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Abstract

For any characteristic zero coefficient field, an irreducible representation of a finite p-group can be as-
signed a Roquette p-group, called the genotype. This has already been done by Bouc and Kronstein in
the special cases Q and C. A genetic invariant of an irrep is invariant under group isomorphism, change
of coefficient field, Galois conjugation, and under suitable inductions from subquotients. It turns out that
the genetic invariants are precisely the invariants of the genotype. We shall examine relationships between
some genetic invariants and the genotype. As an application, we shall count Galois conjugacy classes of
certain kinds of irreps.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and conclusions

We shall be concerned with KG-irreps, that is to say, irreducible representations of G over K,
where G is a finite p-group, p is a prime, and K is a field with characteristic zero. Of course, in
the study of the irreps of a finite p-group over a field, there is scant loss of generality in assuming
that the field has characteristic zero. Roquette [14] showed that every normal abelian subgroup of
G is cyclic if and only if G is one of the following groups: the cyclic group Cpm with m � 0; the
quaternion group Q2m with m � 3; the dihedral group D2m with m � 4; the semidihedral group
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SD2m with m � 4. When these two equivalent conditions hold, we call G a Roquette p-group.
This paper is concerned with a reduction technique whereby the study of KG-irreps reduces to
the case where G is Roquette.

The reduction technique originates in Witt [16] and Roquette [14]. Our main sources are: Kro-
nstein [12], Iida and Yamada [11] for complex irreps of p-groups; tom Dieck [7, Section III.5]
for real irreps of finite nilpotent groups; Bouc [2–4] for rational irreps of p-groups; Hamble-
ton, Taylor and Williams [10], Hambleton and Taylor [9], for rational irreps of hyperelementary
groups.

We shall be taking advantage of the generality of our scenario. In the final section, we shall
unify some enumerative results of tom Dieck [7] and Bouc [4] concerning Galois conjugacy
classes of rational, real and complex irreps.

Consider a KG-irrep ψ . In a moment, we shall define a Roquette p-group Typ(ψ), which
we shall call the genotype of ψ . We shall explain how Typ(ψ) determines—and is determined
by—many other invariants of ψ .

Let us agree on some terminology. When no ambiguity can arise, we may neglect to distin-
guish between characters, modules and representations. For a KG-rep μ, we write Q[μ] for the
field generated over Q by the values of the character μ. We write EndKG(μ) to denote the endo-
morphism algebra of the module μ. We write Ker(μ) to denote the kernel of the representation
μ as a group homomorphism from G. When μ is irreducible, the Wedderburn component of KG

associated with μ is the Wedderburn component that is not annihilated by the representation μ

as an algebra homomorphism from KG.
Given subgroups K � H � G, then the subquotient H/K of G is said to be strict provided

H < G or 1 < K . We understand induction indG
H/K to be the composite of induction indG

H pre-

ceded by inflation infHH/K . An easy application of Clifford theory shows that, if some KG-irrep
is not induced from a strict subquotient, then G is Roquette. Therefore, any K-irrep of a fi-
nite p-group is induced from a Roquette subquotient. For example, the faithful CD8-irrep ψ0

is induced from a faithful CC4-irrep φ0. But this observation, in its own, does not yield a very
powerful reduction technique. The C-irreps ψ0 and φ0 differ in some important respects, for
instance, Q[ψ0] = Q whereas Q[φ0] = Q[i].

Since K has characteristic zero, we can equally well understand deflation defHH/K to be pas-
sage to the K-fixed points or as passage to the K-cofixed points. We understand restriction
resH

H/K to be the composite of deflation defHH/K preceded by restriction resG
H . A KG-irrep ψ

is said to be tightly induced from a KH/K-irrep φ provided ψ = indG
H/K(φ) and no Galois con-

jugate of φ occurs in the KH/K-rep resG
H/K(ψ) − φ. This is equivalent to the condition that,

regarding φ as a KH -irrep by inflation, then ψ = indG
H (φ) and no Galois conjugate of φ occurs

in the KH -rep resG
H (ψ) − φ. So, when discussing tight induction, the inflations and deflations

are trivial formalities, and we may safely regard KH/K-reps as KH -reps by inflation.

Theorem 1.1 (Genotype Theorem). Given a KG-irrep ψ , then there exists a Roquette sub-
quotient H/K such that ψ is tightly induced from a faithful KH/K-irrep φ. For any such
subquotient H/K , the KH/K-irrep φ is unique. Given another such subquotient H ′/K ′, then
H/K ∼= H ′/K ′.

We call H/K a genetic subquotient for ψ , and we call φ the germ of ψ at H/K . We define
the genotype of ψ , denoted Typ(ψ), to be H/K regarded as an abstract group, well-defined only
up to isomorphism. The existence of such subquotients H/K , in the case K = Q, is implicit in
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Witt [16], explicit in Roquette [14]. The uniqueness, in the case K = Q, is due to Bouc [2]. Via
Lemma 3.2, we see that the existence and uniqueness, in the case K = C, is due to Kronstein [12].

In Section 4, we shall prove the Genotype Theorem 1.1 indirectly by invoking the Field-
Changing Theorem 3.5, which says that the genetic theory is independent of the field K. As a
matter of fact, the theory really is independent of K, and there is no need to reduce to a previously
established special case. A direct proof of the Genotype Theorem will materialize from some
characterizations of Typ(ψ) in Section 5.

Given a KG-irrep ψ , then there exists a unique QG-irrep ψQ such that ψ occurs in the
KG-rep KψQ = K ⊗Q ψQ. For a field L with characteristic zero and an LG-irrep ψ ′, we say
that ψ and ψ ′ are quasiconjugate provided ψQ = ψ ′

Q
. We write ψL to denote an arbitrarily

chosen LG-irrep that is quasiconjugate to ψ . In Section 2, as a little illustrative application of
the genetic reduction technique, we shall show that, for irreps of finite p-groups over an arbitrary
field with characteristic zero, the notion of Galois conjugacy is well-defined and well-behaved.
Corollary 2.6 says that two KG-irreps are quasiconjugate if and only if they are Galois conjugate.

Consider a formal invariant I defined for all irreps of all finite p-groups over all fields with
characteristic zero. We call I a quasiconjugacy invariant provided I(ψ) = I(ψ ′) for all charac-
teristic zero fields L and all LG-irreps ψ ′ that are quasiconjugate to ψ . If I is a quasiconjugacy
invariant then, in particular, it is a Galois conjugacy invariant, and I(ψL) is well-defined, inde-
pendently of the choice of ψL. We call I a global invariant provided I (ψ) = I (ψ&) whenever
some group isomorphism G → G& sends the KG-irrep ψ of G to the KG&-irrep ψ& of G&.
For instance, ψQ is a quasiconjugacy invariant but not a global invariant, while the degree ψ(1)

a global invariant but not a quasiconjugacy invariant.
We call I a tight induction invariant provided I(ψ) = I(φ) for all subquotients H/K of G

and all KH/K-irreps φ such that ψ tightly induced from φ. We call I a genetic invariant when
I is a tight quasiconjugacy global invariant, in other words, I is preserved by tight induction,
Galois conjugacy, change of field, and group isomorphism.

Despite the apparent strength of the defining conditions, many interesting invariants of ψ

are genetic invariants. See the list at the end of Section 2. A CG-irrep that is quasiconjugate to
ψ is called a vertex of ψ . The number of vertices, denoted v(ψ), is called the order of ψ . In
Section 5, we shall see that v(ψ) is a genetic invariant. Another genetic invariant is the set of
vertices Vtx(ψ), regarded as a permutation set for a suitable Galois group. Yet another genetic
invariant is the vertex field V(ψ), which is the field generated over Q by the character values of
a vertex. We shall also see that the genotype Typ(ψ) is a genetic invariant. In fact, Corollary 5.9
asserts that the genetic invariants of ψ are precisely the invariants of Typ(ψ).

How can Typ(ψ) be ascertained from easily calculated genetic invariants such as the order
v(ψ) and the vertex set Vtx(ψ) and the vertex field V(ψ)? How can Typ(ψ) be used to ascertain
less tractable genetic invariants such as the minimal splitting fields? We shall respond to these
questions in Section 5. Employing a medical analogy: the patient has red eyes and long teeth,
therefore the patient has genotype V666, and therefore the patient is allergic to sunlight. Or, argu-
ing from information in the next paragraph: if v(ψ) = 2 and the Frobenius–Schur indicator of ψ

is positive, then ψ has genotype D16, hence the unique minimal splitting field for ψ is Q[√2].
Some examples: the genotype Typ(ψ) is the trivial group C1 if and only if ψ is the trivial

character; Typ(ψ) = C2 if and only if ψ is affordable over Q and non-trivial; Typ(ψ) = D2m

with m � 4 if and only if ψC is affordable over R but not over Q, in which case m is determined
by the order v(ψ) = 2m−3.
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2. Galois conjugacy of irreps of p-groups

One starting-point for the genetic theory is the following weak expression of ideas in Witt
[16], Roquette [14]. (Although, as we shall explain at the end of this paper, the starting point for
the work was actually Tornehave [15].) We are working with the finite p-group G because we
have nothing of novel significance to say about arbitrary finite groups. The remark can be quickly
obtained by ignoring most of the proof of Lemma 4.2 below.

Remark 2.1. Any K-irrep of G can be expressed in the form indG
H/K(φ) where K � H � G

and the subquotient H/K is a Roquette p-group and φ is a faithful KH/K-irrep which is not
induced from any proper subgroup of H/K .

In the notation of the remark, the subquotient H/K need not be unique up to isomorphism.
When K = C or K = R, examples of the non-uniqueness of H/K abound. When K = Q, an
example of the non-uniqueness of H/K is supplied by the group C4 ∗ D16. Here, the smash
product identifies the two central subgroups with order 2. Incidently, the group C4 ∗ D16 was
exhibited by Bouc [2, 7.7] as a counter-example to another assertion. Routine calculations show
that, for the unique faithful QC4 ∗ D16-irrep, one choice of H/K has the form (C4 × C2)/C2 ∼=
C4 and another choice of H/K has the form (C8 × C2)/C2 ∼= C8.

Although the remark yields only a crude version of the genetic reduction technique, we shall
be applying it, in this section, to prove the following theorem. Since the theorem is fundamental,
classical in style and not very hard to obtain, one presumes that it is well known, but the author
has been unable to locate it in the literature. (Incidently, the author does not know whether it holds
for all hyperelementary groups. A negative or absent answer might present an inconvenience to
the generalization of the genetic theory to hyperelementary groups.)

We throw some terminology. Given a KG-irrep and a subfield J � K, we define the JG-irrep
containing ψ to be the unique JG-irrep ψ ′ such that ψ occurs in the K-linear extension Kψ ′.

For a positive integer n, we write Qn to denote the field generated over Q by primitive nth
roots of unity. We call Qn the cyclotomic field for exponent n. By a subcyclotomic field, we mean
a subfield of a cyclotomic field. Since the Galois group Aut(Qn) = Gal(Qn/Q) is abelian, any
subcyclotomic field is a Galois extension of Q. Observe that, for any K-irrep ψ , the field Q[ψ]
is subcyclotomic.

Theorem 2.2. Let L be an extension field of K, let ψ be a K-irrep, and let ψ1, . . . ,ψv be the
LG-irreps contained in the L-linear extension Lψ = L ⊗K ψ . Then:

(1) Given j , then ψ is the unique KG-irrep containing ψj .
(2) There exists a positive integer mL

K
(ψ) such that Lψ = mL

K
(ψ)(ψ1 + · · · + ψv).

(3) The field Q[ψj ] = Q[ψ1] is a Galois extension of Q[ψ].
(4) Gal(Q[ψ1]/Q[ψ]) acts freely and transitively on ψ1, . . . ,ψv . The action is such that an

element α of the Galois group sends ψj to ψk when α(ψj (g)) = ψk(g) for all g ∈ G.

Part (1) is obvious. Part (2) is an immediate implication of part (4). By a comment above, the
subcyclotomic field Q[ψj ] is a Galois extension of the subcyclotomic field Q[ψ]. The equality
Q[ψj ] = Q[ψ1] is implied by part (4). When we have proved part (4), we shall have proved the
whole theorem.
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If the extension L/K is Galois then, as explained in Curtis and Reiner [5, 7.18, 7.19],
Gal(L/K) acts transitively on ψ1, . . . ,ψv . Any element of Gal(L/K) restricts to an element of
Gal(Q[ψ1]/Q[ψ]). A straightforward argument now establishes the theorem in the case where
L/K is Galois.

Replacing L/K by K/Q, we see that the theorem implies the following proposition.

Proposition 2.3. Let ψ be a KG-irrep, and let α be an automorphism of a field containing Q[ψ].
Then there exists a KG-irrep αψ such that (αψ)(g) = α(ψ(g)) for all g ∈ G.

Let us show that, conversely, the proposition implies the theorem. Assuming the proposition,
it is easy to deduce that Gal(Q[ψ1]/Q[ψ]) acts freely on ψ1, . . . ,ψv . It remains only to show that
the action is transitive. Let J be an extension field of L such that J/K is Galois. Let 1ψ and jψ be
JG-irreps contained in ψ1 and ψj , respectively. Since the theorem holds for the Galois extension
J/K, there exists an element α ∈ Gal(J/K) such that α

1 ψ = jψ . Then αψ1 = ψj and αψ = ψ .
Also α restricts to an element of Gal(Q[ψ1]/Q[ψ]). The transitivity of the action is established.
We have deduced part (4) of the theorem. In fact, we have shown that the proposition and the
theorem are equivalent to each other.

By the remark, proof of the theorem and the proposition reduces to the case where G is
Roquette. We must recall the classification of the Roquette p-groups. First, let us recall the
members of a slightly different class of extremal p-groups. The following groups are precisely
the p-groups with a self-centralizing cyclic maximal subgroup. See, for instance, Aschbacher
[1, 23.4]. For m � 3, the modular group with order pm is defined to be

Modpm = 〈
a, c: apm−1 = cp = 1, cac−1 = apm−2+1〉.

Still with m � 3, the quaternion group with order 2m is

Q2m = 〈
a, x: a2m−1 = 1, x2 = a2m−2

, xax−1 = a−1〉.
Again with m � 3, the dihedral group with order 2m is

D2m = 〈
a, b: a2m−1 = b2 = 1, bab−1 = a−1〉.

For m � 4, the semidihedral group with order 2m is

SD2m = 〈
a, d: a2m−1 = d2 = 1, dad−1 = a2m−2−1〉.

We shall refer to these presentations as the standard presentations. The only coincidence in the
list is Mod8 ∼= D8. Where the presentations make sense for smaller values of m, the resulting
groups are abelian.

Suppose that G is a non-abelian Roquette p-group and let A be a maximal normal cyclic
subgroup of G. Let A � K � G such that K/A is a cyclic subgroup of Z(G/A). If K/A is
contained in the kernel of the action of G/A on A, then K is a normal abelian subgroup of G,
hence K = A by the hypotheses on G and A. We deduce that G/A acts freely on A. In other
words, A is self-centralizing in G. Hence, via the technical lemma [1, 23.5], we recover the
following well-known result of Roquette.
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Theorem 2.4 (Roquette’s Classification Theorem). The Roquette p-groups are precisely the fol-
lowing groups.

(a) The cyclic group Cpm where m � 0.
(b) The quaternion group Q2m where m � 3.
(c) The dihedral group D2m where m � 4.
(d) The semidihedral group SD2m where m � 4.

It is worth sketching the content of the invoked technical lemma because we shall later
be needing some notation concerning automorphisms of cyclic 2-groups. (Besides, there is
some charm in the connection between the classical number theory behind Theorem 2.4 and
the algebraic number theory in Section 5.) Let v be a power of 2 with v � 2. The group
Aut(C4v) ∼= (Z/4v)× ∼= C2 × Cv has precisely three involutions, namely the elements b, c, d

which act on a generator a of C4v by

b :a 	→ a−1, c :a 	→ a2v+1, d :a 	→ a2v−1.

Any odd square integer is congruent to 1 modulo 8. So b and d cannot have a square root in
Aut(C4v). Therefore c belongs to every non-trivial subgroup of Aut(C4v) except for 〈b〉 and 〈d〉.
Now suppose that G is a 2-group with a self-centralizing normal cyclic subgroup A = 〈a〉 with
index |G : A| � 4. The inequality implies that A ∼= C4v with v � 2, and moreover, the image
of G/A in Aut(A) must own the involution c :a 	→ a2v+1. Abusing notation, the subgroup 〈c〉
of Aut(A) lifts to a normal subgroup 〈a, c〉 ∼= Mod8v of G. But Mod8v has a characteristic sub-
group 〈a2v, c〉 ∼= V4. We deduce that G is not Roquette. The rest of the proof of Theorem 2.4 is
straightforward.

Given H � G, a KH -irrep φ and a KG-irrep ψ , then φ occurs in resG
H (ψ) if and only if ψ

occurs in indG
H (φ). When these two equivalent conditions hold, we say that ψ and φ overlap.

The following observation is an easy consequence of Clifford’s Theorem.

Lemma 2.5. Suppose that G has a self-centralizing normal cyclic subgroup A.

(1) Given a KG-irrep ψ overlapping with a KA-irrep ξ , then ψ is faithful if and only if ξ is
faithful.

(2) Given a faithful KG-irrep ψ overlapping with a faithful KA-irrep ξ , then ψ is an integer
multiple of indG

A(η). Furthermore, ψ is absolutely irreducible if and only if ξ is absolutely
irreducible, in which case, the integer multiple is unity.

(3) The condition that ψ and ξ overlap characterizes a bijective correspondence between the
faithful KG-irreps ψ and the G-conjugacy classes of faithful KA-irreps ξ .

Since the Roquette p-groups satisfy the hypothesis of Lemma 2.5, we deduce that any
Roquette p-group has a faithful K-irrep.

We let n(G) denote the exponent of G. Brauer’s Splitting Theorem asserts that the cyclotomic
field Qn(G) splits for G, that is to say, every Qn(G)G-irrep is absolutely irreducible.

Lemma 2.6. Suppose that G is Roquette. Then:

(1) The automorphism group Aut(G) acts transitively on the faithful KG-irreps.
(2) The Galois group Aut(Qn(G)) = Gal(Qn(G)/Q) acts transitively on the faithful KG-irreps.

The action is such that (αψ)(g) = α(ψ(g)) where g ∈ G and ψ is a faithful KG-irrep.
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Proof. Write n = n(G). First suppose that G is cyclic. Then n = |G|. Part (1) is clear in this
case. There is a triple of commuting isomorphisms between the groups Aut(G) and (Z/n)× and
Aut(Qn) such that, given elements ℵ and & and α, respectively, then ℵ ↔ & ↔ α provided
ℵ(g&) = g and α(ω) = ω& where g ∈ G and ω is an nth root of unity. Then α(ψ(g)) = (ℵψ)(g).
Thus, the specified action of Aut(Qn) on the faithful KG-irreps coincides with the action via the
isomorphism Aut(Qn) ∼= Aut(G). Part (2) is now clear in the case where G is cyclic.

Now suppose that G is non-cyclic. The classification of the Roquette p-groups implies that
p = 2 and G is dihedral, semidihedral or quaternion. So there exists a cyclic maximal subgroup
A and an element y ∈ G − A such that either y2 = 1 or y2 is the unique involution in A. Any
automorphism ℵ of A must fix y2, so ℵ can be extended to an automorphism @ of G such that
@ fixes y. We have already seen that Aut(A) acts transitively on the faithful KA-irreps. In view
of the bijective correspondence in Lemma 2.5, Aut(A) acts transitively on the faithful KG-irreps
via the monomorphism Aut(A) � ℵ 	→ @ ∈ Aut(G). Part (1) follows perforce. Now suppose
that ℵ and α are corresponding elements of Aut(A) and Aut(Qn). By part (2) of Lemma 2.5
together with the formula for induction of characters, the faithful KG-irreps vanish off A. So
α(ψ(g)) = (@ψ)(g) for all g ∈ G. As before, part (2) follows. �

By the same argument, the conclusions of the lemma also hold for the modular p-groups.
We can now complete the proof of Theorem 2.2 and Proposition 2.3. Above, we showed that

the proposition implies the theorem, and we also explained how the proposition reduces to the
case where G is Roquette. But that case of the proposition is weaker than part (2) of Lemma 2.6.
The theorem and the proposition are now proved.

Corollary 2.7. Let ψ be a KG-irrep. Let J be a Galois extension of Q[ψ]. Then Gal(J/Q) acts
transitively on the KG-irreps that are quasiconjugate to ψ . If J owns primitive n(G)th roots of
unity, then two KG-irreps ψ1 and ψ2 lie in the same Gal(J/Q)-conjugacy class if and only if ψ1
and ψ2 are quasiconjugate.

Proof. This follows from Theorem 2.2 by replacing L/K with K/Q. �
When ψ and ψ ′ satisfy the equivalent conditions in the latest corollary, we say that ψ and ψ ′

are Galois conjugate. Thus, we may speak unambiguously of the Galois conjugates of a given
KG-irrep; there is no need to specify the Galois extension and there is no need for the Galois
automorphisms to stabilize K nor even to be defined on K. We can now express part (2) of
Lemma 2.6 more succinctly.

Corollary 2.8. If G is Roquette, then the faithful KG-irreps comprise a single Galois conjugacy
class.

Keeping in mind the above features of Galois conjugacy, we see that the following invariants
of a KG-irrep ψ are quasiconjugacy global invariants. Let J be any field with characteristic zero.
In some of the items below, it may seem that we have proliferated notation unnecessarily, and
that it would be simpler to present only the case K = J. However, there is a distinction to be
made: the invariants are associated with the field J, whereas the given irrep ψ has coefficient
field K. In the applications in Section 5, we shall be mostly concerned with the cases J = Q and
J = R, but the given irrep ψ will still have coefficients in arbitrary K. Recall that ψJ denotes a
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JG-irrep that is quasiconjugate to ψ . For the first item in the list, we let L be any field extension
of J.

• The L/J-relative Schur index mL
J
(ψ) and the L/J-relative order vL

J
(ψ). We define them to

be the positive integers m and v, respectively, such that the L-linear extension of ψ can be
written in the form Lψ = m(ψ1 + · · · + ψv) where ψ1, . . . ,ψv are mutually distinct LG-
irreps. Theorem 2.2 tells us that each ψj is a Galois conjugate of ψL. Schilling’s Theorem 5.9
tells us that mL

J
(ψ) � 2.

• The endomorphism ring EndJG(ψJ). Strictly speaking, the invariant here is the isomorphism
class of EndJG(ψJ) as a J-algebra.

• The class of minimal splitting fields for ψJ. Still letting L be an extension field of J, the
L-irrep ψL is absolutely irreducible if and only if L is a splitting field for EndJG(ψJ), or
equivalently, L is a splitting field for the Wedderburn component of JG associated with ψJ.
When these equivalent conditions hold, L is said to be a splitting field for ψ . If furthermore,
the degree |I : J| is minimal, then L is said to be a minimal splitting field for ψ .

Let M be a splitting field for ψJ. In the next two quasiconjugacy global invariants, the stated
properties of mJ(ψ) and vJ(ψ) are well-known and can be found in Curtis and Reiner [5, Sec-
tion 74].

• The J-relative Schur index mJ(ψ) and the J-relative order vJ(ψ). Defined as mJ(ψ) =
mM

J
(ψ) and vJ(ψ) = vM

J
(ψ), they are independent of the choice of M. We mention that, if

M is a minimal splitting field for ψJ, then its degree over J is mJ(ψ)vJ(ψ) = |M : J|.
• The J-relative vertex field VJ(ψ). This invariant is an isomorphism class of extension fields

of J. It has three equivalent definitions: firstly, VJ(ψ) = J[ψM]; secondly, VJ(ψ) is the
center of the division ring EndJG(ψJ); thirdly, VJ(ψ) is the center of the Wedderburn com-
ponent of JG associated with ψJ. We mention that vJ(ψ) = |VJ(ψ) : J|. In other words,
mJ(ψ) = |M : VJ(ψ)| when the splitting field M is minimal. Also, mJ(ψ) is the square root
of the dimension of EndJG(ψJ) over VJ(ψ).

Our reason for ploughing through this systematic notation is that, in Section 5, we shall show
that the above invariants are not merely quasiconjugacy global invariants. They are also tight
induction invariants. That is to say, they are genetic invariants. This is a compelling vindication of
the proposed notion of tight induction. Also, as a speculative motive for considering the invariants
in such generality, let us suggest the possibility of a technique whereby assertions pertaining to
arbitrary K may be demonstrated by first dealing with one of the extremal cases K = Q or K = C,
then establishing a passage for field extensions with prime degree, and then arguing by induction
on the length of an abelian Galois group.

However, to characterize the genotype of a given irrep, we shall only be making use of the
cases J = Q and J = R. Let us list the genetic invariants that will be of applicable significance in
Section 5. Some of them are special cases of the above.

• The endomorphism ring EndQG(ψQ), which is a ring well-defined up to isomorphism.
• The class of minimal splitting fields for ψQ.
• The vertex field V(ψ) = Q[ψC]. Besides the three equivalent definitions above, another char-

acterization of V(ψ) will be given in Proposition 5.11 (and this fourth equivalent definition
supplies a rationale for the terminology).
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• The exponent n(ψ), which we define to be the minimal positive integer such that Qn(ψ) is a
splitting field for ψQ.

• The Fein field of ψ , which we define to be the unique subfield Fein(ψ) � Qn(ψ) such that
Fein(ψ) is a minimal splitting field for ψQ. The existence and uniqueness of Fein(ψ) will
be proved in Theorem 5.7. (The existence can fail for arbitrary finite groups.)

• The Schur index m(ψ) = mQ(ψ) and the order v(ψ) = vQ(ψ). We mention that m(ψ) is
the multiplicity of ψC and v(ψ) is the number of Galois conjugates of ψC. Also,

2 � m(ψ) = ∣∣Fein(ψ) : V(ψ)
∣∣ =

√
dimV(ψ)

(
EndQG(ψQ)

)
.

• The vertex set Vtx(ψ), which we define to be the transitive Aut(V(ψ))-set consisting of the
CG-irreps that are quasiconjugate to ψ . We sometimes call these CG-irreps the vertices of
ψ . Actually, the invariant here is the isomorphism class of Vtx(ψ) as an Aut(V(ψ))-set.
Putting v = v(ψ) and letting ψ1, . . . ,ψv be the vertices of ψ , then the V(ψ)G-irreps con-
tained in ψ can be enumerated as ψ ′

1, . . . ,ψ
′
v in such a way that the V(ψ)-linear extension

of ψ decomposes as V(ψ)ψ = ψ ′
1 + · · ·+ψ ′

v and the C-linear extension of each ψ ′
j decom-

poses as Cψ ′
j = m(ψ)ψj . Thus, Aut(V(ψ)) permutes the V(ψ)-irreps ψ ′

j just as it permutes
the vertices ψj . Note that

v(ψ) = ∣∣V(ψ) : Q
∣∣ = ∣∣Vtx(ψ)

∣∣.
(Another rationale for the terminology now becomes apparent.) We point out that, given any
field extension I of V(ψ), then any automorphism of I restricts to an automorphism of V(ψ),
hence Vtx(ψ) becomes an Aut(I)-set.

• The endomorphism algebra Δ(ψ) = EndRG(ψR) is called the Frobenius–Schur type of ψ .
Understanding Δ(ψ) to be well-defined only up to ring isomorphism, then there are
only three possible values, namely R and C and H. The respective values of the pair
(mR(ψ), vR(ψ)) are (1,1) and (1,2) and (2,1). If ψ is given as a KG-character G → K,
then a practical way to determine Δ(ψ) is to make use of the Frobenius–Schur indicator,
which is defined to be the integer

fs(ψ) = 1

|G|
∑
g∈G

ψ
(
g2).

Recall that Δ(ψ) is R or C or H depending on whether fs(ψC) = 1 or fs(ψC) = 0 or
fs(ψC) = −1, respectively. Also, fs(ψ) = mK(ψ)vK(ψ)fs(ψC). Therefore Δ(ψ) is R or C

or H depending on whether fs(ψ) > 0 or fs(ψ) = 0 or fs(ψ) < 0, respectively. The genetic
invariance of Δ(ψ) is implicit in Yamada and Iida [18, 5.2].

3. Tight induction

Let us repeat the most important definition in this paper. Consider a subgroup H � G, a KG-
irrep ψ and a KH -irrep φ such that ψ is induced from φ. When no Galois conjugate of φ occurs
in resG

H (ψ) − φ, we say that ψ is tightly induced from φ and, abusing notation, we also say
that the induction ψ = indG

H (φ) is tight. As we noted in Section 1, the definition extends in the
evident way to induction from subquotients. The tightness condition can usefully be divided into
two parts, as indicated in the next two lemmas.
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Lemma 3.1 (Shallow Lemma). Given H � G, and KG-irrep ψ induced from a KH -irrep φ,
then the following conditions are equivalent:

(a) The multiplicity of φ in resG
H (ψ) is 1.

(b) The division rings EndKH (φ) and EndKG(ψ) have the same K-dimension.
(c) As K-algebras, EndKH (φ) and EndKG(ψ) are isomorphic.

Proof. As K-vector spaces, we embed φ in ψ via the identifications φ = 1 ⊗ φ and ψ =⊕
gH⊆G g ⊗ φ. We embed the K-algebra D = EndKH (φ) in the K-algebra E = EndKG(ψ) by

letting D kill the module θ = ∑
gH⊆G−H g ⊗φ. The relative trace map trGH : EndKH (ψ) → E re-

stricts to an K-algebra monomorphism ν :D → E . So conditions (b) and (c) are both equivalent
to the condition that ν is a K-algebra isomorphism.

Suppose that (a) holds. Then any KH -endomorphism of ψ restricts to a KH -endomorphism
of φ. In particular, any element ε ∈ E restricts to an element μ(ε) ∈ D. We have defined a K-
algebra map μ :E → D. From the constructions, we see that μν is the identity map on D. So
μ is surjective. But D is a division ring, so μ is injective. Hence μ and ν are mutually inverse
K-algebra isomorphisms. We have deduced (b) and (c).

Now suppose that (a) fails. Let φ′ be a KH -submodule of θ such that φ′ ∼= φ. Let β be a
KH -endomorphism of ψ such that β kills θ and β restricts to a KH -isomorphism φ → φ′. Let
γ = trGH (β). Then β and γ have the same action on φ. In particular, γ restricts to an isomorphism
φ → φ′. On the other hand, any element δ ∈ D has the same action on φ as ν(δ). In particular,
ν(δ) restricts to a KH -automorphism of φ. Therefore γ ∈ E − ν(D) and ν is not surjective. We
have deduced that (b) and (c) fail. �
Lemma 3.2 (Narrow Lemma). Given H � G, and KG-irrep ψ induced from a KH -irrep φ, then
the following conditions are equivalent:

(a) No distinct Galois conjugate of φ occurs in resG
H (ψ).

(b) The condition ψ ′ = indG
H (φ′) describes a bijective correspondence between the Galois con-

jugates ψ ′ of ψ and the Galois conjugates φ′ of φ.
(c) We have Q[φ] = Q[ψ].

Proof. The equivalence of (a) and (b) is clear by Frobenius reciprocity. By the standard formula
for the values of an induced character, Q[φ] � Q[ψ]. The fields Q[φ] and Q[ψ] are subcyclo-
tomic, so the field extension Q[φ]/Q[ψ] is Galois. Conditions (b) and (c) are both equivalent to
the condition that no Galois automorphism moves φ and fixes ψ . �

When the equivalent conditions in Lemma 3.1 hold, we say that ψ is shallowly induced
from φ. When the equivalent conditions in Lemma 3.2 hold, we say that ψ is narrowly induced
from φ. The induction ψ = indG

H (φ) is tight if and only if it is shallow and narrow. In the special
case K = Q, the narrowness condition is vacuous: an induction of rational irreps ψ = indG

H (φ) is
tight if and only if EndQG(ψ) ∼= EndQH (φ). The definition of tight induction in the case K = Q

is due to Witt [16]. At the other extreme, when K is algebraically closed, the shallowness condi-
tion is vacuous: an induction of complex irreps ψ = indG

H (φ) is tight if and only if Q[ψ] = Q[φ].
The definition of tight induction in the case K = C is due to Kronstein and, independently, to Iida
and Yamada [11].
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Remark 3.3. Let H � L � G. Let φ and θ = indL
H (φ) and ψ = indG

L(θ) be K-irreps of H

and L and G, respectively. If any two of the inductions θ = indL
H (φ) and ψ = indG

L(θ) and
ψ = indG

H (φ) are shallow, then all three are shallow. If any two of the inductions are narrow, then
all three are narrow. If any two of them are tight, then all three are tight.

The remark is obvious. It tells us, in particular, that tight induction is transitive. In fact, given a
KG-irrep, then there is a G-poset whose elements are the pairs (H,φ) such that H � G and φ is a
KH -irrep from which ψ is tightly induced. The partial ordering is such that (H,φ) � (L, θ) pro-
vided H � L and θ is induced from φ (whereupon, by the remark, θ is tightly induced from φ).
The Genotype Theorem 1.1 (proved in the next section) implies that the minimal elements of the
G-poset are the pairs (H,φ) such that H/Ker(φ) is Roquette.

Theorem 3.4. Let H � G and let ψ be a KG-irrep induced from a KH -irrep φ. Let J be a
subfield of K. Let L be a field extension of K. Then the following conditions are equivalent:

(a) The JG-irrep containing ψ is tightly induced from the JH -irrep containing φ.
(b) ψ is tightly induced from φ.
(c) There is a bijective correspondence between the LG-irreps ψ ′ contained in ψ and the LH -

irreps φ′ contained in φ. The correspondence is characterized by the condition that ψ ′ is
tightly induced from φ′.

Proof. When extending the coefficient field for finite-dimensional modules, the extension of the
hom-space is the hom-space of the extensions. So the JG-irrep ψ ′′ containing ψ must overlap
with JH -irrep φ′′ containing φ. By Theorem 2.2,

Kψ ′′ = mK
J (ψ)

∑
α∈Gal(Q[ψ]/Q[ψ ′′])

αψ, Kφ′′ = mK
J (φ)

∑
β∈Gal(Q[φ]/Q[φ′′])

βφ.

Suppose that (b) holds. Then Q[ψ] = Q[φ]. Since φ′′ occurs in resG
H (ψ ′′), since βψ is the unique

Galois conjugate of ψ overlapping with βφ, and since βφ occurs only once in the restriction
of βψ , the set of indices β must be contained in the set of indices α, and mK

J
(φ) � mK

J
(ψ).

Since ψ ′′ occurs in indG
H (φ′′), since αφ is the unique Galois conjugate of φ overlapping with

αψ , and since αφ induces to αψ , the set of indices α must be contained in the set of indices
β , and mK

J
(φ) � mK

J
(ψ). So the two sets of indices coincide. That is to say, Q[ψ ′′] = Q[φ′′].

Furthermore, mK
J
(φ) = mK

J
(ψ). It follows that φ′′ induces to ψ ′′. Also, φ′′ occurs only once in

the restriction of ψ , in other words, the induction from φ′′ to ψ ′′ is shallow. We have already
observed that Q[ψ ′′] = Q[φ′′], in other words, the induction is narrow. Thus, (b) implies (a).

Still assuming (b), we now want (c). Each LH -irrep contained in φ must overlap with at
least one LG-irrep contained in ψ , and each LG-irrep contained in ψ must overlap with at
least one LH -irrep contained in φ. Applying the functor L⊗K – to the K-algebra isomor-
phism EndKH (φ) ∼= EndKG(ψ), we obtain an isomorphism of semisimple rings EndLH (Lφ) ∼=
EndLG(Lψ). The number of Wedderburn components of this semisimple ring is equal to the
number of distinct LH -irreps contained in φ, and it is also equal to the number of distinct
LG-irreps contained in ψ . By Theorem 2.2, all the LH -irreps contained in φ have the same
multiplicity m, and all the LG-irreps contained in ψ have the same multiplicity n. So the Wed-
derburn components all have the same degree as matrix algebras over their associated division
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rings, and m = n. It follows that there is a bijection ψ ′ ↔ φ′ whereby ψ ′ is shallowly induced
from φ′. We must show that the induction is narrow. By the formula for induction of characters,
the field Q[φ′] (which is independent of the choice of φ′) contains the field Q[ψ ′] (which is
independent of the choice of ψ ′). By Theorem 2.2, the number of distinct LH -irreps contained
in φ is equal to the order of the Galois group Gal(Q[φ′]/Q[φ]) while the number of distinct
LG-irreps contained in ψ is the order of Gal(Q[ψ ′]/Q[ψ]). But we already know that these two
numbers are equal. Moreover, Q[ψ] = Q[φ] as part of the hypothesis on ψ and φ. Therefore
Q[ψ ′] = Q[φ′]. We have gotten (c) from (b). To obtain (b) from (a) or from (c), we interchange
the extensions L/K and K/J. �

For facility of use, it is worth restating the theorem.

Theorem 3.5 (Field-Changing Theorem). Let H � G and let ψ be a KG-irrep induced from a
KH -irrep φ. Let L be any field having characteristic zero. Then the following conditions are
equivalent:

(a) ψ is tightly induced from φ.
(b) ψQ is tightly induced from φQ.
(c) The LG-irreps ψ ′ that are quasiconjugate to ψ are in a bijective correspondence with the

LH -irreps φ′ that are quasiconjugate to φ. They correspond ψ ′ ↔ φ′ when ψ ′ is tightly
induced from φ′.

The theorem tells us that, in some sense, the genetic theory is independent of the coeffi-
cient field K. Condition (b) is a useful theoretical criterion for tightness of a given induction
ψ = indG

H (φ). It sometimes allows us to generalize immediately from the case K = Q to the
case where K is arbitrary; see the next section. However, the rational irreps of a given finite p-
group are usually very difficult to determine. For explicit analysis of concrete examples, a more
practical criterion for tightness is given by the following corollary.

Corollary 3.6. Let H � G and let ψ be a KG-irrep induced from a KH -irrep φ. Then the vertex
fields satisfy the inequality V(ψ) � V(φ), and equality holds if and only if the induction is tight.

Proof. By passing from K to the algebraic closure of K, thence to the splitting field Qn(G),
thence to C, we see that ψ ′ = indG

H (φ′) for some complex irreps ψ ′ and φ′ quasiconjugate to ψ

and φ. By the formula for induction of characters, the vertex field V(ψ) = Q[ψ ′] is contained
in the vertex field V(φ) = Q[φ′]. By the Field-Changing Theorem, ψ is tightly induced from φ

if and only if ψ ′ is tightly induced from φ′. For complex irreps, tight induction is just narrow
induction. �

Let us give an example. For n � 5, we define DD2n = V4�< C2n−2 as a semidirect product
where V4 acts faithfully. The 2-group DD2n has generators a, b, c, d with relations

a4u = b2 = c2 = d2 = bcd = 1, bab−1 = a−1, cac−1 = a2u+1, dad−1 = a2u−1,

where u = 2n−4. Fixing n, let us write DD = DD2n . Let ω be a primitive 4uth root of unity. The
subgroup A = 〈a〉 ∼= C4u has complex irrep η such that η(a) = ω. The subgroup D′ = 〈b, a〉 ∼=
D8u has a real abirrep (absolutely irreducible representation) φ′ such that Cφ′ = indD′

A (η). Using
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Lemma 2.5, we see that DD has a real abirrep χ = indDD
D′ (φ′), and furthermore, the faithful

real irreps of DD are precisely the Galois conjugates of χ . The induction from φ′ to χ is not
tight. One way to see this is to calculate the vertex fields of φ′ and χ over Q. The character
values vanish of A and, given an integer k, we have φ′(ak) = ωk + ω−k and χ(ak) = ωk +
ωk(2u−1) + ωk(2u+1) + ω−k . But ω2u = −1 so χ vanishes off 〈a2〉 and χ(a2k) = 2(ω2k + ω−2k).
Since φ′ and χ are absolutely irreducible, the vertex fields are V(φ′) = Q[φ′] = Q[ω +ω−1] and
V(χ) = Q[χ] = Q[ω2 + ω−2]; the former is a quadratic extension of the latter. Alternatively, to
see directly that the induction is shallow but not narrow, observe that resDD

D′ (χ) = φ′ +αφ′ where
α is any Galois automorphism sending ω to −ω or to −ω−1. However, χ is tightly induced from
a strict subgroup. Consider the subgroups

C = 〈c〉 ∼= C2, D = 〈
a2, b

〉 ∼= D4u, T = 〈
a2, b, c

〉 = C × D.

Let φ be the real abirrep of T such that φ(a2) = ω2 + ω−2 and φ(b) = 0 and φ(c) = 2. Thus,
Ker(φ) = C and φ is the inflation of a faithful real abirrep of the group T/C ∼= D4u. Direct
calculation yields χ = indDD

T (φ). This induction is tight because, by the absolute irreducibility
of φ, the vertex field is V(φ) = Q[φ] = Q[ω2 + ω−2] = V(χ). We shall be returning to this
example at the end of the next section.

4. Genotypes and germs

Let us begin by quickly proving the Genotype Theorem 1.1. The Field-Changing Theorem 3.5
implies that, for any subgroup H � G, a given KG-irrep ψ is tightly induced from H if and only
if the QG-irrep ψQ is tightly induced from H . Moreover, for any KH -irrep φ that tightly induces
to ψ , the QH -irrep φQ tightly induces to φQ. Letting K be the kernel of φ, then K is the kernel
of any Galois conjugate of φ and, via Theorem 2.2, K is the kernel of φQ. We deduce that the
subquotients from which ψ is tightly induced coincide with the subquotients from which ψQ is
tightly induced. The Genotype Theorem thus reduces to the case K = Q. In that special case, the
theorem was obtained by Bouc [2, 3.4, 3.6, 3.9, 5.9]. Alternatively, a similar use of the Field-
Changing Theorem reduces to the case K = C, and in that special case, the theorem was obtained
by Kronstein [12, 2.5]. The proof of the Genotype Theorem is complete.

The existence half of the Genotype Theorem is equivalent to the following result, which is
due to Roquette [14] in the case K = Q and to Kronstein [12] in the case K = C.

Theorem 4.1. Given a KG-irrep ψ , then is not tightly induced from any strict subquotient of G

if and only if G is Roquette and ψ is faithful.

We shall give a direct proof of Theorem 4.1 without invoking the Field-Changing Theorem.
The direct proof will yield a recursive algorithm for finding the genotype and a germ for a given
irrep. The argument is adapted from Hambleton, Taylor and Williams [10] and Bouc [2]. Before
presenting two preparatory lemmas, let us make a preliminary claim: supposing that G is non-
cyclic and abelian, then G has no faithful K-irreps. To demonstrate the claim, consider a KG-
irrep ψ . Letting L be a splitting field for K, then Lψ is a direct sum of mutually Galois conjugate
LG-irreps. All of those LG-irreps have the same kernel K . The hypothesis that G is abelian
implies that the LG-irreps in question are 1-dimensional, hence G/K is cyclic. The hypothesis
that G is non-cyclic implies that K �= 1. But K must also be the kernel of ψ . Therefore ψ is
non-faithful.
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Lemma 4.2. Suppose that G is non-Roquette and that there exists a faithful KG-irrep ψ . Then
there exists a normal subgroup E of G such that E ∼= Cp × Cp and E ∩ Z(G) ∼= Cp . For any
such E, the subgroup T = CG(E) is maximal in G. Letting φ be any KT -irrep overlapping with
ψ , then ψ is tightly induced from φ.

Proof. The argument is essentially in [10, 2.16] and [2, 3.4], but we must reproduce the con-
structions in order to check the tightness of the induction. First observe that, given any normal
non-cyclic abelian subgroup A of G, then the restriction of ψ to A is faithful, whence the pre-
liminary claim tells us that any KA-irrep overlapping with ψ must be non-inertial. The center
Z(G) is cyclic because every KZ(G)-irrep is inertial in G. Let Z be the subgroup of Z(G)

with order p. Let B be the maximal elementary abelian subgroup of A. Then Z � B � G and
B/Z intersects non-trivially with the center of G/Z, so there exists an intermediate subgroup
Z � E � B such that E/Z is a central subgroup of G/Z with order p. Plainly, E satisfies the re-
quired conditions. The non-trivial p-group G/T embeds in the group Aut(Cp × Cp) = GL2(p),
which has order p(p − 1)(p2 − 1). So T is maximal in G.

Let ε1 be a KE-irrep overlapping with ψ . The preliminary claim implies that the inertia group
of ε1 is a strict subgroup of G. On the other hand, the inertia group must contain the centralizer
T of E. But T is maximal. So T is the inertia group of ε1. The KE-irreps overlapping with ψ

are precisely the G-conjugates of ε, and we can number them as ε1, . . . , εp because p = |G : T |.
The proof of the preliminary claim reveals that the kernels of ε1, . . . , εp are mutually distinct; the
kernels are non-trivial yet their intersection is trivial. In particular, ε1, . . . , εp belong to mutually
distinct Galois conjugacy classes. By Clifford theory, resG

T (ψ) = φ1 + · · · + φp as a direct sum
of KT -irreps such that each φj restricts to a multiple of εj . Therefore, φ1, . . . , φp are mutually
distinct and, in fact, they belong to mutually distinct Galois conjugacy classes. It follows that
each φj induces tightly to ψ . �
Lemma 4.3. Let A be a self-centralizing normal cyclic subgroup of G and let A � H < G. Then
no faithful KG-irrep is tightly induced from H .

Proof. Deny, and consider a faithful KG-irrep ψ that is tightly induced from a KH -irrep φ of H .
By Remark 3.3, we may assume that H is maximal in G. In particular, H � G. So resG

H (ψ) =
φ1 + · · · + φp as a sum of G-conjugates of φ. Since A is self-centralizing in both G and H ,
Lemma 2.5 implies that φ1, . . . , φp are faithful. Lemma 2.6 implies that φ1, . . . , φp are Galois
conjugates. This contradicts the tightness of the induction from φ. �

In one direction, Theorem 4.1 is immediate from Lemma 4.2. To complete the direct proof
of the theorem, it remains only to show that, supposing G is Roquette and letting ψ be a faith-
ful KG-irrep, then ψ is not tightly induced from a strict subgroup. Our argument is close to
[10, 2.15], but with some modification (their appeal to the uniqueness of the “basic representa-
tion” does not generalize). For a contradiction, suppose that ψ is tightly induced from a KH -irrep
φ where H < G. Again, by Remark 3.3, we may assume that |G : H | = p. By Roquette’s Clas-
sification Theorem 2.4, G has a self-centralizing cyclic subgroup A with index 1 or p. Plainly,
G cannot be cyclic. So |G : A| = p. By Lemma 4.3, H �= A. So the subgroup B = A ∩ H has
index p2 in G.

First suppose that B is not self-centralizing in H . Then H must be abelian. But G is Roquette,
hence H is cyclic. Also, G is non-abelian, so H is self-centralizing. This contradicts Lemma 4.3.
Now suppose that B is self-centralizing in H . By Lemma 2.5, there exists a faithful KB-irrep
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ξ such that indH
B (ξ) is a multiple of φ. Letting ζ = indA

B(ξ), then indG
A(ζ ) is a multiple of ψ .

Every KA-irrep occurring in ζ must also occur in resG
A(ψ). But ζ is induced from B , so some

non-faithful KA-irrep η must occur in ζ . Perforce, η occurs in resG
A(ψ). This contradicts part (1)

of Lemma 2.5. The direct proof of Theorem 4.1 is finished.
Lemma 4.2 gives an algorithm for finding a genetic subquotient and a germ. First we replace

G with G/Ker(ψ) to reduce to the case where ψ is faithful. If G/Ker(ψ) is Roquette, then
G/Ker(ψ) is a genetic subquotient, ψ is a germ, and the algorithm terminates. Otherwise, in
the notation of the lemma, we replace G and ψ with T and φ, respectively, and we repeat the
process.

By the way, the non-cyclic abelian subgroup E is central in T , so the KT -irrep φ is never
faithful, and we deduce the second part of the following incidental corollary. The first part of the
corollary is immediate from the Genotype Theorem 1.1.

Corollary 4.4. Let H/K and H ′/K ′ be genetic factors for the same KG-irrep. Then |H | = |H ′|
and |K| = |K ′|. Furthermore, |G : H | � |K|.

Let us end this section with a reassessment of the example DD = DD2n = DD16u, which was
discussed at the end of the previous section. We employ the same notation as before. Recall
that, although the RDD-irrep χ is induced from the subgroup D′ ∼= D4u, the induction is not
tight. The failure of tightness can now be seen straight from Lemma 4.3 because D′ contains the
self-centralizing normal cyclic subgroup A. We have already seen that χ = indG

T (φ) and that φ

is inflated from a faithful R-irrep of the subquotient T/C ∼= D4u. So, if n � 6, then T/C is a
genetic subquotient and φ is a germ. In particular, the genetic type is Typ(χ) = D2n−2 , except
in the case n = 5, and in that case, Typ(χ) = C2. But let us recover these conclusions from the
algorithm in a methodical way. As we noted in Section 2, the 2-group Mod8u = 〈a, c〉 has a
characteristic subgroup E = 〈a2u, c〉 ∼= V4. Treating Mod8u as a maximal subgroup of DD, then
E is normal in DD, and the subgroup T = CG(E) and the irrep φ that appear in Lemma 4.2
coincide with the subgroup T = 〈a2, b, c〉 and the irrep φ which we considered at the end of
Section 3. Noting that C = Ker(φ), we again arrive at the conclusion that, if n � 6 then T/C

is a genetic subquotient and φ is a germ. Of course, when n = 5, the algorithm continues, the
second iteration replacing the faithful RD8-irrep with the faithful RC2-irrep. Let us point out
that, in Section 3, we calculated the vertex fields χ and φ in order to show that the induction χ =
indDD

T/C(φ) is tight. We have now dispensed with that trip, and the tightness has been delivered to
us as part of the conclusion of Lemma 4.2.

5. Characterizations of the genotype

In the first movement, we shall confine our attention to the Roquette p-groups. For those
p-groups, we shall calculate some of the invariants that were listed in Section 2. In the second
movement, we shall show that all the invariants listed in Section 2 are genetic invariants. We
shall also terminate a couple of loose-ends concerning well-definedness. The third movement will
address two questions that were raised in Section 1: How can the genotype Typ(ψ) be ascertained
from easily calculated genetic invariants such as the order v(ψ), the vertex set Vtx(ψ), the vertex
field V(ψ), the Frobenius–Schur type Δ(ψ)? How can Typ(ψ) be used to ascertain less tractable
genetic invariants such as the exponent n(ψ), the minimal splitting fields, the Fein field?

To open the first movement, let us observe that, when p is odd, there is nothing much to say,
as in the next lemma. Note that, given a KG-irrep ψ , then V(ψ) is a splitting field for ψQ if and
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only if m(ψ) = 1. For the time-being, we shall understand a Fein field for ψ to be a field that is
both a subfield of Qn(ψ) and also a splitting field for ψQ. When we have established the existence
and uniqueness of the Fein field in Theorem 5.7, we shall be at liberty to write the Fein field as
Fein(ψ).

Lemma 5.1. Suppose that p is odd. Let m be a positive integer. Let ψ be a faithful K-irrep
of the cyclic group Cpm . Then the order of ψ is v(ψ) = pm − pm−1. The exponent of ψ is
n(ψ) = pm. The unique minimal splitting field for ψQ is the unique Fein field for ψ , and it
coincides with the vertex field V(ψ) = Qpm . The Schur index is m(ψ) = 1. The Frobenius–Schur
type is Δ(ψ) = C. The vertex set Vtx(ψ) is free and transitive as permutation set for the Galois
group Aut(Qpm) = Gal(Qpm) ∼= Aut(Cpm) ∼= (Z/pm)×.

We refrain from a systematic discussion of the groups C1 and C2. The only Roquette p-groups
left are the Roquette 2-groups with more than one faithful complex irrep. These will be covered
by the next four lemmas. The lemmas are inevitable exercises, hence they are well-known. If one
could collate a trawl of citations encompassing all the conclusions, then that would be a gnomic
achievement. We mention that some of the material—including a rather different discussion of
minimal splitting fields for the quaternion groups—can be found in Leedham-Green and McKay
[13, 10.1.17].

Let us throw some more notation. We shall be making use of the matrices

B =
(

1 0
0 −1

)
, D =

(
0 1
1 0

)
, X =

(
0 −1
1 0

)
.

We define ex(t) = e2πit and cs(t) = cos(2πt) and sn(t) = sin(2πt) for t ∈ R. The matrices

R(t) =
(

cs(t) − sn(t)

sn(t) cs(t)

)
, I (t) = i

(
sn(t) cs(t)

− cs(t) sn(t)

)
, S(t) =

(
cs(t) i sn(t)

i sn(t) cs(t)

)

satisfy the relation R(t + t ′) = R(t)R(t ′) and similarly for I (t + t ′) and S(t + t ′). Let

As(t) =
(

cs(t) + i sn(t)/ cs(s) sn(t) sn(s)/ cs(s)
sn(t) sn(s)/ cs(s) cs(t) − i sn(t)/ cs(s)

)
,

where s ∈ R. By direct calculation, As(t + t ′) = As(t)As(t
′).

Let v be a power of 2 with v � 2. For convenience, we embed Q4v in C by making the
identification Q4v = Q[ω] where ω = ex(1/4v). The Galois group

Aut(Q4v) = Gal(Q4v : Q) ∼= Aut(C4v) ∼= (Z/4v)× ∼= C2 × Cv

has precisely 3 involutions, namely β , γ , δ which act on Q4v by

β(ω) = ω−1, γ (ω) = ω2v+1 = −ω, δ(ω) = ω2v−1 = −ω−1.

For a subgroup H � Aut(Q4v), we let Fix(H) be the intermediate subfield Q � Fix(H) � Q4v

fixed by H. A straightforward application of the Fundamental Theorem of Galois Theory shows
that Q4v has precisely 3 maximal subfields, namely
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QR
4v = Fix〈β〉 = Q

[
ω + ω−1] = Q

[
cs(r/4v)

] = Q
[
sn(r/4v)

] = R ∩ Q4v,

Q2v = Fix〈γ 〉 = Q
[
ω2],

QI
4v = Fix〈δ〉 = Q

[
ω − ω−1] = Q

[
i cs(r/4v)

] = Q
[
i sn(r/4v)

]
.

Here, r is any odd integer. These three subfields all have index 2 in Q4v . In other words, they
have degree v over Q. Glancing back at the proof of Theorem 2.4, we observe that β and δ

have no square root in Aut(Q4v). So γ belongs to every non-trivial subgroup of Aut(Q4v) except
for 〈β〉 and 〈δ〉. Therefore Q2v contains every strict subfield of Q4v except for QR

4v and QI
4v .

These observations yield a complete description of the intermediate subfields Q � K � Q4v .
(In particular, we see that, letting u be any power of 2 with 2 � u � v, then there are precisely
three intermediate fields with degree u over Q. But there are four families of Roquette 2-groups:
cyclic, dihedral, semidihedral, quaternion. This already suggests that distinguishing between the
four families may be little awkward.)

In the following four lemmas, we still let v be a power of 2 with v � 2. The first one is similar
to Lemma 5.1, and again, it is obvious. We postpone discussion of the vertex set.

Lemma 5.2. Let ψ be a faithful K-irrep of the cyclic group C2v . Then the order is v(ψ) = v.
The exponent is n(ψ) = 2v. The unique minimal splitting field for ψQ is the unique Fein field
for ψ , and it coincides with the vertex field V(ψ) = Q2v . The Schur index is m(ψ) = 1. The
Frobenius–Schur type is Δ(ψ) = C.

Lemma 5.3. Let ψ be a faithful K-irrep of the dihedral group D8v . Then v(ψ) = v and
n(ψ) = 4v. The unique minimal splitting field for ψQ is the unique Fein field for ψ , and it
coincides with the vertex field V(ψ) = QR

4v . The Schur index is m(ψ) = 1. The Frobenius–Schur
type is Δ(ψ) = R.

Proof. Plainly, v(ψ) = v. Employing the standard presentation, the group D8v = 〈a, b〉 has a
faithful irreducible matrix representation ψ given by a 	→ R(1/4q) and b 	→ B . By considering
the matrix entries, we see that ψ is affordable over the field QR

4v . Hence V(ψ) � QR
4v . But we

must have equality, because the character value at a is ψ(a) = 2 cs(1/4v), which is a primitive
element of QR

4v . It is clear that ψ has all the specified properties. All of these properties are in-
variant under Galois conjugation. So, invoking Corollary 2.8, the properties hold for any faithful
KD8v-irrep. �
Lemma 5.4. Let ψ be a faithful K-irrep of the semidihedral group SD8v . Then v(ψ) = v and
n(ψ) = 4v. The unique minimal splitting field for ψQ is the unique Fein field for ψ , and it
coincides with the vertex field V(ψ) = QI

4v . The Schur index is m(ψ) = 1. The Frobenius–Schur
type is Δ(ψ) = C.

Proof. The argument is similar to the proof of the previous lemma. Note that SD8v has a faithful
irreducible matrix representation the standard generators a and d to the matrices I (1/4q) and D,
respectively. �
Lemma 5.5. Let ψ be a faithful K-irrep of the quaternion group Q8v . Then v(ψ) = v and
n(ψ) = 4v. The vertex field is V(ψ) = QR . The unique Fein field for ψ is Q4v . Two non-
4v
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isomorphic minimal splitting fields for ψQ are Q4v and QI
8v . The Schur index is m(ψ) = 2.

The Frobenius–Schur type is Δ(ψ) = H.

Proof. By Corollary 2.8 again, we may assume that ψ is the faithful CQ4v-irrep such that
ψ(ar) = ωr + ω−r = 2 cs(r/4v) for r ∈ Z. There is a matrix representation of ψ such that
the standard generators a and x act as S(1/4q) and X, respectively. From the character val-
ues, we see that V(ψ) = QR

4v . Since the dihedral groups are the only non-abelian finite groups
with a faithful representation on the Euclidian plane, ψ is not affordable over R. (Alternatively,
we can observe that

∑
f ∈A ψ(f 2) = 0 and ψ(g2) = ψ(a2q) = −2 for g ∈ Q4v − 〈a〉, whence

fs(ψ) = −1.) Perforce, ψ is not affordable over QR
4v . On the other hand, by considering the ma-

trix entries of S(1/4q), we see that ψ is affordable over Q4v . (Alternatively, we can appeal to
Brauer’s Splitting Theorem.) The quadratic extension Q4v of QR

4v must be a minimal splitting
field for ψ . It follows that n(ψ) = 4v and Q4v is the unique Fein field of ψ . These observations
also imply that m(ψ) = |Q4v : QR

4v| = 2 and Δ(ψ) = H.
By direct calculation, it is easy to check that ψ has another matrix representation given by

a 	→ A1/8v(1/4v) and x 	→ X. The field generated by the matrix entries of A1/8v(1/4v) is
Q[cs(1/4v), sn(1/4v), i cs(1/8v), i sn(1/8v)] = QI

8v , and this must be a minimal splitting field
because it is a quadratic extension of the vertex field. The two minimal splitting fields that we
have mentioned are non-isomorphic because they are distinct subfields of the cyclotomic field
Q8v , whose Galois group over Q is abelian. �

We now discuss the vertex sets for the faithful irreps of the Roquette 2-groups. We continue
to assume that v is a power of 2 with v � 2. Below, we shall find that, if p = 2 and if ψ is
a KG-irrep with order v(ψ) = v, then there are precisely four possibilities for the genotype
Typ(ψ), namely C2v , D8v , SD8v , Q8v . To what extent can we distinguish between these four
possibilities by considering Galois actions on the vertices? Recall, from Section 2, that the vertex
set Vtx(ψ) is a permutation set for the Galois group of a sufficiently large Galois extension
of Q. The question will reduce to a consideration of the Roquette 2-groups. Let ψC , ψD , ψS ,
ψQ be faithful K-irreps of C2v , D8v , SD8v , Q8v , respectively. Since n(ψ) = 2v, we can regard
Vtx(ψC) as a permutation set for the Galois group Aut(Q2v) = Gal(Q2v/Q). More generally, we
can regard Vtx(ψ) as a permutation set for Aut(Qn) where n is any multiple of 2v. Meanwhile,
since n(ψD) = n(ψS) = n(ψQ) = 4v, we can regard Vtx(ψD) and Vtx(ψS) and Vtx(ψQ) as
permutation sets for Aut(Q4v) and, more generally, as permutation sets for Aut(Qn) where n is
now any multiple of 4v. In view of these observations, we put n = 4v. We regard all four vertex
sets Vtx(ψC), Vtx(ψD), Vtx(ψS), Vtx(ψQ) as Aut(Q4v)-sets. As we noted in Section 2, all four
of them are transitive. Since Aut(Q4v) has size 2v and since the four vertex sets all have size v,
the four point-stabilizer subgroups all have size 2. Of course, since Aut(Q4v) is abelian, any
transitive Aut(Q4v)-set has a unique point-stabilizer subgroup.

Lemma 5.6. With the notation above, the vertex sets Vtx(ψC) and Vtx(ψD) and Vtx(ψS) and
Vtx(ψQ) are transitive Aut(Q4v)-sets, and the point-stabilizer subgroups are 〈γ 〉 and 〈β〉 and
〈δ〉 and 〈β〉, respectively.

Proof. We apply the Fundamental Theorem of Galois Theory to the Galois group Aut(Q4v) of
the field extension Q4v/Q. The subgroups 〈γ 〉 and 〈β〉 and 〈δ〉 and 〈β〉 are the centralizers of
the subfields V(ψC) = Q2v and V(ψD) = QR

4v and V(ψS) = QI
4v and V(ψQ) = QR

4v , respec-
tively. �
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To begin the slow movement, let us recall some obligations from Section 2. There, we listed
some invariants of a KG-irrep ψ , and we stated that they are genetic invariants. We also stated
that there exists a unique Fein field for ψ . We indicated that we would recover Schilling’s The-
orem. We stated that the vertex set Vtx(ψ) is the maximum field that embeds in every splitting
field for ψQ. In the next few results, we shall prove those assertions.

Theorem 5.7. Let ψ be a KG-irrep. Let L/J be a characteristic zero field extension. Then the
L/J-relative Schur index mL

J
(ψ), the L/J-relative order vL

J
(ψ), the J-algebra isomorphism class

of the endomorphism ring EndJG(ψ), the class of minimal splitting fields for ψJ and the J-
relative vertex field VJ(ψ) are genetic invariants of ψ . In particular, mJ(ψ), vJ(ψ), m(ψ),
v(ψ) and V(ψ) are genetic invariants. There exists a unique Fein field Fein(ψ). Furthermore,
Fein(ψ) is a genetic invariant. The Aut(V(ψ))-set isomorphism class of vertex set Vtx(ψ), the
Frobenius–Schur type Δ(ψ) and the genotype Typ(ψ) are genetic invariants.

Proof. Obviously, Typ(ψ) is a global invariant. By the Field-Changing Theorem 3.5, the genetic
subquotients for ψ coincide with the genetic subquotients for ψQ. Therefore Typ(ψ) is a quasi-
conjugacy invariant. Given a subgroup L � G and a KL-irrep θ from which ψ is tightly induced,
then, by Remark 3.3, every genetic subquotient for θ is a genetic subquotient for ψ . Therefore
Typ(ψ) is a tight induction invariant. We have shown that Typ(ψ) is a genetic invariant.

Let us write [EndQ] to denote the isomorphism class of the ring EndQ = EndQG(ψQ). As
we already noted in Section 2, [EndQ] is a quasiconjugacy global invariant. By the definition of
shallow induction, [EndQ] is a tight induction invariant. So [EndQ] is a genetic invariant.

The J-algebra J ⊗Q EndQ is isomorphic to a direct sum of vJ(ψ) copies of the ring of
mJ(ψ)×mJ(ψ) matrices over the J-algebra EndJ = EndJG(JψQ). So [EndQ] determines vJ(ψ)

and mJ(ψ). Furthermore, [EndQ] determines the isomorphism class of EndJ and, in particular,
the isomorphism class of EndR = Δψ . The L-algebra L⊗J EndJ is isomorphic to a direct sum of
vL

J
(ψ) copies of the ring of mL

J
(ψ) × mL

J
(ψ) matrices over EndL. So [EndQ] determines vL

J
(ψ)

and mL
J
(ψ). We have VJ(ψ) ∼= Z(EndJ), so [EndQ] determines VJ(ψ). The splitting fields for

ψJ are precisely the splitting fields for EndJ. So [EndQ] determines the class of minimal splitting
fields for ψJ. It follows that [EndQ] determines the n(ψ) and the class of Fein fields for ψ . As
Aut(V(ψ))-sets, Vtx(ψ) is isomorphic to the set of Wedderburn components of the semisim-
ple ring V(ψ) ⊗Q EndQ. So [EndQ] determines Vtx(ψ). With the exception of Typ(ψ), all the
specified invariants are thus determined by the genetic invariant [EndQ], hence they are genetic
invariants. By the way, an easier way to see the genetic invariance of Vtx(ψ) is to observe that the
quasiconjugacy global invariance is obvious, while the tight induction invariance is immediate
from condition (b) in the Narrow Lemma 3.2.

It remains only to demonstrate the existence and uniqueness of the Fein field. Let H/K be a
genetic subquotient of ψ and let φ be the germ of ψ at H/K . Since the class of Fein fields is a
genetic invariant, the Fein fields of ψ coincide with the Fein fields of φ. Replacing ψ with φ, we
reduce to the case where G is Roquette and ψ is faithful. If G = C1 or G = C2, then the unique
Q-relative Fein field is Fein(ψ) = Q. When |G| � 3, the existence and uniqueness of Fein(ψ)

was already shown in Lemmas 5.1–5.5. �
The argument in the last paragraph of the proof can be abstracted in the form of the following

remark.
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Remark 5.8. Let ψ be a KG-irrep. Let J be a field with characteristic zero, and let φ be a faithful
J Typ(ψ)-irrep. Let I be an invariant defined on characteristic zero irreps of finite p-groups. If
I is a genetic invariant, then I(ψ) = I(φ).

Thus, any genetic invariant is determined by the genotype. Conversely, the latest theorem tells
us that the genotype is a genetic invariant. The following corollary is a restatement of those two
conclusions.

Corollary 5.9. For irreps of finite p-groups over a field with characteristic zero, the genetic
invariants are precisely the isomorphism invariants of the genotype.

The field Fein(ψ) need not be the only minimal splitting field for ψ contained in Q|G|.
Lemma 5.5 shows that every quaternion 2-group is a counter-example. For a complex irrep χ

of an arbitrary finite group F , the splitting field Q|G| need not contain a minimal splitting field
for χ . Fein [8] gave a counter-example where |F | has precisely three prime factors. In the same
paper, he showed that, if |F | has precisely two prime factors and if χ has Schur index m(χ) � 3,
then Qn contains a minimal splitting field, where n is the exponent of G. However, as we are
about to show, the condition m(χ) � 3 always fails when F is a p-group. The line of argument
by which we arrive at the following celebrated result is due to Roquette [14], but it is worth
assimilating into our account because it is a paradigm for the genetic reduction technique.

Theorem 5.10 (Schilling’s Theorem). Given a KG-irrep ψ and a field extension L/J with char-
acteristic zero, then mL

J
(ψ) � 2. If mL

J
(ψ) = 2 then Δ(ψ) = H. If Δ(ψ) = H, then m(ψ) = 2.

Proof. By the latest theorem and the subsequent remark, we may assume that G is Roquette
and that ψ is faithful. From the definition of the relative Schur index, mL

Q
(ψ) = m

J
Q
(ψ)mL

J
(ψ).

So mL
J
(ψ) � mL

Q
(ψ) � m(ψ). It suffices to show that m(ψ) � 2 with equality if and only if

Δ(ψ) = H. Applying Lemmas 5.1–5.4, and attending separately to the degenerate case |G| � 2,
we deduce that if G is cyclic, dihedral or semidihedral, then m(ψ) = 1 and Δ(ψ) �= H. If G is
quaternion then, by Lemma 5.5, m(ψ) = 2 and Δ(ψ) = H. �

The next result is probably of no technical interest, but it does at least indicate why we call
V(ψ) the vertex field. However, the analogous assertion can fail for the relative vertex field: if G

is a quaternion 2-group then VR(ψ) = R, but the unique minimal splitting field for ψ is C.

Proposition 5.11. Let ψ be a KG-irrep. Partially ordering isomorphism classes of fields by
embedding, then (the isomorphism class of ) V(ψ) is the unique maximal field that embeds in all
the minimal splitting fields of ψ .

Proof. By the latest theorem and remark, we may assume that G is Roquette and that ψ is
faithful. The assertion is now clear from Lemmas 5.1–5.5. �

We shall end this movement by showing that the genotype Typ(ψ) of a non-trivial KG-irrep
ψ is determined by the ring EndQG(ψQ), and the genotype is also determined by the class of
minimal splitting fields for ψQ. Note that, aside from the genotype itself, none of the genetic in-
variants listed in Theorem 5.7 can be used to distinguish between genotype C1 and genotype C2.
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But those two genotypes can be distinguished very easily: a Frobenius reciprocity argument
shows that Typ(ψ) = C1 if and only if ψ is the trivial KG-irrep.

The following corollary relies on the Genotype Theorem 1.1. Indeed, it relies on Theorem 5.7.
Although we did not mention the Genotype Theorem in the above proof of Theorem 5.7, we
implicitly used the Genotype Theorem because our argument involved Typ(ψ), whose existence
and uniqueness is guaranteed by the Genotype Theorem. However, the reasoning that has led
us to the following corollary makes essential use only of the existence, not the uniqueness. The
existence of Typ(ψ) is captured in Theorem 4.1, which was proved by a direct argument in
Section 4. So, with the following corollary, we complete a direct proof of the Genotype Theorem,
avoiding the reduction to the special case K = Q or K = C.

Corollary 5.12. Let ψ be a non-trivial KG-irrep. Let ψ ′ be a non-trivial KG′-irrep, where G′
is a finite p′-group and p′ is a prime. Then the following conditions are equivalent.

(a) Typ(ψ) = Typ(ψ ′).
(b) EndQG(ψQ) ∼= EndQG′(ψ ′

Q
).

(c) The minimal splitting fields for ψ coincide with the minimal splitting fields for ψ ′.

Proof. Since the endomorphism ring EndQG(ψQ) is a genetic invariant, it is isomorphic to the
endomorphism ring of the faithful rational irrep of Typ(ψ). So (a) implies (b). The minimal split-
ting fields for ψ are precisely the minimal splitting fields for EndQG(ψQ). So (b) implies (c).
Suppose that (c) holds. To deduce (a), the latest theorem and remark allow us to assume that G

and G′ are Roquette. If Q is a splitting field for ψ and ψ ′, then Typ(ψ) = C2 = Typ(ψ ′). Other-
wise, the equality of the two genotypes follows from the first five lemmas in this section. �

Finally, we are ready to present the synthesis of the material in the previous two movements.
Corollary 5.12 is unlikely to be of much use towards evaluating the genotype of an explicitly
given irrep. The following theorem can be applied first to evaluate the genotype from more easily
ascertained genetic invariants. The genotype having been evaluated, the theorem can be applied
again to evaluate other genetic invariants. (The above proof of Schilling’s Theorem can be cast
in that form. Anyway, we are not suggesting that anyone would actually wish to evaluate genetic
invariants for numerically specified irreps. It can be argued that, in pure mathematics no less than
in the other sciences, a sufficient criterion for meaningful content should be only that the material
could be applied efficiently and effectively to some natural class of problems; without requiring
that there be any demand for the solutions to those problems.)

Theorem 5.13. Let ψ be a KG-irrep and let v = v(ψ). First suppose that v = 1. Then precisely
one of the following three conditions holds.

(a) Typ(ψ) = C1 and ψ is the trivial KG-irrep.
(b) Typ(ψ) = C2 and ψ is non-trivial, affordable over Q and absolutely irreducible. In partic-

ular, the Schur index is m(ψ) = 1 and the Frobenius–Schur type is Δ(ψ) = R.
(c) Typ(ψ) = Q8 and m(ψ) = 2 and Δ(ψ) = H.

Now suppose that p is odd and v �= 1. Then the exponent n = n(ψ) is a power of p and v =
n(1 − 1/p). Also, m(ψ) = 1 and Δ(ψ) = C. The unique minimal splitting field for ψ is the field
Fein(ψ) = V(ψ) = Qn. The vertex set Vtx(ψ) is free and transitive as an Aut(Qn)-set.
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Now suppose that p = 2 and v �= 1. Then v is a power of 2 and precisely one of the following
conditions holds.

(C) Typ(ψ) = C2v and n(ψ) = 2v and m(ψ) = 1 and Δ(ψ) = R. The unique minimal splitting
field for ψ is the field Fein(ψ) = V(ψ) = Q2v . As a transitive Aut(Q4v)-set, Vtx(ψ) has
point-stabilizer subgroup 〈γ 〉.

(D) Typ(ψ) = D8v and n(ψ) = 4v and m(ψ) = 1 and Δ(ψ) = R. The unique minimal splitting
field for ψ is the field Fein(ψ) = V(ψ) = QR

4v . As a transitive Aut(Q4v)-set, Vtx(ψ) has
point-stabilizer subgroup 〈β〉.

(S) Typ(ψ) = SD8v and n(ψ) = 4v and m(ψ) = 1 and Δ(ψ) = C. The unique minimal splitting
field for ψ is the field Fein(ψ) = V(ψ) = QI

4v . As a transitive Aut(Q4v)-set, Vtx(ψ) has
point-stabilizer subgroup 〈δ〉.

(Q) Typ(ψ) = Q8v and n(ψ) = 4v and m(ψ) = 2 and Δ(ψ) = H. Two non-isomorphic split-
ting fields for ψ are Q4v and QI

8v . Also, Fein(ψ) = Q4v and V(ψ) = QR
4v . As a transitive

Aut(Q4v)-set, Vtx(ψ) has point-stabilizer subgroup 〈β〉.

Proof. The case |Typ(ψ)| � 2 is easy. The rest follows from the first eight results in this sec-
tion. �

When p = 2 � v, one routine for calculating the genotype is to find the values of v and fs(ψ).
If fs(ψ) = 0 then the possible genotypes C2v and SD8v can be distinguished using the fact that,
in the former case, the involution fixing ψ is γ while, in the latter case, the involution fixing ψ

is δ. Another routine is to evaluate V(ψ) and, if necessary, fs(ψ).
To reinforce the point, let us return, once again, to the real irrep χ of the group DD = DD2n =

DD16u. We evaluated Typ(ψ) already at the end of Section 4, but let us now do it more swiftly.
Using part (3) of Lemma 2.5, we see that v(ψ) = u/2. By considering the partition

DD = A ∪ (D8u − A) ∪ (Mod8u −A) ∪ (SD8u − A)

we see that fs(χ) = 1 and Δ(χ) = R. We recover the conclusion that Typ(χ) = D2n−2 if n � 6
while Typ(χ) = C2 if n = 5.

For another example, still with n � 5, suppose that G is the smash product C4 ∗ D2n−1 , which
has order 2n. Each faithful complex irrep of the subgroup 1 ∗ D2n−1 extends to two complex
conjugate irreps of G. So there are precisely 2n−3 faithful CG-irreps, and they comprise a single
Galois conjugacy class. Let ψ be a faithful KG-irrep. Then v(ψ) = 2n−3. The two generators of
C4 ∗1 act on ψC as scalar multiplication by ±i, and the faithful complex irreps of 1∗D2n−1 have
vertex field QR

2n−2 , hence

V(ψ) = QR
2n−2 [i] = Q2n−2 = Q2v(ψ).

Therefore, Typ(ψ) = C2n−2 . At the beginning of Section 2, we noted that the unique faithful
QC4 ∗ D16-irrep is induced from a C4 subquotient and also from a C8 subquotient; we have
made some progress since then, and we can now announce that, actually, the genotype is C8.
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6. Counting Galois conjugacy classes of irreps

We shall be correlating some results of tom Dieck [7, III.5.9] and Bouc [4, 8.5, 8.7]. They were
concerned with the cases where K is Q or R or C. Our generalizations to the case of arbitrary
K are slender, although we should point out that the construction of R(KG), below, does rely
on the notion of Galois conjugacy that was established in Section 2. What is of more interest is
that we shall be providing quicker proofs, making use of the fact that the genetic theory applies
directly to the general case.

Remark 6.1. Let R be a Roquette p-group, and let kR(G) denote the number of Galois conjugacy
classes of KG-irreps with genotype R. Then kR(G) is independent of K.

The remark is immediate from the Field-Changing Theorem 3.5. We mention that kR(G) is a
global quasiconjugacy invariant. Letting k∗(G) = ∑

R kR(G), where R runs over all the Roquette
p-groups, then k∗(G) is the number of Galois conjugacy classes of KG-irreps, in other words,
the number of QG-irreps, we mean to say, the number of conjugacy classes of cyclic subgroups
of G.

Recall that a superclass function for G is a Z-valued function f on the set of subgroups of G

such that f is constant on each conjugacy class of subgroups. The superclass ring of G, denoted
C(G), is understood to be the additive group consisting of the superclass functions on G. The
representation ring R(KG), also called the character ring, is understood to be the group of
virtual KG-reps (the universal abelian group associated with the semigroup of KG-reps). Of
course, in many well-known applications, C(G) and R(KG) are assigned all sorts of further
structures (in particular, they are rings) but those further structures are irrelevant to our concerns.
We shall be regarding C(G) and R(KG) merely as free abelian groups.

We define the tom Dieck map

DieK
G :R(KG) → C(G)

to be the linear map such that, given a KG-rep ξ and a subgroup H � G, then the value of
DieK

G(ξ) at H is equal to the multiplicity of the trivial KH -irrep in the restriction resG
H (ξ). Thus,

treating ξ as a KG-module and writing its H -fixed subspace as ξH , we have DieK
G(ξ)(H) =

dimK(ξH ). Let I (KG) be the subgroup of R(KG) generated by the elements having the form
ξ − ξ ′, where ξ and ξ ′ are Galois conjugate KG-reps. We write ξ = ξ + I (KG) as an element
of the quotient group R(KG) = R(KG)/I (KG). Since DieK

G annihilates I (KG), we can define
another tom Dieck map

DieK
G :R(KG) → C(G)

such that DieK
G(ξ) = DieK

G(ξ).
Letting ψ1, . . . ,ψr be a set of representatives of the Galois conjugacy classes of KG-irreps,

then {ψ1, . . . ,ψr} is a Z-basis for R(KG), and {(ψ1)Q, . . . , (ψr)Q} is a Z-basis for R(QG).
We mention that there is a isomorphism R(KG) → R(QG) such that ψj 	→ (ψj )Q. But the

isomorphism does not commute with the tom Dieck maps DieK
G and DieQ

G.
The next two results are due to tom Dieck [7, III.5.9, III.5.17]. Our slight embellishment is to

extend to the case where K is arbitrary. Although the proofs presented below are different from
tom Dieck’s, the ideas are implicit in [7, III.5].



678 L. Barker / Journal of Algebra 306 (2006) 655–681
Theorem 6.2 (tom Dieck). The tom Dieck map DieK
G is injective, and its image is a free abelian

group whose rank is k∗(G).

Proof. By Theorem 2.2, we may assume that K = C. Suppose that DieC
G is not injective. Then

a1 dimC

(
ψH

1

) + · · · + ar dimC

(
ψH

r

) = DieC
G(a1ψ1 + · · · + arψr) = 0,

where ψ1, . . . ,ψr are mutually Galois non-conjugate CG-irreps and each aj is a non-zero in-
teger. First consider the case where some ψj is non-faithful. Then, without loss of generality,
there is an integer s � r and a non-trivial normal subgroup K of G such that the kernels of
ψ1, . . . ,ψs all contain K while the kernels of ψs+1, . . . ,ψr do not contain K . When s < j � r ,
Clifford theory yields dimC(ψK

j ) = 0 and, perforce, dimC(ψH
j ) = 0 for all intermediate sub-

groups K � H � G. Replacing G with G/K , we obtain a contradiction by insisting that |G| was
minimal. Now consider the case where all the ψj are faithful and G is not Roquette. Let E and
T be as in Lemma 4.2. The proof of that lemma shows that each resG

T (ψj ) = ψj,1 + · · · + ψj,p

as a sum of mutually Galois non-conjugate CT -irreps. But ψj = indG
T (ψj,i) and it follows that,

as j and i run over the ranges 1 � j � r and 1 � i � p, the CT -irreps ψj,i are mutually Galois
non-conjugate. Replacing G with T , we again obtain a contradiction by induction on |G|. We
have reduced to the case where G is Roquette and ψ1, . . . ,ψr are faithful. By Corollary 2.8,
r = 1. Absurdly, we deduce that dimC(ψH

1 ) = 0 for all subgroups H � G. �
We write mod2 to indicate reduction modulo 2: for a free abelian group A, we write

mod2(A) = (Z/2) ⊗Z A; we write mod2 for canonical epimorphism A → mod2(A). The com-
posite maps mod2 DieK

G :R(KG) → mod2(C(G)) and mod2DieK
G :R(KG) → mod2(C(G)) are

still called tom Dieck maps.

Theorem 6.3 (tom Dieck). Suppose that p = 2. Then the image Im(mod2DieK
G) is an elementary

abelian 2-group whose rank is the number of Galois conjugacy classes of KG-abirreps with
cyclic, dihedral or semidihedral genotype. These are the abirreps with Frobenius–Schur type R

or C.

Proof. The rider will follow from the main part together with Theorem 5.13. For any KG-
irrep ψ , the order v(ψ) and the Schur multiplier m(ψ) are powers of 2. Therefore mod2 DieK

G

annihilates any KG-irrep that is not absolutely irreducible. So, if the required conclusion holds
for the algebraic closure of K, then it will hold for K. Therefore, we may assume that K = C.

Let ψ1, . . . ,ψr be mutually Galois non-conjugate CG-irreps with non-quaternion genotypes.
We claim that the linearly independent elements ψ1, . . . ,ψr of R(CG) are sent by mod2DieK

G to
linearly independent elements of mod2(C(G)). Assuming otherwise, and taking r to be minimal,
then

DieK
G(ψ1) + · · · + DieK

G(ψr) = 0.

That is to say, the dimension of ψH
1 ⊕ · · · ⊕ ψH

r is even for all H � G. Arguing as in the
proof of the previous theorem, we reduce to the case where r = 1 and ψ1 is faithful and G is
a non-quaternion Roquette 2-group. Write ψ = ψ1. If G is cyclic, then the subspace fixed by
the trivial group has dimension dimC(ψ1) = 1, and this is a contradiction. Supposing that G is
dihedral, and writing G = 〈a, b〉 as in the standard presentation, then dimC(ψ 〈b〉) = 1, which is
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a contradiction. In the semidihedral case we obtain a contradiction using the standard generator
d instead of b. Any which way, we arrive at a contradiction. The claim is established.

Now let G be any 2-group and let ψ be a CG-irrep having genotype Q2m with m � 3. The
argument will be complete when we have shown that DieC

G(ψ) = 0. In other words, it remains
only to show that ψH has even dimension for all H � G. Consider the case where G = Q2m .
The center Z = Z(G) has order 2, and it is contained in every non-trivial subgroup of G. There
are no non-zero Z-fixed points in ψ , hence dimC(ψH ) is 2 or 0, depending on whether H is
trivial or non-trivial, respectively. Either way, dimC(ψH ) is even. Return now to the case where
G is arbitrary. Let L/M be a genetic subquotient for ψ and let φ be the germ of ψ at L/M . Of
course, L/M ∼= Q2m . By Frobenius reciprocity and Mackey decomposition,

dimC

(
ψH

) = 〈
1
∣∣resG

H indG
L(ψ)

〉 = ∑
LgH⊆G

〈
1
∣∣resL

L∩gH (ψ)
〉 = ∑

LgH⊆G

dimC

(
φL∩gH

)
.

From our discussion of the case G = Q2m , we see that each term of the sum is 0 or 2. So
dimC(ψH ) is even. �

We now explain how, in the special case where K is a subfield of R, the group mod2(C(G))

can be replaced with the unit group B(G)× of the Burnside ring B(G). This will lead to a new
proof of a theorem of Bouc. We sketch the prerequisite constructions, referring to Yoshida [19]
and Yalçın [17] for details (we employ much the same notation as the latter). Given a G-set X,
we write [X] to denote the isomorphism class of X as an element of B(G). Recall that the species
of B(G) have the form sH :B(G) � [X] 	→ |XH | ∈ Z, and two species sH and sH ′ are equal if
and only if H and H ′ are G-conjugate. Furthermore, an element x of B(G) is determined by
the superclass function H 	→ sH (x). Note that x is a unit if and only if sH (x) = ±1 for all H .
Therefore, B(G)× is an elementary abelian 2-group.

Given an integer c (possibly given only up to congruence modulo 2), we write par(c) = (−1)c .
Another theorem of tom Dieck [6, 5.5.9] asserts that, given any RG-rep ξ , then there is an
element dieR

G(ξ) ∈ B(G)× such that sH (dieR
G(ξ)) = par(dimR(ξH )). Hence, when K is a subfield

of R, there is a linear map

dieK
G :R(KG) → B(G)×

such that, again, sH (dieK
G(ξ)) = par(dimK(ξH )). Since dieK

G annihilates the ideal I (KG), it gives
rise to a linear map

dieK
G :R(KG) → B(G)×.

The maps dieK
G and dieK

G are called tom Dieck maps because, as we shall see in a moment, they
are essentially the same as the maps DieK

G and DieK
G. But let us emphasize that dieK

G and dieK
G

are defined only when K � R.
The following result can be quickly obtained from the special case K = R, which is equivalent

to Bouc [4, 8.5]. See Corollary 6.6. We give a different proof.

Theorem 6.4 (Bouc). Suppose that K � R. Then the image Im(dieK
G :R(KG) → B(G)×) is an

elementary abelian 2-group whose rank is the number of Galois conjugacy classes of absolutely
irreducible KG-irreps.
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Proof. When p is odd, the assertion is virtually trivial. Indeed, for any group of odd order, the
trivial irrep is the unique real abirrep, and meanwhile, tom Dieck [6, 1.5.1] asserts that, for any
group of odd order, the unit group of the Burnside ring is isomorphic to C2.

Suppose that p = 2. The tom Dieck maps mod2DieK
G :R(KG) → mod2(C(G)) and

mod2dieK
G :R(KG) → B(G)× commute with the monomorphism of elementary abelian 2-

groups B(G)× → mod2(C(G)) which sends a unit u to the superclass function f such that
sH (u) = par(f (H)). By Theorem 6.3, the rank rk(Im(mod2DieK

G)) = rk(Im(mod2dieK
G)) is the

number of Galois conjugacy classes of KG-abirreps with Frobenius–Schur type R or C. The
hypothesis on K ensures that all the KG-abirreps have type R. �

In order to recover the two special cases stated in Bouc [4, 8.5, 8.7], we need the following
result, which was obtained by Tornehave [15] using topological methods. Another proof was
given by Yalçın [17] using algebraic methods. Actually, Yalçın reduced to the case of a Roquette
2-group, and his paper is another application of the genetic reduction technique. Note that the
case of odd p is trivial.

Theorem 6.5 (Tornehave). The tom Dieck map dieR
G :R(RG) → B(G)× is surjective.

From the latest two results, we recover the following corollary, which was obtained by Bouc
[4, 8.5] using a filtration of B(–)× as a biset functor.

Corollary 6.6 (Bouc). The number of Galois conjugacy classes of RG-abirreps is the rank of
B(G)× as an elementary abelian 2-group.

It is worth pointing out how the general version of Bouc’s Theorem 6.4 covers another of his
results, [4, 8.7], which we shall present as the next corollary. Let linG denote the linearization
map B(G) → R(KG). We mean to say, linG[X] is the permutation KG-rep associated with the
G-set X. Let expG denote the exponential map B(G) → B(G)×. We mean to say, sH (expG[X])
is the number of H -orbits in X. To see that this condition really does determine a unit expG[X] ∈
B(G)×, observe that we have a commutative triangle expG = dieK

G linG.

Corollary 6.7 (Bouc). Suppose that p = 2. Then the number of QG-abirreps is rk(Im(expG)).
Furthermore, expG is surjective if and only if there are no QG-irreps with dihedral genotype.

Proof. The first part follows from Theorem 6.4 together with the Ritter–Segal Theorem, which
asserts that the linearization map linQ

G :B(G) → R(QG) is surjective. By Theorem 5.13, the
QG-abirreps are precisely the QG-irreps whose genotype is C1 or C2. Also, the RG-abirreps
are precisely the RG-irreps whose genotype is C1 or C2 or dihedral. The rider is now clear. �

We end with a further comment on Corollary 6.6. Embedding R(RG) in R(CG) via the tensor
product C⊗R –, we define an elementary abelian 2-group O(G) = R(RG)/(R(RG)∩I+(CG)).
Here, I+(CG) is the ideal of R(CG) generated by the elements having the form ξ + ξ ′,
where ξ and ξ ′ are Galois conjugate CG-reps. The tom Dieck map dieR

G gives rise to a map
dieG :O(G) → B(G)×. Theorem 6.5 says that dieG is surjective. Corollary 6.6 says that, in
fact, dieG is an isomorphism. Let B0(G) = Ker(linR

G). Tornehave’s topological proof of Theo-
rem 6.5 can be recast in a purely algebraic way which involves maps ripG :B0(G) → O(G) and
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tornG :B0(G) → B(G)× such that tornG = dieGripG. Such commutative triangles can still be
defined when G is replaced by an arbitrary group, although dieG ceases to be an isomorphism
in general. The author intends, in a future paper, to discuss some extensions and adaptations of
these results of Tornehave. The present paper arose from that work.
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