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Abstract

We develop a Clifford theory for Mackey algebras. For simple Mackey functors, using their classification
we prove Mackey algebra versions of Clifford’s theorem and the Clifford correspondence. Let μR(G) be
the Mackey algebra of a finite group G over a commutative unital ring R, and let 1N be the unity of
μR(N) where N is a normal subgroup of G. Observing that 1NμR(G)1N is a crossed product of G/N

over μR(N), a number of results concerning group graded algebras are extended to the context of Mackey
algebras, including Fong’s theorem, Green’s indecomposibility theorem and some reduction and extension
techniques for indecomposable Mackey functors.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of a Mackey functor, introduced by J.A. Green [11] and A. Dress [7], plays an
important role in representation theory of finite groups, and it unifies several notions like repre-
sentation rings, G-algebras and cohomology. During the last two decades, the theory of Mackey
functors has received much attention. In [27,28], J. Thévenaz and P. Webb constructed the simple
Mackey functors explicitly. Also, they introduced the Mackey algebra μR(G) for a finite group G

over a commutative unital ring R. The left μR(G)-modules are identical to the Mackey functors
for G over R.

Let N be a normal subgroup of G. A classical topic in the representation theory of finite
groups is Clifford theory initiated by A.H. Clifford [2]. It consists of the repeated applications of
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three basic operations on modules of group algebras, namely restriction to RN , induction from
RN and extension from RN . Later, E.C. Dade [3–5] lifted much of the theory to a more general
abstract system called now group graded algebras.

The goal of this paper is to develop a Clifford theory for Mackey functors. The paper can
be roughly divided into three parts. The first part, the Sections 3 and 4, analyzes restriction and
induction of simple Mackey functors, and the second part, the Sections 5 and 6, is concerned with
the structure of Mackey algebras and Clifford type results for indecomposable Mackey functors,
and the third part, the last section, deals with extension of G-invariant Mackey functors.

One of the main differences between the Mackey algebra μR(G) and the group algebra RG

is that in the former μR(N) is a nonunital subalgebra of μR(G) and if we want to get a unitary
μR(N)-module after restricting a μR(G)-module M to μR(N), we must define the restriction of
M as 1NM where 1N denotes the unity of μR(N). For this reason the restriction of a Mackey
functor may be 0.

We attack the problem in two ways. Our first approach uses the classification of simple
Mackey functors and Clifford theory for group algebras which leads to elementary proofs if sim-
ple Mackey functors are concerned. We show in Section 5 that 1NμR(G)1N is a crossed product
of G/N over μR(N) where N is a normal subgroup of G and 1N is the unity of μR(N), and this
result allows us to attack the problem by using Clifford theory for group graded algebras. But
this approach relates modules of μR(N) and 1NμR(G)1N , and for this reason Section 5 contains
some results relating modules of 1NμR(G)1N and μR(G).

A number of results pertaining to Clifford theory for group algebras are extended to the con-
text of Mackey algebras. The results 3.10, 4.4, 5.2, 5.4, 6.1 and 6.3 are among the most important
results obtained here. They include Mackey functor versions of Clifford’s theorem, the Clifford
correspondence, Fong’s theorem and Green’s indecomposibility theorem.

Character ring and Burnside ring functors are Mackey functors satisfying a special property
which is not shared with some other Mackey functors, namely each coordinate module of them is
a free abelian semigroup such that restriction of basis elements are nonzero. In [19], motivated by
these functors, a notion of a based Mackey functor for G is defined which is a Mackey functor M

for G such that each coordinate module M(H), H � G, is a free abelian semigroup with a basis
B(H) satisfying some conditions. In [19], Clifford’s theorem and the Clifford correspondence
for based Mackey functors are studied. It is shown that Clifford’s theorem holds between G

and its normal subgroup N for a based Mackey functor M for G and for a α ∈ B(G) if either
rG
N (α) = nβ for some β ∈ B(N) and natural number n or α appears in tGK (δ) for some subgroup

K with N � K < G and δ ∈ B(K). One may consider the Grothendieck rings M(H) of Mackey
functors for H , H � G. Then M is a based Mackey functor for G. Given a simple Mackey
functor M for G and a normal subgroup N of G our result 3.10 holds if M satisfies the above
property given in [19], however checking this property is not easier than proving the result itself.
In particular, 3.10 and 4.4 show that the property given in [19] holds in M for a simple Mackey
functor M for G and a normal subgroup N of G such that 1NM is nonzero. Finally, it must
be remarked that the results 6.1(i) and some parts of 6.2 follow from [19, 1.5 and 2.6] because
N -projectivity implies the property.

Throughout the paper, G denotes a finite group, R denotes a commutative unital ring and
K denotes a field. We write H � G (respectively H < G) to indicate that H is a subgroup of
G (respectively a proper subgroup of G), and we write H � G if it is a normal subgroup. Let
H � G � K . The notation H =G K means that K is G-conjugate to H and H �G K means
that H is G-conjugate to a subgroup of K . By the notation gH ⊆ G we mean that g ranges
over a complete set of representatives of left cosets of H in G, and by HgK ⊆ G we mean
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that g ranges over a complete set of representatives of double cosets of (H,K) in G. Also we
put N̄G(H) = NG(H)/H , gH = gHg−1 and Hg = g−1Hg for g ∈ G. Lastly for any natural
numbers a and b, (a, b) denotes their greatest common divisor.

2. Preliminaries

In this section, we briefly summarize some crucial material on Mackey functors. For the
proofs, see Thévenaz–Webb [27,28]. Let χ be a family of subgroups of G, closed under sub-
groups and conjugation. Recall that a Mackey functor for χ over R is such that, for each H ∈ χ ,
there is an R-module M(H); for each pair H,K ∈ χ with H � K , there are R-module ho-
momorphisms rK

H :M(K) → M(H) called the restriction map and tKH :M(H) → M(K) called
the transfer map or the trace map; for each g ∈ G, there is an R-module homomorphism
c
g
H :M(H) → M(gH) called the conjugation map. The following axioms must be satisfied for

any g,h ∈ G and H,K,L ∈ χ [1,11,27,28]:

(M1) if H � K � L, rL
H = rK

H rL
K and tLH = tLKtKH ; moreover rH

H = tHH = idM(H);

(M2) c
gh
K = c

g
hK

ch
K ;

(M3) if h ∈ H , ch
H :M(H) → M(H) is the identity;

(M4) if H � K , c
g
H rK

H = r
gK
gH c

g
K and c

g
KtKH = t

gK
gH c

g
H ;

(M5) (Mackey axiom) if H � L � K , rL
H tLK = ∑

HgK⊆L tHH∩gKr
gK
H∩gKc

g
K .

When χ is the family of all subgroups of G, we say that M is a Mackey functor for G over R.
A homomorphism f :M → T of Mackey functors for χ is a family of R-module homomor-
phisms fH :M(H) → T (H), where H runs over χ , which commutes with restriction, trace and
conjugation. In particular, each M(H) is an RN̄G(H)-module via ḡ.x = c

g
H (x) for ḡ ∈ N̄G(H)

and x ∈ M(H). Also, each fH is an RN̄G(H)-module homomorphism. By a subfunctor N of a
Mackey functor M for χ we mean a family of R-submodules N(H) ⊆ M(H), which is stable
under restriction, trace, and conjugation. A Mackey functor M is called simple if it has no proper
subfunctor.

Another possible definition of Mackey functors for G over R uses the Mackey algebra μR(G)

[1,28]: μZ(G) is the algebra generated by the elements rK
H , tKH , and c

g
H , where H and K are

subgroups of G such that H � K , and g ∈ G, with the following relations:

(M′
1) if H � K � L, rL

H = rK
H rL

K and tLH = tLKtKH ;

(M′
2) if g,h ∈ G, c

gh
K = c

g
hK

ch
K ;

(M′
3) if h ∈ H , tHH = rH

H = ch
H ;

(M′
4) if H � K and g ∈ G, c

g
H rK

H = r
gK
gH c

g
K and c

g
KtKH = t

gK
gH c

g
H ;

(M′
5) if H � L � K , rL

H tLK = ∑
HgK⊆L tHH∩gKr

gK
H∩gKc

g
K ;

(M′
6)

∑
H�G tHH = ∑

H�G rH
H = 1μZ(G);

(M′
7) any other product of rK

H , tKH and c
g
H is zero.

A Mackey functor M for G, defined in the first sense, gives a left module M̃ of the associative
R-algebra μR(G) = R ⊗Z μZ(G) defined by M̃ = ⊕

H�G M(H). Conversely, if M̃ is a μR(G)-

module then M̃ corresponds to a Mackey functor M in the first sense, defined by M(H) = tH M̃ ,
H
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the maps tKH , rK
H , and c

g
H being defined as the corresponding elements of the μR(G). Moreover,

homomorphisms and subfunctors of Mackey functors for G are μR(G)-module homomorphisms
and μR(G)-submodules, and conversely.

Theorem 2.1. [28] Letting H and Krun over all subgroups of G, letting g run over representa-
tives of the double cosets HgK ⊆ G, and letting J runs over representatives of the conjugacy
classes of subgroups of Hg ∩ K , then tHgJ c

g
J rK

J comprise, without repetition, a free R-basis of
μR(G).

For a Mackey functor M for χ over R and a subset E of M , a collection of subsets E(H) ⊆
M(H) for each H ∈ χ , we denote by 〈E〉 the subfunctor of M generated by E.

Proposition 2.2. [27] Let M be a Mackey functor for G, and let T be a subfunctor of ↓χ M , the
restriction of M to χ which is the family M(H),H ∈ χ , viewed as a Mackey functor for χ . Then
〈T 〉(K) = ∑

X∈χ : X�K tKX (M(X)) for any K � G. Moreover ↓χ 〈T 〉 = T .

Let M be a Mackey functor for G. Then by [27] we have the following important subfunctors
of M , namely Im tMχ and Ker rM

χ defined by

(
Im tMχ

)
(K) =

∑
X∈χ : X�K

tKX
(
M(X)

)
and

(
Ker rM

χ

)
(K) =

⋂
X∈χ : X�K

Ker
(
rK
X :M(K) → M(X)

)
.

For a nonzero Mackey functor M for G over R, a minimal subgroup H such that M(H) �= 0
is called a minimal subgroup of M . If H � G we put χH = {K � G: K �G H }.

The following results will be of great use later.

Proposition 2.3. [27] Let S be a simple Mackey functor for G with a minimal subgroup H :

(i) S is generated by S(H), that is S = 〈S(H)〉.
(ii) S(K) �= 0 implies that H �G K , and so minimal subgroups of S form a unique conjugacy

class.
(iii) S(H) is a simple RN̄G(H)-module.

Proposition 2.4. [27] Let M be a Mackey functor for G over R, and let H be a minimal subgroup
of M . Then, M is simple if and only if Im tMχH

= M , Ker rM
χH

= 0, and S(H) is a simple RN̄G(H)-
module.

Theorem 2.5. [27] Given a subgroup H � G and a simple RN̄G(H)-module V , then there exists
a simple Mackey functor SG

H,V for G, unique up to isomorphism, such that H is a minimal sub-

group of SG
H,V and SG

H,V (H) ∼= V . Moreover, up to isomorphism, every simple Mackey functor for

G has the form SG
H,V for some H � G and simple RN̄G(H)-module V . Two simple Mackey func-

tors SG
H,V and SG

H ′,V ′ are isomorphic if and only if, for some element g ∈ G, we have H ′ = gH

and V ′ ∼= c
g

(V ).
H
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Finally, we recall the definitions of restriction, induction and conjugation for Mackey functors
[1,25,27]. For any H � G, there is an obvious nonunital R-algebra homomorphism μR(H) →
μR(G), tAgI c

g
I rB

I 
→ tAgI c
g
I rB

I for any basis element tAgI c
g
I rB

I of μR(H). Moreover this map is
injective [1]. Viewing, Mackey functors as modules of Mackey algebras, we have obvious no-
tions of restriction and induction: let M and T be Mackey functors for G and H , respectively,
where H � G, then the restricted Mackey functor ↓G

H M is the μR(H)-module 1μR(H)M and
the induced Mackey functor ↑G

H T is the μR(G)-module μR(G)1μR(H) ⊗μR(H) T , where 1μR(H)

denotes the unity of μR(H). There is a unital R-algebra monomorphism γ :RG → μR(G),
g 
→ γg = ∑

H�G c
g
H , making μR(G) an interior G-algebra. For H � G, g ∈ G, and a Mackey

functor M for H , viewing M as a μR(H)-module, the conjugate Mackey functor |gH M = gM

is the μR(gH)-module M with the module structure given for any x ∈ μR(gH) and m ∈ M by
x.m = (γg−1xγg)m. Obviously, one has |gL SL

H,V
∼= S

gL
gH,c

g
H (V )

.

The following equivalent definition of induction is useful [25,27]. Let H � G and let M be a
Mackey functor for H . Then for any K � G the induced Mackey functor ↑G

H M for G is given
by

(↑G
H M

)
(K) =

⊕
KgH⊆G

M(H ∩ Kg),

where, if we write mg for the component in M(H ∩Kg) of m ∈ (↑G
H M)(K), the maps are given

as follows:

rK
L (m)g = rH∩Kg

H∩Lg (mg), tKL (n)g =
∑

Lu(K∩ gH)⊆K

tH∩Kug

H∩Lug (nug) and c
y
K(m)g = my−1g

for L � K , n ∈ (↑G
H M)(L) and y ∈ G.

Let L � G and M be a Mackey functor for L with maps t , r , c. Let t̃ , r̃ , c̃ be the maps of
↑G

L M , then we have

Ker r̃K2
K1

=
⊕

K2gL⊆G

Ker r
L∩K

g
2

L∩K
g
1

and Im t̃
K2
K1

=
⊕

K2gL⊆G

( ∑
K1u(K2∩ gL)⊆K2

Im t
L∩K

ug
2

L∩K
ug
1

)
.

As a last result in this section, we record the Mackey decomposition formula for Mackey
functors, which can be found (for example) in [28].

Theorem 2.6. Given H � L � K and a Mackey functor M for K over R, we have

↓L
H ↑L

K M ∼=
⊕

HgK⊆L

↑H
H∩ gK↓gK

H∩ gK |gK M.

3. Clifford’s theorem

In this section using the classification of simple Mackey functors we prove that restriction of
a simple functor to a normal subgroup is semisimple and simple summands of it are conjugate.

For the next two results we let M = SG be a simple Mackey functor for G over K.
H,V
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The following remark shows that any minimal subgroup of a nonzero L-subfunctor of ↓G
L M

is conjugate to H , where H � L � G.

Remark 3.1. Let H � L � G. If S is a nonzero L-subfunctor of ↓G
L M then S(gH) �= 0 for some

g ∈ G with gH � L.

Proof. There is a K � L such that S(K) �= 0. If for all g ∈ G with gH � K S(gH) = 0, then
rK
gH (S(K)) ⊆ S(gH) = 0, implying that S(K) ⊆ (Ker rM

χH
)(K). But by 2.4 (Ker rM

χH
)(K) = 0

and so S(K) = 0, a contradiction. �
Let H � L. For any KN̄L(H)-submodule U of M(H) = V and any g ∈ NG(L), we denote by

T L
gH,c

g
H (U)

the L-subfunctor of ↓G
L M generated by c

g
H (U). Therefore, for any K � L, we have,

by 2.2,

T L
gH,c

g
H (U)

(K) =
∑

x∈L: x(gH)�K

tKxgH cx
gH c

g
H (U) and T L

gH,c
g
H (U)

(gH) = c
g
H (U).

We draw some elementary properties of these subfunctors which will be useful in our subse-
quent investigations, in particular in the proof of 3.10.

Lemma 3.2.

(i) For any x ∈ L

T L
gH,c

g
H (U)

= T L
xgH,c

xg
H (U)

.

(ii) T L
gH,c

g
H (U)

is simple if and only if U is simple KN̄L(H)-module.

(iii) T L
g1H,M(g1H)

= T L
g2H,M(g2H)

if and only if Lg1NG(H) = Lg2NG(H).
(iv) If L� G then

↓G
L M =

∑
LgNG(H)⊆G

T L
gH,M(gH),

and each summand is distinct.
(v) If U1 and U2 are KN̄L(H)-submodules of M(H), and if g ∈ G with gH � L, then

T L
gH,c

g
H (U1)+c

g
H (U2)

= T L
gH,c

g
H (U1)

+ T L
gH,c

g
H (U2)

.

Proof. (i) For any x ∈ L, it is obvious that the subsets c
g
H (U) and cx

gH c
g
H (U) = c

xg
H (U) of ↓G

L M

generate the same L-subfunctor of ↓G
L M .

(ii) If T L
gH,c

g
H (U)

is simple, then 2.3 implies that U is simple KN̄L(H)-module. Suppose now

U is simple. If S is a nonzero L-subfunctor of T L
gH,c

g
H (U)

then S is a nonzero L-subfunctor of

↓G
L M , and hence, by 3.1, S(yH) �= 0 for some y ∈ G with yH � L. Then, S(yH) is a nonzero

submodule of T L
g g (yH), implying that the index set {x ∈ L: x(gH) � yH } of the sum

H,cH (U)
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expressing T L
gH,c

g
H (U)

(yH) is nonempty, and so xg = yu for some x ∈ L and u ∈ NG(H). Then,

by (i), we have

T L
gH,c

g
H (U)

= T L
xgH,c

xg
H (U)

= T L
yuH,c

yu
H (U)

= T L
yH,c

y
H (U)

.

Thus, S is a nonzero subfunctor of T L
yH,c

y
H (U)

, and so S(yH) is a nonzero submodule of c
y
H (U).

Then simplicity of U implies that S(yH) = c
y
H (U). Now,

T L
yH,c

y
H (U)

= 〈
c
y
H (U)

〉 = 〈
S(yH)

〉

implies that

T L
gH,c

g
H (U)

= T L
yH,c

y
H (U)

= S.

Hence, T L
gH,c

g
H (U)

is simple.

(iii) Suppose that T L
g1H,M(g1H)

= T L
g2H,M(g2H)

. Then 0 �= M(g1H) = T L
g2H,M(g2H)

(g1H), im-

plying that the index set {x ∈ L: x(g2H) � g1H } of the sum expressing T L
g2H,M(g2H)

(g1H) is
nonempty, and so x(g2H) = g1H for some x ∈ L. Hence Lg1NG(H) = Lg2NG(H). Conversely,
if Lg1NG(H) = Lg2NG(H) then g2 = xg1u for some x ∈ L and u ∈ NG(H). Thus, by (i),

T L
g1H,M(g1H) = T L

g2H,M(g2H).

(iv) For K � L, it is clear that

∑
g∈G

T L
gH,M(gH)(K) =

∑
g∈G

∑
x∈L: x(gH)�K

tKx(gH)c
x
gH M(gH) =

∑
g∈G: gH�K

tKgH c
g
H M(H) = M(K),

where the last equality follows by 2.4. The result now follows by (iii).
(v) It is clear because trace maps are additive. �

Corollary 3.3. Let H � L � G, and let a simple Mackey functor SG
H,V for G be given. Then,

↓G
L SG

H,V is semisimple if and only if ↓N̄G(H)

N̄L(H)
V is semisimple.

Proof. By 3.2

↓G
L SG

H,V =
∑

LgNG(H)⊆G

T L
gH,c

g
H (V )

.

Suppose ↓N̄G(H)

N̄L(H)
V = ⊕

i Wi where each Wi is a simple N̄L(H)-module. For any g ∈ G,

↓N̄G(gH)

N̄L(gH)
c
g
H (V ) = c

g
H

(↓N̄G(H)

N̄L(H)
V

) =
⊕

c
g
H (Wi),
i
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implying by 3.2 that

↓G
L SG

H,V =
∑

LgNG(H)⊆G

∑
i

T L
gH,c

g
H (Wi)

where each summand T L
gH,c

g
H (Wi)

is simple. Thus, ↓G
L SG

H,V is semisimple.

Conversely, suppose ↓G
L SG

H,V = ⊕
i Si where each Si is a simple Mackey functor for L. Then,

by 3.1, each Si has a minimal subgroup G-conjugate to H , and so Si(H), if nonzero, is a simple
N̄L(H)-module. Therefore,

V =↓G
L SG

H,V (H) =
⊕

i

Si(H)

is a direct sum of simple N̄L(H)-modules, proving that ↓N̄G(H)

N̄L(H)
V is semisimple. �

If N is a normal subgroup of G, 3.3 implies that ↓G
N S is semisimple for any simple Mackey

functor S for G whose minimal subgroup is contained in N .
The next two results will play a crucial role in the proofs of some of the later results.

Lemma 3.4. Let H � L � G be such that gH � L for every g ∈ G, and let a simple Mackey
functor SL

H,U for L be given. Then, letting ↑G
L SL

H,U = S̃:

(i) H is a minimal subgroup of S̃.

(ii) S̃ = Im t S̃χH
.

(iii) Ker rS̃
χH

= 0.

(iv) S̃(H) ∼=↑N̄G(H)

N̄L(H)
U .

Proof. We write t̃ , r̃, c̃ for the maps on S̃:
(i) First note that, if the module

S̃(K) =
⊕

KgL⊆G

SL
H,U (L ∩ Kg)

is nonzero, then SL
H,U (L ∩ Kg) �= 0 for some g ∈ G, hence H �G K . Plainly, S̃(H) �= 0. So the

minimal subgroups for S̃ are precisely the G-conjugates of H .
(ii) Let K � G. We must show that

S̃(K) ⊆ Im t S̃χH
(K) =

∑
g∈G: gH�K

Im t̃KgH .

For an x ∈ G,

(
S̃(K)

)
x

= SL
H,U (L ∩ Kx) =

∑
y x

Im tL∩Kx

yH and

y∈L: H�L∩K
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(
Im t S̃χH

(K)
)
x

=
∑

g∈G: gH�K

∑
(gH)u(K∩xL)⊆K

Im tL∩Kux

L∩(gH)ux .

Now, by the assumption on L, we see that L ∩ (gH)ux = x−1u−1gH . And if y ∈ L with yH �
L∩Kx then, putting g = xy and u = 1, we see that gH � K and x−1u−1g = y. Therefore, every
summand in (S̃(K))x appears in (Im t S̃χH

(K))x .
(iii) Let K � G. If

m ∈ Ker rS̃
χH

(K) =
⋂

g∈G: gH�K

Ker r̃K
gH

then, for any x ∈ G,

mx ∈
⋂

g∈G: gH�K

Ker rL∩Kx

L∩(gH)x ,

and by the assumption on L, L ∩ (gH)x = x−1gH . Consequently,

mx ∈
⋂

g∈G: gH�K

Ker rL∩Kx

xg−1
H

.

Simplicity of SL
H,U implies that

⋂
y∈L: yH�L∩Kx

Ker rL∩Kx

yH = 0.

If y ∈ L with yH � L ∩ Kx , putting g = xy, we have gH � K and x−1g = y. Hence, any set
appearing in the intersection

⋂
y∈L: yH�L∩Kx

Ker rL∩Kx

yH (= 0)

appears also in the intersection

⋂
g∈G: gH�K

Ker rL∩Kx

xg−1
H

.

Therefore, mx = 0.
(iv) Firstly, for any g ∈ G, if SL

H,U (gH) �= 0 then g ∈ NG(H)L. Also L ∩ Hg = Hg , and if
x ∈ NG(H)L then HxL = xL. Thus,

S̃(H) =
⊕

SL
H,U (L ∩ Hg) =

⊕
SL

H,U (Hg) =
⊕

SL
H,U (Hg).
HgL⊆G HgL⊆NG(H)L gL⊆NG(H)L
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As SL
H,U (Hg) = c

g−1

H (U),

S̃(H) =
⊕

gL⊆NG(H)L

c
g−1

H (U), a direct sum of K-modules.

Moreover, since k ∈ N̄G(H) acts on an element

x =
⊕

gL⊆NG(H)L

xg of S̃(H) as

k.x = c̃k
H (x) =

⊕
gL⊆NG(H)L

c̃k
H (x)g where c̃k

H (x)g = xk−1g,

we see that N̄G(H) permutes the summands c
g−1

H (U) of S̃(H) transitively and that the stabilizer
of the summand c1

H (U) = U is N̄L(H). Hence we proved that if L �= NG(H)L then S̃(H) is an
imprimitive N̄G(H)-module with a system of imprimitivity

{
c
g−1

H (U): gL ⊆ NG(H)L
}

on which N̄G(H) acts transitively, implying that

S̃(H) ∼=↑N̄G(H)

N̄L(H)
U as KN̄G(H)-modules.

On the other hand, if L = NG(H)L then N̄L(H) = N̄G(H) and S̃(H) = U . So the result is trivial
in this case. �
Proposition 3.5. Let H � L � G be such that gH � L for every g ∈ G, and let a simple Mackey

functor SL
H,U for L be given. Put V =↑N̄G(H)

N̄L(H)
U . Then ↑G

L SL
H,U is simple if and only if V is

simple, and if this is the case then ↑G
L SL

H,U
∼= SG

H,V .

Proof. If ↑G
L SL

H,U is simple then 3.4(iv) implies that V is simple. Conversely, suppose V ∼=
(↑G

L SL
H,U )(H) is simple. Then 3.4 and 2.4 imply that ↑G

L SL
H,U is simple. Finally the last asser-

tion follows by 2.5 and 3.4. �
We have now accumulated all the information necessary to prove one of our main results,

Clifford’s theorem for Mackey functors. But we first state some consequences of 3.4 and 3.5.

Remark 3.6. Let S be Mackey functor for G, and T be a G-subfunctor of S, and let χ be a
family of subgroups of G closed under taking subgroups and conjugation. Then we have

Ker rT
χ = T ∩ Ker rS

χ , Im tTχ � T ∩ Im tSχ , and Im t
Im tTχ
χ = Im tTχ .
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Proof. Since T is a subfunctor it must be stable under restriction and trace, implying that

Ker
(
rK
X :T (K) → T (X)

) = T (K) ∩ Ker
(
rK
X :S(K) → S(X)

)
,

tKX
(
T (X)

) ⊆ T (K) ∩ tKX
(
S(X)

)

for any K � G and X ∈ χ with X � K . Then the result follows easily. �
Corollary 3.7. Let H � L � G be such that gH � L for every g ∈ G, and let a simple Mackey

functor SL
H,U for L be given. Then, ↑G

L SL
H,U is semisimple if and only if ↑N̄G(H)

N̄L(H)
U is semisimple.

Proof. Let S̃ =↑G
L SL

H,U . Suppose S̃ = ⊕
i∈I Si is a decomposition into simple G-subfunctors.

If for a K � G and i ∈ I Si(K) is nonzero then

S̃(K) =
⊕

KgL⊆G

SL
H,U (L ∩ Kg)

is nonzero, and so SL
H,U (L ∩ Kg) �= 0 for some g ∈ G, and by 2.3, H �G K . Then by evaluating

at H we get S̃(H) = ⊕
i∈J Si(H) where J is the subset of I containing those i ∈ I for which

Si(H) �= 0. And H is a minimal subgroup of Si for each i ∈ J , so Si(H) is a simple N̄G(H)-

module for any i ∈ J . Therefore, S̃(H) is semisimple, and so is ↑N̄G(H)

N̄L(H)
U by 3.4.

Conversely, suppose now ↑N̄G(H)

N̄L(H)
U = ⊕

i Vi where each Vi is a simple KN̄G(H)-module.

We let Si be the G-subfunctor of S̃ generated by Vi . In particular Si(H) = Vi , H is a minimal
subgroup of Si and Im t

Si
χH

= Si for each i. Also by 3.4 Ker rS̃
χH

= 0. Then 3.6 implies that

Ker rSi
χH

= 0 for each i. Hence each Si is a simple Mackey functor for G. More to the point,

(∑
i

Si

)
(H) =

∑
i

Vi =↑N̄G(H)

N̄L(H)
U ∼= S̃(H)

by 3.4, and this implies that S̃ = ∑
i Si because we know by 3.4 that S̃ is generated by S̃(H).

Consequently ↑G
L SL

H,U is semisimple. �
Corollary 3.8. Let K be of characteristic p > 0, and let N be a normal subgroup of G such that
(|G : N |,p) = 1, and let N � L � G. Then, if SL

H,U is a simple Mackey functor for L over K

with H � N then ↑G
L SL

H,U is semisimple.

Proof. We know that U is simple KN̄L(H)-module. Note that N̄N(H) � N̄G(H), N̄N(H) �
N̄L(H) � N̄G(H), and (|N̄G(H) : N̄N(H)|,p) = 1. Therefore, by [20, Theorem 11.2], ↑N̄G(H)

N̄L(H)
U

is semisimple. The result now follows by 3.7. �
Over algebraically closed fields, simple modules of nilpotent groups are monomial. The fol-

lowing is a Mackey functor version of this result.
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Corollary 3.9. Let G be a nilpotent group, and K be algebraically closed. Then, for any simple
Mackey functor SG

H,V for G over K, there is a simple Mackey functor SL
H,W for some subgroup L

with H �L � G such that dimKW = 1 and ↑G
L SL

H,W
∼= SG

H,V .

Proof. As K is algebraically closed, N̄G(H) is nilpotent, and V is simple KN̄G(H)-module, V

must be monomial, see [21, Theorem 3.7, p. 205]. Therefore, there is a subgroup L̄ of N̄G(H)

and a one-dimensional KL̄-module W such that ↑N̄G(H)

L̄
W ∼= V . Now, H � L � NG(H) implies

that N̄L(H) = L̄, and so we may consider the simple Mackey functor SL
H,W for L. Since G is

nilpotent, we can find a subnormal series: L = L0 � L1 � · · · � Ln = G for some natural number
n. For j = 1, . . . , n − 1 we let

Wj =↑N̄Lj
(H)

N̄Lj−1 (H)
· · · ↑N̄L1 (H)

N̄L(H)
W.

Since

V ∼=↑N̄G(H)

N̄Ln−1 (H)
↑N̄Ln−1 (H)

N̄Ln−2 (H)
· · · ↑N̄L1 (H)

N̄L(H)
W

is simple, it follows that Wn−1, . . . ,W1 are all simple. Then, by a repeated application of 3.5

↑G
L SL

H,W
∼= ↑G

Ln−1
· · · ↑L2

L1
↑L1

L SL
H,W

∼=↑G
Ln−1

· · · ↑L2
L1

S
L1
H,W1

∼= · · ·
∼= ↑G

Ln−1
S

Ln−1
H,Wn−1

∼= SG
H,V . �

We now state Clifford’s theorem for Mackey functors. We state it over a filed, but it is true over
any commutative base ring. Of course, restriction of a simple Mackey functor may be 0. Indeed,
↓G

K SG
H,V �= 0 implies that H �G K . And note that if H � N � G then N̄N(H) � N̄G(H).

Theorem 3.10. Let N � G, and let SG
H,V be a simple Mackey functor for G over K such that

H � N . Then:

(i) There is a simple N -subfunctor SN
H,W of ↓G

N SG
H,V .

(ii) Let L = {g ∈ G: SN
gH,c

g
H (W)

∼= SN
H,W } be the inertia group of SN

H,W . Then, there is a positive

integer e = e(SG
H,V ), called the ramification index of SG

H,V relative to N , such that

↓G
N SG

H,V
∼= e

⊕
gL⊆G

∣∣g
N

SN
H,W

∼= e
⊕

gL⊆G

SN
gH,c

g
H (W)

.

Moreover, if T̄ = {ḡ ∈ N̄G(H): c
g
H (W) ∼= W } is the inertia group of the N̄N(H)-module W

in N̄G(H), then L = NT and

↓N̄G(H)

N̄N (H)
V ∼= e

⊕
c
g
H (W).
gT ⊆NG(H)
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Furthermore SN
gH,c

g
H (W)

, for gL ⊆ G, form, without repetition, a complete set of noniso-

morphic G-conjugates of SN
H,W . And c

g
H (W), for gT ⊆ NG(H), form, without repetition, a

complete set of nonisomorphic N̄G(H)-conjugates of W .
(iii) NL(H) = T and there is a simple Mackey functor S for L such that S ∼= SL

H,U where U is

the sum of all KN̄N(H)-submodules of ↓N̄G(H)

N̄N (H)
V isomorphic to W . Moreover, S is a simple

L-subfunctor of ↓G
L SG

H,V such that

↓L
N S ∼= eSN

H,W and ↑G
L S ∼= SG

H,V .

Furthermore U is a simple KN̄L(H)-submodule of ↓N̄G(H)

N̄L(H)
V satisfying

↓N̄L(H)

N̄N (H)
U ∼= eW and ↑N̄G(H)

N̄L(H)
U ∼= V.

Proof. As V is a simple KN̄G(H)-module and N̄N(H) � N̄G(H), by Clifford’s theorem for
group algebras [21], there is a positive integer e, and a simple KN̄N(H)-submodule W of V

such that

↓N̄G(H)

N̄N (H)
V ∼= e

⊕
ḡT̄ ⊆N̄G(H)

c
g
H (W) = e

⊕
gT ⊆NG(H)

c
g
H (W),

where T̄ = {ḡ ∈ N̄G(H): c
g
H (W) ∼= W } is the inertia group of the N̄N(H)-module W in N̄G(H).

Moreover c
g
H (W), gT ⊆ NG(H), form, without repetition, a complete set of nonisomorphic

N̄G(H)-conjugates of W . Also, if U is the sum of all KN̄N(H)-submodules of ↓N̄G(H)

N̄N (H)
V iso-

morphic to W then U is a simple KT̄ -module such that

↓T̄

N̄N (H)
U ∼= eW and ↑N̄G(H)

T̄
U ∼= V.

For any x ∈ G, it is clear that

↓N̄G(xH)

N̄N (xH)
cx
H (V ) = cx

H

(↓N̄G(H)

N̄N (H)
V

) ∼= e
⊕

gT ⊆NG(H)

c
xg
H (W).

We now use 3.2 with L = N and M = SG
H,V . The parts (iv) and (v) of 3.2 imply

↓G
N SG

H,V =
∑

NxNG(H)⊆G

T N
xH,cx

H (V )
and

T N
xH,cx

H (V )
∼= e

∑
gT ⊆NG(H)

T N
xH,c

xg
H (W)

= e
∑

gT ⊆NG(H)

T N
xgH,c

xg
H (W)

,

where we use g ∈ NG(H) for the last equality. Therefore, we have the decomposition

↓G
N SG

H,V
∼= e

∑ ∑
T N

xgH,c
xg
H (W)

.

NxNG(H)⊆G gT ⊆NG(H)
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Letting G = ⊎
i NxiNG(H) and NG(H) = ⊎

j gjT we see that G = ⊎
i

⊎
j NxigjT . Thus,

↓G
N SG

H,V
∼= e

∑
i

∑
j

T N
xigj H,c

xigj
H (W)

= e
∑

NgT ⊆G

T N
gH,c

g
H (W)

.

Moreover, by 3.2 and 2.5, we know that T N
gH,c

g
H (W)

, NgT ⊆ G, are all simple and distinct. Hence,

T N
gH,c

g
H (W)

∼= SN
gH,c

g
H (W)

and we have the direct sum

↓G
N M ∼= e

⊕
gNT ⊆G

SN
gH,c

g
H (W)

,

where we use NgT = gNT . Furthermore, by 2.5, SN
gH,c

g
H (W)

∼= SN
H,W if and only if, for some

n ∈ N , ngH = H and c
ng
H (W) ∼= W , equivalently g ∈ NT = L. Hence, SN

gH,c
g
H (W)

, gL ⊆ G,

form, without repetition, a complete set of nonisomorphic G-conjugates of SN
H,W and L = NT .

Now U is a simple KT̄ -submodule of M(H) = V . If we apply the modular law to the tower
T � NG(H) � G � N we see that

NL(H) = NG(H) ∩ L = NG(H) ∩ T N = T
(
NG(H) ∩ N

) = T NN(H) = T .

As a result, U is a simple KN̄L(H)-submodule of V . We put S = T L
H,U . It is a simple L-sub-

functor of ↓G
L M , by 3.2, and so S ∼= SL

H,U .

As ↑N̄G(H)

N̄L(H)
U ∼= V is simple, 3.5 implies that ↑G

L SL
H,U

∼= SG
H,V .

Finally, since U is a KT̄ -module we have cx
H (U) = cn

H (U) for any x = nt ∈ L = NT , n ∈ N ,
t ∈ T . If K � N ,

(↓L
N SL

H,U

)
(K) =

∑
x∈L: xH�K

tKxH cx
H (U) =

∑
n∈N : nH�K

tKnH cn
H (U) = T N

H,U (K),

thus ↓L
N SL

H,U = T N
H,U . Because ↓N̄L(H)

N̄N (H)
U ∼= eW , 3.2 implies that T N

H,U
∼= eSN

H,W . Hence,

↓L
N SL

H,U
∼= eSN

H,W . �
4. The Clifford correspondence

Our aim in this section is to prove a Mackey functor version of the Clifford correspondence.
Namely, if N is a normal subgroup of G and S is a simple Mackey functor for N whose inertia
group is L then we show that there is a bijection between certain simple Mackey functors for L

and for G.
The following result shows that given any simple Mackey functor S for N , N � G, we can

find a simple Mackey functor M for G such that S is a direct summand of ↓G M .
N
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Lemma 4.1.

(i) Let K � G, and let S be a simple Mackey functor for K over K. Then there exists a simple
Mackey functor M for G such that S is a K-subfunctor of ↓G

K M .
(ii) Let N � G, and let S be a simple Mackey functor for N over K. Then there exists a simple

Mackey functor M for G such that S is a direct summand of ↓G
N M as μK(N)-modules.

Proof. (i) Let S = SK
H,W . So W is a simple KN̄K(H)-module and N̄K(H) � N̄G(H). Then, by

[24, Lemma 1.2, p. 224], there is a simple N̄G(H)-module V such that W is a N̄K(H)-submodule

of ↓N̄G(H)

N̄K(H)
V . We let M = SG

H,V . Now since W is a submodule of (↓G
K M)(H) = V , we see that

S is a K-subfunctor of ↓G
K M because S is generated by S(H) = W .

(ii) This follows from (i) and 3.10. �
Remark 4.2. Given a Mackey functor M for K where K � G, then M is a direct summand of
↓G

K↑G
K M .

Proof. By the Mackey decomposition formula, 2.6. �
For a ring A and a subring B , we denote by Irr(A) a complete set of representatives for

the isomorphism classes of simple A-modules, for S ∈ Irr(B) we denote by Irr(A|S) the set
{M ∈ Irr(A): S| ↓A

B M} where the notation S| ↓A
B M means that S is a direct summand of 1BM

as B-module where 1B is the unity of B .
Given any simple Mackey functor SN

H,W for N over K where N � G, 4.1 implies that the sets

Irr(μK(X)|SN
H,W ) are nonempty for any X with N � X � G.

Lemma 4.3. Let N � G and N � X � G. Then:

(i) If M ∈ Irr(μK(X)|SN
H,W ) then M ∼= SX

H,V for some V ∈ Irr(KN̄X(H)|W).

(ii) If V ∈ Irr(KN̄X(H)|W) then SX
H,V ∈ Irr(μK(X)|SN

H,W ).

(iii) SX
H,V

∼= SX
H,V ′ as Mackey functors for X if and only if V ∼= V ′ as KN̄X(H)-modules.

(iv) The map Irr(μK(X)|SN
H,W ) → Irr(KN̄X(H)|W), given by SX

H,V ↔ V , is a bijection pre-
serving ramification indexes.

Proof. (i) If M = SX
K,V ∈ Irr(μK(X)|SN

H,W ) then 3.10 implies that H and K are X-conjugate
which gives the desired result.

(ii) It is an immediate consequence of 3.10.
(iii) Follows by 2.5.
(iv) Follows by (i), (ii) and 2.5. �
The following result is a Mackey functor version of the Clifford correspondence for group

algebras, see [21, Theorem 3.2, p. 203].

Theorem 4.4. Let N � G, and a simple Mackey functor SN
H,W for N over K be given, and let L

be the inertia group of SN in G. Then:
H,W
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(i) If S ∈ Irr(μK(L)|SN
H,W ) then ↑G

L S ∈ Irr(μK(G)|SN
H,W ).

(ii) The map Irr(μK(L)|SN
H,W ) → Irr(μK(G)|SN

H,W ), given by S 
→↑G
L S, is a bijection preserv-

ing ramification indexes.

Proof. (i) Let S ∈ Irr(μK(L)|SN
H,W ). Then, by 4.3, S = SL

H,U for some U ∈ Irr(KN̄L(H)|W).

Also 3.10 implies that L = NT and N̄L(H) = T̄ where T̄ is the inertia group of the simple
KN̄N(H)-module W in N̄G(H). The Clifford correspondence for group algebras implies that

V = ↑N̄G(H)

N̄L(H)
U ∈ Irr(KN̄G(H)|W). Then, by 4.3, SG

H,V ∈ Irr(μK(G)|SN
H,W ). Finally, because

of 3.5, ↑G
L SL

H,U
∼= SG

H,V .
(ii) By 4.3, the Clifford correspondence for group algebras, and again 4.3, respectively, the

following composition of maps

Irr
(
μK(L)|SN

H,W

) → Irr
(
KN̄L(H)|W ) → Irr

(
KN̄G(H)|W ) → Irr

(
μK(G)|SN

H,W

)
,

S = SL
H,U 
→ U 
→ V = ↑N̄G(H)

N̄L(H)
U 
→ SG

H,V
∼=↑G

L SL
H,U

is a bijection preserving ramification indexes where for the last isomorphism we use 3.5. �
The inverse of the bijection in 4.4 will be described in the next section.

Corollary 4.5. Let N � G, and let S be a simple Mackey functor for N over K. If the inertia
group of S in G is N then ↑G

N S is a simple Mackey functor for G.

Proof. A simple consequence of 4.4. �
Remark 4.6. Let N � G, and let S1 and S2 be simple Mackey functors for N over K. Then,
↑G

N S1 ∼=↑G
N S2 if and only if S1 ∼=|gN S2 for some g ∈ G.

Proof. It is an easy consequence of 2.6. �
Corollary 4.7. Let N � G, and a simple Mackey functor SN

H,W for N over K be given,

and let L be the inertia group of SN
H,W in G. Then, for any X with L � X � G, the map

Irr(μK(X)|SN
H,W ) → Irr(μK(G)|SN

H,W ), given by S 
→↑G
X S, is a bijection preserving ramifi-

cation indexes.

Proof. This follows easily from 4.4. �
5. Group grading method

In this section, we first show that a certain subalgebra of μR(G) is a group graded algebra
over μR(N) where N is a normal subgroup of G. After obtaining a Mackey algebra version
of Fong’s theorem, we use Clifford theory results on group graded algebras to study restriction
and induction of Mackey functors. We also study the subalgebras eμR(G)e of μR(G) for some
special kinds of idempotents of μR(G).

For a ring A and its subset B , we let CA(B) = {a ∈ A: ab = ba, for all b ∈ B}, and Z(A) =
CA(A), and U(A) be the unit group of A.
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An R-algebra A is called strongly G-graded algebra if A = ⊕
x∈G Ax , direct sum of R-

submodules of A, and AxAy = Axy for all x, y ∈ G; here AxAy is the R-submodule of A

consisting of all finite sums
∑

i aibi with ai ∈ Ax and bi ∈ Ay . The trivial component A1 is
a unital subring of A. If u ∈ U(A) lies in Ax for some x ∈ G then u is called graded unit and x is
called the degree of u, written deg(u) = x. Letting GrU(A) be the set of all graded units of A we
see that GrU(A) is a subgroup of U(A) and deg : GrU(A) → G, u 
→ deg(u), is a group homo-
morphism with kernel U(A1). If U(A)∩Ax is nonempty for all x ∈ G then A is called a crossed
product of G over A1. Let A be a crossed product of G over A1, choosing ux ∈ U(A) ∩ Ax for
any x ∈ G, we see that Ax = A1ux = uxA1 [3,17,22,23].

From now on, for K � G we let χK denote the set {H � G: H �G K}, and we let 1K

denote the unity of μR(K) which is a nonunital subring of μR(G), if K �= G, and a unital
subring of 1KμR(G)1K . Finally, for g ∈ G we let γg = ∑

L�G c
g
L, and we let βg = ∑

L�N c
g
L ∈

1NμR(G)1N whenever N is a normal subgroup of G.

Lemma 5.1. Let N be a normal subgroup of G. Then:

(i) βxμR(N) = βyμR(N) if and only if xN = yN .
(ii) βxμR(N) = μR(N)βx .

(iii) 1NμR(G)1N = ⊕
gN∈G/N βḡμR(N).

Proof. (i) Noting that βx1N = βx = 1Nβx for any x ∈ G, we see that βxμR(N) = βyμR(N) if
and only if βy−1xμR(N) = μR(N), and so βy−1x = βy−1x1N ∈ μR(N), implying that y−1x ∈ N .
Conversely, y−1x ∈ N implies that βy−1x is a unit of μR(N). Thus βy−1xμR(N) = μR(N).

(ii) By 2.1, an R-basis element of μR(N) is of the form tHnJ cn
J rK

J where H � N � K , n ∈ N ,
and J � Hn ∩ K . For any x ∈ G we have

βxt
H
nJ cn

J rK
J = cx

H tHnJ cn
J rK

J = t
xH
xnx−1

(xJ )
cxnx−1

(xJ ) r
xK
(xJ )c

x
K = t

xH
xnx−1

(xJ )
cxnx−1

(xJ ) r
xK
(xJ )βx.

By the normality of N , tHnJ cn
J rK

J is an element of μR(N) if and only if t
xH
xnx−1

(xJ )
cxnx−1

(xJ ) r
xK
(xJ ) is an

element of μR(N). Therefore, βxμR(N) = μR(N)βx .
(iii) 2.1 implies that the elements tHgJ c

g
J rK

J , where H � N � K , HgK ⊆ G, and J is a sub-
group of Hg ∩K up to conjugacy, form, without repetition, a free R-basis of 1NμR(G)1N . Now
g ∈ G is in a unique coset xN , and if g = xn with n ∈ N then

tHgJ c
g
J rK

J = cx
Hx t

Hx

nJ cn
J rK

J = βxt
Hx

nJ cn
J rK

J ∈ βxμR(N).

Hence,

1NμR(G)1N =
∑

gN∈G/N

βḡμR(N).

Furthermore, since βx is a unit of 1NμR(G)1N we see that the elements βxt
H
nJ cn

J rK
J , where

H � N � K , HnK ⊆ N , and J is a subgroup of Hn ∩ K up to conjugacy, form, without repeti-
tion, a free R-basis of βxμR(N). If βxt

H
nJ cn

J rK
J = βyt

H ′
mI cm

I rK ′
I then

βy−1xt
H
nJ cn

J rK
J = t

y−1xH
−1 c

y−1xn
rK
J = tH

′
mI cm

I rK ′
I .
y xnJ J
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Then, by 2.1, K ′ = K , y−1xH = H ′ and H ′mK ′ = H ′y−1xnK ′, implying that N = y−1xN . So
(i) implies that βxμR(N) = βyμR(N). Hence, any basis element of 1NμR(G)1N lies in a unique
summand βx̄μR(N). Therefore, the sum

∑
gN∈G/N βḡμR(N) must be direct. �

Lemma 5.1 implies

Theorem 5.2. If N � G then

1NμR(G)1N =
⊕

gN∈G/N

βḡμR(N)

is a crossed product of G/N over μR(N).

We state the following elementary result whose proof is straightforward, see [3,14,17].

Remark 5.3. Let A be a crossed product of G over A1. Then:

(i) For each y ∈ CA(A1) and g ∈ G, let gy = ugyu−1
g where ug is any element of U(A) ∩ Ag .

Then, with this action G acts as automorphism of the algebras CA(A1) and Z(A1). Further-
more, the above action does not depend on the choice of ug .

(ii) Let e be a G-invariant block idempotent of A1, that is, ugeu
−1
g = e, for all g ∈ G. Then e is

a central idempotent of A, and Ae = ⊕
g∈G Age is a crossed product of G over A1e.

Let N be a normal subgroup of G. Then we note that γga = βga for any a ∈ μR(N). If e

is a block idempotent of μR(N) corresponding to a G-invariant simple μR(N)-module S then
βge = eβg for all g ∈ G where, by G-invariant, we mean that the inertia group is G.

If A = ⊕
g∈G Ag is a strongly G-graded algebra and W is an A1-module, the conjugate of W

is defined to be the A1-module Ag ⊗A1 W with obvious A1-action [3,17,23]. Let A1 = μR(N)

and A = 1NμR(G)1N . Then, by 5.2, A is a strongly G/N -graded algebra, and note that the
notion of conjugation of A1-modules described above coincides with the conjugation of μR(N)-
modules defined in Section 2, because if S is a μK(N)-module we defined its conjugate |gNS in
Section 2 as |gNS = S with μK(N) action given as x.s = γg−1xγgs for x ∈ μK(N), s ∈ S. On the
other hand, we defined its conjugate here as gS = βḡμK(N) ⊗μK(N) S. Now it is clear that there
is a μK(N)-module isomorphism |gNS → gS given by s 
→ βḡ ⊗ s.

We now proceed to obtain one of our main results, a Mackey algebra version of Fong’s theo-
rem, see [21, Theorem 7.4, p. 355].

Theorem 5.4. Let K be an algebraically closed field of characteristic p > 0, and let N be a
normal p′-subgroup of G. If e is a G-invariant block idempotent of μK(N), then:

(i) e is a central idempotent of 1NμK(G)1N .
(ii) μK(N)e ∼= Matd(K), the algebra of d × d matrices over K.

(iii)

(
1NμK(G)1N

)
e =

⊕
gN∈G/N

βḡμK(N)e

is a crossed product of G/N over μK(N)e.



262 E. Yaraneri / Journal of Algebra 303 (2006) 244–274
(iv)

eμK(G)e ∼= μK(N)e ⊗K CμK(G)

(
μK(N)

)
e.

(v) There is a central extension G̃ of G/N by a cyclic p′-group Z and a linear character λ of
Z such that

eμK(G)e ∼= μK(N)e ⊗K KG̃eλ,

where eλ = 1
|Z|

∑
z∈Z λ(z−1)z is the corresponding block idempotent of KZ, which is also

a central idempotent of KG̃. Moreover we can express the above isomorphism as

eμK(G)e ∼= μK(N)e ⊗K

(
ελμK(G̃)ελ

)
,

where ελ = 1
|Z|

∑
z∈Z λ(z−1)cz

1, an idempotent of μK(G̃).

Proof. (i) and (iii) They follow by 5.3.
(ii) Since N is a p′-group, μK(N) is semisimple by [27], implying the result.
(iv) As (1NμK(G)1N)e is a crossed product of G/N over a matrix algebra μK(N)e,

[21, Theorem 7.2, p. 352] implies that

(
1NμK(G)1N

)
e ∼= μK(N)e ⊗K C(1NμK(G)1N )e

(
μK(N)e

)
.

Now it is clear that

(
1NμK(G)1N

)
e = eμK(G)e and C(1NμK(G)1N )e

(
μK(N)e

) = CμK(G)

(
μK(N)

)
e.

(v) The same argument in [21, pp. 352–354] with A = (1NμK(G)1N)e and A1 = μK(N)e

shows that there is a central extension G̃ of G/N by a cyclic p′-group Z and a linear character
λ of Z such that CA(A1) = KG̃eλ, and we know that

CA(A1) = C(1NμK(G)1N)e

(
μK(N)e

) = CμK(G)

(
μK(N)

)
e.

Moreover, the basis Theorem 2.1 shows that

t1
1 μK(G̃)t1

1 =
⊕
g∈G̃

Kc
g

1
∼= KG̃, c

g

1 ↔ g, as K-algebras.

Letting ελ corresponds to eλ under this isomorphism, we see that ελ is a central idempotent of
t1
1 μK(G̃)t1

1 , because eλ is a central idempotent of KG̃. As t1
1 is the unity of t1

1 μK(G̃)t1
1 , we have

(t1
1 μK(G̃)t1

1 )ελ = ελμK(G̃)ελ. �
Mackey functors for G over R and left μR(G)-modules are identical as described in Section 2.

The same identification shows that

Remark 5.5. Let N be a normal subgroup of G. Then, Mackey functors for χN over R and left
1NμR(G)1N -modules are identical.
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Before going further we need the following result, see [12, pp. 83–87].

Remark 5.6. Let e be an idempotent in a ring A. Then:

(i) If V is a simple A-module then eV is either zero or a simple eAe-module.
(ii) Let W is a simple eAe-module, and let V = Ae ⊗eAe W . Then eV ∼= W . Moreover, if I is

the sum of all A-submodules of V killed by e then I is the unique maximal A-submodule
of V and e(V/I) ∼= W .

(iii) Let Irr(A|e) be the set {V ∈ Irr(A): eV �= 0}. Then, there is a bijection Irr(A|e) ↔ Irr(eAe),
given by V → eV and (Ae ⊗eAe W)/I ← W , where I is the unique maximal A-submodule
of Ae ⊗eAe W .

Clifford theory for group graded algebras in [3, Section 18] applied to the crossed product
1NμK(G)1N = ⊕

gN∈G/N βḡμK(N) of G/N over μK(N) implies the following result.

Proposition 5.7. Let N � G, and N be simple 1NμK(G)1N -module, and let S be a sim-
ple μK(N)-submodule of N. Assume that S′ is a simple μK(N)-module whose inertia group
{gN ⊆ G: βḡμK(N) ⊗μK(N) S′ ∼= S′} is L′/N . Then:

(i) If L/N is the inertia group of S there is a positive integer d such that

N ∼= d
⊕

gL⊆G

gS.

(ii) Let P be the sum of all μK(N)-submodules of N isomorphic to S. Then P is a simple
1NμK(L)1N -submodule of N such that

1NμK(G)1N ⊗(1NμK(L)1N) P ∼= N as 1NμK(G)1N -modules, and

P ∼= dS as μK(N)-modules.

(iii) The map

Irr
(
1NμK(L′)1N |S′) → Irr

(
1NμK(G)1N |S′), P′ 
→ 1NμK(G)1N ⊗(1NμK(L′)1N) P′,

is a bijection. The inverse map sends N′ to the sum of all μK(N)-submodules of N′ isomor-
phic to S′.

Let M = SG
H,V be a simple Mackey functor for G over K with a minimal subgroup H con-

tained in a normal subgroup N of G. By 5.6 N = 1NM is a simple 1NμK(G)1N -module. Then
5.6 and 5.7 imply some parts of Clifford’s theorem for Mackey functors, 3.10. For 3.10 we have
the following result.

Remark 5.8. The simple μK(L)-module S = SL
H,U in 3.10 and the simple 1NμK(L)1N -module

P in 5.7 correspond to each other under the bijection Irr(μK(L)|1N) → Irr(1NμK(L)1N) de-
scribed in 5.6, that is P = 1NS.
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Proof. L is the inertia group of S as described in 3.10 if and only if L/N is the inertia group of
S as described in 5.7.

We use the notations of 3.10. So M = SG
H,V and S = SL

H,U where U is the sum of all

KN̄N(H)-submodules of ↓N̄G(H)

N̄N (H)
V isomorphic to W . Moreover by 5.7 P is the sum of all

μK(N)-submodules of 1NM isomorphic to SN
H,W . Let W ′ ∼= W be a summand of U . Then,

SN
H,W ′ is a N -subfunctor of S isomorphic to SN

H,W , and so 1NSN
H,W ′ = SN

H,W ′ is a summand
of P. Hence, 1NS ⊆ P as 1NμK(L)1N -modules from which the equality 1NS = P follows by
simplicity of P. �

The next result describes the inverse of the bijective map given in 4.4

Proposition 5.9. Let N � G, and a simple Mackey functor SN
H,W for N over K be given, and let

L be the inertia group of SN
H,W in G. For an M ∈ Irr(μK(G)|SN

H,W ) we let PM be the sum of all

N -subfunctors of ↓G
N M isomorphic to SN

H,W , and we let IM be the unique maximal L-subfunctor
of μK(L)1N ⊗1NμK(L)1N

PM . Then:

(i) If M ∈ Irr(μK(G)|SN
H,W ), then (μK(L)1N ⊗1NμK(L)1N

PM)/IM = P̄M ∈ Irr(μK(L)|SN
H,W )

and ↑G
L P̄M

∼= M .
(ii) The map Irr(μK(G)|SN

H,W ) → Irr(μK(L)|SN
H,W ), which maps M to P̄M , is a bijection. The

inverse map is given by S 
→↑G
L S.

(iii) If M ∈ Irr(μK(G)|SN
H,W ), then ↓G

L M has a unique simple L-subfunctor S such that

S ∈ Irr(μK(L)|SN
H,W ) and ↑G

L S ∼= M .

Proof. The first two parts are obvious consequences of 5.6, 5.7 and 5.8. The last part follows
easily from the adjointness of restriction and induction functors, see [27]. �

To use the results in the context of group graded algebras concerning indecomposable mod-
ules, we first need the following two lemmas to get a relationship between the indecomposable
modules of 1NμR(G)1N and μR(G), where N is a normal subgroup of G.

Lemma 5.10. Let M be a Mackey functor for L where L � N � G. Put M̃ =↑G
L M . Then

Ker rM̃
χN

= 0 and Im tM̃χN
= M̃ .

Proof. We write t̃ , r̃ , c̃ for the maps of M̃ .
For any K � G,

Ker rM̃
χN

(K) =
⋂

X�N : X�K

Ker r̃K
X =

⊕
KgL⊆G

( ⋂
X�N : X�K

Ker rL∩Kg

L∩Xg

)
.

For any g ∈ G, put X = gL ∩ K . Then X � N with X � K , and L ∩ Xg = L ∩ Kg , implying
that Ker rL∩Kg

L∩Xg = 0. So Ker rM̃
χN

= 0.
For any K � G,

Im tM̃χN
(K) =

∑
Im t̃KX =

⊕ ∑ ∑
g

Im tL∩Kug

L∩Xug .
X�N : X�K KgL⊆G X�N : X�K Xu(K∩ L)⊆K
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As u ∈ K , L ∩ Kug = L ∩ Kg . For any g ∈ G, putting X = gL ∩ K and u = 1, we see that
X � N with X � K , and L ∩ Xug = L ∩ Kg , implying that Im tL∩Kug

L∩Xug = M(L ∩ Kg). So

Im tM̃χN
= M̃ . �

Lemma 5.11.

(i) Let e be an idempotent in a ring A. If W is an indecomposable eAe-module, and if I is the
sum of all A-submodules of V = Ae ⊗eAe W killed by e, then V/I is an indecomposable
A-module such that e(V/I) ∼= W as eAe-modules.

(ii) Let M be a Mackey functor for G, and N be a normal subgroup of G. If M ′ is a G-sub-
functor of M killed by 1N then M ′ � Ker rM

χN
.

(iii) Let M be a Mackey functor for G, and N be a normal subgroup of G. Assume that
Ker rM

χN
= 0 and Im tMχN

= M . If M is indecomposable then 1NM is an indecomposable
1NμR(G)1N -module.

Proof. (i) Suppose that V/I = X ⊕ Y as A-modules. Then

eX ⊕ eY = e(V/I) = (eV + I )/I ∼= eV/(eV ∩ I ) = eV/0 ∼= eV ∼= eAe ⊗eAe W ∼= W,

where we use (eV ∩ I ) = e(eV ∩ I ) ⊆ eI = 0 to see that eV ∩ I = 0. Then, since W is in-
decomposable, eX = 0 or eY = 0, say eX = 0. Now X = X̃/I for some A-submodule X̃ of
V containing I . Then eX = 0 implies that eX̃ ⊆ I , and so eX̃ = e2X̃ ⊆ eI = 0. Thus X̃ is an
A-submodule of V killed by e which means X̃ ⊆ I and X = 0.

(ii) Let K � G. Then for any X ∈ χN with X � K , since M ′ is a subfunctor of M killed by
1N and X � N , rK

X (M ′(K)) ⊆ M ′(X) = 0. Hence, M ′ � Ker rM
χN

.
(iii) Since Ker rM

χN
= 0, Im tMχN

= M , and M is indecomposable it follows by [27, Proposi-
tion 3.2] that ↓G

χN
M is an indecomposable Mackey functor for χN . The result now follows

by 5.5. �
Proposition 5.12. Let N be a normal subgroup of G. Given a Mackey functor S for N over R,
↑G

N S is an indecomposable μR(G)-module if and only if 1N ↑G
N S is an indecomposable

1NμR(G)1N -module.

Proof. Firstly, 5.10 implies that Ker rS̃
χN

= 0 and Im t S̃χN
= S̃, where S̃ =↑G

N S. Let A = μR(G)

and B = μR(N). If S̃ is an indecomposable A-module then 5.11 implies that 1NS̃ is an indecom-
posable 1NA1N -module. Conversely, suppose that 1NS̃ is an indecomposable 1NA1N -module.
Since Ker rS̃

χN
= 0, 5.11 implies that S̃ has no nonzero A-submodule killed by 1N . Moreover

S̃ =↑G
N S ∼= A1N ⊗B S ∼= A1N ⊗1NA1N

(1NA1N ⊗B S) ∼= A1N ⊗1NA1N
1NS̃.

Then by 5.11 S̃ is an indecomposable A-module. �
For simple modules we have the following version of the previous result.
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Proposition 5.13. Let N be a normal subgroup of G. Given a Mackey functor S for N over R,
↑G

N S is a simple (respectively semisimple) μR(G)-module if and only if 1N ↑G
N S is a simple

(respectively semisimple) 1NμR(G)1N -module.

Proof. Let S̃ =↑G
N S, A = μR(G) and B = μR(N). 5.10 implies that Ker rS̃

χN
= 0, and by 5.11

S̃ has no nonzero A-submodule killed by 1N . In particular 1N S̃ is nonzero.
Suppose S̃ is simple. Since 1NS̃ is nonzero, 5.6 implies that 1NS̃ is simple. Conversely, sup-

pose 1NS̃ is simple. As in the proof of 5.12 we have S̃ ∼= A1N ⊗B 1N S̃. Since S̃ has no nonzero
A-submodule killed by 1N and 1N S̃ is simple, it follows by 5.6 that S̃ is simple.

Because S̃ = ⊕
i Si implies 1N S̃ = ⊕

i 1NSi , and A1N ⊗1NA1N
(
⊕

j Pj ) = ⊕
j (A1N ⊗1NA1N

Pj ) for A-modules Si and 1NA1N -modules Pj , it follows from what we have proved that ↑G
N S

is semisimple if and only if 1N ↑G
N S is semisimple. �

We now provide some necessary and sufficient conditions for simplicity of induced Mackey
functors.

Theorem 5.14. Let R be commutative complete noetherian local ring whose residue field R/J(R)

is algebraically closed and is of characteristic p > 0, and N be a normal subgroup of G. Then:

(i) For any finitely generated nonzero Mackey functor S for N over R, ↑G
N S is semisimple if

and only if S is semisimple and, for any simple N -subfunctor P of S, p does not divide
|L : N |, where L is the inertia group of P .

(ii) For any nonzero Mackey functor S for N over R, ↑G
N S is simple if and only if S is simple

and gS � S for all g ∈ G − N .

Proof. We let A = μR(G), B = 1NμR(G)1N and B1 = μR(N). So B is a crossed product of
G/N over B1 and B1 is a finite-dimensional R-algebra:

(i) [18, Theorem 6.13, p. 525] implies that B ⊗B1 S is semisimple if and only if the desired
conditions are satisfied. The result follows by 5.13 because B ⊗B1 S ∼= 1N ↑G

N S.
(ii) By [18, Theorem 6.14, p. 526] B ⊗B1 S is simple if and only if the conditions above hold.

Again the result is immediate by the virtue of 5.13. �
We next study the primitivity of the idempotents tKK ∈ μR(G) where K � G.

Remark 5.15. Let N � G. Then tNN μR(G)tNN = ⊕
gN∈G/N Aḡ is a crossed product of G/N over

A1̄ = ⊕
J�NN RtNJ rN

J , where Aḡ = c
g
NA1̄. Moreover, A1̄ is isomorphic to the Burnside algebra

BR(N).

Proof. 2.1 implies that the elements tNgJ c
g
J rN

J where gN ⊆ G, and J is a subgroup of N up to
conjugacy, form, without repetition, a free R-basis of tNN μR(G)tNN . It is obvious that tNgJ c

g
J rN

J =
c
g
N tNJ rN

J . Thus we have the direct sum

tNN μR(G)tNN =
⊕

c
g
N

( ⊕
RtNJ rN

J

)
.

gN⊆G J�NN
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Finally it is clear that the map

BR(N) =
⊕

J�NN

R[N/J ] →
⊕

J�NN

RtNJ rN
J given by [N/J ] 
→ tNJ rN

J

is an R-algebra isomorphism, where [N/J ] denotes the isomorphism class of transitive N -sets
with stabilizers N -conjugate to J . �

The characterization of solvable groups given in [6] becomes

Proposition 5.16. The idempotent tGG ∈ μZ(G) is primitive if and only if G is solvable.

Proof. The idempotent tGG ∈ μZ(G) is primitive if and only if tGGμZ(G)tGG has no nontrivial
idempotent, which is, by 5.15, equivalent to BZ(G) has no nontrivial idempotent. Moreover,
in [6] it is proven that BZ(G) has no nontrivial idempotent if and only if G is solvable, finishing
the proof. �

The following result contains a characterization of p-groups.

Proposition 5.17. Let G be nontrivial:

(i) The idempotent t1
1 ∈ μK(G) is primitive if and only if K is of characteristic p > 0 and G is

a p-group.
(ii) The idempotent t1

1 ∈ μZ(G) is primitive.
(iii) Let H � G. If the idempotent tHH ∈ μK(G) is primitive then K is of characteristic p > 0

and NG(H) is a p-group.

Proof. 5.15 shows that t1
1 μR(G)t1

1
∼= RG and tHH μR(H)tHH is a subalgebra of tHH μR(G)tHH iso-

morphic to the Burnside algebra BR(H):
(i) The idempotent t1

1 is primitive if and only if KG has no nontrivial idempotent which is
equivalent to KG is a local algebra. So the result is obtained.

(ii) It is clear because ZG has no nontrivial idempotent.
(iii) Suppose that tHH is primitive. By (i) we may assume that H �= 1. Then the Burnside alge-

bra BK(H) has no nontrivial idempotents. It follows by [6] that K is of characteristic p > 0 and
H is a p-group. Let X be any subgroup of NG(H) containing H and put e = ∑

gH⊆X c
g
H . Then

e is an element of tHH μK(G)tHH such that e2 = |X : H |e. Hence NG(H)/H must be p-group. �
Let K be of characteristic p > 0. It is proved in [28, Theorem (19.2)] that μK(G) is selfinjec-

tive if and only if p2 does not divide |G|. Concerning the similar topics we have the following
result.

Remark 5.18. Let K be of characteristic p > 0, N be a normal subgroup of G. Then:

(i) Let K be algebraically closed, and N be a p′-group. If e is a G-invariant block idempotent
of μK(N), then eμK(G)e is symmetric.

(ii) If p2 does not divide |N |, then tNN μK(G)tNN is Frobenius.
(iii) If G is abelian and p2 does not divide |N |, then tNμK(G)tN is symmetric.
N N
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(iv) If μK(N) is Frobenius then 1NμK(G)1N is Frobenius.
(v) If N is a p′-group, then tNN μK(G)tNN and 1NμK(G)1N are symmetric.

(vi) If μK(G) is symmetric then p2 does not divide |G|.

Proof. We begin by recalling some basic results. Semisimple algebras and group algebras are
symmetric, tensor product of two symmetric algebras is again symmetric. If A is symmetric and
e ∈ A is idempotent then eAe is symmetric. Moreover, by [13], the Burnside algebra BK(N) is
symmetric if and only if p2 does not divide |N |:

(i) By 5.4, eμK(G)e = μK(N)e ⊗K KG̃eλ where eλ is a central idempotent of KG̃. Since
μK(N) is semisimple, the basic results above imply that eμK(G)e is symmetric.

(ii), (iii) and (iv) We know that tNN μK(G)tNN and 1NμK(G)1N are crossed products of G/N

over BK(N) and μK(N), respectively. Moreover in (ii) and (iii) BK(N) is symmetric. Then the
results follows by [14, Lemma 1].

(v) If N is a p′-group then BK(N) and μK(N) are both semisimple, and by [14, Proposition 2]
the crossed products tNN μK(G)tNN and 1NμK(G)1N must be symmetric.

(vi) If μK(G) is symmetric then tGGμK(G)tGG
∼= BK(G) is symmetric, and the result follows

by the result of [13] mentioned above. �
6. Indecomposable Mackey functors

In this section we prove some Clifford type results for indecomposable Mackey functors and
a Mackey functor version of Green’s indecomposibility criterion.

A Mackey functor M for G over K is H -projective for some H � G if and only if M is a
direct summand of ↑G

H ↓G
H M , equivalently M is a direct summand of ↑G

H P for some Mackey
functor P for H , see [25, Lemma 2.3].

If M is H -projective then it follows that ↓G
H M �= 0, and so 1H M �= 0.

We show that Clifford’s theorem holds for N -projective indecomposable Mackey functors. To
prove the last part of the following result, we use the corresponding result in crossed products
which was first obtained in [26, Theorem 2].

Theorem 6.1. Let N be a normal subgroup of G, let M be an N -projective finitely generated
indecomposable Mackey functor for G over K and let S be an indecomposable direct summand
of ↓G

N M . Then:

(i) There is a positive integer d such that

↓G
N M ∼= d

⊕
gL⊆G

gS,

where L is the inertia group of S.
(ii) 1NM is an indecomposable 1NμK(G)1N -module.

(iii) Let P be the sum of all N -subfunctors of ↓G
N M isomorphic to S. Then P is an indecom-

posable 1NμK(L)1N -module such that

1NμK(G)1N ⊗1NμK(L)1N
P ∼= 1NM and P ∼= dS

as 1NμK(G)1N -modules and as μK(N)-modules, respectively.
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Proof. Let A = 1NμK(G)1N and A1 = μK(N), and B = 1NμK(L)1N .
(i) ↓G

N M is nonzero because M is a direct summand of ↑G
N↓G

N M . Let ↓G
N M = S1 ⊕

· · · ⊕ Sn for some indecomposable Mackey functors S1, . . . , Sn for N . As induction respects
direct summands, ↑G

N↓G
N M =↑G

N S1 ⊕ · · ·⊕ ↑G
N Sn. Since M is a direct summand of ↑G

N↓G
N M ,

the functor M is a direct summand of ↑G
N Si for some i ∈ {1, . . . , n}, say i = 1. Then, as restric-

tion respects direct summands, ↓G
N M is a direct summand of ↓G

N↑G
N S1 which is, by the Mackey

decomposition formula, 2.6, equal to
⊕

gN⊆G
gS1. Therefore, each Si is conjugate to S1.

As γg is a unit of μK(G), we have γgM = M . Moreover, γgS1 is a μK(N)-module for any
g ∈ G, because if x ∈ μK(N) then xγgS1 = γg(γg−1xγg)S1, and the normality of N implies
γg−1xγg ∈ μK(N). Also γgS1 and gS1 are isomorphic μK(N)-modules via the isomorphism
given by γgs ↔ s for s ∈ S1.

Now, ↓G
N M = γg ↓G

N M = γgS1 ⊕ · · · ⊕ γgSn for any g ∈ G. Hence every conjugate of S1 is
isomorphic to some Si .

Finally, for a fixed i ∈ {1, . . . , n}, let Si
∼= gS1 ∼= γgS1. Since ↓G

N M = S1 ⊕· · ·⊕Sn = γgS1 ⊕
· · · ⊕ γgSn, all the Si in ↓G

N M occurs with the same multiplicity d .
(ii) We know that 1NM is nonzero and ↓G

N M = 1NM ∼= d ⊕gL⊆G
gS. If 1NM = X ⊕ Y is

a direct sum decomposition as A-modules then S is a direct summand of X or Y , say X, con-
sidered as A1-modules. γh1N is a unit in A for any h ∈ G, and so γhX = γh1NX = X implying
that γhS ∼= hS is a direct summand of X. Hence X = 1NM and 1NM is an indecomposable
A-module.

(iii) We saw above that M is a direct summand of ↑G
N S = μK(G)1N ⊗A1 S implying that

1NM is a direct summand of A ⊗A1 S. Thus 1NM is A1-projective.
Now, by 5.2 A is a crossed product of G/N over A1. Then Clifford theory for indecomposable

modules in the context of crossed products, see [26, Theorem 2], implies that if P is the sum of
all A1-submodules of ↓G

N M isomorphic to S then P is an indecomposable B-module such that
P ∼= dS and A ⊗A1 P ∼= 1NM . �

Given a normal subgroup N of G and a finitely generated indecomposable Mackey functor
S for N over K, in the next result we relate direct decompositions of the induced functors ↑G

N S

and ↑L
N S where L is the inertia group of S. The following result is a Mackey functor version of

[15, Theorem 9.6, p. 126].

Theorem 6.2. Let N � G, and S be a finitely generated indecomposable Mackey functor for N

over K whose inertia group is L. Let ↑L
N S = P1 ⊕ · · · ⊕ Pk where the Pi are indecomposable

Mackey functors for L. Then:

(i) 1NPi is an indecomposable 1NμK(L)1N -module for any i ∈ {1, . . . , k}.
(ii) For any i ∈ {1, . . . , k}, there is a positive integer ni such that ↓L

N Pi
∼= niS. Moreover,∑k

i ni = |L : N |.
(iii) ↑G

N S ∼=↑G
L P1 ⊕ · · ·⊕ ↑G

L Pk , and the ↑G
L Pi are indecomposable. Furthermore, each

1N ↑G
L Pi is indecomposable 1NμK(G)1N -module.

(iv) ↑G
L Pi

∼=↑G
L Pj if and only if Pi

∼= Pj .
(v) If Pi is simple then ↑G

L Pi and S are simple.

Proof. (i) Each Pi is an indecomposable and N -projective μK(L)-module. Then 6.1 implies the
desired result.
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(ii) Since restriction respects direct summands, by the Mackey decomposition formula, 2.6,

↓L
N P1 ⊕ · · ·⊕ ↓L

N Pk =↓L
N↑L

N S ∼= |L : N |S.

Also 6.1 implies that ↓L
N Pi

∼= niS for some positive integer ni . Hence
∑k

i ni = |L : N |.
(iii) Firstly by using the Mackey decomposition formula we get

↓G
N↑G

L Pi
∼= ni

⊕
gL⊆G

gS.

Let ↑G
L Pi = X1 ⊕ · · · ⊕ Xm as indecomposable μK(G)-modules. For any j ∈ {1, . . . ,m}, since

Pi is a direct summand of ↑L
N S we see that Xj is a direct summand of ↑G

N S implying that Xj is
N -projective. Then, by 6.1, 1NXj is an indecomposable 1NμK(G)1N -module and

↓G
N Xj

∼= mi,j

⊕
gL⊆G

gS

for some positive integer mi,j satisfying mi,j � ni .
By 4.2 Pi is a direct summand of ↓G

L↑G
L Pi implying that ↓L

N Pi is a direct summand of ↓G
N Xn

for some n ∈ {1, . . . ,m}. As

↓L
N Pi

∼= niS and ↓G
N Xn

∼= mi,n

⊕
gL⊆G

gS

we must have ni � mi,n. Hence, mi,n = ni which means that 1N ↑G
L Pi = 1NXn. Moreover,

1N ↑G
L Pi = 1NX1 ⊕ · · · ⊕ 1NXm

is a direct sum into indecomposable 1NμK(G)1N -modules and 1NXj �= 0 for all j ∈ {1, . . . ,m}.
Consequently, m = n = 1 and ↑G

L Pi = Xn is indecomposable μK(G)-module, and 1N ↑G
L Pi is

indecomposable 1NμK(G)1N -module.
(iv) Suppose ↑G

L Pi
∼=↑G

L Pj . We observed in 4.2 that for any Mackey functor M for H ,
H � G, M is a direct summand of ↓G

H ↑G
H M . Now, if Pi and Pj are not isomorphic then we can

write

↓G
L↑G

L Pi
∼= Pi ⊕ Pj ⊕ Y for some μK(L)-module Y.

Then considering this isomorphism as μK(N)-modules we get

ni

⊕
gL⊆G

gS ∼= niS ⊕ njS⊕ ↓L
N Y

from which it follows that ni � ni + nj , which is a contradiction.
(v) If Pi is simple then by 3.10

↓L
N Pi

∼= d
⊕

′

gS′ ∼= niS
gL ⊆L
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for some simple μK(N)-module S′ and positive integer d . In particular, both of the decom-
positions are into indecomposable μK(N)-modules, and so the unique decomposition property
implies S ∼= S′ is simple. Finally, the Clifford correspondence 4.4 implies that ↑G

L Pi is sim-
ple. �

The following result contains a Mackey functor version of Green’s indecomposibility theo-
rem.

Theorem 6.3. Let R be a commutative complete noetherian local ring whose residue field
R/J(R) is algebraically closed and is of characteristic p > 0, and N be a normal subgroup
of G. Let S be a finitely generated indecomposable Mackey functor for N over R, and let L be
the inertia group of S. Then, ↑G

N S is an indecomposable Mackey functor for G over R if and
only if L/N is a p-group.

Proof. Let A = 1NμR(G)1N and A1 = μR(N). Then we know that A is a crossed product of
G/N over A1, and in the context of crossed products S is an indecomposable A1-module whose
inertia group is L/N . Then [18, Corollary 6.12, p. 524] implies that A⊗A1 S is indecomposable if
and only if (L/N)/(N/N) is a p-group. Moreover, A⊗A1 S = 1N ↑G

N S. Now, by 5.12, 1N ↑G
N S

is indecomposable if and only if ↑G
N S is indecomposable. Hence the result is proved. �

If we do not assume R/J(R) is algebraically closed in the previous result, we get

Theorem 6.4. Let R be a commutative complete noetherian semilocal ring such that R/J(R) is
of prime characteristic p > 0, and N be a normal subgroup of G. Let S be a finitely generated
indecomposable Mackey functor for N over R, and let L be the inertia group of S and L/N

be a p-group. Then, there is an indecomposable Mackey functor M for G over R such that
↑G

N S ∼= dM for some positive integer d .

Proof. The corresponding result in crossed products, see [18, Theorem 6.38, p. 546], shows that
1N ↑G

N S ∼= dM ′ for some indecomposable 1NμR(G)1N = A-module M ′ and positive integer d .
Then d(μR(G)1N ⊗A M ′) ∼= μR(G)1N ⊗A 1N ↑G

N S ∼=↑G
N S. We put M = μR(G)1N ⊗A M ′.

By 5.10 and 5.11 ↑G
N S has no nonzero submodule killed by 1N , and so the same is true for M be-

cause dM ∼=↑G
N S. Then, since M ′ is indecomposable, by 5.11 M must be indecomposable. �

7. Extension of Mackey functors

In this final section we provide some results on extending Mackey functors. That is, given a
G-invariant Mackey functor S for N where N is a normal subgroup of G we give some conditions
on S and G to guarantee the existence of Mackey functor M for G satisfying ↓G

N M ∼= S.
The following result collects some consequences of extension theorems of [4,5].

Theorem 7.1. Let N � G, and S be a nonzero G-invariant Mackey functor for N over K. Then,
each of conditions (i)–(iii) below implies that the μK(N)-module S extends to a 1NμK(G)1N -
module, and there is a Mackey functor M for G over K such that ↓G

N M ∼= S. Moreover, both of
conditions (ii) and (iii) imply that M can be taken to be simple:
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(i) The automorphism group AutμK(N)(S) is an abelian group uniquely divisible by |G/N |,
that is, the map f 
→ f |G/N | is a group automorphism of AutμK(N)(S).

(ii) K is a perfect field of characteristic p > 0, G/N is a p-group, and S is absolutely simple.
(iii) K is algebraically closed, S is simple, and at least one of the following three hold:

(1) all Sylow subgroups of G/N are cyclic,
(2) G/N is generalized quaternion or semidihedral,
(3) K is of characteristic p > 0 and G/N is a cyclic extension of a p-group.

Proof. 1NμK(G)1N is a strongly G/N -graded algebra. Then, the results in [18, pp. 610–612]
applied to the above strongly G/N -graded algebra gives in each case a 1NμK(G)1N -module
S̃ which is an extension of the μK(N)-module S. So S̃ = S as sets and as μK(N)-modules.
We put M = μK(G)1N ⊗1NμK(G)1N

S̃. Then we obviously have ↓G
χN

M = 1NM ∼= S̃. Thus,

↓G
N M =↓χN

N ↓G
χN

M ∼=↓χN

N S̃ = S, as desired. Finally, the last assertion follows by 5.6. �
The next result is a consequence of the extension results concerning indecomposable modules

for group graded algebras.

Theorem 7.2. Let R be a commutative complete noetherian local ring whose residue field
R/J(R) is algebraically closed and is of characteristic coprime to |G : N |, where N is a normal
subgroup of G. Assume that S is finitely generated G-invariant indecomposable Mackey functor
for N over R. Then, both of conditions (i) and (ii) below imply that there is an indecomposable
Mackey functor M for G over R such that ↓G

N M ∼= S:

(i) All Sylow subgroups of G/N are cyclic.
(ii) G/N is generalized quaternion or semidihedral.

Proof. Let A = 1NμR(G)1N and A1 = μR(N). Then A is a crossed product of G/N over A1,
and so in each case [18, Theorem 2.10, p. 612] implies the existence of an A-module M ′ such
that S = M ′ as sets and as A1-modules. Since A1 is a unital subring of A and our modules are
unitary, it is obvious that M ′ is an indecomposable A-module. We let M ′′ = μR(G)1N ⊗A M ′
and M = M ′′/I where I is the sum of all μR(G)-submodules of M ′′ killed by 1N . Then the
result follows by 5.11. �

Using the classification of simple Mackey functors we get the following immediate conse-
quence of the extension results of modules of group algebras.

Theorem 7.3. Let N � G, and S = SN
H,W be a G-invariant simple Mackey functor for N over K.

Then, each of conditions (i)–(iv) below implies that there is a simple Mackey functor M for G

over K such that ↓G
N M ∼= S:

(i) K is algebraically closed and G/N is cyclic.
(ii) K is algebraically closed and is of characteristic 0, and (|G : N |, |N |/dimKW) = 1.

(iii) K is of characteristic p > 0, N is a Hall subgroup of G, and either N is p-solvable or
(|G : N |,dimKW) = 1.

(iv) K is of characteristic 0 and N is a nilpotent Hall subgroup of G.
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Proof. For any simple Mackey functor S for N , by 3.10, it follows that L = NT and NL(H) = T

where H is a minimal subgroup of S, L is the inertia group of S in G, and T̄ is the inertia group of
the simple KN̄N(H)-module S(H) in N̄G(H). So, in our case S = SN

H,W and L = G, implying

that the inertia group of the simple KN̄N(H)-module W in N̄G(H) is N̄G(H). Moreover, we
have the group isomorphism G/N = (NNG(H))/N ∼= NG(H)/NN(H).

Suppose (i) holds. Then N̄G(H)/N̄N(H) is cyclic and [9, Theorem 2.14, p. 102] implies that

we can find a simple KN̄G(H)-module V such that ↓N̄G(H)

N̄N (H)
V = W .

Suppose (ii) holds. Since NN(H) � N and G/N ∼= NG(H)/NN(H) it follows that (|N̄G(H) :
N̄N(H)|, |N̄N (H)|/dimKW) = 1. Then by [10] there is a simple KN̄G(H)-module V such that

↓N̄G(H)

N̄N (H)
V = W .

Suppose (iii) holds. As NN(H) � N and G/N ∼= NG(H)/NN(H), N̄N(H) is a normal Hall
subgroup of N̄G(H), and if (|G : N |,dimKW) = 1 then (|N̄G(H) : N̄N(H)|,dimKW) = 1.
Moreover, if N is p-solvable then N̄N(H) is p-solvable. Consequently [8] implies that there

is a simple KN̄G(H)-module V such that ↓N̄G(H)

N̄N (H)
V = W .

Finally suppose that (iv) holds. Then N̄N(H) is a normal nilpotent Hall subgroup of N̄G(H)

and [16] implies the existence of a simple KN̄G(H)-module V such that ↓N̄G(H)

N̄N (H)
V = W .

We saw that each condition implies the existence of a simple KN̄G(H)-module V satisfying

↓N̄G(H)

N̄N (H)
V = W . We put M = SG

H,V . Then M is a simple Mackey functor for G.

Moreover, 2.4 implies that for any K � N

(↓G
N M

)
(K) =

∑
g∈G: gH�K

tKgH c
g
H (V ).

We now, using G = NNG(H), see that if g = nu ∈ NNG(H) with n ∈ N,u ∈ NG(H) then
gH � K is equivalent to nH � K . Also c

g
H (V ) = cn

H cu
H (V ) = cn

H (V ) implying

(↓G
N M

)
(K) =

∑
g∈G: gH�K

tKgH c
g
H (V ) =

∑
n∈N : nH�K

tKnH cn
H (V ) =

∑
n∈N : nH�K

tKnH cn
H (W),

where we use ↓N̄G(H)

N̄N (H)
V = W for the last equality. On the other hand, by 2.4,

SN
H,W (K) =

∑
n∈N : nH�K

tKnH cn
H (W)

for any K � N . Hence we proved that each condition implies ↓G
N M = SN

H,W . �
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[23] C. Năstăsescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., vol. 1836, Springer-Verlag,

2004.
[24] D.S. Passman, The Algebraic Structure of Group Rings, Wiley–Interscience, 1977.
[25] H. Sasaki, Green correspondence and transfer theorems of Wielandt type for G-functors, J. Algebra 79 (1982)

98–120.
[26] J. Thévenaz, Lifting idempotents and Clifford theory, Comment. Math. Helv. 58 (1983) 86–95.
[27] J. Thévenaz, P. Webb, Simple Mackey functors, Rend. Circ. Mat. Palermo (2) 23 (Suppl.) (1990) 299–319.
[28] J. Thévenaz, P. Webb, The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995) 1865–1961.


