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Abstract

Boltje’s plus constructions extend two well-known constructions on Mackey functors, the fixed-point
functor and the fixed-quotient functor. In this paper, we show that the plus constructions are induction and
coinduction functors of general module theory. As an application, we construct simple Mackey functors
from simple restriction functors and simple transfer functors. We also give new proofs for the classification
theorem for simple Mackey functors and semisimplicity theorem of Mackey functors.
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1. Introduction

The theory of Mackey functors was introduced by Green to provide a unified treatment
of group representation theoretic constructions involving restriction, conjugation and transfer.
Thévenaz and Webb improved Green’s definition of a Mackey functor, and they realized Mackey
functors as representations of the Mackey algebra wgr(G). Using this identification, Thévenaz
and Webb applied methods of module theory to classify the simple Mackey functors [11] and
to describe the structure of Mackey functors [12]. Their description of simple Mackey functors
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used induction and inflation from subgroups and two dual constructions, known as the fixed-point
functor and the fixed-quotient functor.

Applying the notion of Mackey functors to the problem of finding an explicit version of
Brauer’s induction theorem, Boltje introduced the theory of canonical induction [6,7]. In order
to solve the problem in this general context, Boltje considered not only the category Mack (G)
of Mackey functors, but also two more categories, namely the category Cong (G) of conjugation
functors and the category Resg (G) of restriction functors. His main tools were the lower-plus
and the upper-plus constructions, which extend the fixed-quotient and the fixed-point functors,
respectively.

The lower-plus construction, denoted by —, is defined as a functor Resg (G) — Mackg (G).
By introducing the restriction algebra pr(G), written p when R and G are understood, we
realize the restriction functors as representations of the restriction algebra. This leads us to

Theorem 5.1. The functors — and indﬁ are naturally equivalent.

On the other hand, the upper-plus construction, denoted by —7, is defined as a functor
Cong(G) — Mackg(G). By introducing the transfer algebra tg(G), written 7, and its repre-
sentations, called transfer functors and realizing conjugation functors as representations of the
conjugation algebra yr(G), written y, we prove

Theorem 5.2. The functors — and coind? inf; are naturally equivalent.

As a consequence of these identifications, we realize the fixed-point and fixed-quotient func-
tors as coinduced and induced modules, respectively. Given an RG-module V', we denote by FQy,
the fixed-quotient functor and by FPy the fixed-point functor.

Proposition 5.4. Let V be an RG-module. Then, the following isomorphisms hold.
(i) FQy ~ indﬁ ian‘j Dy and (ii)) FPy >~ coind inf; Dy
where Dy denotes the y -module which is non-zero only at the trivial group and Dy (1) =V.

We also prove that the Brauer quotient (also known as the bar construction) is the composition
of certain restriction and deflation functors (see Corollary 5.7). Via this identification, we see
that Thévenaz’ twin functor is the composition of coinduction, inflation, deflation and restriction
functors.

The plus constructions are also used by Bouc [4] and Symonds [9]. To obtain informa-
tion about projective Mackey functors, Bouc considered restriction functors defined only on
p-subgroups and also the functor —; (which is denoted by Z in [4]). In [9], Symonds con-
structed induction formulae using the plus constructions described in terms of the zero degree
group homology and group cohomology functors.

The subalgebra structure of the Mackey algebra, we describe above, leads us to

Theorem 3.2 (Mackey structure theorem). The T—p-bimodule . v, is isomorphic to T ®,, p.

As a consequence of this theorem, we obtain several equivalences relating the functors be-
tween the algebras u, t, p and y. Using some of these equivalences, we show that the well-
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known mark homomorphism corresponds to the identity map on conjugation functors (see
Proposition 5.10).

Our module theoretic approach not only unearths the nature of some known constructions for
Mackey functors, but also allows us to understand the classification of simple Mackey functors
better. The classification theorem of Thévenaz and Webb [11] asserts that the simple Mackey
functors are parameterized by the G-classes of simple pairs (H, V) where H is a subgroup of G
and V is a simple RNg(H)/H-module. It is easy to see that the simple conjugation functors are
also parameterized by the G-classes of simple pairs (H, V). It is almost as easy that the simple
restriction functors and the simple transfer functors are parameterized in the same way. As an
application of our characterization of the plus constructions, we show how the classification the-
orem for simple Mackey functors follows quickly from the classification of the simple restriction
functors. Moreover, we obtain two new descriptions of the simple Mackey functors. In the case
where |G| is invertible in the base field R, we see that induction from the restriction algebra and
coinduction from the transfer algebra respect simple modules. We also give a new proof of the
semisimplicity theorem [11], which states that the Mackey functors are semisimple when R is a
field of characteristic coprime to |G|.

Let us mention that, in a sequel to this paper, we shall be adapting some of these methods and
results to the content of biset functors.

The organization of the paper is as follows. In Section 2, we collect together necessary facts
concerning the Mackey functors. In Section 3 we prove the Mackey structure theorem and its
consequences. Section 4 contains the duality theorems. Our main results, the description of plus
constructions via induction, coinduction and restriction are proved in Section 5. Also in this
section, we give alternative descriptions of the fixed-point functor, the fixed-quotient functor,
the twin functor and the mark homomorphism. The applications to the classification of simple
Mackey functors and to the semisimplicity of Mackey functors are the contents of Sections 6
and 7, respectively.

2. Preliminaries

Let G be a finite group and R be a commutative ring with unity. Consider the free algebra on
variables cf, r,‘?, t,‘? where K < H < G and g € G. We define the Mackey algebra g (G) for
G over R as the quotient of this algebra by the ideal generated by the following six relations,

where LK K<H<Gandhe Handg, g €G:

H_ H__.H
D) ¢ =ry=ty,

h
¢H H _ .H K,.H _ H H.K _ H
2) Cor' Cg =Cyy andrpry =r; andtgt; =t;,
K,.H _ 8H .H H.H _ 8H K
(3) cgrg =rsgcg and ety =tegc,,

@ rltd =3 pmyk ek Sl Junk for J < H (Mackey relation),

G) e =1,
(6) all other products of generators are zero.

It is known that, letting H and K run over the subgroups of G and letting g run over the
double coset representatives HgK C G and letting L run over representatives of the subgroups
of H8 N K up to conjugacy, the elements tgHL cé rf run (without repetitions) over the elements

of an R-basis for the Mackey algebra pg(G) (cf. [12, Section 3]).
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We denote by pr(G), called the restriction algebra for G over R, the subalgebra of the
Mackey algebra generated by cf and r}g for K < H < G and g € G. We denote by tx(G)
the transfer algebra for G over R the subalgebra generated by cél,i and t}g for K <H<LG
and g € G. The conjugation algebra, denoted yg(G), is the subalgebra generated by the ele-
ments cg. When there is no ambiguity, we write 4 = ug(G), and p = pr(G) and 7 = TRr(G)

and y = yr(G). Evidently, the restriction algebra p has generators c; r f , the transfer algebra ©

has generators cg t f and the conjugation algebra y has generators cg .

We define a Mackey functor for G over R to be a ug(G)-module. Similarly, we define a
restriction functor, a transfer functor and a conjugation functor as a pr(G)-module, a Tr(G)-
module and a yg(G)-module, respectively.

We can also define a Mackey functor as a quadruple (M, c,r,t) consisting of a family of
R-modules M (K) for each K < G and families of three types of maps:

(i) conjugation maps, cg M(K)— M(K) foreach g € G and K < G,
(i1) restriction maps, rf :M(K)— M(L) foreach L < K < G, and
(iii) transfer maps, tl{( ML) —> M(K) foreach L < K <G.

These maps have to satisfy the relations (2), (3) and (4), above and the following relation
1) cf=rfl =t =idy forallh e H < G.

We write M for the quadruple (M, ¢, r,t). Then to pass from the first definition to the second
one, we put M(K) = cf{M for each K < G and conversely, we take M = @KgG M (K). Similar
comments apply to restriction and transfer and conjugation functors (cf. [8,12]).

Defining a morphism of Mackey functors to be an R-module homomorphism compatible with
conjugation, restriction and transfer maps, we obtain the category Mackg (G) of Mackey functors
for G over R. Similarly, we have the category Resr(G) of restriction functors, the category
Trang (G) of transfer functors and Cong (G) of conjugation functors.

Remark 2.1. In [4], Bouc introduced an algebra, denoted r g (G), which is generated by cg and

r,‘;’ where K < H < G, g € G and H is a p-subgroup. He also introduced ¢4z (G) as the dual
of riur (G). Upper and lower plus constructions are also introduced in this settings.

In [7,8], Boltje introduced two functors — : Cong(G) — Mackz(G) and — :Resg(G) —
Mackg (G), called upper-plus and lower-plus constructions, respectively. In Section 5, we show
that these functors have descriptions as induction and coinduction functors. We review the con-
structions of these functors.

To a conjugation functor C, we associate a Mackey functor C* where for H < G, we define
the modules as

H
Cct(H)= < ]_[ C(L)) .

L<H

Here H acts on the product by coordinate-wise conjugation. We define the maps for K < H < G
and g € G and x;, € C(L) as follows:
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Conjugation:
c;jH :CT(H)— C*(*H) where (x;) < > (ngg)ngH.
Restriction:
ref:CT(H) - CT(K)  where (xp)L<h = (XL)L<K-
Transfer:

(7 CT(K) > CT(H) where cp)<kx = of () <k)-
heH/K

The functor — is defined on morphisms, in the obvious way, that s, if f : B — C is a morphism
of conjugation functors, then f: BT — C™ is defined by £,/ ((x1)r<m) = (fL(xL))L<H.

To a restriction functor D, we associate a Mackey functor D4 where for H < G, the modules
are

Di(H) = <€B D(L))

L<H H

Here, for an RH-module M, we write My for the (maximal) H-fixed quotient, that is to say,

My = M/I(RH)M where I (RH) denotes the augmentation ideal of RH. For K < H anda €

D(K), we write the image of a in D4 (H) as [K, a]y. Clearly, [K,aly = "K, ha]H forhe H

and as an R-module, D4 (H) is generated by the elements [K, a]y for K < H and a € D(K).
The maps are defined for L < H < G and g € G as follows:

Conjugation:

H . g 8K &

c+g.D+(H) — D+( H) where [K,aly — [ K, a]gH.
Restriction:

h h
ri:Dy(H) > Di(L) where [K.alg+— Y [Ln"K.rK, ("a)],.
heL\H/K

Transfer:

th:D+(L) — D4 (H) where [N,b], — [N,bly.

For a morphism f:D — E of restriction functors, we define f,:D; — E; by
Fen(K,alm) =K, fx @]y for K < H and a € D(K).

The plus constructions are related to each other by a morphism, called the mark homomor-
phism, denoted by p in [7,8]. We write 8 for the mark homomorphism. It is defined as follows:
Let D be a restriction functor and H < G. Then

Bu = (x Oer)Kgﬂ :Dy(H) — (FD)" (H)
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where F :Resg (G) — Cong(G) is the forgetful functor and g is the projection
wklL,alk =a

if L = K and equal to zero otherwise. The mark homomorphism is an isomorphism if |G| is
invertible in R and is injective if D (H) has trivial | H|-torsion for all H < G (cf. [7, Proposi-
tion 1.3.2]).

The functors — and —, have crucial use in constructing canonical induction formulae for
Mackey functors. For further details, see [7,8], for applications see [4,9].

Two other constructions in the theory of Mackey functors that are used frequently are the bar
construction and the twin functor. We review the definitions of these constructions.

Definition 2.2. Let M be a Mackey functor. The bar construction of M is the conjugation functor
M where for K < G, we have

M(K) = M(K)/ 3 Im(ef)

L<K

and the conjugation maps are inherited from those of M.

The bar construction composed with the functor —* gives the twin functor TM of M (cf. [7,
Section 1.1.2]). We have the following morphism between a Mackey functor and its twin. For
K <Gandm € M(K), we define

Bk :M(K)— TM(K)
where B (m) = (rr,(rKm)) <k and
7Kk M(K)— M(K)

is the quotient map. Note that the mark homomorphism is a special case of the morphism
B:M — TM where we put M = D for a restriction functor D.

Let £ and G be rings and «: € — G be a unital ring homomorphism. We can regard any
G-module as an £-module by «. This induces a functor

res, : G-mod — £-mod

called the generalized restriction. There are two functors in the opposite direction.

Induction: We regard G as a right £-module by fe = fa(e) for e € £ and f € G. Then, for
any (left) £-module M, we make G ®¢ M a (left) G-module by f(f'®@m) = ff' @m form € M.
Note that, the action is well-defined as the natural action of G on itself commutes with the action
of £ on G. We call G ®¢ M the induced module, written indy M, and obtain the generalized
induction functor

indy — =G ®¢ —: £-mod — G-mod.

Coinduction: Now we regard G as a left £-module by ef = a(e) f fore € £ and f € G. Then,
for any (left) £-module M, we make Homg (G, M) a (left) G-module by (f)(f") = (f' f) for
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f» f' € G and ¢ € Homg (G, M). Note that, the natural action of G on itself commutes with the
action of £ on G. We call Homg (G, M) the coinduced module, written coind, M, and obtain the
generalized coinduction functor

coind, := Homg (G, —) : £-mod — G-mod.
We recall the adjointness properties of these three functors:

Proposition 2.3. The induction functor ind, is right adjoint of the restriction resy. The coinduc-
tion functor coindy, is the left adjoint of the restriction resy.

The proof of the proposition and further details can be found in [2, Section 3.3]. In all our
applications, o will be an inclusion £ < G or a projection £ — G = £/ A for some ideal A of £.
For the first case, we write the induction and coinduction functors as indg and coindg, respec-

tively. For the second case, we write induction and restriction as defé and infg, respectively.
Finally, we recall the following well-known proposition.

Proposition 2.4. (See [1, Section 2.8].) Let £ and G be rings. Let M be a left G-module and let
A be a G—E-bimodule and let N be a left £E-module. Then, there is a natural isomorphism

Homg (N, Homg (A, M)) = Homg(A ®¢ N, M).
3. The Mackey triangle

In this section, we examine the relations between the algebras u, t, p and y. Mainly, we
explain the following triangle, which we call the Mackey triangle.

VN
/\/\

Here the arrows p < p and T < u denote the inclusions of algebras and so are y — p and
y — 1. The arrows p — y and t — y denote surjections explained in the next lemma, which
also describes the identifications at the bottom of the triangle.

Lemma 3.1. Let J (p) be the two-sided ideal of the restriction algebra p generated by all non-
trivial restriction maps. Then, there is an evident identification y = p/J (p). Similarly, we make
the identification y = t/J (t) where J (t) is generated by all non-trivial transfer maps.

Proof. Recall that the restriction algebra (respectively transfer algebra) is generated by cgrg
where H < K < G and g € G. As an R-module, [J (p) is spanned by the elements cgrg where
K < H. It is now clear that the quotient is isomorphic to the conjugation algebra. The last part
can be proved similarly. O
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The main property of the Mackey triangle is the following.
Theorem 3.2 (Mackey structure theorem). The T—p-bimodule . 1, is isomorphic to T ®,, p.

Proof. Itis clear that T ®, p is generated by the elements tgl'& ® cg r f . Now we show that T ®,, p
is freely generated by these elements. To this aim, we decompose the left y-module p as

yR = @ Wf

K<G,J<kK

and the right y-module 7 as

= @ v

H<G,I<yH
Then, the tensor product becomes
H K
TQyp= @ Iy ®yyry
ISHHLG,J<kK<G
- D e, diy

ISHHSG,J<SkK<G,L<GG

Ll _ % L L
where ¢l = ZL,:GL c” . Here c” is the generator ¢y’

To focus on each summand separately, fix H, K, L < G. Then,

C[L]yrf = @ RCLC){rf.
xeG/K,L¥=xJ

Indeed, the equality holds since J is taken up to K -conjugacy and ckc’/ = 0 unless L¥ =¢ J.
Similarly,

tIHyc[L] = @ Rtch)L,cL.
yeH\G,YL=y1
Hence,
thycdllg, cyrK = @Rt{'cf, ®clrk.
X,y
Therefore,
T®yp= @ Rtﬁcé@c){r;(

H,K.,I.J,L.xy

= @ @ RtIH ®cé{r§(.

H,K,I,J gcH\G/K, I8=]
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Hence, we see that T ®,, p is freely generated over R by the elements t,fg ® cg r f . It is also clear
from the last equation that given tgl'g ® cé{ rf and tﬁl ® c;r IK then

H J, K _ H 1K
Ly @cgry =ty @cyry

ifand only if HgK = Hf K and J and I are H8 N K-conjugate. But this is equivalent to saying
that tgcé{ rf is equal to t_;q]c;rlK as elements of the Mackey algebra (cf. [12, Proposition 3.2]).
Hence the correspondence

'z®,p—>nun
givenby I' (¢, @ c]r¥) =t c]rf extends linearly to an isomorphism of R-modules. Evidently,
the map I" is compatible with the left action of the transfer algebra r and the right action of the
restriction algebra p. Thus I” is an isomorphism of 7—p-bimodules from T ®, p to ;t,. O

Now as a result of these relations we obtain several induction, coinduction and restriction
functors and some equivalences between them. As we shall see in the next section, some of
these functors are also naturally equivalent to some well-known constructions. For the rest of
this section, we prove some equivalences as consequences of Theorem 3.2. In the next lemma,
which we state without proof, we collect some trivial but necessary observations about some of
these functors:

Lemma 3.3. In the Mackey triangle, there are two inflation functors, inf; and inf}e. For a y-
module C, the t-module inf]t, C is the module C regarded as a t-module by letting all non-trivial
transfer maps tf for L < K < G act as zero maps. A similar result holds for the p-module
inf)’i C. Moreover, the compositions res)’, inf)f/ and res)’f inf)’i are both naturally equivalent to the
identity functor on y-mod.

For the rest of this section, we prove more equivalences. Most of the equivalences are conse-
quences of the Mackey structure theorem.

Theorem 3.4. The following natural equivalences hold.

ST P L gl
(1) 1ndy res), =res ind,.

T g

.. Py ~ PRy
(i) coindy res;, =res, coindy.

Proof. The first equivalence is induced by the isomorphism I" of T — p-bimodules 1 and 7 ®,, p
defined in the proof of Theorem 3.2. Indeed

ind® res? = HindH =~
ind,res), =7 ®, p®, and resyind) = u,Qp.

The induced equivalence is clearly natural. To prove the second equivalence, note that by the
definition of coinduction,

coind/) res}, = Hom,, (p, Hom, (7, —)).
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Now applying Proposition 2.4, we obtain a natural equivalence
Y :Hom,, (p, Hom, (7, —)) = Hom, (t ®, p, —)
of functors with values in R-mod. It is easy to check that for any r-module E, the isomorphism

Tg is compatible with conjugation and restriction maps. But, in that case the right-hand side of
the last equation becomes

Hom, (t ®, p, —) = resg coind”

since T ®, p = u as left T-modules. O
Corollary 3.5. The following equivalences hold.

N T ~ j7a M. P
(i) ind}, =res ind, infy.
(ii) coindy = res), coindy inf?,.

Proof. This follows from Theorem 3.4 and Lemma 3.3 by composing with the corresponding
inflations. O

Finally, we have two more functors that are naturally equivalent to the identity functor on
y-mod. Let us write codefﬁ for the left adjoint of the inflation inff,. Explicitly, for a p-module D
and for K < G, we have

codef?) D(K) = ﬂ Ker(rX : D(K) — D(L))
L<K

and the conjugation maps are obtained from those for the p-module D. The other functor is the
deflation functor def}t, induced by the map of Lemma 3.1. Note also that we have a deflation

functor def,’; and a codeflation functor codef}f,, but we shall not introduce these as we will not use
them.
Proposition 3.6. The following equivalences hold:

s AT ~ L coind?
def; ind), =id, = codef!) coind} .

Proof. The equivalences follows easily from Lemma 3.3, since a left and a right adjoint of the
identity functor and the identity functor are naturally equivalent to each other. O

4. Duality theorems

Theorem 3.4 suggests a duality in the Mackey triangle. In this section, we clarify this duality.
Following [11], we denote by —°P, the opposite functor, defined by

—°P: u-mod — mod-u
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where for a left ;-module M, the right p-module MP is the same R-module M with the right
Mackey functor structure given by

m (tgh}cgrf) = (tfcgflrgh;)m

where tgcgrf eunandme M(H).
We have another duality (cf. [11])

D, : u-mod — mod-u

where for a left ;i-module M, we let D, M to be the right u-module Homg (M, R) where p acts
on the right as usual. Note that D, M is the usual duality D* in module theory. Clearly, these
functors can be defined in the reverse direction, and we can compose one with the other to obtain

DZP : u-mod — p-mod.

Note that there is no ambiguity writing Dﬁp since the functors commute.
The functors D, M and —°P also induce functors on the modules of the subalgebras p and .
Since —°P interchanges restriction and transfer maps, we obtain dualities

—°P:p-mod — mod-z and —°P:7-mod — mod-p.
On the other hand, the functor D, induces
Dy :p-mod — mod-p and D :7-mod — mod-.

The following theorem describes induction from right tT-modules and coinduction from right
p-modules to right p-modules.

Theorem 4.1 (The first duality theorem). Let D be a p-module and E be a t-module. Then

@) (indg D)°P = ind% (DP) where ind% : mod-t — mod-p.

(i) (coind? E)°P coindg (E°P) where coindﬁ :mod-p — mod-i.
Proof. The first part is clear, since we have
(ind“ D)* = (1 ®, D) = D @, p = ind (DP).
The second part can be proved similarly. 0O
Combining the above functors, we can define

Definition 4.2. The transfer-restriction duality is the equivalence
Dy’ =D, " 0 —°?:7-mod — p-mod

of categories T-mod = p-mod. We call the inverse equivalence
D :=D; ' o = p-mod — 7-mod

the restriction-transfer duality.
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Finally, note that sz induces a duality D)O,p on y-modules. The following theorem describes
the duality we promised earlier.

Theorem 4.3 (Restriction-transfer duality). Let D be a p-module and E be a t-module. Then
(i) D,F(ind, D) = coindy (D7' D).
(i) D)P(coind} E) =ind, (DPE).
Proof. The first part follows from Proposition 2.3 as we have
D;P (ind” D) = Homg((ind% D), R)

= Homg (ind? (D?), R)

= Hom, (M, Homp (DOp, R))

= coind” (D;" D).

Note that although the above isomorphism is an isomorphism of R-modules, it is easily checked
that it is an isomorphism of left Mackey functors. The second statement can be proved simi-
larly. O

In the next theorem, we collect together some more dualities relating induction, coinduction
and restriction. The theorem and any other duality can be proved in the same way.

Theorem 4.4. Let M be a p-module, E be a T-module and C be a y-module. Then

i) D p(resp M) = res; (D P M).
@) D lD(res, M) =res), (D P M).
(iii) D?"(inf) C) = infl, (D" C).
(iv) D" (inf}, C) = inf) (D)’ C).
(v) Dy’ (def], E) = codef)) (D" E).

Let us end with an abstraction of the above situation. Let 7" be a finitely generated R-algebra
such that it has subalgebras 1%, T, and T_ with the following two properties.

(i) The subalgebras together with 7" form the following triangle:
T
Ty \ T
T_ \ T_ T_

where the maps are as explained in the previous section.
(i1) The structure theorem, 1 Tr, =143 Qr Ty, holds.
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Then the results in Sections 3 and 4 hold for the modules of the algebras 7', 7%, 7, and 7 and
for induction, coinduction and restriction functors. Moreover our classification and description
of simple Mackey functors can be modified for the simple modules of the algebra 7.

There are at least two more algebras having this structure. The first example is the algebra
w4 associated to a Green functor A (see [3] for the definition). Note that the Mackey algebra is
obtained by taking A = B¢, the Burnside Mackey functor [3].

Another occurrence of this structure is in the biset functors, introduced by Bouc [5]. As men-
tioned in the introduction we shall adopt the methods of this paper to the analogous algebra for
biset functors.

5. Plus constructions via induction and coinduction

In this section, we show that under the equivalence of categories ug(G) = Mackg(G), the
plus constructions —; and —V are realizable in terms of generalized restriction, generalized
induction and generalized coinduction. Moreover the well-known fixed-point functor and the
fixed-quotient functor [11], and the twin functor [10] have similar descriptions. We begin by
proving our first identification.

Theorem 5.1. The functors — and indff are naturally equivalent.
Proof. To specify a natural equivalence @ :ind% — —, we must specify a map of p-modules
¢p:ind) D — Dy

for any p-module D and show that it is natural in D. To do that, we must specify an isomorphism
of R-modules

®p.H :indg D(H)— D+(H)

for any subgroup H < G which is compatible with the actions of transfer, restriction and conju-
gation. Now

inds D(H)= P {tf ®a: a e DK)}
K<yH

where the notation indicates that K runs over representatives of the conjugacy classes of sub-
groups of H. Also,

Di(H)= P {[K.alu: ae DK)}.

K<yH
‘We have t,? ®ag =0ifand only if ag € I (Ng(K))D(K), where I (Ng(H)) is the augmenta-
tion ideal as before. But this is equivalent to the condition that [K, a]y = 0. So we can define

®p.u by

CDD,H(III(-I Rp a) =[K,aly.
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Thus, we have defined an R-module isomorphism ®p = (®p p)u<c from indg D to D. Now
we show that @ p is compatible with the actions of conjugation, restriction and transfer. We must
also check that @ is natural.

Given L < G and a € D(K), then

CDD,L(V[I(I,}? ®a)) = (PD,L( Z tlfmhKr]Ll’éhch ®a>
heL\H/K

— L hg K
- Z Pp,1(t g @1k )
heL\H/K

= Z [LﬁhK’rlLllrihKciIt(a]L
heL\H/K

=ri K. aln

= rfLQ)D,H(tIIg ® a).
We have established compatibility with restriction, @pr f =R f @ p. Compatibility with conju-
gation and transfer can be shown similarly (and more easily).

Finally, for the naturality, consider a map of p-modules f : D — D’. The maps of u-modules
ind) f:ind} D — ind) D', fy:Dy — D)
are given by (ind, f)u(tf ® a) =t ® fx(a) and (f1)u (K, aly) =K, fk(a)ln. Hence,
®p (ind? f(tf ®a)) =¢p (1§ ® fx@)=[K. fx@], = fr([K.alu)
= f+(®p(1K ®a)).

So @p oind) f = fy o ®p, in other words, @ is natural. O

Theorem 5.2. The functors — and coind” inf; are naturally equivalent.

Proof. As in the previous proof, to specify a natural equivalence ¥ : coind’ inf; — —71, we must
specify a map of pu-modules

wc :coind) inf], C — C*

for any y-module C and show that it is natural in C. In order to do that, we must specify an
R-module isomorphism

e g :coind? inf}’, C(H)— CY(H)

for any subgroup H < G and show that it is compatible with the action of transfer, restriction
and conjugation. Now

coind inf}, C(H) = Hom, (, inf}, C) (H) = Hom, (e, inf}))
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where inf; cC=6 J<H C(J). Recall that any element of [LCH is a linear combination of ele-
ments of the form thchrf where g € G and J < K& N H. But, for such an element and for a
map ¢ : uct — inf; C of 7-modules, we have

o (15¢qry’) =19 (cqri’) =0

unless K =8 J. Indeed, tf annihilates the T-module inff, Cif L #K. Also, if K =8, then

¢(Cgr;1) =Cg¢(”7)

that is, the value of ¢ at cgr;] is determined by the value of ¢ at r}q . Moreover, for any h € H,
we have

¢(r'y) =9 (ryer’) = ¢(ciir]) = cil (6 (r)))-
Now recall that
H
C+(H)=< I1 C(J)> = {(xj),@ e [[ con:"xs) =2y for J < H, heH}.
J<H J<H

So, we can define
Ve u(gp) = (¢(75{))J<H'

The map ¥¢, g is an isomorphism of R-modules from coind? inf}f, C(H) to Ct(H) with the
inverse given by

Ve (X) = ¢x.

Here, X = (x;)j<n and ¢y is the map defined by ¢x (cgrf) = 8&(x). Thus, we have defined

an R-module isomorphism ¥¢ : coind? inf; C — C™. We must show that ¥ is compatible with

the actions of conjugation, restriction and transfer. Also, we must check that ¥ is natural in C.
Given J < H < K < G and ¢ € coind? inf}, C(H), then

<er\K/H

> b))

xe\K/H, IWH=J
(X abem)
xeK/H, J*<H JSK

=1 (@(]) e =15" Wen(@).
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We have established compatibility with transfer, ¥¢c g o tg = tg Yc, g. Compatibility with re-
striction and conjugation can be proved similarly. Finally, one can check that the transformation
¥ is natural as above. O

By Theorems 3.4 and 5.2, we obtain an explicit description of the functor coind’ .
Theorem 5.3. Let E be a transfer functor. Then for H < G, we have
H
coind E(H) = ( ]"[ E(L)) )
L<H

The actions of conjugation and restriction are the same as the actions of conjugation and restric-
tion for the functor E*, respectively, and the transfer map is defined for ¢ € coindy E(H) and
K > H as

HO)0T) = > (an) @)

keJ\K/H
Proof. By Theorem 3.4, there is an isomorphism

1 coind” E 22 coind” res?
res,, coindy E = coind), res,, E

of p-modules. Now by Corollary 3.5, we obtain

1 coind” E 2= res™ coind” inf® res®
res,, coindy E = res), coindy inf), res,, E.

Now by Theorem 5.2, the right-hand side is (res; E)* regarded as a restriction functor. Hence
the isomorphism

H
coind” E(H) = ( ]‘[ E(L))
L<H

holds. Evidently, the actions of conjugation and restriction are the same as those for the right-
hand side. Finally it is clear that the action of transfer is given as above. 0O

Given an RG-module V, we denote by Dy the conjugation functor where Dy (1) = V and
Dy(H)=0for1+#H<G.

Proposition 5.4. The following isomorphisms hold.

(i) FQy =ind), inf) Dy.
(ii) FPy = coindf inf}, Dy.

Proof. It is clear from the construction of the fixed-point functor and the fixed-quotient functor
that we have the following isomorphisms (cf. [11, Section 6]):

FPy = (Dy)" and FQ, = (inf? Dv)+.

Now the result follows from Theorem 5.1 and Theorem 5.2. O
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Corollary 5.5. (See [ 11, Proposition 6.1].) The functor indf(f inf)e Dy is left adjoint to the functor
F : p-mod — RG-mod which sends a Mackey functor M to the RG-module C{M =M(). The
right adjoint of F is coindy inf}, Dy.
Proof. We have inf)e Dy (K) =0 for each subgroup 1 < K < G and infﬁ Dy (1) = V. Therefore
Hom,, (indg inf)‘i Dy, M) = Hom,, (inf')'j Dy, resl; M)

= Hong(ianp/ Dy (1), resg M(l))

= HOIIlRG(V, M(l))

= Homgg(V, FM).
The second statement is proved similarly. O
Remark 5.6. It is possible to define the fixed-point functor and the fixed-quotient functor for the
right p-modules, as well as the other constructions. For example, by the Duality Theorem 4.1,
we see that

D, (ind4 inff) Dy) = coind!’ inf}, (D)’ Dy)
which is the part (iii) of Proposition 4.1 in [12]. Also, note that we can define a fixed-point
functor and a fixed-quotient functor for the right ©-modules using the functor —°P. In that case,
for a right RG-module V, we define
vFQ :=ind¥ inf; vD.
By the Duality Theorem 4.1, we obtain
VFQ = (mdg Hlf’(; Dvnp)OP = ll’ldéf lllf; DV.

We can define y FP similarly.

Finally, we have the following proposition.

Proposition 5.7. The bar construction ?, defined in Definition 2.2 is naturally equivalent to
def; rest .

Proof. This is immediate from the equality

(T@M)(H) =" tf M(L)

L<H

for H<LG. O

Corollary 5.8. The twin functor T is naturally equivalent to coindy inf], def7, rest.
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The morphism S between a Mackey functor and its twin can be expressed in terms of the
above equivalence.

Proposition 5.9. Let M be a Mackey functor. The morphism
B: M — coindy inf}, def], res? M

as an element in Hom,, (M, coind¥ inf]f, def;, rest M) is induced by the identity endomorphism
id e rest ps in Homy (def) resy M, def?, resy M).

Proof. By Proposition 2.3
Hom,, (M, coind inf}, def}, resi M) = Hom, (res} M, inf}, def}, res M)
= Hom,, (def}, rest M, def}, resi M).
Now the counit of the adjunction
Hom, (res} M, inf}, def’, res! M) = Hom,, (def}, resi M, def?, rest M)

is given by composition with the quotient map. That is, for ¢ : def; resy M — def; resy M, the
corresponding morphism ¢ : resy M — inf7, def?, resy M is given by

Gr(m) =g (my(m))

where m € M(H) and 7 :rest M — def], resk M is the quotient map.
On the other hand, the counit of the adjunction

Hom,, (M, coind/ inf}, def?, res’ M) = Hom, (res} M, inf}, def], rest M)

is given by composition with the restriction maps. Explicitly, for v : res; M — inf}”, def}f, resy M,
the corresponding morphism v : M — coind} inf), def; resy M is given by

Vum) = (U (rgm) g <

where m e M(H).

Now put ¢ = id. Then ¢y (m) = my(m) is the quotient map. Then, put ¥ = ¢ and get
EH(m) =Wk (rllgm))Kgg = (g (I’gm))[(gy, which coincides with the definition of the mor-
phism B defined in Section 2. O

Since the mark homomorphism is a special case of the morphism S, we have the following
corollary.

Corollary 5.10. Let D be a p-module. The mark homomorphism
p:ind}; D — coindy inf res) D

is induced by the identity endomorphism id of the y -module res)e D.

P
resy D
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Proof. Let us put M = indg D for some p-module D. Then by part (i) of Theorem 3.4 and by
Proposition 3.6

ind inf® def® res” ind® D = coind” inf" res”
coindy inf), def), res;” ind; D = coindy inf), res), D.
Also the quotient map 7 above coincides with the projection map 7 since def; ress M=D. O
6. Simple Mackey functors

Throughout this section, we assume that R is a field. In [11], Thévenaz and Webb established
a bijective correspondence between the G-classes of the simple pairs (H, V) where H < G and
V a simple RN g (H)-module where Ng(H) := Ng(H)/H and the isomorphism classes of the
simple Mackey functors. We denote by Sy v the simple Mackey functor corresponding to the
pair (H, V), under this correspondence.

To illustrate the usefulness of our module-theoretic approach we give an alternative proof to
this result by realizing simple Mackey functors as quotients of induced simple restriction func-
tors. As we shall see below, the classification of simple restriction functors is trivial. Then we
give another new description of the simple Mackey functor Sg v as the unique minimal sub-
functor of the Mackey functor coind? 8;1’ v» Where SIT_[,V is a simple transfer functor, introduced
below.

Throughout this section, let H < G and V be a simple RN ¢ (H)-module. We write S};YV for
the conjugation functor defined for K < G by

Spy(K)=8V if K=%H
and zero otherwise. We also write S, |, =inf, S}, |, and S}, , = inf], S}, .

Proposition 6.1. (See [7, Remark 1.6.6], [4, Proposition 3.2].) The followings hold.

(1) The conjugation functor S}-/l,v is simple. Moreover, any simple conjugation functor is iso-
morphic to S;I v for some simple pair (H, V).
(ii) The restriction functor SZ’V is simple. Moreover, any simple restriction functor is isomor-
phic to SZ vy Jor some simple pair (H, V).
(iii) The transfer functor S}i’ v is simple. Moreover, any simple transfer functor is isomorphic to
S}, v for some simple pair (H, V).

We recall, without proof, the description of the simple Mackey functors Sy, v := Sg_v from
[11]. Since the Mackey algebra pur(H) is a (non-unital) subalgebra of the Mackey algebra
ur(G) for H < G and the Mackey algebra ug (G/H) is a quotient of the Mackey algebra g (G)
for H < G, we obtain an induction functor indZﬁ Eg)) and an inflation functor infﬁ ﬁ Eg} ) Explicit

descriptions of these functors are given in [11, Section 4,5].

Lemma 6.2. (See [11, Lemma 8.1].) Let H be a subgroup of G and V be a simple RNg(H).
Then
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(1) The functor M = indgG( H) inf%‘(’;((z)) F Py has a unique minimal subfunctor SS’V generated
by M(H)=1V.

(i) The functor indgG( ") inf%‘é((:)) F Qv has a unique maximal subfunctor. Moreover, the quo-

. .. . G
tient is isomorphic to Sy \,.

Now we want to state the main result of this section. For this we need the following notation.
Let M be a Mackey functor and H < G be a minimal subgroup for M, that is, M (L) = 0 for
L < H and M(H) # 0. After [11], we define two subfunctors of M as follows:

Inuan(K)= Y Im(tf : M(L) > M(K))
L<K: L=gH
and
KuanK)= ()  Ker(rf : M(K) > M(L)).
L<K:L=gH

Theorem 6.3. We have the following isomorphisms of Mackey functors
SG , ~ind“ St | /K, g1 g0 ~T
H)V — p CH,V ind, SH_V(H) — “coindy S;LV(H)'
We prove the theorem in several steps. The first step is the following lemma.

Lemma 6.4. The subfunctor KK = ’Cindﬁ St (H) of the Mackey functor ind), SZ v i the unique

. P N
maximal subfunctor of ind, S Hv-

Proof. Let T be a proper subfunctor of indﬁ S Z,V. We are to show that 7 < IC, that is

T(K)C ﬂ Ker(rf)

L<LK: L=gH

for any K < G. So, we must show that for each K < G and any x € T(K), we have
rfx =0 for all H =g L < K. But since indg SZ’V(H) =V, it is evident that 7 (L) = 0 for
any L =g H. Indeed, otherwise T(H) =V as V is a simple RN g (H)-module. But, by defini-
tion of the action of ¢ 5 , the functor indg SZ’ v 18 generated by the images of the transfer maps tf
for H =g L < K, that is, we have Ty e g () = indy Sy . Hence the subfunctor 7' contain-

ing the subfunctor generated by T (H) = V is not proper, contradicting our assumption. Thus,
T < K asrequired. O

We denote the simple quotient of indj, Sf; |, by
Su.v =ind Sp |, /K.

Note that if (K, W) is another simple pair, then S’K,W is not isomorphig to S‘H,V. Indeed, since
K(H) =0, the subgroup H is still a minimal subgroup of the quotient Sy v and similarly, K is
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a minimal subgroup of S k.w. Hence for K # H, the simple modules S v and S K,w are non-
isomorphic. Also, for K = H, any morphism SH,V -8 k.w of Mackey functors induces a map
V — W of RNg(H)-modules. But, by the Schur’s lemma, any such map is either an isomor-
phism or the zero map. Thus S’Hy is not isomorphic to S‘K,W unless H=Kand V=W.

Having the above description, we get another proof of Thévenaz and Webb’s classification
theorem:

Theorem 6.5. Any simple Mackey functor is isomorphic to S H.v for some simple pair (H, V).

Proof. Let S be a simple Mackey functor with a minimal subgroup H and S(H) = V. It suffices
to show that there is a non-zero morphism of Mackey functors S H,v — S. We show that there is
a morphism of Mackey functors F :indj, Sg; , — § such that Fpy 0.

By Proposition 2.4, we have

Hom,, (indg SZ’V, S) ~ Hom,, (SZ’V, resg S).

But, 87, ,(K) =0 unless K =g H. So the identity map idy :V — V of RN (H)-modules
induces a non-zero map f: SZ v = resg S of p-modules. Hence the corresponding map F €
Hom,, (ind’; SZ v»S) is non-zero. Moreover, since indg SZ’V(H) =V, we have Fyg = fyg =

id # 0. Thus, the induced morphism F:S H,v — S is non-zero, as required. O

Hereafter, we identify S H.v With Sg,v and write Sy v when the group G is understood. We
complete the proof of Theorem 6.3 by the following lemma.

Lemma 6.6. The subfunctor T =1

coin

A ST (H) generated by T(H) =V is the unique minimal
subfunctor. Moreover, the subfunctor T is isbmorphic to Suv.

Proof. Let T be a non-zero subfunctor of coind’ S;—LV' We must show that Z < T'. It suffices to
show that 7' (H) # 0. Indeed, in that case, since coinds SITH,V(H) =V is simple, T(H) =V and
hence I < T. But K, qn S5y (H) = 0 by the definition of the map rg and the diagram

T(H) —— coind? 8§, ,, (H)

K K
E E

T(K) — coind Sh v (K)

commutes for all g € G. That is to say, rII{(T(K) #0, or T(H) # 0. The last claim follows from
the classification Theorem 6.5. O

To find the modules Sy v (K) for K < G, we need to know the subfunctor /C of indﬁ SZ’ v-In
particular, when /C is zero, we get a more explicit description. The following is a characterization
of the subfunctor K.
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Lemma 6.7. The subfunctor K of indg S Z’ v (K) coincides with the kernel of the mark homomor-
phism p:ind S;_)LV — coind’ Shy.y- Moreover, the subfunctor I of coind¥ Spyy is the image

of B.

Proof. As K is the unique maximal subfunctor of indﬁ Sfl v (K), we have ker g C K. So, it
suffices to show the inverse inclusion. Given K < G and x € K(K), then

Bk (x) = (nL(rfx))LgK,L:(;H =0

since rf x = 0 by definition of IC(K). Therefore, I C ker 8. The second claim is easy since Sy
isidentical. O

Now, using the next proposition from [7], and the above identification of the subfunctor /C,
we describe K, in some cases.

Proposition 6.8. (Cf. [7, Proposition 1.3.2], [10, Section 3].) The mark homomorphism Bk is
injective ifindg Sfl,v (K) has trivial |K |-torsion. It is an isomorphism if |K | is invertible in R.

Corollary 6.9.

@) Ifindz SZ’V(K) has trivial | K |-torsion, then K(K) = 0.
(ii) Ifindﬁ SZ’V(K) has trivial | K |-torsion for all K < G, then indg SZ,V is simple.
(iii) If|G|isinvertible in R, then indy SZ, v = coind}y Sy is simple for any simple pair (H, V).

Remark 6.10. In the case that |G| is invertible in R, we get two different descriptions of Sy v (K)
for K < G. By Corollary 6.9 and proof of Lemma 6.7, we have

Su.v(K) = ( P v

L<K: L=¢H

with the maps t,lg and rﬁ given explicitly in Section 2. Also, by Corollary 6.9, we have

K
Su.v(K) = ( [1 gV)

L<K: L=8H
with the maps t;{V and r}}’ given explicitly in Section 2.
7. Semisimplicity

Throughout this section, suppose R is a field in which |G| is a unit. It is well known that the
Mackey algebra over R is semisimple (see [7,11,12]). The first proof by Thévenaz and Webb [11]
is constructive and uses the semisimplicity of the twin functor. In this section we reprove this
result by giving a shorter proof of the fact that, in this case, the twin functor of a Mackey functor
is isomorphic to itself.
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Definition 7.1. (See Thévenaz [10].) Let M be a Mackey functor. A subgroup H < G is called a
primordial subgroup for M if def)f, rest M(H) #0.

Recall, without proof, the following lemma.

Lemma 7.2. (See [11, Lemma 9.4].) Let M be a Mackey functor and x be a subconjugacy closed
SJamily of subgroups of G. Then,

M =Kerr, ®Imt,
where

Kerry(K)= (] Kerrf and Imt(K)= Y  Imtf
L<K, Ley L<K, Ley

are Mackey subfunctors.
As a consequence of this lemma, we obtain the following decomposition.

Lemma 7.3. Let P = {Hy, Hi, ..., H,} be the set of all primordial subgroups of a Mackey func-
tor M taken up to conjugacy and indexed such that for i < j, no G-conjugate of H; is contained
in H;. Let T; denotes the subfunctor of M generated by def}f, rest M(H;). Then

M;@Ti

H;eP
as Mackey functors.
Proof. By Lemma 7.2, we have
M =Ty @ Kerrgy)
where
Kerrig,) =Kerr, and Ty=Imz,.
Here [ Hp] is the set of all G-conjugates of Hy and y is the subconjugacy closure of [ Hy]. Indeed,
we have the equalities since Hy is a minimal subgroup for M. We denote Kerr[g,) by No. Then,
clearly, No(Hp) =0 and No(Hy) = (def;, rest M)(H;). Therefore, by Lemma 7.2 we obtain
No=Ti & N,

where N1 = Kerrp,|. Note that Hy is a minimal subgroup for Ny. Applying the same procedure,
we obtain

M= T

H;eP

asrequired. O
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Let M; denote the conjugation functor generated by M; (H;) = def; rest M(H;).

Lemma 7.4. There is an isomorphism of Mackey functors
T; = coind¥ inf)f, M;.

Proof. Decomposing M; into simple summands and applying Corollary 6.9 to each summand,
we obtain

indg inf)’j M; = coind¥ inf)’, M;

where the isomorphism is given by the mark homomorphism. Note that we can decompose M;
into simple summands since it is clear that the conjugation algebra for G over R is semisimple
when |G| is invertible in R.

Now consider the following triangle.

T;
/ X
. M . 10 ﬂ . /j, .
ind) infj, M; ———————— coindzy 1nf)T, M;

where f is the mark homomorphism and 1 is the induction morphism defined by w(tf Qv) =
tfv for H=¢ L < K <G and v € M;(L). The map v is a morphism of Mackey functors since
M; is a minimal subgroup both for 7; and for indﬁ infﬁ M, (thus ¢ commutes with restriction).
The map ¢ is given by

ok (w) = ('{w)LgK,LIGH

where K < G and w € T;(K). Note that ¥ is surjective since 7; is generated by its value on the
conjugacy class of H;. Also, since tf acts as the zero map on inf)’, M; for L # K, the composition
¢ o Y is the mark homomorphism, that is, the triangle commutes. Moreover since f is injective,
the map 1 is also injective. Hence it is an isomorphism. Now it follows that ¢ = By~ ! is also
an isomorphism, as required. O

Finally we are ready to prove the semisimplicity theorem.

Theorem 7.5. (See [11, Theorem 9.1].) The Mackey algebra ur(G) is semisimple if R is a field
of characteristic coprime to |G|.

Proof. Assume the notation of the section. By Lemma 7.3 and Lemma 7.4, we have

M= @ coind¥ inf; M;.
H; eP
Inflation and coinduction functors are additive. So decomposing M; (H;) into simple RN g (H;)-

modules, we obtain a decomposition of the Mackey functor 7;. But, by Corollary 6.9, the Mackey
functor coind} inf]r/ M; is simple if M;(H;) is a simple RN g(H;)-module. 0O
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Corollary 7.6. Let M and N be Mackey functors such that
def}, res) M = def, res) N
as conjugation functors. Then M = N as Mackey functors. In particular,
M = coind? inf), def), resy M.

Proof. This follows from Theorem 7.5 since the simple summands of a Mackey functor M are
determined by the y-module def; res? M. Note that the second statement is Corollary 4.4 in [10]
and it holds for Mackey functors by Theorem 12.3 of that paper. O
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