple if it has no proper
subfunctor.

Another possible definition of Mackey functors for G over R uses the Mackey algebra g (G)
[1,28]: uz(G) is the algebra generated by the elements rg, tg, and c‘z, where H and K are
subgroups of G such that H < K, and g € G, with the following relations:

M) if HKK <L, rh=rkrk and th, =1Ltk

M) if g, h e G, cih = chc}I’(;

M) ifhe H, tf =rl = ¢l

M}) if H< K and g € G, czl’;rg = rjgcf( and c[;’(tg = tﬁgc‘z;

. 8
(MY) if H <L > K, rijtg = Y pexer firex ok Ck:

4 H _ H _ .
MY X n<cti =2 n<c™n = lun@);
(M%) any other product of v, X and %, is zero.

A Mackey functor M for G, defined in the ﬁ~rst sense, gives a left module M of tpe associative
R-algebra ugr(G) = R®z 1z (G) defined by M = @ch M (H). Conversely, if M is a ur(G)-
module then M corresponds to a Mackey functor M in the first sense, defined by M (H) =t Z’ M,
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the maps tg s rg , and c% being defined as the corresponding elements of the u g (G). Moreover,
homomorphisms and subfunctors of Mackey functors for G are i g (G)-module homomorphisms
and u g (G)-submodules, and conversely.

Theorem 2.1. [28] Letting H and K run over all subgroups of G, letting g run over representa-

tives of the double cosets HgK C G, and letting J runs over representatives of the conjugacy
classes of subgroups of H8 N K, then tfjcf}’rf comprise, without repetition, a free R-basis of

KR (G).

For a Mackey functor M for x over R and a subset E of M, a collection of subsets E(H) C
M (H) for each H € yx, we denote by (E) the subfunctor of M generated by E.

Proposition 2.2. [27] Let M be a Mackey functor for G, and let T be a subfunctor of |, M, the
restriction of M to x which is the family M(H), H € x, viewed as a Mackey functor for x. Then
(T)(K) =Y "xey: x<k tX (M (X)) for any K < G. Moreover |y (T)=T.

Let M be a Mackey functor for G. Then by [27] we have the following important subfunctors
of M, namely Im tf(” and Ker r)j(w defined by

(Ime))(K) = Z X (M(X)) and
Xex: X<K
(Kerry')(K)= [ Ker(rf : M(K) > M(X)).
Xex: X<K

For a nonzero Mackey functor M for G over R, a minimal subgroup H such that M(H) # 0
is called a minimal subgroup of M. If H < G we put xyyg ={K < G: K <g H}.
The following results will be of great use later.

Proposition 2.3. [27] Let S be a simple Mackey functor for G with a minimal subgroup H:

(1) S is generated by S(H), thatis S = (S(H)).
(i) S(K) # 0 implies that H <g K, and so minimal subgroups of S form a unique conjugacy
class.
(iii) S(H) is a simple RNg(H)-module.

Proposition 2.4. [27] Let M be a Mackey functor for G over R, and let H be a minimal subgroup
of M. Then, M is simple if and only if Tm t% =M, Kerr% =0, and S(H) is a simple RNg(H)-
module.

Theorem 2.5. [27] Given a subgroup H < G and a simple RNg(H)-module V, then there exists
a simple Mackey functor Sg,v for G, unique up to isomorphism, such that H is a minimal sub-

group of Sg’ v and Sg’ v (H) = V. Moreover, up to isomorphism, every simple Mackey functor for
G has the form Sg\vfor some H < G and simple RNG (H)-module V. Two simple Mackey func-
tors Sg,v and Sg,y’ v are isomorphic if and only if, for some element g € G, we have H' =8 H
and V' = ¢}, (V).
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Finally, we recall the definitions of restriction, induction and conjugation for Mackey functors
[1,25,27]. For any H < G, there is an obvious nonunital R-algebra homomorphism pug(H) —
wr(G), ticSrB i t4c5r8 for any basis element t4¢5r® of jug(H). Moreover this map is
injective [1]. Viewing, Mackey functors as modules of Mackey algebras, we have obvious no-
tions of restriction and induction: let M and T be Mackey functors for G and H, respectively,
where H < G, then the restricted Mackey functor |§ M is the ug(H)-module 1,,,z)M and
the induced Mackey functor 1% T is the y g (G)-module pg (G) 1 (H) @ty T Where 1,5
denotes the unity of wgr(H). There is a unital R-algebra monomorphism y : RG — ur(G),
g Ve = ZH«; c‘z, making g (G) an interior G-algebra. For H < G, g € G, and a Mackey
functor M for H, viewing M as a ug(H)-module, the conjugate Mackey functor |5;] M=5M
is the ugr (8 H)-module M with the module structure given for any x € ugr(8 H) and m € M by
x.m= (yg_|xyg)m. Obviously, one has |Z;i S%I,V = Sglfl’ci(v).

The following equivalent definition of induction is useful [25,27]. Let H < G and let M be a
Mackey functor for H. Then for any K < G the induced Mackey functor Tg M for G is given
by

(G M) K)= P MHNK®,

KgHCSG

where, if we write m for the componentin M (H NK¥) of m € (Tg M)(K), the maps are given
as follows:

K HNKS K HNK"$ y
rp (m)g =rgnare (Mg), tp (n)g = Z tunpve (Mug) and  cx(m)g =My-1,

Lu(KNSH)CK

for L<K,ne (1§ M)(L)andy € G.
Let L < G and M be a Mackey functor for L with maps ¢, r, c. Let f, 7, ¢ be the maps of
Tg M, then we have

g ug
~Ky @ LNK; ~Ky @ Z LNK,
Kerry™ = Kerrme and Imzy " = Imth;,g .

KrgL<G KrgLCG “Kiu(KyN8L)CK,

As a last result in this section, we record the Mackey decomposition formula for Mackey
functors, which can be found (for example) in [28].

Theorem 2.6. Given H < L > K and a Mackey functor M for K over R, we have

L AL np~ H SK |8
Itk M= @ Yansx v anek |k M-
HgK<L

3. Clifford’s theorem

In this section using the classification of simple Mackey functors we prove that restriction of
a simple functor to a normal subgroup is semisimple and simple summands of it are conjugate.
For the next two results we let M = Sg v be a simple Mackey functor for G over K.
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The following remark shows that any minimal subgroup of a nonzero L-subfunctor of J,f M
is conjugate to H, where H < L < G.

Remark 3.1. Let H < L < G. If S is a nonzero L-subfunctor of ¢g M then S(8 H) # 0 for some
geGwith8H < L.

Proof. There is a K < L such that S(K) #0. If forall g € G with $H < K S($H) = 0, then
er(S(K)) C S(8H) = 0, implying that S(K) C (Kerr%i)(l(). But by 2.4 (Kerr)/(";)(l() =0

and so S(K) =0, a contradiction. O

Let H < L. For any KNy (H)-submodule U of M(H) = V and any g € Ng (L), we denote by

TgLH & ) the L-subfunctor of ¢f M generated by c‘}g_I(U ). Therefore, for any K < L, we have,
CH
by 2.2,
L K L
QH%W¢Ky: § thpciyct,(U) and Q&%w%unzcgvy

xeL: *(H)XK

We draw some elementary properties of these subfunctors which will be useful in our subse-
quent investigations, in particular in the proof of 3.10.

Lemma 3.2.
(i) Foranyx €L

L _ 7L
TgH,ci;(U) - szH,c';;'(U)'

(i1) TgL ¢ is simple if and only if U is simple KNy (H)-module.
H,c%,(U)

(iii) Tg%[.[,M(m H) ™ Tg%H’M(ng) ifand only if LgiNG(H) = Lga NG (H).
@(v) If L < G then

G L
»LL M= Z TgH,M(gH)v
LgNG(H)SG

and each summand is distinct.
v) If Uy and Uy are KN (H)-submodules of M(H), and if g € G with 8 H < L, then

L
+Q&@Wﬂ

L _ L

n&@wMQWﬂ_EH@wo
Proof. (i) For any x € L, it is obvious that the subsets c‘}’}(U) and cj,ch‘}’;(U) = cf_f(U) of ig M
generate the same L-subfunctor of ¢(L; M.

(i) If TgLH & W) is simple, then 2.3 implies that U is simple KN (H)-module. Suppose now
"“H
L

U is simple. If § is a nonzero L-subfunctor of T, H.¢4 ()

¢g M, and hence, by 3.1, S(" H) # 0 for some y € G with Y H < L. Then, S(* H) is a nonzero
submodule of TgLH (Y H), implying that the index set {x € L: *(8H) < Y H} of the sum

then S is a nonzero L-subfunctor of

)
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: L
xpressing T,
expressing ¢H.c§U)

by (i), we have

(Y H) is nonempty, and so xg = yu for some x € L and u € Ng(H). Then,

L L L L
TSH s () TXKH W) TWH )~ TVH,L~}'1<U)'
Thus, S is a nonzero subfunctor of TVLH &y and so S(Y H) is a nonzero submodule of ciI(U ).
S5t

Then simplicity of U implies that S(" H) = CL(U ). Now,
L y _
T\ H,c” (U) <CH (U)) - (S(yH)>
implies that

L _ 7L
Tch u () TVHCH(U) S.

Hence, Tgl—[ & W)

(iii) Suppose that T

is simple.

VH M@ H) — ngH M$2H)" Then 0 # M($'H) = 2H M(A’ZH)( H), im-
plying that the index set {x € L: *(82H) < 81 H} of the sum expressing Tg2H M(gZH)( H) is
nonempty, and so * (82 H) = 8! H for some x € L. Hence Lg{Ng(H) = LgyNg(H). Conversely,
if LgtNg(H) = LgyNg(H) then g» = xg u for some x € L and u € Ng(H). Thus, by (i),

L L
Ty me my =Tanmeny:

(iv) For K < L, it is clear that

S Thmem &) =" > thyadpMEH) = Yl MH) = M(K),

geG geGxel: *(8H)KK geG: 8HLK

where the last equality follows by 2.4. The result now follows by (iii).
(v) It is clear because trace maps are additive. O

Corollary 3.3. Let H < L < G, and let a simple Mackey functor Sgyv for G be given. Then,

¢L Sg v 1s semisimple if and only if | - Ne (H) V is semisimple.

Ni(H)
Proof. By 3.2
G oG _ L
WWSiv=" > The ¢y
LgNG(H)SG
Suppose ¢xc((g)) V =P; W; where each W; is a simple Ny (H)-module. For any g € G,

Ng(EH) o8 NG(H)
Vavem n V) =cu (V5 iy V) @CH(W)
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implying by 3.2 that

Vi SGy= Z ZTELI-I,C‘}}(W,')

LgNGg(H)CSG i

where each summand TsH,c‘;;(W,-) is simple. Thus, |} S} |, is semisimple.

Conversely, suppose ¢g Sgﬁ v = &P; Si where each S; is a simple Mackey functor for L. Then,

by 3.1, each S; has a minimal subgroup G-conjugate to H, and so S; (H), if nonzero, is a simple
N1 (H)-module. Therefore,

V=195, H) =EPSsiH)

is a direct sum of simple Ny (H)-modules, proving that ¢%G((g)) V is semisimple. O
L

If N is a normal subgroup of G, 3.3 implies that ¢g S is semisimple for any simple Mackey
functor S for G whose minimal subgroup is contained in N.
The next two results will play a crucial role in the proofs of some of the later results.

Lemma 3.4. Let H < L < G be such that *H < L for every g € G, and let a simple Mackey
functor SfI’Ufor L be given. Then, letting Tg SIL{’U =9

() H is a minimal subgroup of S.
(i) §= I{nt)fH.

cee S _
(ii1) KeerH =0.

(iv) S(H) ’%T%f(‘ﬁ,’; U.

Proof. We write 7, 7, ¢ for the maps on S:
(i) First note that, if the module

S(K) = @ ShuLNKE®)
KgLCG

is nonzero, then SIL{’U(L N K8) #0 for some g € G, hence H <¢ K. Plainly, S’(H) # 0. So the

minimal subgroups for S are precisely the G-conjugates of H.
(i1) Let K < G. We must show that

S(Kycimes, (K)= > Imif,.
geG: SHLK
Foran x € G,
(S(K)), =Sk y(LNKY) = > Im#-0K" and

yeL: YHLLNKY
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(mes, (), = > S ImeEE

g€G: SHSK CH)u(KN*L)CK

Now, by the assumption on L, we see that L N (8§ H)** = e g And if yeL with VH <

LN K* then, putting g =xy and u = 1, we see that ¢H < K and x~'u~'g = y. Therefore, every
summand in (S(K))x appears in (Im t)fH (K))y.
(iii)) Let K < G. If

S _ ~K
meKerry, (K)= ()  Kerify
g€G: SH<LK

then, for any x € G,

LNK~*
my € m Kerrinemy
geG: SHLK

and by the assumptionon L, LN (8 H)* = g, Consequently,

X
my € | | KerrLQ,K .
xX$T'H

2€G: SHKK

Simplicity of S}; , implies that

X
ﬂ Kerrf‘,?K =0.
yeL: YHLLNK™

If y e L with VH < L N K*, putting g = xy, we have ¢H < K and x~'g = y. Hence, any set
appearing in the intersection

X
ﬂ KerryL;K (=0
yeL: YHSLNKY

appears also in the intersection

LNK*
m Kerrxg,lH.
geG: SHLK

Therefore, m, =0.
(iv) Firstly, for any g € G, if SﬁLU(gH) #0then g € Ng(H)L. Also L N HS = HS, and if
x € Ng(H)L then HxL = xL. Thus,

SHy= @ ShywnaH= @ SHyHH= P ShyE).

HgLSG HgLCNG(H)L gLCNG(H)L
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L g
As S}, (HS) = ¢ (U),

~ -1
S(H) = @ c§, (U), adirect sum of K-modules.
gLCNG(H)L

Moreover, since k € Ng(H) acts on an element

x= @ Xg of S(H) as

§LENG(H)L

kox = (x) = EB &y (x)g  where & (x) = x;-1,.
gLENG(H)L

— —1 ~
we see that Ng (H) permutes the summands ci}’; (U) of S(H) transitively and that the stabilizer
of the summand c}i(U) =U is Ny (H). Hence we proved that if L # Ng(H)L then S(H) is an
imprimitive Ng (H)-module with a system of imprimitivity

-1
{¢}, (U): gL S Ng(H)L}
on which Ng (H) acts transitively, implying that

S(H)= Tgf((g)) U as KNg(H)-modules.

On the other hand, if L = Ng(H)L then Ny (H) = Ng(H) and S(H) = U. So the result is trivial
in this case. O

Proposition 3.5. Let H < L < G be such that 8 H < L for every g € G, and let a simple Mackey
functor SILJ,U for L be given. Put V = TJZ%]’(L;((Z)) U. Then Tf SILi,U is simple if and only if V is
simple, and if this is the case then Tf SIQI’U = Sf],V'

Proof. If Tg Sé y 1s simple then 3.4(iv) implies that V' is simple. Conversely, suppose V =

(Tf SZ’U)(H) is simple. Then 3.4 and 2.4 imply that Tg SfI,U is simple. Finally the last asser-
tion follows by 2.5 and 3.4. O

We have now accumulated all the information necessary to prove one of our main results,
Clifford’s theorem for Mackey functors. But we first state some consequences of 3.4 and 3.5.

Remark 3.6. Let S be Mackey functor for G, and T be a G-subfunctor of S, and let x be a
family of subgroups of G closed under taking subgroups and conjugation. Then we have

T _ s T S Imef T
Kerrx _TﬂKeer, ImtX gTﬂImtX, and Im¢, _Imtx.
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Proof. Since T is a subfunctor it must be stable under restriction and trace, implying that

Ker(rg : T(K) — T(X)) = T(K) NKer(r§ : S(K) — S(X)),
15 (T (X)) S T(K) Nt (S(X))

forany K < G and X € x with X < K. Then the result follows easily. O

Corollary 3.7. Let H < L < G be such that 8H < L for every g € G, and let a simple Mackey
functor S .y for L be given. Then, 16 I SH L gy is semisimple if and only if TZG((Z)) U is semisimple.

Proof. Let § = Tf S %, - Suppose S= P,c; Si is a decomposition into simple G-subfunctors.
Iffora K <G andi € S;(K) is nonzero then

S(K) = @ Shu(LNK?)

KgLSG

is nonzero, and so S%, y (LN K&)#0forsome g € G, and by 2.3, H <¢ K. Then by evaluating

at H we get S(H) = D, Si(H) where J is the subset of I containing those i € I for which
Si(H) #0. And H is a minimal subgroup of S; for each i € J, so S;(H) is a simple Ng(H)-

module for any i € J. Therefore, S(H) is semisimple, and so is TNG(H) U by 3.4.

NL(H)
xc((g)) U= EB V; where each V; is a simple KNG(H )-module.

We let S; be the G- subfunctor of S generated by V;. In partlcular S;(H) =V;, H is a minimal
subgroup of S; and Im tXH = S; for each i. Also by 3.4 Kerr = 0. Then 3.6 implies that

Conversely, suppose now 1

Ker rX = 0 for each i. Hence each S; is a simple Mackey functor for G. More to the point,
NG (H)
(S5 )an = vi=rii v =50

by 3.4, and this implies that S = >; Si because we know by 3.4 that S is generated by S(H).
Consequently Tg Sé],U is semisimple. 0O

Corollary 3.8. Let K be of characteristic p > 0, and let N be a normal subgroup of G such that
(|G:N|,p)=1,and let N < L <G. Then, if SfI’U is a simple Mackey functor for L over K

with H < N then TL SL p.u s semisimple.

Proof. We know that U is simple K]\_/L(H) module. Note that ]\_/N(H) N(;(H) Ny(H) <
Ni(H) < Ng(H),and (|Ng(H) NN(H)| p) = 1. Therefore, by [20, Theorem 11.2], T%G((Z)) U
is semisimple. The result now follows by 3.7. O

Over algebraically closed fields, simple modules of nilpotent groups are monomial. The fol-
lowing is a Mackey functor version of this result.
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Corollary 3.9. Let G be a nilpotent group, and K be algebraically closed. Then, for any simple
Mackey functor Sg,v for G over K, there is a simple Mackey functor S IL{,W for some subgroup L

with H 4 L < G such that dimgW =1 and 1§ S}, ,, = 55 .

Proof. As K is algebraically closed, Ng (H) is nilpotent, and V is simple KNg (H )-module, V
must be monomial, see [21, Theorem 3.7, p. 205]. Therefore, there is a subgroup L of Ng(H)

and a one-dimensional KZ-module W such that TgG(H wxy. Now, H < L < Ng(H) implies
that Ny (H) = L, and so we may consider the simple Mackey functor SIL{’W for L. Since G is
nilpotent, we can find a subnormal series: L = Lo << L1 < --- < L,, = G for some natural number
n.Forj=1,...,n—1welet

N Ny, (H)
ST INL (1) N (H)
Since
N (H) Ni,_y (H) Niy(H)
V=1y 1(H)TA?L,I,N‘I) T1\7L<H> W
is simple, it follows that W,,_1, ..., Wy are all simple. Then, by a repeated application of 3.5
GsL ~ G LZ LlsL ~ G . ~ ...
M Saw = TL _ TLlTL aw =10, T H Wy =
= /TL HnWI,, = Shy- u

We now state Clifford’s theorem for Mackey functors. We state it over a filed, but it is true over
any commutative base ring. Of course, restriction of a simple Mackey functor may be 0. Indeed,
1§ 85 #0 implies that H < K. And note that if H < N < G then Ny (H) < N (H).

Theorem 3.10. Let N < G, and let Sg,v be a simple Mackey functor for G over K such that
H < N. Then:

(1) There is a simple N -subfunctor SZ’W of ig SIG{’V.

(i) Let L={ge G: SN = SZ’W} be the inertia group of SZ’W. Then, there is a positive

$H.cy (W)
integer e = e(SY o v), called the ramification index of Sg v relative to N, such that

*LNSHV—e@ |g SHw—e@ $H,c%, (W)

gLCG gLCG

Moreover, sz ={ge Ng(H): C(;’_I(W) = W} is the inertia group of the Ny (H)-module W
in Ng(H), then L = NT and

Ng(H) g
emve @ 5 (W).
gTCNG(H)
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Furthermore SgH 2wy

morphic G-conjugates of SZ’W. And C‘;_](W), for gT C Ng(H), form, without repetition, a

, for gL C G, form, without repetition, a complete set of noniso-

complete set of nonisomorphic Ng (H)-conjugates of W.
(iii)) Np(H) =T and there is a simple Mackey functor S for L such that S = SILi’U where U is

the sum of all KNy (H)-submodules of ¢xGEH; V isomorphic to W. Moreover, S is a simple
L-subfunctor of | ¢ I Sgy v such that

INSZeSyy and 17 S=S5 .

Furthermore U is a simple KN (H)-submodule of ix(’((g)) V satisfying

NL(H) NG (H)
iN (H)U_eW and TN (H)U V.

Proof. As V is a simple KNg(H)-module and Ny(H) < Ng(H ) by Clifford’s theorem for
group algebras [21], there is a positive integer e, and a simple KNy (H)-submodule W of V
such that

WV @ Gon-e @ don

gT<Ng(H) gTCSNG(H)

where T = {g € Ng(H): CZ(W) = W} is the inertia group of the Ny (H)-module W in Ng (H).
Moreover C‘Z(W) gT € Ng(H), form, without repetition, a complete set of nonisomorphic

Ng(H)- -conjugates of W. Also, if U is the sum of all KNy (H)-submodules of ¢xG((Z; V iso-

morphic to W then U is a simple K7 -module such that

T ~ NG(H) 77 ~
LNN(H)U_EW and 15 u=Vv.

For any x € G, it is clear that

Ng(*H Ng(H
W =L vize @ .
8TSNG(H)

We now use 3.2 with L =N and M = Sg,v- The parts (iv) and (v) of 3.2 imply

G G _ N
INSpy = Z T*H,c}‘,(\/) and
NxNg(H)CG
N ~ N _ N
Lheyy =€ Z T"H,c);lg(W) = Z TxgH,cjf(W)’
8TCNG(H) 8TCNG(H)

where we use g € Ng(H) for the last equality. Therefore, we have the decomposition

IN Shv=e Z Z TVIgVH aEwy

NxNG(H)SG gT SN (H)
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Letting G = 4); Nx; Ng(H) and Ng(H) = E-Jj g;T we see that G =4, U—Jj Nx;g;T. Thus,

l'NSHV_eZZ 98 7,65 ) e DT, gHLH(W)

NgT<G

N
Moreover, by 3.2 and 2.5, we know that Tg H.e (W)

N N .
TgH & W)y = SsH ¢ W) and we have the direct sum

NgT C G, are all simple and distinct. Hence,

@ ch g W)’

gNT<G

= S}  if and only if, for some

, 8L C G,

where we use NgT = gNT. Furthermore, by 2.5, SN & W)

neN,"H=H and c’}_f(W) W, equivalently g € NT L. Hence, SgH < W)

form, without repetition, a complete set of nonisomorphic G-conjugates of S gwand L=NT.

Now U is a simple KT-submodule of M (H) = V. If we apply the modular law to the tower
T < Ng(H) <G > N we see that

NL(H)=Ng(H)NL=NG(H)NTN =T(Ng(H)NN)=TNy(H)=T

As a result, U is a simple KNy (H)-submodule of V. We put S = T,g’U. It is a simple L-sub-
functor of i,G M,by3.2,andso S = S%, U

As TZG((Z)) U =V is simple, 3.5 implies that 1¢ 8%, = 8G
Finally, since U is a KT -module we have ¢}, (U) = ¢, (U) forany x =nt e L=NT,n €N,

teT.If K <N,

Uk Sho)® = > o= Y Ky =1f, &),

xeL: "HLK neN: "H<K

NL(H) U

thus ¢]L\, SII;’U = T;}{ Because ¢ i (H)

L ¢L ~ N
IvSgu=eSgw- O

= eW, 3.2 implies that T U = eSZ’W. Hence,

4. The Clifford correspondence

Our aim in this section is to prove a Mackey functor version of the Clifford correspondence.
Namely, if N is a normal subgroup of G and S is a simple Mackey functor for N whose inertia
group is L then we show that there is a bijection between certain simple Mackey functors for L
and for G.

The following result shows that given any simple Mackey functor S for N, N < G, we can
find a simple Mackey functor M for G such that § is a direct summand of ijc\;, M
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Lemma 4.1.

(i) Let K < G, and let S be a simple Mackey functor for K over K. Then there exists a simple
Mackey functor M for G such that S is a K -subfunctor of l,g M.

(ii) Let N < G, and let S be a simple Mackey functor for N over K. Then there exists a simple
Mackey functor M for G such that S is a direct summand of i,g M as pg (N)-modules.

Proof. (i) Let S = Sg,w- So W is a simple KNK(H)—module and Nx (H) < Ng(H). Then, by
[24, Lemma 1.2, p. 224], there is a simple Ng (H)-module V such that W is a Ng (H)-submodule
of ¢%§Z; V.Welet M = SIqI,V' Now since W is a submodule of (¢g M)(H) =V, we see that
S is a K-subfunctor of ¢g M because S is generated by S(H) = W.

(ii) This follows from (i) and 3.10. O

Remark 4.2. Given a Mackey functor M for K where K < G, then M is a direct summand of
LErE M.

Proof. By the Mackey decomposition formula, 2.6. O

For a ring A and a subring B, we denote by Irr(A) a complete set of representatives for
the isomorphism classes of simple A-modules, for S € Irr(B) we denote by Irr(A[S) the set
{M eTrr(A): S| J,g M} where the notation S| J,g M means that S is a direct summand of 1z M
as B-module where 1p is the unity of B.

Given any simple Mackey functor S Z,W for N over K where N < G, 4.1 implies that the sets

Irr(,u]K(X)lSZ w) are nonempty for any X with N < X <G.
Lemma 4.3. Let N <G and N < X <G. Then:

(i) If M € Irr(ug (X)|S}y ) then M = Sy, for some V € It (KNx (H)|W).
(i) If V € m(KNx (H)|W) then S35 |, € (g (X)[S}y ).
(iii) Sl)g v = Sg v as Mackey functors for X if and only if V=V’ as KNy (H)-modules.
@iv) The map Irr(;LK(X)|SZ,W) — Irr(KNyx (H)|W), given by S}_g)v <V, is a bijection pre-
serving ramification indexes.

Proof. (i) If M = SI’;V € Irr(,uK(X)|SZ’W) then 3.10 implies that H and K are X-conjugate
which gives the desired result.

(ii) It is an immediate consequence of 3.10.

(iii) Follows by 2.5.

(iv) Follows by (i), (ii) and 2.5. O

The following result is a Mackey functor version of the Clifford correspondence for group
algebras, see [21, Theorem 3.2, p. 203].

Theorem 4.4. Let N < G, and a simple Mackey functor SZ’ w for N over K be given, and let L
be the inertia group of SZ’W in G. Then:
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() If S € lir(ux(L)|S}y ) then A7 S € Iir(ux (G)|SH y)-
(ii) The map Irr(;LK(L)|SZ’W) — Irr(,uK(G)|SZ’W), given by S — Tg S, is a bijection preserv-
ing ramification indexes.

Proof. (i) Let S € Irr(ux (L)|S}y ). Then, by 4.3, S = S}, |, for some U € It (KN (H)|W).

Also 3.10 implies that L = NT and N (H) =T where T is the inertia group of the simple

KNy (H)-module W in Ng(H). The Clifford correspondence for group algebras implies that
N (H)

V=13l U e It (KNG (H)|W). Then, by 4.3, S |, € Irr(uk (G)|Sy) ). Finally, because

G ¢L ~ oG
of 3.5, 17 Spv =Sp.v-
(ii) By 4.3, the Clifford correspondence for group algebras, and again 4.3, respectively, the
following composition of maps

Irr (i (L)|S}y ) = Ire(KNL(H)|W) = Ire(KNg (H)|W) — Trr(ug (G)[S}y ).

Ng(H ~
S=Shyr> U V=130 U SGy =17 Shy

is a bijection preserving ramification indexes where for the last isomorphism we use 3.5. 0O
The inverse of the bijection in 4.4 will be described in the next section.

Corollary 4.5. Let N < G, and let S be a simple Mackey functor for N over K. If the inertia
group of S in G is N then Tg S is a simple Mackey functor for G.

Proof. A simple consequence of 4.4. O

Remark 4.6. Let N < G, and let S and $> be simple Mackey functors for N over K. Then,
16 S1 =1$ S, if and only if S; =%, S, for some g € G.

Proof. It is an easy consequence of 2.6. O

Corollary 4.7. Let N < G, and a simple Mackey functor SZ’W for N over K be given,
and let L be the inertia group of SZ’W in G. Then, for any X with L < X < G, the map
Irr(,uK(X)|SZ’W) — Irr(/LK(G)|SZ’W), given by S — Tg S, is a bijection preserving ramifi-
cation indexes.

Proof. This follows easily from 4.4. O
5. Group grading method

In this section, we first show that a certain subalgebra of wg(G) is a group graded algebra
over ugr(N) where N is a normal subgroup of G. After obtaining a Mackey algebra version
of Fong’s theorem, we use Clifford theory results on group graded algebras to study restriction
and induction of Mackey functors. We also study the subalgebras ey g (G)e of g (G) for some
special kinds of idempotents of g (G).

For aring A and its subset B, we let C4(B) ={a € A: ab=ba, forall b € B}, and Z(A) =
C4(A), and U (A) be the unit group of A.



260 E. Yaraneri / Journal of Algebra 303 (2006) 244-274

An R-algebra A is called strongly G-graded algebra if A =@, _; Ay, direct sum of R-
submodules of A, and AyAy = Ay, for all x,y € G; here A;A, is the R-submodule of A
consisting of all finite sums Zi a;b; with a; € Ay and b; € Ay. The trivial component Aj is
a unital subring of A. If u € U (A) lies in A, for some x € G then u is called graded unit and x is
called the degree of u, written deg(u) = x. Letting Gr U (A) be the set of all graded units of A we
see that Gr U (A) is a subgroup of U (A) and deg:GrU(A) — G, u — deg(u), is a group homo-
morphism with kernel U (A1). If U(A) N A, is nonempty for all x € G then A is called a crossed
product of G over Aj. Let A be a crossed product of G over Ay, choosing u,, € U(A) N Ay for
any x € G, we see that A, = Ajuy =u, A [3,17,22,23].

From now on, for K < G we let xx denote the set {H < G: H <g K}, and we let 1g
denote the unity of wgr(K) which is a nonunital subring of ug(G), if K # G, and a unital
subring of 1x g (G)1k. Finally, for g € G we let y, = 2L<G ci, and we let B¢ = ZLgN c‘i €
1y ur(G)1x whenever N is a normal subgroup of G.

Lemma 5.1. Let N be a normal subgroup of G. Then:

(i) Bxur(N)=Byur(N) ifand only if xN = yN.
(i) Bxur(N) = pr(N)Bx.
(i) Ivpur(G)In = Dyyeg/n Betr(N).

Proof. (i) Noting that 8,1y = By = 1y B, for any x € G, we see that By ug(N) = Byug(N) if
and only if By-1xr(N) = pur(N),and so By-1, = By-1, 1y € ur(N), implying that ylxeN.
Conversely, ylxeN implies that By-1x is a unit of g (N). Thus By-1xRr(N) = pnr(N).

(i1) By 2.1, an R-basis element of pg () is of the form t,{'gcﬁrf where H<N>K,neN,

and J < H" N K. For any x € G we have

Hn K _ x_,H n . K_ “H xnx~ !V YK x _ *H xnx~1 YK
Batajcyry =cytiyCary =toci ) €00 TenCk = Lot oy Sy TenPa

By the normality of N, t,fj c’ rf is an element of g (N) if and only if t:f_l (XJ)Cfxnf;l rlei) is an

element of yg(N). Therefore, By ur(N) = ur(N)Bx.

(iii) 2.1 implies that the elements /% c5rX, where H < N > K, HgK € G, and J is a sub-
group of H8 N K up to conjugacy, form, without repetition, a free R-basis of 1y ug(G)1xy. Now
g € G is in aunique coset x N, and if g = xn with n € N then

X X
tgh;cﬁrf :c};xthJ c’}rf :ﬁxtﬁj c’}rf € Byugr(N).

Hence,

Inur(G)In =D Beur(N).
gNeG/N

Furthermore, since 8, is a unit of 1y ur(G)1y we see that the elements ﬁxtnh}c’}rf , Where

H<NZ>K,HnK C N,and J is a subgroup of H"” N K up to conjugacy, form, without repeti-

tion, a free R-basis of Bxpr(N). If Betl crK = Byti MK’ then

vy yhn Kk H m K

H n K __
,By_lxtnjcjrj =t Lan €7 ry =twcrry .
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Then, by 2.1, K' = K, YYH — B and H'mK' = H'y~'xnK’, implying that N = y~'xN. So
(i) implies that B, g (N) = By r(N). Hence, any basis element of 1y g(G)1y lies in a unique
summand B; g (N). Therefore, the sum ZgNeG/N Bz r (N) must be direct. O

Lemma 5.1 implies

Theorem 5.2. If N < G then

Ivur(G)In= €D Bzur(N)
gNeG/N

is a crossed product of G/N over L g(N).
We state the following elementary result whose proof is straightforward, see [3,14,17].
Remark 5.3. Let A be a crossed product of G over Aj. Then:

(i) Foreach y e Co(A1) and g € G, let 8y = ugyu;1 where u, is any element of U(A) N Ag.
Then, with this action G acts as automorphism of the algebras C4(A1) and Z(A1). Further-
more, the above action does not depend on the choice of u.

(ii) Let e be a G-invariant block idempotent of Ay, that is, u geugl =e¢, forall g € G. Then e is
a central idempotent of A, and Ae = P geG Age s a crossed product of G over Aje.

Let N be a normal subgroup of G. Then we note that y,a = Bya for any a € ug(N). If e
is a block idempotent of g (N) corresponding to a G-invariant simple ug(N)-module S then
Bge = ef, for all g € G where, by G-invariant, we mean that the inertia group is G.

fA= @geG A, is a strongly G-graded algebra and W is an A-module, the conjugate of W
is defined to be the Aj-module A ® 4, W with obvious Aj-action [3,17,23]. Let A; = ug(N)
and A = Iyugr(G)1ly. Then, by 5.2, A is a strongly G/N-graded algebra, and note that the
notion of conjugation of Aj-modules described above coincides with the conjugation of g (N)-
modules defined in Section 2, because if S is a ug (N)-module we defined its conjugate |§VS in
Section 2 as |§\,S = § with ug (N) action given as x.s = Ye-1XVgS for x € ug(N), s € S. On the
other hand, we defined its conjugate here as 85 = Bz (N) @y v) S. Now it is clear that there
is a kg (N)-module isomorphism |§VS — 8§ given by s > f; ®s.

We now proceed to obtain one of our main results, a Mackey algebra version of Fong’s theo-
rem, see [21, Theorem 7.4, p. 355].

Theorem 5.4. Let K be an algebraically closed field of characteristic p > 0, and let N be a
normal p’-subgroup of G. If e is a G-invariant block idempotent of ux (N), then:

(1) e is a central idempotent of 1 yux(G)1y.
(i) ur(N)e =Maty(K), the algebra of d x d matrices over K.
(iii)

(Ivux(@)in)e= B Banr(N)e

gNeG/N

is a crossed product of G/N over ug (N )e.
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(iv)
eur(Ge = ur(N)e @k Cuy ) (Lr(N))e.

(v) There is a central extension G of G/N by a cyclic p'-group Z and a linear character )\ of
Z such that

enk(Ge = ux (N)e ®k KGe;,

where e) = |17| Yoez Az~ Yz is the corresponding block idempotent of KZ, which is also

a central idempotent of KG. Moreover we can express the above isomorphism as
etk (Gle = ux(Ne ®x (€.1x(G)er),
where €; = |17| Doez )»(Z_l)cf, an idempotent of i (G).
Proof. (i) and (iii) They follow by 5.3.
(ii) Since N is a p’-group, ux (N) is semisimple by [27], implying the result.

(iv) As (Iyux(G)ly)e is a crossed product of G/N over a matrix algebra ug(N)e,
[21, Theorem 7.2, p. 352] implies that

(Invur(G)1y)e = ur(N)e ®k C(iyux(6)1x)e (HK(N)e).

Now it is clear that

(Ivpux(G)ln)e =eur(Gle and  CiyuxG)iy)e(r(N)e) = Cpy ) (1r (N))e.

(v) The same argument in [21, pp. 352-354] with A = (1yuk(G)1n)e and A} = pg(N)e
shows that there is a central extension G of G/N by a cyclic p’-group Z and a linear character
A of Z such that C4 (A1) = KGe,, and we know that

Ca(AD) = Cliyux@)1y)e(mr(N)e) = Cpyp ) (L (N))e.
Moreover, the basis Theorem 2.1 shows that

1k (Gl = @Kc‘f =KG, cf < g, asK-algebras.
g€G

Letting €, corresponds to e, under this isomorphism, we see that €, is a central idempotent of
tll MK(G)III, because e, is a central idempotent of KG. As tll is the unity of tll /,LK(G)lll, we have

(1 ur (@16 =aux(Ge. O

Mackey functors for G over R and left g (G)-modules are identical as described in Section 2.
The same identification shows that

Remark 5.5. Let N be a normal subgroup of G. Then, Mackey functors for xy over R and left
1y g(G)1y-modules are identical.
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Before going further we need the following result, see [12, pp. 83-87].
Remark 5.6. Let e be an idempotent in a ring A. Then:

(i) If V is a simple A-module then eV is either zero or a simple eAe-module.
(i) Let W is a simple e Ae-module, and let V = Ae Q.4 W. Then eV = W. Moreover, if [ is
the sum of all A-submodules of V killed by e then [ is the unique maximal A-submodule
of Vande(V/) = W.
(iii) LetIrr(Ale) be the set {V € Irr(A): eV # 0}. Then, there is a bijection Irr(A|e) <> Irr(eAe),
givenby V — eV and (Ae ®cae W) /I < W, where [ is the unique maximal A-submodule
of Ae ®ope W.

Clifford theory for group graded algebras in [3, Section 18] applied to the crossed product
Inur(G)ly = @gNeG/N Bzuk (N) of G/N over ug(N) implies the following result.

Proposition 5.7. Let N < G, and N be simple 1 yug(G)1y-module, and let S be a sim-
ple ur(N)-submodule of M. Assume that &' is a simple ug(N)-module whose inertia group
{gN C G: Bzur(N) @upny) S =6&'}is L'/N. Then:

(1) If L/N is the inertia group of G there is a positive integer d such that

m;d@gG.

gLCG

(ii) Let B be the sum of all ug(N)-submodules of N isomorphic to &. Then B is a simple
1y uk (L)1 y-submodule of N such that

Ivug(G)ly RUyur(L)1y) P=N as Iyux(G)1y-modules, and
P=dS as ug(N)-modules.

(iii)) The map
Irr(1ypux (L) 1y16") = Irr(1y ux (G)1516"), P Inur(G)IN @ yux)iy) B

is a bijection. The inverse map sends N to the sum of all wg (N)-submodules of W isomor-
phic to &'

Let M = Sg,v be a simple Mackey functor for G over K with a minimal subgroup H con-
tained in a normal subgroup N of G. By 5.6 91 =1y M is a simple 1y uk(G)1x-module. Then
5.6 and 5.7 imply some parts of Clifford’s theorem for Mackey functors, 3.10. For 3.10 we have
the following result.

Remark 5.8. The simple pk (L)-module S = SILj,’U in 3.10 and the simple 1y uk (L)1 y-module
P in 5.7 correspond to each other under the bijection Irr(uk (L)|1y) — Irr(1ypux (L) 1y) de-
scribed in 5.6, that is P = 15S.
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Proof. L is the inertia group of S as described in 3.10 if and only if L/N is the inertia group of
S as described in 5.7.
We use the notations of 3.10. So M = SH v and § = SH y Where U is the sum of all

KNy (H)-submodules of ¢NG(H) \% 1somorphlc to W. Moreover by 5.7 B is the sum of all
UK (N)-submodules of 1 NM 1s0m0rphlc to SN How- Let W = W be a summand of U. Then,

Sg w18 @ N-subfunctor of § isomorphic to SH w- and so lNSH wr = SN w 1s @ summand
of 9. Hence, 1xS € P as 1 yux(L)1y-modules from which the equality 1 NS P follows by
simplicity of . O

The next result describes the inverse of the bijective map given in 4.4

Proposition 5.9. Let N < G, and a simple Mackey functor S Z,W for N over K be given, and let
L be the inertia group of SZ’W in G. Foran M € Irr(,uK(G)|SZ’W) we let Py be the sum of all
N -subfunctors of ¢g M isomorphic to S Z’W, and we let Iy be the unique maximal L-subfunctor
of k(L) 1N ®1yug )1y Pu. Then:

() If M € Irr(u(G)|S}y ), then (i (L)IN ®@1yux(wyty Pu)/In = Pu € Ir(uc(L)|S} )
and Tf Pu=M.
(i) The map Irr(;LK(G)|SZ’W) — Irr(p,K(L)|SZ’W), which maps M to Py, is a bijection. The
inverse map is given by S — Tg S
(i) If M € Irr(,u]K(G)|SZ’W), then if M has a unique simple L-subfunctor S such that
S e Ir(ur (L)|SY ) and 17 S =M.

Proof. The first two parts are obvious consequences of 5.6, 5.7 and 5.8. The last part follows
easily from the adjointness of restriction and induction functors, see [27]. O

To use the results in the context of group graded algebras concerning indecomposable mod-
ules, we first need the following two lemmas to get a relationship between the indecomposable
modules of 1y ur(G)1y and ug(G), where N is a normal subgroup of G.

Lemma 5.10. Let M be a Mackey functor for L where L < N < G. Put M = Tf M. Then

M _ M _
KeerN —OandlmtXN =M.

Proof. We write 7, 7, & for the maps of M.
Forany K < G,

Vi ~ 4
Kerr)’("llv(K)z m Kerr}’((: @ < m Kerrfrq}’((g).

X<N: X<K KgLCG “X<N: X<K

Forany g € G, put X =8L N K. Then X <N with X <K, and L N X8 =L N K#, implying

that Kerrfrq)l((: =0. So KeerN 0.
For any K < G,

ml = Y mif=F Y S Rk

X<N: X<K KgLSG X<N: X<K Xu(KN8L)CK
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Asue K, LNK" =LNKS&. For any g € G, putting X =8L N K and u = 1, we see that
X <N with X < K, and L N X8 = L N K¢, implying that TmrL0K = M(L N K#). So
Ime =M. O

Lemma 5.11.

(1) Let e be an idempotent in a ring A. If W is an indecomposable e Ae-module, and if I is the
sum of all A-submodules of V = Ae Qcpe W killed by e, then V /I is an indecomposable
A-module such that e(V /1) = W as e Ae-modules.

(ii) Let M be a Mackey functor for G, and N be a normal subgroup of G. If M' is a G-sub-
functor of M killed by 1y then M" < Ker r%v.

(iii) Let M be a Mackey functor for G, and N be a normal subgroup of G. Assume that
Kerr™ =0 and Im t)}(l;lv = M. If M is indecomposable then 1y M is an indecomposable

XN
1y ur(G)1y-module.

Proof. (i) Suppose that V/I = X @ Y as A-modules. Then
eX®eY=e(V/D)=(V+D/I=ZeV/(eVNI)=eV/0=eV =ZeAe Qcpe W=W,

where we use (eV NI)=e(eV NI)Cel =0 to see that eV N I = 0. Then, since W is in-
decomposable, eX =0 or eY =0, say eX = 0. Now X = )~(/I for some A-submodule X of
V containing /. Then ¢X = 0 implies that eX C 1, and so eX = e2X Cel =0. Thus X is an
A-submodule of V killed by e which means X CcJand X =0.

(ii) Let K < G. Then for any X € xy with X < K, since M’ is a subfunctor of M killed by
Iy and X < N, r)lg(M’(K)) C M’'(X)=0.Hence, M’ < Kerr%].

(iii) Since Kerr%] =0, Imt%] = M, and M is indecomposable it follows by [27, Proposi-
tion 3.2] that ¢?N M is an indecomposable Mackey functor for xy. The result now follows
by5.5. O

Proposition 5.12. Let N be a normal subgroup of G. Given a Mackey functor S for N over R,
Tg S is an indecomposable ug(G)-module if and only if 1y Tg S is an indecomposable
1y g (G)1 y-module.

Proof. Firstly, 5.10 implies that KerrfN =0 and Im th =S, where S = Tf\;, S.Let A= ugr(G)

and B = pug(N). If § is an indecomposable A-module then 5.11 implies that 1 ~'S is an indecom-
posable 1y Aly-module. Conversely, suppose that 1S is an indecomposable 1y Aly-module.
Since Ker r)f v =0, 5.11 implies that S has no nonzero A-submodule killed by 1y. Moreover

S=1CS=Aly@pSZAly Q1ya1y (INAly ®p S) = Aly 1,41y InS.
Then by 5.11 S is an indecomposable A-module. O

For simple modules we have the following version of the previous result.
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Proposition 5.13. Let N be a normal subgroup of G. Given a Mackey functor S for N over R,
T](\;, S is a simple (respectively semisimple) ugr(G)-module if and only if 1y TJC\;, S is a simple
(respectively semisimple) 1y ur(G)1y-module.

Proof. Let S = 198, A= ur(G) and B = pg(N). 5.10 implies that Kerr)fN =0, and by 5.11
S has no nonzero A-submodule killed by 1. In particular 1y is nonzero.

Suppose Sis simple. Since 1y is nonzero, 5.6 implies that 1 NS is simple. Conversely, sup-
pose 1y is simple. As in the proof of 5.12 we have SZAly ®p INS Since S has no nonzero
A-submodule killed by 1y and 1S is simple, it follows by 5.6 that S is simple.

Because S = @), S; implies 1y S =@, 1nSi,and Aly @141y (B; Pj) =B ;(Aly @1ya1y
Pj) for A-modules S; and 1y Aly-modules P;, it follows from what we have proved that Tg S
is semisimple if and only if 1y Tg S is semisimple. O

We now provide some necessary and sufficient conditions for simplicity of induced Mackey
functors.

Theorem 5.14. Let R be commutative complete noetherian local ring whose residue field R /J(R)
is algebraically closed and is of characteristic p > 0, and N be a normal subgroup of G. Then:

(i) For any finitely generated nonzero Mackey functor S for N over R, Tg S is semisimple if
and only if S is semisimple and, for any simple N -subfunctor P of S, p does not divide
|L: N|, where L is the inertia group of P.

(ii) For any nonzero Mackey functor S for N over R, Tg S is simple if and only if S is simple
and 8S 2 S forallge G — N.

Proof. We let A = ugr(G), B=1yugr(G)ly and By = ugr(N). So B is a crossed product of
G/N over By and B is a finite-dimensional R-algebra:

(i) [18, Theorem 6.13, p. 525] implies that B ®p, S is semisimple if and only if the desired
conditions are satisfied. The result follows by 5.13 because B @p, S = 1y ?g S

(ii) By [18, Theorem 6.14, p. 526] B ®3p, S is simple if and only if the conditions above hold.
Again the result is immediate by the virtue of 5.13. O

We next study the primitivity of the idempotents ¢ Ilg € ur(G) where K < G.

Remark 5.15. Let N < G. Then t ug(G)ty = @Dnec,n Ag is acrossed product of G/N over
Ai=@ <N RtYrlY, where Az = ¢} Aj. Moreover, Aj is isomorphic to the Burnside algebra
Bgr(N).

Proof. 2.1 implies that the elements thJcljrﬁv where gN C G, and J is a subgroup of N up to

conjugacy, form, without repetition, a free R-basis of t]]VV 7 R(G)tf\\,’ . It is obvious that t% c§ rﬁv =

P N N 7 N 7 Thus we have the direct sum

Nur@r) = @ CN< D i) r,)

gNSG J<NN
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Finally it is clear that the map

Br(N)= @D RIN/J1— @D Re)r) givenby [N/J]1+>t)r)
J<NN J<NN

is an R-algebra isomorphism, where [N /J] denotes the isomorphism class of transitive N-sets
with stabilizers N-conjugate to J. O

The characterization of solvable groups given in [6] becomes
Proposition 5.16. The idempotent tg € uz(G) is primitive if and only if G is solvable.

Proof. The idempotent tg € uz(G) is primitive if and only if tg MZ(G)tg has no nontrivial
idempotent, which is, by 5.15, equivalent to Bz(G) has no nontrivial idempotent. Moreover,
in [6] it is proven that Bz (G) has no nontrivial idempotent if and only if G is solvable, finishing
the proof. O

The following result contains a characterization of p-groups.
Proposition 5.17. Let G be nontrivial:

(1) The idempotent tll € ur(G) is primitive if and only if K is of characteristic p > 0 and G is
a p-group.
(i1) The idempotent tl1 € uz(G) is primitive.
(iii) Let H < G. If the idempotent tg € uk(G) is primitive then K is of characteristic p > 0
and Ng(H) is a p-group.

Proof. 5.15 shows that tlluR(G)tl1 = RG and tguR(H)tg is a subalgebra of tguR(G)tg iso-
morphic to the Burnside algebra Bg (H):

(i) The idempotent tll is primitive if and only if KG has no nontrivial idempotent which is
equivalent to KG is a local algebra. So the result is obtained.

(ii) It is clear because ZG has no nontrivial idempotent.

(iii) Suppose that tl{}l is primitive. By (i) we may assume that H # 1. Then the Burnside alge-
bra Bk (H) has no nontrivial idempotents. It follows by [6] that K is of characteristic p > 0 and
H is a p-group. Let X be any subgroup of Ng(H) containing H and put e = ZgHgX c[’;]. Then
eisanelement of t g (G)tH such thate? = |X : Hle. Hence Ng(H)/H mustbe p-group. O

Let K be of characteristic p > 0. It is proved in [28, Theorem (19.2)] that uk (G) is selfinjec-
tive if and only if p? does not divide |G|. Concerning the similar topics we have the following
result.

Remark 5.18. Let K be of characteristic p > 0, N be a normal subgroup of G. Then:

(i) Let K be algebraically closed, and N be a p’-group. If e is a G-invariant block idempotent
of ux(N), then euk (G)e is symmetric.
(ii) If p? does not divide |N|, then t]IVVuK(G)t}vV is Frobenius.
(iii) If G is abelian and p? does not divide |N|, then t,]\\,/ /LK(G)III\\,] is symmetric.
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(iv) If ux(N) is Frobenius then 1y ur(G)1y is Frobenius.
(v) If N isa p’-group, then t}\\,’MK(G)t}VV and 1y uk(G)1y are symmetric.
(vi) If uk(G) is symmetric then p? does not divide |G]|.

Proof. We begin by recalling some basic results. Semisimple algebras and group algebras are
symmetric, tensor product of two symmetric algebras is again symmetric. If A is symmetric and
e € A is idempotent then eAe is symmetric. Moreover, by [13], the Burnside algebra B (N) is
symmetric if and only if p? does not divide |N|:

(1) By 54, eux(G)e = ug(N)e ®k KGeA where e is a central idempotent of KG. Since
uk (N) is semisimple, the basic results above imply that ek (G)e is symmetric.

(ii), (iii) and (iv) We know that t]{}I;LK(G)t,]\\,’ and 1 yuk(G)1ly are crossed products of G/N
over Bk (N) and uk (N), respectively. Moreover in (ii) and (iii) Bg (V) is symmetric. Then the
results follows by [14, Lemma 1].

(V) If N is a p’-group then Bg(N) and uk (N) are both semisimple, and by [14, Proposition 2]
the crossed products tll\y Ur(G)Ht 1’\\,’ and 1y uk(G)1y must be symmetric.

(vi) If uk(G) is symmetric then tg ,uK(G)tg = Bk (G) is symmetric, and the result follows
by the result of [13] mentioned above. O

6. Indecomposable Mackey functors

In this section we prove some Clifford type results for indecomposable Mackey functors and
a Mackey functor version of Green’s indecomposibility criterion.

A Mackey functor M for G over K is H-projective for some H < G if and only if M is a
direct summand of Tgig M, equivalently M is a direct summand of Tg P for some Mackey
functor P for H, see [25, Lemma 2.3].

If M is H-projective then it follows that J,g M #0,and so 1z M #0.

We show that Clifford’s theorem holds for N-projective indecomposable Mackey functors. To
prove the last part of the following result, we use the corresponding result in crossed products
which was first obtained in [26, Theorem 2].

Theorem 6.1. Let N be a normal subgroup of G, let M be an N -projective finitely generated
indecomposable Mackey functor for G over K and let S be an indecomposable direct summand
of J,f, M. Then:

(1) There is a positive integer d such that

I§M=d P ¢s.

gLCG

where L is the inertia group of S.

(i) 1y M is an indecomposable 1y ux(G)1y-module.

(iii) Let B be the sum of all N-subfunctors of if\;, M isomorphic to S. Then 3 is an indecom-
posable 1y uk (L)1 y-module such that

INuk(G)IN Qyux)iy BEINM  and P=dS

as 1y ux(G)1y-modules and as ug (N)-modules, respectively.
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Proof. Let A=1yux(G)ly and A = ug(N),and B=1yur(L)1y.
@) ¢g M is nonzero because M is a direct summand of Tgig M. Let ig M=S5 &

--- @ S, for some indecomposable Mackey functors S, ..., S, for N. As induction respects
direct summands, Tg¢g M = T](\;, S1b---b Tg Sp. Since M is a direct summand of Tg¢g M,
the functor M is a direct summand of T](\;, S; for some i € {1, ...,n}, say i = 1. Then, as restric-

tion respects direct summands, ¢1(\;, M 1is a direct summand of ¢1(\;, Tg S1 which is, by the Mackey
decomposition formula, 2.6, equal to 5 encG 8 S1. Therefore, each S is conjugate to Sj.

As yg is a unit of ug(G), we have yoM = M. Moreover, Y51 is a g (N)-module for any
g € G, because if x € ug(N) then xy, S = }/g(}/g—lx)/g)S1, and the normality of N implies
Ye-1%Vg € UK(N). Also y,Si and £ are isomorphic ug (N)-modules via the isomorphism
given by y,s < s for s € Sj.

Now, i,g M=y, i,g M =y,5@---® ygSy, for any g € G. Hence every conjugate of S is
isomorphic to some S;.

Finally, for a fixedi € {1,...,n},let S; £ 48 = y,S;.Since |S M =51 @ DS, =51 ®
<@ ygSy, all the §; in ¢g M occurs with the same multiplicity d.

(ii) We know that 1y M is nonzero and |§ M = IyM =d @e1.c6 8S. f INM =X @Y is
a direct sum decomposition as A-modules then § is a direct summand of X or Y, say X, con-
sidered as Aj-modules. y, 1y is a unitin A for any 2 € G, and so y, X = y, 1y X = X implying
that y, S = hS is a direct summand of X. Hence X = IyM and 1y M is an indecomposable
A-module.

(iii)) We saw above that M is a direct summand of T](\;, S =uk(G)Iy ®4, S implying that
Iy M is a direct summand of A ®4, S. Thus 1y M is Aj-projective.

Now, by 5.2 A is a crossed product of G/N over Aj. Then Clifford theory for indecomposable
modules in the context of crossed products, see [26, Theorem 2], implies that if 3 is the sum of
all Aq-submodules of ¢1(\;, M isomorphic to S then 3 is an indecomposable B-module such that
PB=dSand AR, P=1yM. O

Given a normal subgroup N of G and a finitely generated indecomposable Mackey functor
S for N over K, in the next result we relate direct decompositions of the induced functors Tz(\;/ S

and Tk S where L is the inertia group of S. The following result is a Mackey functor version of
[15, Theorem 9.6, p. 126].

Theorem 6.2. Let N < G, and S be a finitely generated indecomposable Mackey functor for N
over K whose inertia group is L. Let Tk S=P ®--- & Py where the P; are indecomposable
Mackey functors for L. Then:

(1) 1y P; is an indecomposable 1y uk (L)1 y-module for anyi € {1, ..., k}.
(i1) For any i € {1,...,k}, there is a positive integer n; such that ¢1Lv P; = n;S. Moreover,
Zf‘ n; =|L:N|
(iii) Tg S ng P@--& Tg Py, and the Tg P; are indecomposable. Furthermore, each
1y Tg P; is indecomposable 1y ux(G)1y-module.
(iv) ¢ P, =41Y P; ifand only if P; = P;.
(v) If P; is simple then Tg P; and S are simple.

Proof. (i) Each P; is an indecomposable and N-projective px (L)-module. Then 6.1 implies the
desired result.
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(i1) Since restriction respects direct summands, by the Mackey decomposition formula, 2.6,
EP@ ok =151k SZIL:NIS.

Also 6.1 implies that Lk P; = n; S for some positive integer ;. Hence Zf n;i=|L:N|.
(iii) Firstly by using the Mackey decomposition formula we get

IS¢ P=n P s

gLCG

Let Tf P;=X1®---® X, as indecomposable uk (G)-modules. For any j € {1, ..., m}, since
P; is a direct summand of Tk S we see that X ; is a direct summand of T](\;, S implying that X ; is
N-projective. Then, by 6.1, 1y X ; is an indecomposable 1k (G)1y-module and

\Lg Xj Emi,]’ @ gS
gLCG
for some positive integer m; ; satisfying m; ; <n;.
By 4.2 P; is a direct summand of ¢g Tf P; implying that Lk P; is a direct summand of ¢1(\;, Xn
forsome n € {1,...,m}. As

Iy PiEnmsS and 1§ X, Zmi, P ¢S
gLCG

we must have n; < m; ,. Hence, m; , = n; which means that 1y Tf P; =15 X,,. Moreover,
1Y Tf P=IyX1®---®1IyXn
is a direct sum into indecomposable 1y uk (G)1y-modules and 15X ; #Oforall j € {1,...,m}.
Consequently, m =n =1 and T(L; P; = X,, is indecomposable uk(G)-module, and 1y Tg P; is
indecomposable 1y (G)1y-module.
(iv) Suppose Tf P = Tf P;. We observed in 4.2 that for any Mackey functor M for H,

H < G, M is a direct summand of ing M. Now, if P; and P; are not isomorphic then we can
write

¢f¢f P;=P;@®P;®Y forsome ug(L)-module Y.
Then considering this isomorphism as i (N)-modules we get

n; @ sS=n;Son;S® LY
gLSG

from which it follows that n; > n; + n;, which is a contradiction.
(v) If P; is simple then by 3.10

Iy P=d @ ss'=ns
gL'CL
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for some simple ug(N)-module S” and positive integer d. In particular, both of the decom-
positions are into indecomposable i (N)-modules, and so the unique decomposition property
implies S = §’ is simple. Finally, the Clifford correspondence 4.4 implies that Tg P; is sim-
ple. O

The following result contains a Mackey functor version of Green’s indecomposibility theo-
rem.

Theorem 6.3. Let R be a commutative complete noetherian local ring whose residue field
R/J(R) is algebraically closed and is of characteristic p > 0, and N be a normal subgroup
of G. Let S be a finitely generated indecomposable Mackey functor for N over R, and let L be
the inertia group of S. Then, Tg S is an indecomposable Mackey functor for G over R if and
only if L/N is a p-group.

Proof. Let A= 1yug(G)ly and A; = ur(N). Then we know that A is a crossed product of
G/N over Ay, and in the context of crossed products S is an indecomposable Aj-module whose
inertia group is L/N. Then [18, Corollary 6.12, p. 524] implies that A®4, S is indecomposable if
and only if (L/N)/(N/N) is a p-group. Moreover, A®4, S =1y Tg S.Now, by 5.12, 1y Tg S
is indecomposable if and only if Tg S is indecomposable. Hence the result is proved. O

If we do not assume R/J(R) is algebraically closed in the previous result, we get

Theorem 6.4. Let R be a commutative complete noetherian semilocal ring such that R/J(R) is
of prime characteristic p > 0, and N be a normal subgroup of G. Let S be a finitely generated
indecomposable Mackey functor for N over R, and let L be the inertia group of S and L/N
be a p-group. Then, there is an indecomposable Mackey functor M for G over R such that
Tg S = dM for some positive integer d.

Proof. The corresponding result in crossed products, see [18, Theorem 6.38, p. 546], shows that
1y Tg S = dM’ for some indecomposable 1yug(G)1y = A-module M’ and positive integer d.
Then d(ur(G)ly ®4 M) = ur(G)ly ®a Iy 15 S =15 S. We put M = j1g(G)ly @4 M'.
ByS5.10and 5.11 Tg S has no nonzero submodule killed by 1, and so the same is true for M be-
cause dM = Tg S. Then, since M’ is indecomposable, by 5.11 M must be indecomposable. O

7. Extension of Mackey functors

In this final section we provide some results on extending Mackey functors. That is, given a
G-invariant Mackey functor S for N where N is a normal subgroup of G we give some conditions
on S and G to guarantee the existence of Mackey functor M for G satisfying ¢g MZS.

The following result collects some consequences of extension theorems of [4,5].

Theorem 7.1. Let N < G, and S be a nonzero G-invariant Mackey functor for N over K. Then,
each of conditions (1)—(iii) below implies that the wk (N)-module S extends to a 1 yux(G)1y-
module, and there is a Mackey functor M for G over K such that ¢g M = §. Moreover, both of
conditions (ii) and (iii) imply that M can be taken to be simple:



272 E. Yaraneri / Journal of Algebra 303 (2006) 244-274

(i) The automorphism group Aut,, n)(S) is an abelian group uniquely divisible by |G/N|,
that is, the map f — fI16/Nis a group automorphism of Aut,, (n)(S).
(i) K is a perfect field of characteristic p > 0, G/N is a p-group, and S is absolutely simple.
(iii) K is algebraically closed, S is simple, and at least one of the following three hold:
(1) all Sylow subgroups of G/N are cyclic,
(2) G/N is generalized quaternion or semidihedral,
(3) Kis of characteristic p > 0 and G/ N is a cyclic extension of a p-group.

Proof. 1yuk(G)ly is a strongly G/N-graded algebra. Then, the results in [18, pp. 610-612]
applied to the above strongly G/N-graded algebra gives in each case a 1yuk(G)1y-module
S which is an extension of the P (N)- module S. So § = S as sets and as uk (N)-modules.
We put M = ,U,K(G)IN ®1NN«]K(G)1N S. Then we obviously have ¢ =1yM = S. Thus,

19 NM= ¢ L ¢ § =, as desired. Finally, the last assertlon follows by 5.6. O

The next result is a consequence of the extension results concerning indecomposable modules
for group graded algebras.

Theorem 7.2. Let R be a commutative complete noetherian local ring whose residue field
R/J(R) is algebraically closed and is of characteristic coprime to |G : N|, where N is a normal
subgroup of G. Assume that S is finitely generated G-invariant indecomposable Mackey functor
for N over R. Then, both of conditions (i) and (ii) below imply that there is an indecomposable
Mackey functor M for G over R such that i,g MZ=S:

(i) All Sylow subgroups of G/N are cyclic.
(i) G/N is generalized quaternion or semidihedral.

Proof. Let A=1yugr(G)ly and A; = ug(N). Then A is a crossed product of G/N over Ay,
and so in each case [18, Theorem 2.10, p. 612] implies the existence of an A-module M’ such
that S = M’ as sets and as Aj-modules. Since A is a unital subring of A and our modules are
unitary, it is obvious that M’ is an indecomposable A-module. We let M” = ug(G)ly @4 M’
and M = M" /I where I is the sum of all ug(G)-submodules of M” killed by 1. Then the
result follows by 5.11. O

Using the classification of simple Mackey functors we get the following immediate conse-
quence of the extension results of modules of group algebras.

Theorem 7.3. Let N < G,and S= S g w be a G-invariant simple Mackey functor for N over K.
Then, each of conditions (1)—(iv) below implies that there is a simple Mackey functor M for G
over K such that ¢N MZ=S:

(1) Kis algebraically closed and G/ N is cyclic.
(1) K is algebraically closed and is of characteristic 0, and (|G : N|, |N|/dimgW) = 1.
(iii) K is of characteristic p > 0, N is a Hall subgroup of G, and either N is p-solvable or
(|G : N|,dimgW) = 1.
(iv) K is of characteristic 0 and N is a nilpotent Hall subgroup of G.
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Proof. For any simple Mackey functor S for N, by 3.10, it follows that L = NT and Np.(H) =T
where H is a minimal subgroup of S, L is the inertia group of S in G, and T is the inertia group of
the simple KNy (H)-module S(H) in Ng(H). So, in our case § = SZ’W and L = G, implying
that the inertia group of the simple KNy (H)-module W in Ng(H) is Ng(H). Moreover, we
have the group isomorphism G/N = (NNg(H))/N = Ng(H)/Ny(H).

Suppose (i) holds. Then Ng(H)/Ny (H) is cyclic and [9, Theorem 2.14, p. 102] implies that

we can find a simple KNg(H)-module V such that ¢%f]EZ; V=W.
Suppose (ii) holds. Since Ny (H) < N and G/N = Ng(H)/Ny (H) it follows that (|[Ng (H) :

Ny (H)|, [Ny (H)|/dimg W) = 1. Then by [10] there is a simple KN (H)-module V' such that

NG(H) v, _
iNN(H) V=W.

Suppose (iii) holds. As Ny(H) < N and G/N = Ng(H)/Nn(H), 1\_/_N(H) is a normal Hall
subgroup of Ng(H), and if (|G : Nl,dimKW) =1 then (|Ng(H) : Ny(H)|,dimgW) = 1.
Moreover, if N is p-solvable then Ny (H) is p-solvable. Consequently [8] implies that there

is a simple KNg (H)-module V such that i%G EZ; V=W.
N

Finally suppose that (iv) holds. Then Ny (H) is a normal nilpotent Hall subgroup of Ng(H)

and [16] implies the existence of a simple KNG(H )-module V such that ¢%f}§fl; V=W.

_We saw that each condition implies the existence of a simple KNg(H)-module V satisfying
¢gi§g; V=W.Weput M = Sg,\/' Then M is a simple Mackey functor for G.
Moreover, 2.4 implies that for any K < N

WS myEy= Y iy,

g€G: SH<K

We now, using G = NNg(H), see that if g =nu € NNg(H) with n € N,u € Ng(H) then
8H < K isequivalentto"H < K. Also cf_I(V) =y (V) =, (V) implying

Usmyky= > tyon= > = Y fhw,

geG: SHLK neN: "HLK neN: "HLK
where we use i%i ((Z; V = W for the last equality. On the other hand, by 2.4,
Sy wE) = Y e w)
neN: "HLK

for any K < N. Hence we proved that each condition implies ijc\;, M=S Z’W. a
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