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Abstract

Let F and K be algebraically closed fields of characteristics p > 0 and 0, respectively. For any finite group
G we denote by KRF(G) = K⊗Z G0(FG) the modular representation algebra of G over K where G0(FG)

is the Grothendieck group of finitely generated FG-modules with respect to exact sequences. The usual
operations induction, inflation, restriction, and transport of structure with a group isomorphism between the
finitely generated modules of group algebras over F induce maps between modular representation algebras
making KRF an inflation functor. We show that the composition factors of KRF are precisely the simple
inflation functors Si

C,V
where C ranges over all nonisomorphic cyclic p′-groups and V ranges over all

nonisomorphic simple KOut(C)-modules. Moreover each composition factor has multiplicity 1. We also
give a filtration of KRF.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to describe the structure of the inflation functor KRF mapping
a finite group G to K ⊗Z G0(G) where G0(G) is the Grothendieck group of finite dimensional
FG-modules. The cases CRC (as a biset functor) and kRQ (as a p-biset functor over a field k of
characteristic p) were dealt by Bouc [3, Proposition 27] and Bouc [4]. Another related work is
Webb [7] in which he studied inflation and global Mackey functors, and described the structure
of cohomology groups as these functors.
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One of our main result Theorem 6.17 states that there is a chain of inflation functors

KRF = L−1 ⊃ L0 ⊃ L1 ⊃ · · · ⊃ Lj ⊃ · · ·

such that
⋂

j Lj = 0 and each Lj−1/Lj is semisimple with

Lj−1/Lj
∼=

⊕
C,V

Si
C,V

where C ranges over all nonisomorphic cyclic p′-groups with �(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules. Here, �(C) is the number of prime divisors of the
order of C counted with multiplicities. Moreover Lj is the inflation subfunctor of KRF given
for any finite group G by

Lj(G) =
⋂
X

Ker
(
KRF

(
ResG

X

)
: KRF(G) → KRF(X)

)

where X ranges over all cyclic p′-subgroups of G with �(X) � j . The question may be raised as
to the finding a similar result for the deflation functor KPF, where KPF is the functor mapping
a finite group G to K ⊗Z K0(G) and K0(G) is the Grothendieck group of finite dimensional
projective FG-modules. Such a result follows immediately from Theorem 7.1 in which we prove
that

KPF
∼= KR∗

F

as deflation functors, where KR∗
F

denotes the dual of KRF.
A biset functor, introduced by Bouc [3], is a notion having five kind of operations unifying

the similar operations induction, inflation, transport of structure with a group isomorphism, de-
flation, and restriction which occur in group representation theory. It is defined to be an R-linear
(covariant) functor from an R-linear category b, called the biset category, to the category of (left)
R-modules where R is a commutative unital ring.

To realize some representation theoretic algebras as functors one may need to consider func-
tors from some (nonfull) subcategories of the biset category to the category of R-modules
because some bisets (morphisms of b) do not induce maps between these algebras in a natural
way. For KRF a similar situation occurs since bisets corresponding to deflations may not induce
exact functors between finitely generated module categories of group algebras over the field F

whose characteristic is p > 0. For this reason we also consider inflation functors which are de-
fined to be functors from the category i to the category of R-modules where i is the subcategory
of b with same objects and with morphisms bisets which are free from right.

The aim of this paper is to study KRF as inflation functor and in particular to find its com-
position factors together with their multiplicities. Our approach to this problem can be explained
briefly as follows.

We first review some of the standard facts on the subject given in Bouc [3]. We then study
properties of two specific subfunctors of a given functor M in Section 3 in a slight general form,
namely the subfunctors ImM and KerM which are roughly defined to be sum of images and
intersection of preimages. Our reason in studying these subfunctors comes from the importance
of them in the context of (ordinary) Mackey functors. For a functor M whose KerM subfunctor
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is 0, in Proposition 3.3 we construct a bijective correspondence between the minimal subfunctors
of M and the minimal submodules of a coordinate module of M . We next observe that KerS

subfunctor of any simple inflation functor S = Si
H,V considered as (global) Mackey functor is 0.

This leads us to state Proposition 3.8 saying that any simple inflation functor Si
H,V has a unique

minimal Mackey subfunctor and this subfunctor is isomorphic to Sm
H,V . Using the semisimplicity

of (global) Mackey functors over fields of characteristic 0, which can be found in Webb [8], we
observe in Theorem 3.10 that over fields of characteristic 0, any simple inflation functor Si

H,V is
isomorphic to Sm

H,V as Mackey functors.
These observations imply Proposition 4.5 in which we prove that the multiplicity of a simple

inflation functor Si
H,V in KRF is equal to the multiplicity of the simple Mackey functor Sm

H,V

in KRF which is the dimension of the K-space

HomKOut(H)

(
V,KRF(H)/Im

H KRF(H)
)
,

where Im
H is the ideal of Endm(H) spanned by the bisets factorizing through groups of order less

than |H |, and Endm(H) is the K-algebra of (H,H)-bisets which are free from left and right, see
Section 2.

We begin to study composition factors of KRF in Section 5. Using Artin’s induction theo-
rem we show in Proposition 5.2 that if Si

H,V is a composition factor of KRF then H is a cyclic
p′-group. Next we include Lemma 5.4 about the multiplicities of composition factors with min-
imal subgroups are direct products of two groups of coprime orders. This reduces the problem
to computing the multiplicities of composition factors of KRF of the form Si

Cqn ,V where q is a

prime different from p, n is a natural number, and Cqn is a cyclic group of order qn. For this
kind of composition factors, by calculating the dimensions of the above Hom spaces we are able
to show in Lemma 5.3 that the multiplicities are all equal to 1. We state our final result about this
topic as Theorem 5.5.

Our aim in Section 6 is to study subfunctors of KRF and in particular sections of KRF which
are semisimple functors. Motivated by the results which we obtained already, we define two
subfunctors Kn � Fn of KRF for a natural number n. Given any cyclic p′-group C of order n, we
prove in Proposition 6.14 that Fn/Kn is a semisimple inflation functor whose simple summands
are the simple inflation functors Si

C,V where V ranges over all nonisomorphic simple K Out(C)-
modules. Finally, using these subfunctors we construct some series of KRF whose factors are
semisimple inflation functors and cover all composition factors of KRF, see Theorem 6.15 and
its consequences.

Our notations are mostly standard. Let H � G � K be finite groups. By the notation
HgK ⊆ G we mean that g ranges over a complete set of representatives of double cosets of
(H,K) in G. The notation S �∗ G appearing in an index set means that S ranges over all non-
G-conjugate subgroups of G. The coefficient rings on which we are working will be explained
at the beginnings of each section.

2. Preliminaries

In this section, we simply collect some crucial results on bisets and functors in Bouc [3].
Throughout R is a commutative unital ring. Let G, H , and K be finite groups. A (G,H)-biset is a
finite set U having a left G-action and a right H -action such that the two actions commute. Given
a (G,H)-biset U and an (H,K)-biset V , the cartesian product U × V becomes a right H -set
with the action (u, v)h = (uh,h−1v). If we let u ⊗ v denote the H -orbit of U × V containing
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(u, v), then the set U ×H V of the H -orbits of U × V becomes a (G,K)-biset with the actions
g(u⊗v)k = gu⊗vk. Any (G,H)-biset U is a left G×H -set by the action (g,h)u = guh−1, and
conversely. Terminology for (G,H)-bisets is inherited from terminology for G × H -sets. Thus
transitive (G,H)-bisets are isomorphic to bisets of the form (G × H)/L where L is a subgroup
G × H . We write [U ] for the isomorphism class of a biset U . Let L be a subgroup of G × H .
We define

p1(L) = {
g ∈ G: ∃h ∈ H, (g,h) ∈ L

}
, and k1(L) = {

g ∈ G: (g,1) ∈ L
}
,

p2(L) = {
h ∈ H : ∃g ∈ G, (g,h) ∈ L

}
, and k2(L) = {

h ∈ H : (1, h) ∈ L
}
.

Then ki(L) is a normal subgroup pi(L), and k1(L)×k2(L) is a normal subgroup of L, and the
three quotient groups which we denote by q(L) are isomorphic. If L � G × H and M � H × K

we write

L ∗ M = {
(g, k) ∈ G × K: ∃h ∈ H, (g,h) ∈ L, (h, k) ∈ M

}
.

Proposition 2.1. (See [3].) Let L � G × H and M � H × K . Then

(
(G × H)/L

) ×H

(
(H × K)/M

) ∼=
∑

p2(L)hp1(M)⊆H

(G × K)/
(
L ∗ (h,1)M

)
.

There are five types of basic bisets so that any transitive biset is isomorphic to a product of
them. For H � G� N and isomorphism of groups ψ :G → G′, they are

IndG
H = (G × H)/

{
(h,h): h ∈ H

}
,

ResG
H = (H × G)/

{
(h,h): h ∈ H

}
,

InfGG/N = (G × G/N)/
{
(g, gN): g ∈ G

}
,

DefGG/N = (G/N × G)/
{
(gN,g): g ∈ G

}
,

IsoG′
G (ψ) = (G′ × G)/

{(
ψ(g), g

)
: g ∈ G

}
.

For any L � G × H we have

(G × H)/L ∼= IndG
p1(L) Infp1(L)

p1(L)/k1(L)
Isop1(L)/k1(L)

p2(L)/k2(L)
(ψ)Defp2(L)

p2(L)/k2(L)
ResH

p2(L)

where ψ(hk2(L)) = gk1(L) if and only if (g,h) ∈ L.
Let χ be a family of finite groups closed under taking subgroups, taking isomorphisms and

taking quotients. We define the biset category b (on χ over R), which is R-linear, as follows:

• The objects are the groups in χ .
• If H and G are in χ then Homb(H,G) = RB(G × H) is the Burnside group of (G,H)-

bisets, with coefficients in R.
• Composition of morphisms is obtained by R-linearity from the product (U,V ) �→ U ×H V .
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Any R-linear (covariant) functor from the category b to the category of left R-modules is called
a biset functor (on χ over R). We denote by Fb the category of biset functors, which is an abelian
category.

We also want to consider some nonfull subcategories of b and R-linear functors from these
subcategories to the category of left R-modules. Let i be the subcategory of b with the same
objects and with the morphisms

Homi(H,G) =
⊕

L�∗G×H : k2(L)=1

R
[
(G × H)/L

]
.

An R-linear functor from i to the category of left R-modules is called an inflation functor (on χ

over R). We denote by Fi the category of inflation functors.
Let m be the subcategory of b with the same objects and with the morphisms

Homm(H,G) =
⊕

L�∗G×H : k1(L)=1=k2(L)

R
[
(G × H)/L

]
.

An R-linear functor from m to the category of left R-modules is called a (global) Mackey functor
(on χ over R). We denote by Fm the category of Mackey functors. Mackey functors can also be
defined on a family χ of finite groups closed under taking subgroups and taking isomorphism.

These three functor categories have similar theories. For example their simple objects are
parameterized in the same manner. From now on in this section, a functor means any of biset,
inflation or Mackey.

For any groups X and Y in χ the composition of morphism gives an (End(Y ),End(X))-
bimodule structure on Hom(X,Y ), and for a functor M we have an End(X)-module structure on
M(X) given by f mX = M(f )(mX). For a group X in χ and an End(X)-module V we define a
functor LX,V and its subfunctor JX,V as follows:

LX,V (Y ) = Hom(X,Y ) ⊗End(X) V ,

LX,V (f ) :LX,V (Y ) → LX,V (Z), θ ⊗ v �→ f θ ⊗ v,

JX,V (Y ) =
⋂

f ∈Hom(Y,X)

Ker
(
LX,V (f )

)
.

Having defined the functors LX,V we define two important functors between the functor cat-
egory F (i.e., any of Fb, Fi or Fm) and End(X)-module category,

LX,− : End(X)-Mod → F, V �→ LX,V ,

and if ϕ :V → W is an End(X)-module homomorphism then LX,−(ϕ) :LX,V → LX,W is the
natural transformation whose Y ∈ χ component is the map LX,V (Y ) → LX,W (Y ), given by f ⊗
v �→ f ⊗ ϕ(v),

eX :F → End(X)-Mod, M �→ M(X),

and if π :M → N is a morphism of functors (i.e., a natural transformation) then eX(π) is the X

component πX :M(X) → N(X) of π .
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Proposition 2.2. (See [3].) Let X be a group in χ . Then:

(1) eX is an exact functor and LX,− is a right exact functor.
(2) (LX,−, eX) is an adjoint pair.
(3) If V is a projective End(X)-module then LX,V is a projective functor.
(4) If V is an indecomposable End(X)-module then LX,V is an indecomposable functor.

Let M be a functor. A group H in χ is called a minimal subgroup of M if M(H) �= 0 and
M(K) = 0 for all K ∈ χ with |K| < |H |.

Proposition 2.3. (See [3].) Let X be a group in χ and let V be a simple End(X)-module. Then,
JX,V is the unique maximal subfunctor of LX,V and LX,V /JX,V is a simple functor whose eval-
uation at X is V . However, X may not be a minimal subgroup of this simple functor.

Proposition 2.4. (See [3].) For a group G in χ , there is a direct sum decomposition

End(G) = Ext(G) ⊕ IG

where IG is a two sided ideal of End(G) with an R-basis consisting of the elements [(G×G)/L]
of End(G) with |q(L)| < |G|, and Ext(G) is a unital subalgebra of End(G) isomorphic to the
group algebra R Out(G) of the group of outer automorphisms of G.

A simple functor S with a minimal subgroup H is denoted by SH,V if S(H) = V .

Theorem 2.5. (See [3].) In the following an R Out(H)-module is considered as an End(H)-
module via the natural projection map End(H) → Ext(H) ∼= R Out(H) given in 2.4.

(1) Let H be a group in χ and let V be a simple R Out(H)-module. Then H is a minimal
subgroup of the simple functor LH,V /JH,V . So LH,V /JH,V = SH,V .

(2) Let S be a simple functor and let H be a minimal subgroup S. Then IH annihilates S(H),
and S(H) is a simple R Out(H)-module, and S ∼= SH,V where S(H) = V .

(3) SH,V
∼= SK,W if and only if there is a group isomorphism H → K transporting V to W .

We use the notations like S = Sb
H,V , L = Li

X,V , I = Im
G , . . . to indicate respectively that S

is the biset functor, L is the inflation functor, I is the ideal of Endm(G) in 2.4. For a functor
M we also use the notation Mχ to indicate that it is defined on χ . A functor can also be con-
sidered as a module of the category algebra of the skeletal category of its domain category (i.e.,
any of b, i, or m). Identifying the isomorphic groups in χ we can form the category algebra
Γ = ⊕

X,Y∈[χ] R Hom(X,Y ) with product being the composition of morphisms whenever they
are composable and zero otherwise, where the notation [χ] denotes the representatives of the
isomorphism classes of groups in χ . If M is a functor on χ over R then M̃ = ⊕

X∈[χ] M(X) is
a Γ -module with the obvious action, and conversely. In this way one can define functors on a
finite family of finite groups χ such that no two groups in χ are isomorphic and if X is in χ then
any section of X is isomorphic to a group in χ . Thus in this situation functors may be regarded
as modules of finite dimensional algebras, allowing one to apply the theory of modules of finite
dimensional algebras. We will follow this approach only when we need to consider composi-
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tion series, composition factors, etc. of functors. For a more detailed study of this approach see
Webb [9] for arbitrary functor categories, and Barker [1] for biset functor categories.

3. Maximal and minimal subfunctors

Our main aim in this section is to show that, over characteristic 0 fields, any simple inflation
functor Si

H,V is isomorphic to Sm
H,V as (global) Mackey functors. We divide this section into two

parts. In the first part we include some general results which will be crucial for some later results.

3.1. Some generalities

In this section R is a commutative unital ring, A is an (small) R-linear category, and F be the
category of R-linear (covariant) functors from A to the category of left R-modules.

For a functor M ∈ F, an object X of A, and an EndA(X)-submodule W of M(X), we define
two subfunctors ImM

X,W and KerMX,W of M whose evaluations at any object Y of A are given as
follows:

ImM
X,W (Y ) =

∑
f ∈HomA(X,Y )

M(f )(W),

KerMX,W (Y ) =
⋂

f ∈HomA(Y,X)

M(f )−1(W).

We collect some properties of these subfunctors in the following result.
The usage of these subfunctors in (ordinary) Mackey functor categories is well known. And

an analogue of 3.5 is proved in Bourizk [6, Lemme 1] for some subfunctors of the Burnside
functor considered as biset functors.

Remark 3.1. Let M ∈ F be a functor, X be an object of A, and N be a subfunctor of M . Suppose
that U and W are EndA(X)-submodules of N(X) and M(X), respectively. Then:

(1) ImM
X,W and KerMX,W are subfunctors of M such that ImM

X,W (X) = W and KerMX,W (X) = W .

(2) If Y is an object of A, then ImM
Y,N(Y ) = ImN

Y,N(Y ) is a subfunctor of N and N is a subfunctor

of KerMY,N(Y ). So ImM
X,W is the subfunctor of M generated by W .

(3) If W ′ is an EndA(X)-submodule of W , then ImM
X,W ′ and KerM

X,W ′ are subfunctors of ImM
X,W

and KerMX,W , respectively.

(4) If W ′ is an EndA(X)-submodule of M(X), then ImM
X,W ′ + ImM

X,W = ImM
X,W ′+W

and

KerM
X,W ′ ∩KerMX,W = KerM

X,W ′∩W
.

(5) KerMX,U ∩N = KerNX,U , and if I = KerMX,0 then KerIX,0 = I .

(6) (ImM
X,W +N)/N = ImM/N

X,(W+N(X))/N(X)
and KerM

X,N(X)
/N = KerM/N

X,0 .

Proof. All parts follow immediately from the definitions of Im and Ker. �
Lemma 3.2. Let M ∈ F be a functor and X be an object of A such that M(X) is nonzero. Assume
that KerM = 0. Then:
X,0
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(1) If W is a minimal EndA(X)-submodule of M(X), then ImM
X,W is a minimal subfunctor of M .

(2) If I is a minimal subfunctor of M , then I (X) is a minimal EndA(X)-submodule of M(X).
Moreover I = ImM

X,I (X).

Proof. (1) Let W be a minimal EndA(X)-submodule of M(X). If N is a subfunctor of M such
that N � ImM

X,W , then N(X) is an EndA(X)-submodule of ImM
X,W (X) = W implying by the

minimality of W that N(X) = 0 or N(X) = W . Suppose that N(X) = 0. Then by 3.1 we have
that N is a subfunctor of KerMX,N(X) = KerMX,0 = 0, implying that N = 0. In the case N(X) = W ,

it follows by 3.1 that ImM
X,W is a subfunctor of N ; so N = ImM

X,W . Hence ImM
X,W is a minimal

subfunctor of M .
(2) Let I be a minimal subfunctor of M . As I is a subfunctor of KerMX,I (X) by 3.1, I (X) must

be nonzero. If there is a nonzero proper EndA(X)-submodule W of I (X), then 3.1 implies that
ImM

X,W is a nonzero proper subfunctor of I , contradicting to the minimality of I . Hence I (X)

is a minimal EndA(X)-submodule of M(X). Finally, as I (X) is nonzero it follows by 3.1 that
ImM

X,I (X) = ImI
X,I (X) is a nonzero subfunctor of I . Now the equality I = ImM

X,I (X) follows by the
minimality of I . �

The previous lemma implies

Proposition 3.3. Let M ∈ F be a functor and X be an object of A such that M(X) is nonzero. As-
sume that KerMX,0 = 0. Then the maps I → I (X), ImM

X,W ← W define a bijective correspondence
between the minimal subfunctors of M and the minimal EndA(X)-submodules of M(X).

Lemma 3.4. Let M ∈ F be a functor and X be an object of A such that M(X) is nonzero. Assume
that ImM

X,M(X)
= M . Then:

(1) If W is a maximal EndA(X)-submodule of M(X), then KerMX,W is a maximal subfunctor
of M .

(2) If J is a maximal subfunctor of M , then J (X) is a maximal EndA(X)-submodule of M(X).
Moreover J = KerMX,J (X).

Proof. (1) Let W be a maximal EndA(X)-submodule of M(X). Then by 3.1 KerMX,W is not

equal to M . If N is a subfunctor of M containing KerMX,W , then the maximality of W implies that

W = N(X) or N(X) = M(X). In the case N(X) = M(X), it follows by 3.1 that M = ImM
X,M(X)

is a subfunctor N , implying that M = N . Assume now that N(X) = W . Then 3.1 gives that N is
a subfunctor of KerMX,W , and so N = KerMX,W . Hence KerMX,W is a maximal subfunctor of M .

(2) Let J be a maximal subfunctor of M . In particular J is not equal to M , implying by the
condition ImM

X,M(X) = M that J (X) is not equal to M(X). If there is an EndA(X)-submodule W

of M(X) containing J (X) then by 3.1 we have J � KerMX,J (X) � KerMX,W . The maximality of J

implies that KerMX,W = M or KerMX,W = J . And by evaluating at X we see that W = M(X) or
W = J (X). Hence J (X) is a maximal EndA(X)-submodule of M(X). Finally, by 3.1 we have
J � KerMX,J (X). The equality follows because J is maximal subfunctor of M and KerMX,J (X) is
not equal to M . �

The previous lemma implies
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Proposition 3.5. Let M ∈ F be a functor and X be an object of A such that M(X) is nonzero.
Assume that ImM

X,M(X) = M . Then the maps J → J (X), KerMX,W ← W define a bijective cor-
respondence between the maximal subfunctors of M and the maximal EndA(X)-submodules
of M(X).

Corollary 3.6. Let M ∈ F be a functor and X be an object of A such that M(X) is nonzero. Then
M is simple if and only if ImM

X,M(X) = M , KerMX,0 = 0, and M(X) is a simple EndA(X)-module.

Proof. Suppose that M is simple. For any nonzero proper EndA(X)-submodule W of M(X), it
follows by 3.1 that ImM

X,W �= 0 and KerMX,0 �= M are proper subfunctors of M . Since M is simple,

W = M(X) and KerMX,0 = 0. So M(X) is a simple module and ImM
X,M(X) = M . Conversely, if

M satisfies the given conditions then it follows by 3.5 that KerMX,0 = 0 is the unique maximal
subfunctor M . So M is simple. �

Using the properties of Im and Ker given in 3.1, we give an obvious generalization of the
previous result.

Corollary 3.7. Let M ∈ F be a functor and X be an object of A such that N(X) is nonzero for all
nonzero subfunctors N of M . Then M is semisimple if and only if ImM

X,M(X) = M , KerMX,0 = 0,
and M(X) is a semisimple EndA(X)-module.

3.2. Applications

Throughout this section we work over an arbitrary field L. We want to give some applications
of the general results obtained in Section 3.1. Especially, we want to reduce the problem of
finding multiplicities of simple inflation functors in KRF to the problem of finding multiplicities
of simple Mackey functors in KRF.

Proposition 3.8. Any simple inflation functor Si
H,V has a unique minimal Mackey subfunctor M .

Moreover M ∼= Sm
H,V .

Proof. Let S = Si
H,V , L = Li

H,V , and J = J i
H,V . We will show that KerS,m

H,0 = 0. Take any finite
group G. For any T � H × G with k2(T )=1 and |q(T )| < |H |, we see that

[
(H × G)/T

]
Homi(H,G) ⊆ I i

H

and so annihilates V = L(H), see also Bouc [3]. Consequently the image of the map

L
([

(H × G)/T
])

:L(G) → L(H)

is zero. Hence

S
([

(H × G)/T
])(

S(G)
) = (

L
([

(H × G)/T
])(

L(G)
) + J (H)

)
/J (H) = 0.

As S is a simple inflation functor, KerS,i
H,0 = 0 by 3.6. As |q(T )| = |H | implies k1(T ) = 1, we

have
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0 = KerS,i
H,0

=
⋂

T �H×G: k2(L)=1

Ker
(
S
([

(H × G)/T
]))

=
⋂

T �H×G: k2(L)=1=k1(L)

Ker
(
S
([

(H × G)/T
]))

= KerS,m
H,0 .

Now 3.3 implies that M = ImS,m
H,V is the unique minimal Mackey subfunctor of S, because

S(H) is a simple Endm(H)-module. Finally it is clear that M ∼= Sm
H,V . �

The next result allows us to give a nice consequence of 3.8.

Theorem 3.9.

(1) (Bouc) Let L be of characteristic 0. Then, the biset functor category on χ over L is semisim-
ple if and only if every group in χ is cyclic.

(2) (Thévenaz–Webb) Let L be of characteristic 0. Then the (global) Mackey functor category
(on χ ) over L is semisimple.

(3) The inflation functor category on χ over L is semisimple if and only if every group in χ is
trivial.

Proof. For the parts (1) and (2), see respectively Barker [1] and Webb [8, Theorem 4.1].
(3) The sufficiency is obvious. Suppose that the inflation functor category is semisimple. So

every simple inflation functor, in particular Si
1,L

, is projective. Since Endi(1) ∼= L it follows

by 2.2 that Li
1,L

is the projective cover of Si
1,L

. By the definition of the functors LY,W we see

that Li
1,L

is isomorphic to the Burnside (inflation) functor Bi. Hence Si
1,L

∼= Bi. Suppose that χ

contains a group G with |G| �= 1. Then dimL Bi(G) � 2. So it suffices to show that the dimension
of Si

1,L
(G) is 1 for any finite group G. One way of doing this is to use the arguments in Bouc

[3] which show that, for a simple functor S, the dimension of the space S(G) at a finite group G

is equal to the rank of a certain matrix. Alternatively, as the referee suggested, we can use an
explicit description of the simple functor Si

1,L
. For any finite group G, we let the vector space

M(G) be equal to L. If U is a right free (H,G)-biset, then we let the map M([U ]) : L → L be
equal to multiplication by |U/G|, where |U/G| denotes the number of G-orbits on U . Then M

becomes an inflation functor, because if V is a right free (K,H)-biset, then |(V ×H U)/G| =
|V/H ||U/G|. Now one can see easily, for example by using 3.6, that M is the simple inflation
functor Si

1,L
. Therefore G ∈ χ implies that G = 1. �

Theorem 3.10. Let L be of characteristic 0. Then, any simple inflation functor Si
H,V is isomor-

phic to Sm
H,V as Mackey functors.

Proof. Proposition 3.8 implies that Si
H,V has a unique minimal Mackey subfunctor isomorphic

to Sm
H,V . As Mackey functors over L are semisimple from 3.9, we must have Si

H,V
∼= nSm

H,V for
some natural number n. Evaluation at H shows that n = 1. �
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Proposition 3.8 gives some information about restriction of a functor to a nonfull subcategory
of its domain category. The next result shows that restriction to full subcategories is not interest-
ing. The same result for functors from arbitrary categories (satisfying some finiteness conditions)
to the category of left R-modules can be found in Webb [9]. We give its easy justification.

Remark 3.11. Let Y ⊆ χ be families of finite groups satisfying appropriate conditions given in
Section 2. Let S

χ
H,V be a functor (i.e., any of biset, inflation, or Mackey) on χ . Then its restriction

↓χ

Y
S

χ
H,V to the family Y is S

Y

H,V if H ∈ Y and 0 otherwise.

Proof. If ↓χ

Y
S

χ
H,V is nonzero then there is a G ∈ Y so that S

χ
H,V (G) is nonzero, in particular H

is isomorphic to a section (to a subgroup in Mackey functor case) of G. Conditions on Y imply
then that H ∈ Y. Let H ∈ Y. Since morphism sets are the same for the categories with respective
objects elements of χ and of Y, it is clear that S

χ
H,V satisfies the conditions in 3.6 as a functor

on Y because, being simple, it satisfies them as a functor on χ . Thus ↓χ

Y
S

χ
H,V

∼= S
Y

H,V . �
We close this section by giving further applications of the general results obtained in the first

part. However, we will not make use of the following result throughout the paper.

Proposition 3.12.

(1) Any simple biset functor Sb
H,V has a unique maximal inflation subfunctor M . Moreover

Sb
H,V /M ∼= Si

H,V .
(2) (Referee) Let V be a simple L Out(H)-module and H be any finite abelian group. Then the

biset functor Lb
H,V has a unique maximal inflation subfunctor M . Moreover Lb

H,V /M ∼=
Si

H,V .

Proof. (1) Let S = Sb
H,V , L = Lb

H,V , and J = Jb
H,V . We will show that S is generated by S(H)

as an inflation functor. Take any finite group G. By 2.5, S = L/J and the ideal Ib
H annihilates

S(H) = V . Thus for any T � G × H with |q(T )| < |H | we have

[
(G × H)/T

] ⊗Endb(H) V ⊆ J (G) so that S
([

(G × H)/T
])(

S(H)
) = 0,

see also Bouc [3]. Since |q(T )| = |H | implies that k2(T ) = 1, if |q(T )| = |H | then [(G ×
H)/T ] ∈ Homi(H,G). As S is a simple biset functor, from 3.6 S is generated by S(H) as a
biset functor. Hence,

S(G) =
∑

T �G×H

S
([

(G × H)/T
])(

S(H)
) =

∑
T �G×H : k2(L)=1

S
([

(G × H)/T
])(

S(H)
)
.

Therefore S is generated by S(H) as an inflation functor, that is S = ImS,i
H,S(H)

. Now 3.5 implies

that M = KerS,i
H,0 is the unique maximal inflation subfunctor of S, because S(H) is a simple

Endi(H)-module. Finally, as M(H) = 0 it is clear that S/M is isomorphic to Si
H,V .

(2) Let L = Lb
H,V . We will first show that L is generated by L(H) as an inflation functor. For

this, we will use a method suggested by the referee which uses the argument of Bouc–Thévenaz
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[5, (9.1) Lemma]. Take any finite group G. If T � G × H , and if Q = q(T ), we can factorize
(G × H)/T as

(G × H)/T ∼= (G × Q)/A ×Q (Q × H)/B

for suitable subgroups A � G×Q and B � Q×H . Since H is an abelian group, any subquotient
of H is actually a quotient group of H , see [5, (9.1) Lemma]. In particular, there is a subgroup
N of H such that H/N ∼= Q. So there are subgroups C � Q × H and D � H × Q, such that

(Q × H)/C ×H (H × Q)/D

is the identity (Q,Q)-biset, where

(Q × H)/C ∼= IsoQ
H/N DefHH/N and (H × Q)/D ∼= InfHH/N IsoH/N

Q .

Putting this in the previous factorization gives

(G × H)/T ∼= (
(G × Q)/A ×Q (Q × H)/C

) ×H

(
(H × Q)/D ×Q (Q × H)/B

)
,

and the (H,H) biset on the right will act by 0 on V , unless Q ∼= H . In the case Q ∼= H , it follows
that k2(T ) = 1 so that (G × H)/T is a right free (G,H)-biset. This shows that L is generated
by L(H) as an inflation functor, because by the very definition of L, it is generated by L(H) as
a biset functor.

Now 3.5 implies that M = KerL,i
H,0 is the unique maximal inflation subfunctor of L, because

L(H) = V is a simple Endi(H)-module. Moreover, by [5, (9.1) Lemma], L(X) = 0 if H is not
isomorphic to a section of X. This implies that H is a minimal subgroup of the simple inflation
functor L/M , because M(H) = 0. Hence L/M must be isomorphic to Si

H,V . �
4. Modules of endomorphisms

In this section we work over a field L, and by a functor we mean any of biset, inflation, or
Mackey. We first give some easy results relating functors and modules of endomorphism algebras
of objects of the domain categories. Our goal is to obtain that the multiplicity of a simple inflation
functor Si

H,V in KRF is equal to the dimension of the K-space

HomKOut(H)

(
V,KRF(H)/Im

H KRF(H)
)

which follows from part (4) of 4.5.

Remark 4.1. Let G be a finite group, and let S1 and S2 be two simple functors with S1(G) �= 0.
Then:

(1) S1(G) is a simple End(G)-module.
(2) If W = S1(G) then S1 ∼= LG,W/JG,W .
(3) If S1(G) ∼= S2(G) as End(G)-modules then S1 ∼= S2 as functors.
(4) Let W = S1(G). Then, IG annihilates W if and only if S1 ∼= SG,W .
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Proof. (1) By 3.6.
(2) By 2.2 the pair (LG,−, eG) is an adjoint pair, implying the existence of an L-space iso-

morphism between 0 �= EndEnd(G)(W) and HomF(LG,W ,S1). So there is a nonzero functor
homomorphism π :LG,W → S1 which is necessarily surjective by the simplicity of S1. Then
the kernel of π is a maximal subfunctor of LG,W , and so equal to JG,W because JG,W is the
unique maximal subfunctor of LG,W by 2.3. Hence S1 ∼= LG,W/JG,W .

(3) If S1(G) ∼= S2(G) = W then by part (2) both of S1 and S2 are isomorphic to LG,W/JG,W ,
implying that S1 ∼= S2.

(4) If IG annihilates W then W is a simple L Out(G)-module, and part (2) and 2.5 imply that
S1 ∼= LG,W/JG,W

∼= SG,W . If S1 ∼= SG,W then by 2.5 IG annihilates W . �
The previous result implies

Proposition 4.2. Let G be a finite group. Then the maps SH,V → SH,V (G), LG,W/JG,W ← W

define a bijective correspondence between the isomorphism classes of simple functors whose
evaluations at G are nonzero and the isomorphism classes of simple End(G)-modules.

If SH,V is a simple functor and E is the End(H)-projective cover of V , then by Bouc [3,
Lemme 2] the functor LH,E is the projective cover of SH,V . Therefore the following is obvious.

Remark 4.3. (See [3, Lemme 2].) Let SH,V be a simple functor and G be a finite group. If
SH,V (G) is nonzero then the End(G)-projective cover P(SH,V (G)) of SH,V (G) is isomorphic
to LH,P (V )(G) as End(G)-modules, where P(V ) is the End(H)-projective cover of V .

In the next section we will need some results about the multiplicities of simple functors as
composition factors of a given functor M . Since finitely generated modules of finite dimensional
algebras have composition series of finite length whose composition factors are unique up to
isomorphism and ordering, to guarantee the same for functors we will assume in the rest of this
section that functors are defined on a finite family of χ of finite groups satisfying the conditions
given in the last paragraph of Section 2.

We first make an easy remark.

Remark 4.4. Let L be algebraically closed. Suppose that A is a finite dimensional semisimple
L-algebra admitting a direct sum decomposition A = B ⊕I where I is a two sided ideal of A and
B is a unital subalgebra of A. Let V be a simple B-module (so we may regard V as an A-module
by putting IV = 0). Then, for any finitely generated A-module S the multiplicity of V in S as an
A-module composition factor is equal to dimL HomB(V,S/IS).

Proof. This is obvious, because both of A and B are finite dimensional semisimple L-algebras,
and IV = 0. �

By the multiplicity of S in M we mean the multiplicity of S in M as a composition factor
of M . Part (4) is the only part of the following result that we will use. For completeness we write
down all implications.

Proposition 4.5. Let L be algebraically closed and let M be a functor such that M(X) is a finite
dimensional L-space for all X in χ .
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(1) Given a simple functor SH,V , the following numbers are equal:
(a) The multiplicity of SH,V in M as functors.
(b) The multiplicity of V in M(H) as End(H)-modules.
(c) dimL HomEnd(H)(P (V ),M(H)) where P(V ) is the End(H)-projective cover of V .

(2) Assume that L is of characteristic 0. If H is a cyclic group and M is a biset functor, then for
any simple L Out(H)-module V the following numbers are equal:
(a) The multiplicity of Sb

H,V in M as biset functors.

(b) The multiplicity of V in M(H)/Ib
H M(H) as L Out(H)-modules.

(c) dimL HomLOut(H)(V ,M(H)/Ib
H M(H)).

(3) Assume that L is of characteristic 0. If M is a Mackey functor, then for any simple Mackey
functor Sm

H,V the following numbers are equal:
(a) The multiplicity of Sm

H,V in M as Mackey functors.
(b) The multiplicity of V in M(H)/Im

H M(H) as L Out(H)-modules.
(c) dimL HomLOut(H)(V ,M(H)/Im

H M(H)).
(4) Assume that L is of characteristic 0. If M is an inflation functor, then for any simple inflation

functor Si
H,V the following numbers are equal:

(a) The multiplicity of Sm
H,V in M as Mackey functors.

(b) The multiplicity of V in M(H)/Im
H M(H) as L Out(H)-modules.

(c) dimL HomLOut(H)(V ,M(H)/Im
H M(H)).

(d) The multiplicity of Si
H,V in M as inflation functors.

Proof. Let A be a finite dimensional L-algebra and V be a simple A-module and S be a finitely
generated A-module. It is well known that the multiplicity of V in S as A-modules is equal to
the dimension of HomA(P (V ),S) where P(V ) is the projective cover of V . Since L Out(H) is
semisimple when L is of characteristic 0, the numbers in (b) and (c) are equal in all of (1)–(4).

If P(V ) is the End(H)-projective cover of V then by 2.2 the functor LH,P (V ) is the projective
cover of SH,V as functors on χ . So the multiplicity of SH,V in M is equal to the dimension
of HomF(LH,P (V ),M) which is isomorphic to the L-space HomEnd(H)(P (V ),M(H)) by the
adjointness of the pair (LH,−, eH ) given in 2.2. This shows that the numbers in (a) and (c) of (1)
are equal.

Moreover End(H) = Ext(H) ⊕ IH and Ext(H) ∼= L Out(H) by 2.4, so that 4.4 is applicable
whenever End(H) is semisimple. If End(H) is semisimple then P(V ) = V and 4.4 implies that
the multiplicity of SH,V in M is equal to the dimension of HomLOut(H)(V ,M(H)/IH M(H)).
Using the semisimplicity results given in 3.9 we see that the numbers in (a) and (c) are equal in
all of (2)–(4).

Up to now we finished the proofs of (1)–(3), and showed the equality of numbers in (a)–(c)
of (4).

Given any composition series of M as inflation functors on χ . We see from 3.10 that the same
series is also a composition series of M as Mackey functors on χ and any simple inflation functor
Si

H,V is isomorphic to Sm
H,V as Mackey functors, proving the equality of numbers in (a) and (d)

of (4). �
5. Composition factors of KRFKRFKRF

Throughout this section, F is an algebraically closed field of characteristic p > 0, and K is an
algebraically closed field of characteristic 0.
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Let H � G be finite groups. For FH and FG-modules W and V , we denote by ↑G
H W and

↓G
H V the FG and FH -modules FG ⊗FH W and FG ⊗FG V , respectively. We let Irr(FG) be a

complete set of representatives of the isomorphism classes of simple FG-modules. We write FG

to indicate the trivial FG-module.
In this section we want to study the composition factors of the modular representation algebra

functor KRF as inflation functors over K, where if G is a finite group then KRF(G) = K ⊗Z

G0(FG) and G0(FG) is the Grothendieck group of finitely generated FG-modules with respect
to exact sequences.

Let G be a finite group. The Grothendieck group G0(FG) of the finitely generated FG-
modules is defined to be a quotient group A/F where A is the free abelian group freely generated
by symbols (V ) for each isomorphism classes of finitely generated FG-modules V , and F is the
subgroup of A generated by all elements of the form (V ) − (V ′) − (V ′′) arising from the short
exact sequences of FG-modules 0 → V ′ → V → V ′′ → 0. If we write [V ] for the image of
(V ) ∈ A in A/F , we have

G0(FG) =
⊕

V ∈Irr(FG)

Z[V ] and KRF(G) =
⊕

V ∈Irr(FG)

K[V ].

Let G and H be finite groups. Any (G,H)-biset S gives an (FG,FH)-bimodule FS, and
so induces a functor FS ⊗FH − : FH -Mod → FG-Mod. For each (G,H)-biset S such that the
functor FS ⊗FH − is exact (equivalently, the right FH -module FSFH is projective), S induces
an obvious map

KRF

([S]) : KRF(H) → KRF(G), [W ] �→ [FS ⊗FH W ].

With these maps KRF becomes a functor from the subcategory of the biset category with mor-
phisms from H to G are the K-span of [S] where S is any (G,H)-biset with the property that
FSFH is projective to the category of K-modules.

We see that for the four type of basic bisets

IndG
H , ResG

H , InfGG/N, and IsoG′
G ,

where H � G� N , and G′ ∼= G, the right modules

FGFH , FGFG, F(G/N)F(G/N), and FG′
FG

are all free (hence projective). While for DefGG/N , we see that F(G/N)FG is projective if and
only if p does not divide the order of N .

Therefore KRF has a natural inflation functor structure over K with the following maps:

KRF(IndG
H ) : KRF(H) → KRF(G), [W ] �→ [↑G

H W ].
KRF(ResG

H ) : KRF(G) → KRF(H), [V ] �→ [↓G
H V ].

KRF(InfGG/N) : KRF(G/N) → KRF(G), [U ] �→ [InfGG/N U ], where InfGG/N U = U with the
G-action given by gu = (gN)u.

KRF(IsoG′
G (ϕ)) : KRF(G) → KRF(G′), [U ] �→ [IsoG′

G (ϕ)U ], where IsoG′
G (ϕ)U = U with

G′-action given by g′u = ϕ−1(g′)u.
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We finally remind the reader that both of G0(FG) and KRF(G) are commutative algebras
with product [V1][V2] = [V1 ⊗F V2] and with the unity [FG]. For simplicity we write ψ instead
of KRF(ψ) where ψ is any of Ind, Res, Inf, or Iso.

We begin with an easy consequence of induction theorems.

Lemma 5.1. Let G be a finite group and M be a Mackey subfunctor of KRF. If M(H) =
KRF(H) for all cyclic p′-subgroups H of G then M(G) = KRF(G).

Proof. By Artin’s induction theorem

KRF(G) =
∑
H

IndG
H KRF(H)

where H ranges over all cyclic p′-subgroups of G, see Benson [2, Theorem 5.6.1, p. 172]. This
proves the result. �

From now on in this section, χ will denote a finite family of finite groups such that no two
groups in χ are isomorphic and that if X in χ then any section of X is isomorphic to a group in χ .
We will study KRF as an inflation functor on χ and write KRχ

F
to stress that. In this situation

KRχ

F
may be regarded as a module of a finite dimensional K-algebra, see the last paragraph of

Section 2. Since the coordinate module KRF(G) at any finite group G is a finite dimensional
K-space, it follows that KRχ

F
admits a composition series (of finite length), as inflation functors

on χ , whose factors are unique up to isomorphism and ordering.
We now observe that minimal subgroups of the inflation functor composition factors of KRχ

F

are among the cyclic p′-groups in χ .

Proposition 5.2. If Si
H,V is a composition factor of KRχ

F
as inflation functors then H is a cyclic

p′-group in χ .

Proof. Suppose that Si
H,V is a composition factor of KRχ

F
as inflation functors on χ . There are

inflation subfunctors N � M of KRχ

F
such that M/N is isomorphic to Si

H,V . Then 3.10 implies
that N � M are Mackey subfunctors of KRχ

F
such that M/N is isomorphic to Sm

H,V . By 3.9 the
functor KRχ

F
is a semisimple Mackey functor on χ over K, because K is of characteristic 0.

Consequently, there must exist a Mackey subfunctor T of KRχ

F
such that KRχ

F
/T is isomorphic

to Sm
H,V . In particular T is a proper Mackey subfunctor of KRχ

F
.

Let Y be the family consisting of all cyclic p′-groups in χ . If H is not a cyclic p′-group then
H /∈ Y and 3.11 implies that ↓χ

Y
(KRχ

F
/T ) = 0. Thus

↓χ

Y
T = ↓χ

Y
KRχ

F
,

implying that T (H) = KRχ

F
(H) for every group H in Y. Then by 5.1 we get T (G) = KRχ

F
(G)

for every group G in χ , a contradiction because T is a proper Mackey subfunctor of KRχ

F
. �

We now calculate the multiplicities in KRχ

F
of simple inflation functors whose minimal sub-

groups are cyclic q-groups where q is a prime different from p.
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Lemma 5.3. Let G be cyclic q-group in χ where q is a prime different from p. For any simple
K Out(G)-module V , the multiplicity of the simple inflation functor Si

G,V in KRχ

F
is equal to 1.

Proof. The dimension of the K-space HomKOut(G)(V ,KRF(G)/Im
G KRF(G)) is the required

multiplicity by part (4) of 4.5. We will show that

KRF(G)/Im
G KRF(G) ∼= K Out(G)

as K Out(G)-modules. This shows that the required multiplicity is 1, because Out(G) is abelian
and V is one dimensional.

If G = 1 then V = K, Endi(G) ∼= K, P(V ) = V , and KRF(G) ∼= K; and in this case part (1)
of 4.5 implies that the multiplicity of Si

1,K
in KRF is 1.

We first set up our notations as follows:
G = 〈x〉, H = 〈xq〉 and |G| = qn for some natural number n � 1 (the case n = 0 was treated

above).
For any integer m, we denote by mq the highest power of q dividing m. That is qmq divides

m but qmq+1 does not divide m.
Out(G) = {θl : l = 1, . . . , qn, lq = 0}, where θl :x �→ xl .
ε is a primitive qnth root of unity in F (exists because q �= p).
Irr(FG) = {W1, . . . ,Wqn} and Irr(FH) = {U1, . . . ,Uqn−1} where Wi = Fwi and Uj = Fuj

with actions xwi = εiwi and xquj = εqjuj . For any natural number m, by Wm (respectively
Um) we mean the module Wi (respectively Uj ) where i (respectively j ) is the unique number in
{1, . . . , qn} (respectively in {1, . . . , qn−1}) with m ≡ i mod qn (respectively m ≡ j mod qn−1).

We note that θl ∈ Out(G) acts on KRF(G) as θ−1
l [Wi] = [Wil] because G acts on the FG-

module IsoG
G(θ−1

l )Wi = Wi by xwi = θl(x)wi = xlwi = εilwi .
For convenience we divide the proof into several parts.

(A) Let φ : KRF(G) → K Out(G) be the map given by [Wi] �→ θ−1
i if iq = 0, and [Wi] �→ 0

otherwise. Then φ is a K Out(G)-module epimorphism.

Proof of (A). It is clear that φ is a surjective K-linear map. Let θl ∈ Out(G). As lq = 0, (il)q =
iq . If iq �= 0, then

φ
(
θ−1
l [Wi]

) = φ
([Wil]

) = 0 = θ−1
l 0 = θ−1

l φ
([Wi]

)
.

If iq = 0, then

φ
(
θ−1
l [Wi]

) = φ
([Wil]

) = θ−1
il = θ−1

l θ−1
i = θ−1

l φ
([Wi]

)
.

Hence φ is a K Out(G)-module epimorphism. �
(B) Kerφ is a permutation K Out(G)-module with permutation basis

X = {[Wi]: i = 1, . . . , qn, iq �= 0
}
.

If we let Xt = {[Wi] ∈ X: iq = t}, then X1, . . . ,Xn are the Out(G)-orbits on X, and [Wqt ]
is an element of Xt , whose Out(G)-stabilizer is the subgroup St = {θl : l ≡ 1 mod qn−t }.
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Proof of (B). By the definition of φ, it is clear that X is a K-basis of Kerφ which is obviously
permuted by Out(G). We note that θl ∈ St if and only if θ−1

l [Wqt ] = [Wqt ], equivalently [Wqt l] =
[Wqt ], i.e., qt l ≡ qt mod qn. Since lq = 0, we see that St is the desired subgroup. Let [Wi] ∈ Xt .
Then iq = t and so i = qt s for some natural number s with sq = 0. Hence [Wi] = θ−1

s [Wqt ],
implying that Out(G) acts on Xt transitively. �
(C) Im

G KRF(G) = IndG
H KRF(H).

Proof of (C). If [(G × G)/L] ∈ Im
G , we then may write

(G × G)/L ∼= IndG
K IsoK

K ResG
K

for some proper subgroup K = p1(L) of G, see Section 2. It is clear that the maps

ResG
K : KRF(G) → KRF(K) and IsoK

K : KRF(K) → KRF(K)

are surjective and bijective, respectively (even for any finite abelian group G and any finite
group K). Consequently

[
(G × G)/L

]
KRF(G) = IndG

K KRF(K).

Finally from the relation IndG
K2

IndK2
K1

= IndG
K1

, we see that Im
G KRF(G) = IndG

H KRF(H) be-
cause H is the unique maximal subgroup of G. �
(D) Im

G KRF(G) is a permutation K Out(G)-module with permutation basis

Y = {
IndG

H [Uj ]: j = 1, . . . , qn−1}.
If we let Yt = {IndG

H [Uj ]: jq = t − 1}, then Y1, . . . , Yn are the Out(G)-orbits on Y , and
[Uqt−1 ] is an element of Yt , whose Out(G)-stabilizer is the subgroup Tt = {θl ∈ Out(G): l ≡
1 mod qn−t }.

Proof of (D). It is clear that IndG
H : KRF(H) → KRF(G) is injective. Therefore Y is a K-

basis of Im
G KRF(G). We note that if θl ∈ Out(G) then its restriction θl |H to H is an element

of Out(H). Since

θ−1
l IndG

H [Uj ] = IsoG
G

(
θ−1
l

)
IndG

H [Uj ] = IndG
H IsoH

H

(
θ−1
l

∣∣
H

)[Uj ] = IndG
H [Ujl],

we see that Out(G) permutes Y . Now θl ∈ Tt if and only if θ−1
l IndG

H [Uqt−1 ] = IndG
H [Uqt−1 ],

equivalently IndG
H [Uqt−1l] = IndG

H [Uqt−1 ]. Then using the injectivity of IndG
H , we see that θl ∈ Tt

if and only if qt−1l ≡ qt−1 mod qn−1. Since lq = 0, the stabilizer of [Uqt−1 ] is the desired

subgroup Tt . Let IndG
H [Uj ] ∈ Yt . Then jq = t − 1 and so j = qt−1s for some s with sq = 0.

Hence IndG [Uj ] = θ−1
s IndG [Uqt−1 ], implying that Out(G) acts on Yt transitively. �
H H
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We have now accumulated all the information necessary to complete the proof. From (B)
and (D) the subgroups St and Tt are equal for all t = 1, . . . , n and so we have

Kerφ ∼=
n⊕

t=1

↑Out(G)
St

KSt =
n⊕

t=1

↑Out(G)
Tt

KTt
∼= Im

G KRF(G)

as K Out(G)-modules. (A) gives that KRF(G)/Kerφ ∼= K Out(G) as K Out(G)-modules. Then
semisimplicity of the K Out(G)-module KRF(G) implies that

KRF(G)/Im
G KRF(G) ∼= K Out(G)

as K Out(G)-modules, finishing the proof. �
Let A and B be finite dimensional L-algebras where L is an algebraically closed field. If V is

an A-module and W is a B-module, then V ⊗L W becomes an A ⊗L B-module with the action
(a ⊗ b)(v ⊗ w) = av ⊗ bw. Moreover Irr(A ⊗L B) is the set consisting of all elements V ⊗L W

where V ∈ Irr(A) and W ∈ Irr(B). If we assume that both of A and B are semisimple, then by
the distributivity of ⊗L over ⊕ we easily see that the multiplicity of V ⊗L W in M ⊗L N is equal
to the product of the multiplicities of V in M and W in N , where V ∈ Irr(A), W ∈ Irr(B), and
M and N are modules for A and B respectively.

We now give an application of the above facts. Let H and K be two groups of coprime orders.
Since any subgroup X of H × K is of the form XH × XK for some XH � H and XK � K , any
element

[
(H × K) × (H × K)

L

]
∈ Endm(H × K)

is of the form

IndH×K
P IsoP

Q(ϕ)ResH×K
Q = IndH×K

PH ×PK IsoPH ×PK

QH ×QK

(
ϕH × ϕK

)
ResH×K

QH ×QK

where P = p1(L) and Q = p2(L) are isomorphic groups, and ϕ = ϕH × ϕK with ϕH and ϕK

are the respective restrictions of ϕ to QH and QK (as |H | and |K| are coprime, ϕ(QH ) = P H

and ϕ(QK) = P K for any isomorphism ϕ :Q → P ). Consequently, the map

(
IndH

R1
IsoR1

R2
(α)ResH

R2

) ⊗K

(
IndK

S1
IsoS1

S2
(β)ResK

S2

) �→ IndH×K
R1×S1

IsoR1×S1
R2×S2

(α × β)ResH×K
R2×S2

gives a K-algebra isomorphism

Endm(H) ⊗K Endm(K) → Endm(H × K).

Moreover this K-algebra isomorphism transports KRF(H) ⊗K KRF(K) to KRF(H × K), be-
cause Irr(F(H × K)) consists of all elements of the form V ⊗F W where V and W range in the
sets Irr(FH) and Irr(FK), respectively.
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Lemma 5.4. Let H and K be two groups of coprime orders. Suppose that V and W are simple
modules of K Out(H) and K Out(K), respectively. Then, the multiplicity of the simple inflation
functor Si

H×K,V ⊗KW in KRχ

F
is equal to the product of the multiplicities of the simple inflation

functors Si
H,V and Si

K,W in KRχ

F
.

Proof. By part (4) of 4.5, the multiplicity of any simple inflation functor Si
X,U in KRF is

equal to the multiplicity of the simple Mackey functor Sm
X,U in KRF, which is then equal to

the multiplicity of U in KRF(X) as Endm(X)-modules by part (1) of 4.5. Since Endm(X) is a
semisimple K-algebra by 3.9, the result follows by the facts given above with X = H × K and
U = V ⊗K W . �

We now state the main result of this section.

Theorem 5.5. The composition factors of KRχ

F
as inflation functors on χ are precisely the simple

inflation functors Si
C,V , where C ranges over cyclic p′-groups in χ and V ranges over elements

in Irr(K Out(C)). Moreover the multiplicity of each composition factor is 1.

Proof. Follows by 5.2–5.4. �
6. Subfunctors of KRFKRFKRF

In this section, by a functor we mean an inflation functor, and we assume the fields F and K

as in the previous section. We want to find a filtration of KRF.
We begin with a simple observation about the evaluations of subfunctors of KRF.

Remark 6.1. Let M be a subfunctor of KRF. Then the following are equivalent:

(1) M(P) �= 0 for some finite p-group P .
(2) M(P) �= 0 for every finite p-group P .
(3) [FG] ∈ M(G) for every finite group G.
(4) M(G) �= 0 for every finite group G.

Proof. For any finite p-group P , it is clear that KRF(P ) = K[FP ]. Then using the inclu-
sions ResP

1 M(P) ⊆ M(1), IndP
1 M(1) ⊆ M(P), and InfGG/G IsoG/G

1 M(1) ⊆ M(G), the result
follows. �

For any natural number n and any finite group G, we define a subset Kn(G) of KRF(G) by:

Kn(G) =
⋂
C

Ker
(
ResG

C : KRF(G) → KRF(C)
)

where C ranges over all cyclic subgroups of G of order dividing n.

Lemma 6.2. Kn = KerKRF,i
Cn,0 where Cn is any cyclic group of order n. In particular, Kn is a

subfunctor of KRF.



160 E. Yaraneri / Journal of Algebra 318 (2007) 140–179
Proof. For any finite group G,

KerKRF,i
Cn,0 (G) =

⋂
L�∗Cn×G: k2(L)=1

Ker
(
KRF

([
(Cn × G)/L

])
: KRF(G) → KRF(Cn)

)
,

see Section 3.1. If L � Cn × G with k2(L) = 1 then [(Cn × G)/L] is of the form

IndCn

p1(L) Infp1(L)

p1(L)/k1(L) Isop1(L)/k1(L)

p2(L) ResG
p2(L) .

Then from p2(L) ∼= p1(L)/k1(L) we see that p2(L) is a cyclic subgroup of G of order divid-
ing n. Conversely, if C is a cyclic subgroup of G of order dividing n, then Cn has a subgroup p1
isomorphic to C such that

IndCn
p1

Isop1
C ResG

C

is of the form [(Cn × G)/M] with k2(M) = 1. Now we notice that the maps IndCn

p1(L),

Infp1(L)

p1(L)/k1(L), and Isop1(L)/k1(L)

p2(L) are all injective so that

Ker
(
KRF

([
(Cn × G)/L

])) = Ker ResG
p2(L) .

Finally, as Ker ResG
gC = Ker ResG

C , for any g ∈ G, we have

KerKRF,i
Cn,0 (G) =

⋂
C

Ker
(
ResG

C : KRF(G) → KRF(C)
)

where C ranges over all cyclic subgroups of G of order dividing n. �
Lemma 6.3. Let n and m be two p′-numbers. If Cm is a cyclic group of order m, then
dimK Kn(Cm) = m − (n,m) where (n,m) is the greatest common divisor of n and m.

Proof. For X � Y � Cm, it is clear from the relation ResCm

X = ResY
X ResCm

Y that Ker ResCm

Y ⊆
Ker ResCm

X . Therefore

Kn(Cm) = Ker
(
ResCm

H : KRF(Cm) → KRF(H)
)

where H is the unique maximal subgroup of Cm of order dividing n. Thus |H | = (n,m). Since
ResCm

H is surjective, dimK Kn(Cm) = dimK KRF(Cm) − dimK KRF(H) which is equal to m −
(n,m). �

We now study the subfunctor K1.

Lemma 6.4. Let M be a subfunctor of KRF and G be a finite group. Then:

(1) K1(G) is of codimension 1 in KRF(G).
(2) K1(G) = 0 if and only if G is a p-group.
(3) M(1) = 0 if and only if M � K1.
(4) M(1) �= 0 if and only if M + K1 = KRF.
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Proof. (1) Because ResG
1 is surjective.

(2) Part (1) implies that K1(G) = 0 if and only if dimK KRF(G) = 1, which is equivalent to
| Irr(FG)| = 1. This proves the result.

(3) If M(1) = 0 then, for any finite group G, ResG
1 M(G) ⊆ M(1) = 0 implying that M(G) �

Ker ResG
1 = K1(G).

(4) Suppose that M(1) �= 0. Take any finite group G. By 6.1, [FG] ∈ M(G). It is clear that
[FG] is not in K1(G). So M(G) + K1(G) > K1(G). Then by part (1), M(G) + K1(G) =
KRF(G). �
Proposition 6.5. The functor K1 is the unique maximal subfunctor of KRF such that KRF/K1
is isomorphic to Si

1,K
.

Proof. K1 is a maximal subfunctor of KRF by 6.4. As K1(1) = 0 �= KRF(1), the simple quo-
tient KRF/K1 must be isomorphic to Si

1,K
.

Suppose that M is a maximal subfunctor of KRF such that KRF/M ∼= Si
1,K

. Then M(1) = 0
implying by 6.4 that M � K1. So M = K1. �
Corollary 6.6.

(1) If M is a minimal subfunctor of KRF then M(1) = 0 so that M � K1. In particular KRF is
not semisimple.

(2) Let N � M be subfunctors of KRF. Then, M/N ∼= Si
1,K

if and only if M(1) �= 0 and M ∩
K1 = N .

(3) K1 intersects every nonzero subfunctor of KRF nontrivially.

Proof. (1) Assume that M(1) �= 0. Then M ∼= Si
1,K

. Let G be any finite group. Since [F1] ∈
M(1), it follows that [FG] = [↑G

1 F1] ∈ IndG
1 M(1) ⊆ M(G). Moreover [FG] ∈ M(G) by 6.1.

But 6.5 implies that dimK M(G) = 1. Therefore [FG] = [FG] implying that G = 1.
(2) Suppose that M/N ∼= Si

1,K
. Then M(1) �= 0 and N(1) = 0. Hence, 6.4 implies that N �

M ∩ K1 � M and M + K1 = KRF. Consequently, by 6.5 we have

Si
1,K

∼= KRF/K1 = (M + K1)/K1 ∼= M/(M ∩ K1).

This shows that N = M ∩ K1.
Suppose that M(1) �= 0 and M ∩ K1 = N . Then by 6.4 and 6.5,

M/N ∼= M/(M ∩ K1) ∼= (M + K1)/K1 = KRF/K1 ∼= Si
1,K.

(3) Let M be a nonzero subfunctor of KRF such that M ∩ K1 = 0. Then

M ∼= M/(M ∩ K1) ∼= (M + K1)/K1 = KRF/K1 ∼= Si
1,K

by 6.4 and 6.5. So M is a minimal subfunctor of KRF, and then part (1) shows that M � K1.
Thus M = M ∩ K1 = 0. �

We next study the subfunctors Kn for any p′-number n. But we first need a result about the
dimensions of simple functors.
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Remark 6.7. Let Cn and Cm be cyclic groups of respective orders n and m for some natural
numbers n and m. If V is a simple K Out(Cn)-module then dimK Si

Cn,V (Cm) is equal to 1 if n

divides m and 0 otherwise.

Proof. By Bouc [3], it is easy to see that the required dimension is the rank of a row matrix
over K which contains a nonzero entry if and only if n divides m. Alternatively, one may use the
formulas for the evaluations of simple inflation functors (or of simple (global) Mackey functors
by 3.10 and 3.9) given in Webb [7] to deduce the result. �
Proposition 6.8. Let n be a p′-number. Then the composition factors of KRF/Kn are precisely
the simple functors Si

C,V where C ranges over all nonisomorphic cyclic groups of order divid-
ing n and V ranges over all nonisomorphic simple K Out(C)-modules. Moreover the multiplicity
of each composition factor is 1.

Proof. For any natural number m we denote by Cm a cyclic group of order m. Using 6.3 we see
that if m is a p′-number, then Kn(Cm) = 0 if and only if m divides n. Therefore, if m divides n

then Kn has no composition factor whose minimal subgroup is Cm. Then 5.5 implies that each
element of the set

S = {
Si

Cm,V : m ∈ N, m divides n, V ∈ Irr
(
K Out(Cm)

)}
is a composition factor of KRF/Kn with multiplicity equal to 1.

We will show that there is no other composition factor of KRF/Kn. Suppose that Si
Cr ,W

is a composition factor of KRF/Kn. By 5.5 we may assume that r is a p′-number so
that dimK KRF(Cr) = r . Then from 6.7 the contribution of the composition factors in S to
dimK(KRF/Kn)(Cr) is equal to

d =
∑
m

∣∣K Out(Cm)
∣∣

where m ranges over all natural numbers dividing both of n and r . Thus

d =
∑
m

φ(m)

where m ranges over all natural numbers dividing the greatest common divisor (n, r) of n and r ,
and φ is the Euler’s totient function. Now, dimK(KRF/Kn)(Cr) = (n, r) by 6.3 and d = (n, r)

by Gauss’ theorem. Consequently, Si
Cr ,W

must belong to the set S. �
The following is an immediate consequences of the previous result. Note that Knm � Kn for

any natural numbers n and m.

Corollary 6.9. Let n and m be two p′-numbers. Then the composition factors of Kn/Knm are
precisely the simple functors Si

C,V where C ranges over all nonisomorphic cyclic groups of order
dividing nm but not dividing n, and V ranges over all nonisomorphic simple K Out(C)-modules.
Moreover the multiplicity of each composition factor is 1.
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The previous result suggests to define the following subfunctor of KRF. For any natural num-
ber n we define

Fn =
⋂
d

Kd

where d ranges over all natural numbers less than n and dividing n.
It is clear that Fn � Kn so that it deserves study only when Fn �= Kn.

Remark 6.10. Let M be a subfunctor of KRF. Then, M � Kn if and only if M(Cn) = 0 where
Cn is a cyclic group of order n.

Proof. Definition of Kn implies that Kn(Cn) = 0. So if M � Kn then M(Cn) = 0. Conversely,
if M(Cn) = 0 then it follows by 3.1 that M is a subfunctor of KerKRF,i

Cn,0 and hence by 6.2 a
subfunctor of Kn. �
Lemma 6.11. Let n be a p′-number. Then Fn �= Kn.

Proof. By 6.10, Fn = Kn if and only if Fn(Cn) = 0 where, for any natural number m, we denote
by Cm a cyclic group of order m. By the definition of Fn and by the relation ResY

X ResCn

Y = ResCn

X ,
we may write

Fn(Cn) =
⋂
C

Ker
(
ResCn

C : KRF(Cn) → KRF(C)
)

where C ranges over all maximal subgroups of Cn. Let n = p
α1
1 . . . p

αr
r be the prime factorization

of n, where pi ’s are distinct primes and αi � 1. As maximal subgroups of cyclic groups must
have prime index,

Fn(Cn) =
r⋂

s=1

Ker
(
ResCn

Cn/ps
: KRF(Cn) → KRF(Cn/ps )

)
.

By the identification given after 5.3 (i.e., using the isomorphism KRF(A × B) ∼= KRF(A) ⊗K

KRF(B) for two groups A and B of coprime orders), if we put Aj = C
p

αj
j

for all j = 1,2, . . . , r

we have

ResCn

Cn/pi
=

r⊗
j=1

K Res
Aj

Hj
:

r⊗
j=1

KKRF(Aj ) →
r⊗

j=1

KKRF(Hj )

where Hj = Aj if j �= i and Hi = C
p

αi−1
i

. Since all the maps Res
Aj

Hj
except j = i are identities,

Ker ResCn

C = KRF(A1) ⊗K · · · ⊗K Ker ResAi

H ⊗K · · · ⊗K KRF(Ar).

n/pi i
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Therefore

Fn(Cn) =
r⊗

s=1

K Ker
(

Res
C

p
αs
s

C
p
αs−1
s

: KRF(Cp
αs
s

) → KRF(C
p

αs−1
s

)
)
.

As the maps ResCn

X are surjective for all subgroups X, we see that

dimK Fn(Cn) =
r∏

s=1

(
pαs

s − pαs−1
s

) = φ(n)

where φ is the Euler’s function. In particular Fn(Cn) �= 0. �
By the definition of Fn and 6.9, the following is obvious.

Corollary 6.12. Let C be a cyclic group whose order is a p′-number n. Then the composition
factors of Fn/Kn are precisely the simple functors Si

C,V where V ranges over all nonisomorphic
simple K Out(C)-modules. Moreover the multiplicity of each composition factor is 1.

We will prove that the functors Fn/Kn are semisimple for any p′-number n. We will make use
of 3.7 in our proof. For this reason we first give a result stating that the functors Fn/Kn satisfy
some of the conditions of 3.7.

Lemma 6.13. Let n be a p′-number and Cn be a cyclic group of order n. Then:

(1) I i
Cn

annihilates Fn(Cn).

(2) KerFn/Kn,i

Cn,0 = 0.

Proof. (1) Let [(Cn × Cn)/L] be in I i
Cn

and let x be in Fn(Cn). We will show that [(Cn ×
Cn)/L]x = 0. Then [(Cn × Cn)/L] is of the form

IndCn
p1

Infp1
p1/k1

Isop1/k1
p2 ResCn

p2

where pi = pi(L), k1 = k1(L), and |q(L)| < n. Therefore p2 is a cyclic subgroup of Cn of
order less than n and dividing n so that ResCn

p2 x = 0 by the definition of Fn. Consequently,
I i
Cn

Fn(Cn) = 0.
(2) Using the properties of Ker given in 3.1, we see that

KerFn/Kn,i

Cn,0 = KerFn,i
Cn,0 /Kn = (

KerKRF,i
Cn,0 ∩Fn

)
/Kn = (Kn ∩ Fn)/Kn = 0

where we also use KerKRF,i
Cn,0 = Kn from 6.2. �

Proposition 6.14. Let C be a cyclic group whose order is a p′-number n. Then Fn/Kn is a
semisimple functor such that

Fn/Kn
∼=

⊕
Si

C,V .
V ∈Irr(KOut(C))
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Proof. We first show that Fn(C) is a semisimple Endi(C)-module isomorphic to K Out(C) as
K Out(C)-modules.

By 6.12 we may find a series of functors

Kn = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Md = Fn

such that each quotient is a simple functor whose minimal subgroup is C and that

Irr
(
K Out(C)

) = {
(Mi+1/Mi)(C): i = 0, . . . , d − 1

}
and d = | Irr(K Out(C))|. By evaluating at C we get the series

0 = Kn(C) = M0(C) ⊂ M1(C) ⊂ M2(C) ⊂ · · · ⊂ Md(C) = Fn(C)

of Endi(C)-modules such that each quotient is a simple Endi(C)-module by 4.1. Now by 6.13 the
ideal I i

C annihilates Fn(C) so that the last series is a composition series of Fn(C) as K Out(C)-
modules. Since K Out(C) is semisimple and since Irr(K Out(C)) = {(Mi+1/Mi)(C): i =
0, . . . , d − 1}, it follows that Fn(C) is a semisimple Endi(C)-module annihilated by I i

C and
Fn(C) ∼= K Out(C) as K Out(C)-modules.

We now show that Fn/Kn is generated by (Fn/Kn)(C) as inflation functors. That is
ImFn/Kn,i

C,Fn(C) = Fn/Kn, see 3.1.
Let the following series

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xd = Fn(C)

be a composition series of Fn(C) as K Out(C)-modules (and hence as Endi(C)-modules because
I i
C annihilates Fn(C)). For each i we define a subfunctor Ni/Kn = ImFn/Kn,i

C,Xi
of Fn/Kn (note

that Kn(C) = 0) so that by the properties of Im given in 3.1 we have the following series of
functors

Kn = N0 ⊂ N1 ⊂ · · · ⊂ Nd ⊆ Fn.

If Nd is not equal to Fn then the number of composition factors of Fn/Kn counting with mul-
tiplicities must be larger than d which is impossible by 6.12. Thus Nd = Fn. This proves that
Fn/Kn = Nd/Kn = ImFn/Kn,i

C,Fn(C) as desired.

Up to now we observed that Fn/Kn = ImFn/Kn,i

C,Fn(C) and KerFn/Kn,i

C,0 = 0 (by 6.13), and also
that (Fn/Kn)(C) ∼= Fn(C) is a semisimple Endi(C)-module. Moreover, any nonzero subfunctor
of Fn/Kn must be nonzero at C from 6.12.

Therefore, 3.7 can be applied to deduce that Fn/Kn is semisimple. The rest follows
by 6.12. �

If q is a prime different from p then we see that Fqn = Kqn−1 for any natural number n. And
using 6.14 we get a series of functors

KRF ⊃ K1 ⊃ Kq ⊃ Kq2 · · · ⊃ Kqn ⊃ · · ·
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such that the quotients are semisimple and

Kqn−1/Kqn ∼=
⊕

V ∈Irr(KOut(Cqn ))

Si
Cqn ,V

where Cqn is a cyclic group of order qn.
We want to find series of KRF as above involving the subfunctors Kn and Fn whose quotients

are semisimple and cover all composition factors of KRF.
We finish this section by constructing a series of functors

KRF ⊃ K1 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lj ⊃ · · ·

such that the quotients are semisimple and cover all composition factors whose minimal sub-
groups are π -groups where π is any set of prime numbers not containing p.

Let π = {p1,p2, . . . , pr} be a set of prime numbers not containing p. For any natural num-
ber j we define

L0 = K1, L1 =
⋂

1�i1�r

Kpi1
, L2 =

⋂
1�i1�i2�r

Kpi1 pi2
, and

Lj =
⋂

1�i1�i2�···�ij �r

Kpi1 pi2 ...pij
.

Theorem 6.15. Let π = {p1,p2, . . . , pr} be a set of prime numbers not containing p. Then the
series of functors

KRF ⊃ K1 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lj ⊃ · · ·

satisfies:

(1) Lj−1/Lj is a semisimple functor for all j = 1,2, . . . .

(2) Lj−1/Lj
∼=

⊕
C

⊕
V ∈Irr(KOut(C))

Si
C,V

where C ranges over all nonisomorphic cyclic groups of order pi1pi2 . . . pij with 1 � i1 �
i2 � · · · � ij � r .

Proof. As Kd � Ks for any natural numbers d and s such that s divides d , we see by the defin-
ition of Fn that Fn = ⋂

q Kn/q for any natural number n where q ranges over all prime divisors
of n. This shows that

Lj−1 ⊆ Fpi1 pi2 ...pij

for any j = 1,2, . . . and 1 � i1 � i2 � · · · � ij � r . (Note that Fpi1
= K1.) Consequently, the

natural epimorphism

Fpi pi ...pi
→ Fpi pi ...pi

/Kpi pi ...pi
1 2 j 1 2 j 1 2 j
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induces a monomorphism

Lj−1/(Lj−1 ∩ Kpi1 pi2 ...pij
) → Fpi1pi2 ...pij

/Kpi1 pi2 ...pij
.

Then 6.14 implies that

Lj−1/(Lj−1 ∩ Kpi1 pi2 ...pij
) ∼=

⊕
V ∈Irr(KOut(C))

eV Si
C,V

where eV ∈ {0,1} and C is a cyclic group of order pi1pi2 . . . pij . In particular it is semisimple (if
nonzero).

Now the homomorphism

Lj−1 →
∏

1�i1�i2�···�ij �r

Lj−1/(Lj−1 ∩ Kpi1 pi2 ...pij
),

which is the product of natural epimorphisms

Lj−1 → Lj−1/(Lj−1 ∩ Kpi1 pi2 ...pij
),

has kernel equal to Lj . Therefore, if Cm denotes any cyclic group of order m then we have

Lj−1/Lj
∼=

⊕
1�i1�i2�···�ij �r

⊕
V ∈Irr(KOut(Cpi1

pi2
...pij

))

e
i1i2...ij
V Si

Cpi1
pi2

...pij
,V

where e
i1i2...ij
V ∈ {0,1}. In particular it is semisimple (if nonzero).

To show that each e
i1i2...ij
V is equal to 1, we simply observe that Lj(Cpi1 pi2 ...pik

) = 0
for any k � j and 1 � i1 � i2 � · · · � ik � r . This proves by 5.5 that, for any V ∈
Irr(K Out(Cpi1 pi2 ...pij

)), the simple functors Si
Cpi1

pi2
...pij

,V are composition factors of Lj−1/Lj

with multiplicity 1. Hence, each e
i1i2...ij
V is equal to 1. �

We have the following immediate consequence. For a group G with |G| = q
α1
1 q

α2
2 . . . q

αs
s

where qi are distinct primes and αi � 1 are integers, we put �(G) = ∑
i αi and π(G) =

{q1, q2, . . . , qs}.

Corollary 6.16. Let χ be a finite family of groups satisfying the conditions given in the last
paragraph of Section 2. Let {p1, . . . , pr} be the union of the sets π(C) and n be the maximum of
the numbers �(C) where C ranges over all cyclic p′-groups in χ . Then, the following series

KRχ

F
⊃ K

χ

1 ⊃ L
χ

1 ⊃ L
χ

2 ⊃ · · · ⊃ Lχ
n = 0

of KRχ as functors on χ satisfies that each L
χ

/L
χ is semisimple and
F j−1 j



168 E. Yaraneri / Journal of Algebra 318 (2007) 140–179
L
χ

j−1/L
χ
j

∼=
⊕
C

⊕
V ∈Irr(KOut(C))

S
i,χ
C,V

where C ranges over all cyclic p′-groups in χ with �(C) = j .

Our final result of this section is an immediate consequences of 6.15 obtained by letting π be
the set of all prime numbers different from p.

In this case it is clear by the definitions of Lj which depend on the set π that L0 = K1
and Lj = ⋂

n Kn, where n ranges over all natural p′-numbers whose number of prime divisors
counted with multiplicities is j . Then, the definition of Kn implies that

Lj (G) =
⋂
X

Ker
(
ResG

X : KRF(G) → KRF(X)
)

where X ranges over all cyclic p′-subgroups of G satisfying �(X) � j .

Theorem 6.17. There is a chain of functors

KRF = L−1 ⊃ L0 ⊃ L1 ⊃ · · · ⊃ Lj ⊃ · · ·

such that
⋂

j Lj = 0 and each Lj−1/Lj is semisimple with

Lj−1/Lj
∼=

⊕
C,V

Si
C,V

where C ranges over all nonisomorphic cyclic p′-groups with �(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules.

Proof. We observed above that the subfunctors Lj can be defined as in Section 1. Thus all the
assertions except

⋂
j Lj = 0 follow immediately from 6.15. We will show that

⋂
j Lj = 0. If it is

nonzero then its evaluation at some finite group G must be nonzero. Then, considering
⋂

j Lj as
a functor defined on the finite family of groups consisting of representatives of the isomorphism
classes of subquotients of G, we may regard

⋂
j Lj as a nonzero finite dimensional module

of a finite dimensional K-algebra. See the last paragraph of Section 2. Therefore, if
⋂

j Lj is

nonzero at some finite group G, then it must have a simple section of the form Si
C,V where

C is a cyclic p′-group of order dividing |G|. On the other hand, 6.15 (with π is the set of all
primes different from p) implies that Si

C,V is a summand of Lj−1/Lj where j = �(C). Since

Lj−1 ⊃ Lj ⊃ ⋂
j Lj , it follows that the multiplicity of Si

C,V in KRF is greater than or equal
to 2, which is not the case by 5.5. Hence

⋂
j Lj = 0. �

7. Composition factors of KPFKPFKPF

We still assume that the fields K and F satisfy the same conditions of Sections 5 and 6. In this
section we briefly explain that one can use similar arguments to find the composition factors of
the deflation functor KPF whose evaluation at any finite group G is K ⊗Z K0(G), where K0(G)
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is the Grothendieck group of finitely generated projective FG-modules. By definition, K0(G) is
generated by expressions [P ], one for each isomorphism class (P ) of finitely generated projective
FG-modules, with relations [P ′ ⊕ P ′′] = [P ′] + [P ′′]. Therefore

KPF(G) =
⊕
P

K[P ]

where P ranges over a complete set of isomorphism classes of principal indecomposable FG-
modules.

Let S be a (G,H)-biset. If the functor FGFS ⊗FH − : FH -Mod → FG-Mod sends projectives
to projectives, then it induces a map

KPF(H) → KPF(G), [P ] �→ [FS ⊗FH P ].

This is equivalent to the projectivity of FGFS. For the four type of basic bisets

IndG
H , IsoG

G′ , DefGG/N, and ResG
H ,

we see that the left modules

FGFG, FGFG′, F(G/N)F(G/N) and FH FG

are all free and so projective where H � G � N and G′ ∼= G. While for InfGG/N , we see that

FGF(G/N) is projective if and only if p does not divide the order of N . Therefore KPF has a
natural deflation functor structure over K.

Let d be the subcategory of the biset category b with the same objects and with the morphisms

Homd(H,G) =
⊕

L�∗G×H : k1(L)=1

R
[
(G × H)/L

]
.

An R-linear functor from d to the category of left R-modules is called a deflation functor.
We now exhibit that there is an isomorphism between the deflation functors KPF and KR∗

F
.

For a (G,H)-biset S we define the opposite Sop of S as the (H,G)-biset S with the (H,G)-
action given by h.s.g = g−1sh−1. It is clear that the opposites of the bisets IndG

H , InfGG/N and

IsoG′
G (ψ) are the bisets ResG

H , DefGG/N and IsoG
G′(ψ−1), respectively. See Bouc [3].

Recall that the dual of a biset functor F over a field L is the biset functor F ∗ given on objects
G and on morphisms [S] ∈ Homb(H,G) as follows:

F ∗(G) = HomL

(
F(G),L

)
,

F ∗([S]) : HomL

(
F(H),L

) → HomL

(
F(G),L

)
, f �→ f ◦ F

([
Sop]).

Evidently, dual of an inflation functor is a deflation functor.
While V ranges over Irr(FG), the elements [P(V )] and [V ] range over respective K-bases

of KPF(G) and KRF(G) where P(V ) is the projective cover of V . Therefore the K-linear
extensions of the maps, whose images at the above basis elements are given as
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rG : KPF(G) → KRF(G),
[
P(V )

] �→ [V ],
f ∗

G : KRF(G) → KR∗
F(G), [V ] �→ [V ]∗,

are well-defined K-space isomorphisms, where [V ]∗ is a dual basis element of KR∗
F
(G) that

corresponds the basis element [V ] ∈ IrrF(G) of KRF(G).

Theorem 7.1. KPF and KR∗
F

are isomorphic deflation functors.

Proof. For simplicity we write R for KRF and P for KPF. Let Ψ be the map from P to R∗
whose G-component ΨG is given by f ∗

G ◦ rG. By construction, the map ΨG is a K-space iso-
morphism. We will show Ψ is a deflation functor homomorphism by observing that it commutes
with Ind, Iso, Def and Res.

We first note that for any simple FG-module V and any FG-module X, one has

ΨG

([
P(V )

])([X]) = dimF HomFG

(
P(V ),X

)
which is the multiplicity of V as a composition factor of X. Moreover, given FG-modules M1

and M2 we have

P(M1 ⊕ M2) ∼= P(M1) ⊕ P(M2) and

HomFG(M1 ⊕ M2,X) ∼= HomFG(M1,X) ⊕ HomFG(M2,X).

This shows that

ΨG

([M])([X]) = dimF HomFG(M,X)

for any projective FG-module M and any FG-module X. Recall that the functors

↓G
H , ↑G

H , FGF(G/N) ⊗F(G/N) −, and F(G/N)F(G/N) ⊗FG −

between the module categories of group algebras (over F) satisfy that the pairs

(↑G
H ,↓G

H

)
,

(↓G
H ,↑G

H

)
and

(
F(G/N)F(G/N) ⊗FG −,FGF(G/N) ⊗F(G/N) −)

are adjoint pairs. Moreover, all of the functors

↓G
H , ↑G

H , and F(G/N)F(G/N) ⊗FG −

send projectives to projectives.
Now we can see by using the adjointness of the above functors that Ψ commutes with Ind,

Iso, Def, and Res.
Let H � G. Given a projective FH -module W and an FG-module X, we have
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R∗(IndG
H

)(
ΨH

([W ]))([X]) = (
ΨH

([W ]) ◦R(
ResG

H

))([X])
= ΨH

([W ])([↓G
H X

])
= dimF HomFH

(
W,↓G

H X
)

= dimF HomFG

(↑G
H W,X

)
= ΨG

([↑G
H W

])([X])
= ΨG

(
P

(
IndG

H

)([W ]))([X]).
Therefore ΨG ◦P(IndG

H ) = R∗(IndG
H ) ◦ ΨH .

For the above commuting relation we used the adjointness of the pair (↑G
H ,↓G

H ). Similarly,
one may show by using the adjointness of the pair (↓G

H ,↑G
H ) that Ψ commutes with Res.

Let N � G. Given a projective FG-module W and an F(G/N)-module X, we have

R∗(DefGG/N

)(
ΨG

([W ]))([X]) = (
ΨG

([W ]) ◦R(
InfGG/N

))([X])
= ΨG

([W ])([F(G/N) ⊗F(G/N) X
])

= dimF HomFG

(
W,F(G/N) ⊗F(G/N) X

)
= dimF HomF(G/N)

(
F(G/N) ⊗FG W,X

)
= ΨG/N

([
F(G/N) ⊗FG W

])([X])
= ΨG/N

(
P

(
DefGG/N

)([W ]))([X]).
Therefore ΨG/N ◦P(DefGG/N) = R∗(DefGG/N) ◦ ΨG.

Any group isomorphism ψ :G → G′ induces an F-algebra isomorphism FG → FG′ so that
IsoG′

G transposes the module structure via this isomorphism. Therefore the fact that Ψ commutes
with Iso is obvious.

Consequently, Ψ :P → R∗ is a deflation functor isomorphism. �
Obviously, the proof of 7.1 implies the isomorphism of the deflation functors K0 and G∗

0
over Z.

We now explain how to find a filtration of KPF by using 7.1 and 6.17. This will follow from
some basic facts about dual of a vector space, provided we show that similar results hold also for
dual of a biset functor which is the content of the next result.

Let F be a biset functor over a field L and K be a biset subfunctor of F . We define a subset
K⊥ of F ∗ given on objects G as follows:

K⊥(G) = {
f ∈ F ∗(G): f

(
K(G)

) = 0
}
.

For any biset functor homomorphism ϕ : F → L we denote by ϕ∗ the map L∗ → F ∗ whose
G-component ϕ∗

G :L∗(G) → F ∗(G) is given by f �→ f ◦ ϕG for any f ∈ L∗(G).

Remark 7.2. Let F be a biset functor, K be a biset subfunctor of F , and ϕ :F → L be a biset
functor homomorphism. Then:
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(1) K⊥ is a biset subfunctor of F ∗.
(2) ϕ∗ :L∗ → F ∗ is a biset functor homomorphism.

Proof. (1) For any morphism [S] ∈ Homb(H,G), we must show that

F ∗([S])(K⊥(H)
) ⊆ K⊥(G).

We first note that F([Sop])(K(G)) ⊆ K(H) because K is a biset subfunctor of F . For this end,
we take any element f of K⊥(H) and compute that

F ∗([S])(f )
(
K(G)

) = f
(
F

([
Sop])(K(G)

)) ⊆ f
(
K(H)

) = 0.

Thus F ∗([S])(f ) ∈ K⊥(G).
(2) We only need to check that ϕ∗ commutes with morphisms of the biset functor category.

Thus, for any morphism [S] ∈ Homb(H,G), we must show that the following maps

ϕ∗
GL∗([S]) : HomL

(
L(H),L

) → HomL

(
F(G),L

)
, f �→ f ◦ L

([
Sop]) �→ f ◦ L

([
Sop]) ◦ ϕG,

F ∗([S])ϕ∗
H : HomL

(
L(H),L

) → HomL

(
F(G),L

)
, f �→ f ◦ ϕH �→ f ◦ ϕH ◦ F

([
Sop])

are equal. But this is obvious because

L
([

Sop]) ◦ ϕG = ϕH ◦ F
([

Sop])
from the fact that ϕ :F → L is a biset functor homomorphism. �

We note that the definition of K⊥ may sometimes be confusing because it depends on F

having K as a subfunctor. In the following both of K⊥ and L⊥ depend on F so that L⊥ � K⊥
when K � L � F . Note also that for F � F � 0 we have 0⊥ = F ∗ and F⊥ = 0.

Lemma 7.3. For any chain K � L � F of biset functors, we have

(L/K)∗ ∼= K⊥/L⊥.

Proof. The inclusion map ι : L → F of biset functors induces the surjective biset functor ho-
momorphism ι∗ :F ∗ → L∗ by 7.2 because each component ι∗G is a surjective L-space map. It is
easy to see that Ker ι = L⊥. Consequently,

L∗ ∼= F ∗/L⊥, ι∗G(xG) ↔ xG + L⊥(G).

The natural epimorphism π : L → L/K of biset functors induces the biset functor monomor-
phism π∗ : (L/K)∗ → L∗ and its image is equal to K⊥, by 7.2 and by the similar results in the
context of vector spaces over L. Thus we have the following biset functor monomorphism

(L/K)∗ → F ∗/L⊥

whose image is K⊥/L⊥. �
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It is clear now that from the chain of inflation functors given in 6.17 we obtain the following
chain of deflation functors

0 = KR⊥
F ⊂ L⊥−1 ⊂ L⊥

0 ⊂ L⊥
1 ⊂ · · · ⊂ L⊥

j ⊂ · · · ⊂ 0⊥ = KR∗
F

∼= KPF.

We also see from 7.3 that

L⊥
j /L⊥

j−1
∼= (Lj−1/Lj )

∗ ∼=
⊕
C,V

(
Si

C,V

)∗ ∼=
⊕
C,V

(
Sd

C,V

)
.

Furthermore, we can also find explicit description of evaluations Ψ −1(L⊥
j )(G) as a sum of im-

ages of Ind by the help of the isomorphism Ψ :P → R∗ given in the proof of 7.1. Indeed, for
any K-space homomorphisms f :V → W and g :V → W ′ between K-spaces W,W ′ and V , it is
easy to see that (Kerf )⊥ = Imf ∗ and hence (Kerf ∩ Kerg)⊥ = Imf ∗ + Img∗ where f ∗ and
g∗ are the usual dual maps. And note that for any biset S, the usual dual map (R([S]))∗ of the
K-space map R([S]) is equal to R∗([Sop]). Now we can easily calculate that

Ψ −1(L⊥
j

)
(G) = Ψ −1

G

(
L⊥

j (G)
)

= Ψ −1
G

((⋂
X

Ker
(
R

(
ResG

X

)))⊥)

= Ψ −1
G

(∑
X

Im
((
R

(
ResG

X

))∗))

= Ψ −1
G

(∑
X

ImR∗(IndG
X

))

=
∑
X

P
(
IndG

X

)
Ψ −1

X

(
R∗(X)

)
=

∑
X

P
(
IndG

X

)(
P(X)

)
.

Remark 7.4. Let L be a field, and F′
b

be the category of biset functors over L whose evaluations
at any finite group are finite dimensional over L. Then the duality F �→ F ∗ sending a biset functor
to its dual over L induces a category equivalence between the category F′

b
and the opposite

category of F′
b

.

Proof. This is clear from the definition of the dual of a biset functor and by part (2) of 7.2. �
We now explicitly state what we have obtained about the dual of a functor.

Theorem 7.5. Let F′
i

(respectively, F′
d) be the category of inflation (respectively, deflation) func-

tors over K whose evaluations at any finite group are finite dimensional over K. Then, the duality
F �→ F ∗ sending an inflation functor to its dual over K induces an equivalence of categories be-
tween F′ and the opposite category of F′

d. This equivalence maps KRF to a deflation functor

i
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isomorphic to KPF, and a simple inflation functor of the form Si
H,V to a simple deflation functor

of the form Sd
H,V . Moreover, it reverses filtrations in the sense that if

0 = X0 � X1 � X2 � · · · � Xn = F

is a chain of inflation functors, then

0 = Yn � Yn−1 � Yn−2 � · · · � Y0 = F ∗

is a chain of deflation functors such that

Yi−1/Yi
∼= (Xi/Xi−1)

∗

for all i = 1,2, . . . , n, where Yi(G) = {f ∈ F ∗(G): f (Xi(G)) = 0} for any finite group G.

Proof. As the dual of an inflation (respectively, deflation) functor is a deflation (respectively,
inflation) functor, it follows by 7.4 that the duality induces an equivalence of categories between
the desired categories. By 7.1, this equivalence maps KRF to a deflation functor isomorphic
to KPF. Moreover, as the duality is a category equivalence, it maps a simple inflation functor of
the form Si

H,V to a simple deflation functor, which must be of the form Sd
H,V by the definition of

the dual of a functor. The remaining part of the theorem follows easily by 7.2 and 7.3. �
In the rest of this paper, we give a different way of obtaining a filtration of the deflation functor

KPF without using the duality. To be more precise, we demonstrate that one can modify easily
our earlier results to find a filtration of KPF without using the results 7.1– 7.5.

Proposition 7.6. Over any field L we have:

(1) Any simple biset functor Sb
H,V has a unique minimal deflation subfunctor M . Moreover M ∼=

Sd
H,V .

(2) Any simple deflation functor Sd
H,V has a unique maximal Mackey subfunctor M . Moreover

Sd
H,V /M ∼= Sm

H,V .

Proof. (1) This is similar to the proof of 3.8. Because, putting S = Sb
H,V we easily observe that

KerS,d
H,0 = 0.

(2) This part is similar to the proof of part (1) of 3.12. Because we easily see that S = Sd
H,V is

generated by S(H) as Mackey functor. �
Now part (2) of the previous result and semisimplicity result 3.9 imply that over characteristic

0 fields, any simple deflation functor Sd
H,V is isomorphic to Sm

H,V as Mackey functors. Conse-
quently we have the following analogy of 4.5.

Proposition 7.7. Assume that L is an algebraically closed field of characteristic 0. If M is a
deflation functor whose evaluation at any finite group is finite dimensional over L, then for any
simple deflation functor Sd the following numbers are equal:
H,V
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(a) dimL HomLOut(H)(V ,M(H)/Im
H M(H)).

(b) The multiplicity of Sd
H,V in M as deflation functors.

For any finite group G, the Cartan map c :K0(G) → G0(G) becomes an isomorphism of
abelian groups if we extend scalars to K, see Benson [2, Corollary 5.3.6, p. 165]. Since c com-
mutes with Ind, the following follows easily by 5.1.

Lemma 7.8. Let G be a finite group and M be a Mackey subfunctor of KPF. If M(H) = KPF(H)

for all cyclic p′-subgroups H of G then M(G) = KPF(G).

We let χ be a family of groups satisfying the same conditions of Section 5.

Lemma 7.9. If Sd
H,V is a composition factor of KPχ

F
as deflation functors then H is a cyclic

p′-group in χ .

Proof. Using 7.8, it is same as the proof of 5.2. �
It is clear from the proof of 5.4 that 5.4 is still valid for deflation functors and KPF so that it

suffices to compute multiplicities in KPχ

F
of simple deflation functors whose minimal subgroups

are cyclic q-groups where q is a prime different from p. As KRF(G) = KPF(G) for any finite
p′-group G, the next result follows by 5.3 and by what we have observed in this section.

Theorem 7.10. The composition factors of KPχ

F
as deflation functors on χ are precisely the

simple deflation functors Sd
C,V , where C ranges over cyclic p′-groups in χ and V ranges over

elements in Irr(K Out(C)). Moreover the multiplicity of each composition factor is 1.

One may also construct some series of KPF using the ideas of Section 6. From now on, a
functor means a deflation functor. We give analogues of some results obtained in Section 6. Since
proofs are parallel to the corresponding proofs we gave in Section 6, we omit the justification of
some results.

For any p′-number n, we define a subset K ′
n of KPF whose evaluations at a finite group G is

given as follows:

K ′
n(G) =

∑
C

IndG
C KPF(C)

where C ranges over all cyclic subgroups of G of order dividing n. For any natural number m,
let Cm be a cyclic group of order m.

Remark 7.11.

(1) If n is a p′-number then K ′
n = ImKPF,d

Cn,KPF(Cn)
. In particular, K ′

n is the subfunctor of KPF

generated by KPF(Cn).
(2) If n and m are p′-numbers then dimK K ′

n(Cm) = (n,m) where (n,m) is the greatest common
divisor of n and m.

For a p′-number n, if d divides n then by the previous result K ′
n(Cd) = KPF(Cd). Then by

counting dimensions we get the following result similar to 6.8.
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Proposition 7.12. Let n be a p′-number. Then the composition factors of K ′
n are precisely the

simple functors Sd
C,V where C ranges over all nonisomorphic cyclic groups of order dividing n

and V ranges over all nonisomorphic simple K Out(C)-modules. Moreover the multiplicity of
each composition factor is 1.

Now for any p′-number n we define the following subfunctor F ′
n of K ′

n.

F ′
n =

∑
d

K ′
d

where d ranges over all natural numbers less than n and dividing n. We note that, for a subfunctor
M of KPF, K ′

n � M if and only if M(Cn) = KPF(Cn). Therefore, arguing as in the proof of 6.11,
we can show that

F ′
n(Cn) =

r∑
s=1

(
KPF(C

p
α1
1

) ⊗K · · · ⊗K Ind
C

p
αs
s

C
p
αs−1
s

KPF(C
p

αs−1
s

) ⊗K · · · ⊗K KPF(Cp
αr
r

)
)

where n = p
α1
1 . . . p

αr
r is the prime factorization of n. This shows that F ′

n is not equal to K ′
n, and

so we have the following consequence of 7.12.

Corollary 7.13. Let C be a cyclic group whose order is a p′-number n. Then the composition
factors of K ′

n/F
′
n are precisely the simple functors Sd

C,V where V ranges over all nonisomorphic
simple K Out(C)-modules. Moreover the multiplicity of each composition factor is 1.

We next show that K ′
n/F

′
n is semisimple by using 3.7.

Lemma 7.14. Let n be a p′-number. Then:

(1) Id
Cn

annihilates K ′
n(Cn)/F

′
n(Cn).

(2) K ′
n/F

′
n is generated by K ′

n(Cn)/F
′
n(Cn) as deflation functor.

(3) Ker
K ′

n/F ′
n,d

Cn,0 = 0.

Proof. (1) Let [(Cn × Cn)/L] ∈ Id
Cn

. Then it is of the form

IndCn
p1

Isop1
p2/k2

Defp2
p2/k2

ResCn
p2

where pi = pi(L), k2 = k2(L), and |q(L)| < n. Thus p1 is a cyclic subgroup of Cn of order less
than n and dividing n, implying that Id

Cn
KPF(Cn) ⊆ F ′

n(Cn).
(2) Using the properties of Im given in 3.1 we see that

Im
K ′

n/F ′
n,d

Cn,K ′
n(Cn)/F ′

n(Cn)
=

(
Im

K ′
n,d

Cn,K ′
n(Cn)

+F ′
n

)
/F ′

n = (
K ′

n + F ′
n

)/
F ′

n = K ′
n/F

′
n

where we also use K ′
n = ImKPF,d

Cn,KPF(Cn)
from 7.11.

(3) 7.13 implies the existence of a series

F ′
n(Cn) = X0 ⊂ X1 ⊂ · · · ⊂ Xd = K ′

n(Cn)



E. Yaraneri / Journal of Algebra 318 (2007) 140–179 177
of Endd(Cn)-modules such that

Irr
(
K Out(Cn)

) = {Xi+1/Xi : i = 0, . . . , d − 1}
and d = | Irr(K Out(Cn))|. For each i we define a subfunctor N ′

i of K ′
n containing F ′

n by setting

N ′
i = Ker

K ′
n

Cn,Xi
. By the properties of Ker given in 3.1 we have the following series of functors

F ′
n ⊆ N0 ⊂ N1 ⊂ · · · ⊂ Nd = K ′

n.

If N0 is not equal to F ′
n then the number of composition factors of K ′

n/F
′
n counting with mul-

tiplicities must be greater than d which is not the case by 7.13. Consequently, N0 = F ′
n. This

shows by 3.1 that

0 = N0/F
′
n = Ker

K ′
n

Cn,F ′
n(Cn)

/F ′
n = Ker

K ′
n/F ′

n

Cn,0 . �
Proposition 7.15. Let C be a cyclic group whose order is a p′-number n. Then K ′

n/F
′
n is a

semisimple functor such that

K ′
n/F

′
n

∼=
⊕

V ∈Irr(KOut(C))

Sd
C,V .

Proof. Since Id
C annihilates K ′

n(C)/F ′
n(C) by 7.14, it follows from the semisimplicity of

K Out(C) that K ′
n(C)/F ′

n(C) is a semisimple Endd(C)-module. Now it is clear from 7.14 that
3.7 implies the desired result. �

We can now construct a series of functors

0 ⊂ K ′
1 ⊂ L′

1 ⊂ L′
2 ⊂ · · · ⊂ L′

j ⊂ · · · ⊂ KPF

such that the quotients are semisimple and cover all composition factors whose minimal
subgroups are π -groups where π is any set of prime numbers not containing p. Let π =
{p1,p2, . . . , pr} be a set of prime numbers not containing p. For any natural number j we define

L′
0 = K ′

1, L′
1 =

∑
1�i1�r

K ′
pi1

, L′
2 =

∑
1�i1�i2�r

K ′
pi1 pi2

, and

L′
j =

∑
1�i1�i2�···�ij �r

K ′
pi1 pi2 ...pij

.

Theorem 7.16. Let π = {p1,p2, . . . , pr} be a set of prime numbers not containing p. Then the
series of functors

0 ⊂ K ′
1 ⊂ L′

1 ⊂ L′
2 ⊂ · · · ⊂ L′

j ⊂ · · · ⊂ KPF

satisfies:

(1) L′ /L′ is a semisimple functor for all j = 1,2, . . . .
j j−1
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(2) L′
j /L

′
j−1

∼=
⊕
C

⊕
V ∈Irr(KOut(C))

Sd
C,V

where C ranges over all nonisomorphic cyclic groups of order pi1pi2 . . . pij with 1 � i1 �
i2 � · · · � ij � r .

Proof. It is clear that K ′
d � K ′

s for any p′-numbers d and s such that d divides s. Thus by the
definition of F ′

n we have F ′
n = ∑

q K ′
n/q where q ranges over all prime divisors of n. This shows

that

L′
j−1 =

∑
1�i1�i2�···�ij �r

F ′
pi1 pi2 ...pij

.

Therefore, each semisimple quotient K ′
pi1 pi2 ...pij

/F ′
pi1pi2 ...pij

embeds into L′
j /L

′
j−1. On the

other hand, 7.12 implies that the composition factors of L′
j /L

′
j−1 have multiplicities all equal

to 1 and are among the simple functors Sd
C,V where C ranges over all nonisomorphic cyclic

groups of order pi1pi2 . . . pij with 1 � i1 � i2 � · · · � ij � r . Now the result follows by the
above embeddings and by 7.13. �

We finally record the following filtration of KPF which is immediate from the previous result.
In the following L′

j is the subfunctor given on any finite group G by

L′
j (G) =

∑
X

IndG
X KPF(X)

where X runs over all cyclic p′-subgroups of G with �(X) � j .

Corollary 7.17. There is a chain of functors

0 = L′−1 ⊂ L′
0 ⊂ L′

1 ⊂ L′
2 ⊂ · · · ⊂ L′

j ⊂ · · · ⊂ KPF

such that
∑

j L′
j = KPF and each L′

j /L
′
j−1 is a semisimple with

L′
j /L

′
j−1

∼=
⊕
C,V

Sd
C,V

where C ranges over all nonisomorphic cyclic p′-groups with �(C) = j and V ranges over all
nonisomorphic simple K Out(C)-modules.
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