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Abstract

Let M be a Mackey functor for a finite group G. By the kernel of M we mean the largest normal subgroup
N of G such that M can be inflated from a Mackey functor for G/N . We first study kernels of Mackey
functors, and (relative) projectivity of inflated Mackey functors. For a normal subgroup N of G, denoting
by PG

H,V
the projective cover of a simple Mackey functor for G of the form SG

H,V
we next try to answer

the question: how are the Mackey functors P
G/N
H/N,V

and PG
H,V

related? We then study imprimitive Mackey
functors by which we mean Mackey functors for G induced from Mackey functors for proper subgroups
of G. We obtain some results about imprimitive Mackey functors of the form PG

H,V
, including a Mackey

functor version of Fong’s theorem on induced modules of modular group algebras of p-solvable groups.
Aiming to characterize subgroups H of G for which the module PG

H,V
(H) is the projective cover of the

simple KNG(H)-module V where the coefficient ring K is a field, we finally study evaluations of Mackey
functors.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finite group and N be a normal subgroup of G. A basic functor from the category
of Mackey functors for G/N to that for G is the inflation functor InfGG/N . One of the aims of
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this paper is to study Mackey functors for G of the form M = InfGG/N T and to seek properties
possessed by both of M and T such as relative projectivity. We also try to understand Mackey
functors for G that can be induced from Mackey functors for a proper subgroup of G.

Similar topics are well established in finite group representation theory. Here we try to obtain
related results for Mackey functors. However, we see that Mackey functor versions of them are
completely different.

The concept of Mackey functors was introduced by J.A. Green [4] and A. Dress [2] to study
group representation theory in an abstract setting, unifying several notions like representation
rings, G-algebras and cohomology. The theory of Mackey functors was developed mainly by
J. Thévenaz and P. Webb in [8,9] which are now standard references on the subject. They con-
structed simple Mackey functors explicitly in [8], and taking representation theory of finite
groups as a model they developed a comprehensive theory of representations of Mackey functors
in [9]. It is shown in [9] that Mackey functors for G over a field K can be viewed as modules
of a finite dimensional K-algebra μK(G), allowing one to adopt easily many module theoretic
constructions.

After recalling some crucial preliminary results about Mackey functors in Section 2, we begin
to study inflated Mackey functors in Section 3. Let M be a Mackey functor for G. We observe
that the intersection of all minimal subgroups of M is the largest normal subgroup of G such that
M can be inflated from a Mackey functor for the quotient group. We refer to this largest normal
subgroup as the kernel of M . Our first aim in Section 3 is to describe the kernels of simple and
indecomposable Mackey functors. It is easily seen that the kernel of a simple Mackey functor for
G of the form SG

H,V is equal to the core HG of H in G. For an indecomposable Mackey functor
M for G over a field K of characteristic p > 0, we show by using [9] that the kernel K(M) of
M satisfies: (

Op(H)
)
G

� K(M) � HG and Op
(
K(M)

) = Op(HG)

where H is a vertex of M .
Some of our main results can be explained as follows. Let N be a normal subgroup of G and

T be an indecomposable μK(G/N)-module with vertex P/N . We show in Section 3 that P is a
vertex of InfGG/N T so that InfGG/N preserves vertices. However, it may not preserve projectivity.

Using some results of [9] we also observe that the functor InfGG/N sends projectives to projectives
if and only if N is p-perfect where p is the characteristic of the field K.

Denoting by P G
H,V the projective cover of the simple μK(G)-module of the form SG

H,V , we

also study the relationship between the Mackey functors of the form P
G/N
H/N,V and P G

H,V . For

example we prove in Section 3 that InfGG/N sends P
G/N
H/N,V to a projective μK(G)-module if and

only if N is inside the kernel of P G
H,V , and if this is the case we have

P G
H,V

∼= InfGG/N P
G/N
H/N,V .

Moreover, in Section 4 we prove in general that

P
G/N
H/N,V

∼= eNP G
H,V /INP G

H,V

as μK(G/N)-modules where eN is a certain idempotent of μK(G) and IN is a two sided ideal
of eNμK(G)eN .
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In Section 5, we deal with inflations of principal indecomposable Mackey functors. For ex-
ample, we show that InfGG/N P

G/N
H/N,V is isomorphic to the largest quotient of P G

H,V that can be
inflated from a μK(G/N)-module.

Section 6 deals with imprimitive Mackey functors, meaning that Mackey functors induced
from Mackey functors for proper subgroups of G. We give a criterion for simple Mackey functors
to be primitive. We also obtain a similar result about primitivity of projective Mackey functors
for nilpotent groups.

We justify that a version of Fong’s theorem on induced modules of modular group algebras
of p-solvable groups holds in the context of Mackey functors. Namely, if K is an algebraically
closed field of characteristic p > 0 and G is p-solvable then any indecomposable μK(G)-module
whose vertex is a p′-group (such a μK(G)-module is necessarily projective) is induced from a
μK(K)-module where K is a Hall p′-subgroup of G.

Finally, we study evaluations of Mackey functors in Section 7. We give some results about the
structure of P G

H,V (H) as KNG(H)-module where P G
H,V is a principal indecomposable Mackey

functor for G over a field K. For instance, we prove that P G
H,V (H) is projective if H is normal

in G, and that P G
H,V (H) is the projective cover of V if H is a p′-subgroup where p is the

characteristic of the field K.
Most of our notations are standard. Let H � G � K . By the notation HgK ⊆ G we mean that

g ranges over a complete set of representatives of double cosets of (H,K) in G. We also write
NG(H) for the quotient group NG(H)/H where NG(H) is the normalizer of H in G.

Throughout K is a field and G is a finite group. We consider only finite dimensional Mackey
functors.

2. Preliminaries

In this section, we briefly summarize some crucial material on Mackey functors. For the
proofs, see Thévenaz and Webb [8,9]. Recall that a Mackey functor for G over a commuta-
tive unital ring R is such that, for each subgroup H of G, there is an R-module M(H); for each
pair H,K � G with H � K , there are R-module homomorphisms rK

H : M(K) → M(H) called
the restriction map and tKH : M(H) → M(K) called the transfer map or the trace map; for each
g ∈ G, there is an R-module homomorphism c

g
H : M(H) → M(gH) called the conjugation map.

The following axioms must be satisfied for any g,h ∈ G and H,K,L � G [1,4,8,9].

(M1) If H � K � L, rL
H = rK

H rL
K and tLH = tLKtKH ; moreover rH

H = tHH = idM(H).

(M2) c
gh
K = c

g
hK

ch
K .

(M3) If h ∈ H, ch
H : M(H) → M(H) is the identity.

(M4) If H � K, c
g
H rK

H = r
gK
gH c

g
K and c

g
KtKH = t

gK
gH c

g
H .

(M5) (Mackey Axiom) If H � L � K, rL
H tLK = ∑

HgK⊆L tHH∩gKr
gK
H∩gKc

g
K .

Another possible definition of Mackey functors for G over R uses the Mackey algebra μR(G)

[1,9]: μZ(G) is the algebra generated by the elements rK
H , tKH , and c

g
H , where H and K are

subgroups of G such that H � K, and g ∈ G, with the relations (M1)–(M7).

(M6)
∑

H�G tHH = ∑
H�G rH

H = 1μZ(G).

(M7) Any other product of rK, tK and c
g is zero.
H H H
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A Mackey functor M for G, defined in the first sense, gives a left module M̃ of the associative
R-algebra μR(G) = R ⊗Z μZ(G) defined by M̃ = ⊕

H�G M(H). Conversely, if M̃ is a μR(G)-

module then M̃ corresponds to a Mackey functor M in the first sense, defined by M(H) = tHH M̃,

the maps tKH , rK
H , and c

g
H being defined as the corresponding elements of the μR(G). Moreover,

homomorphisms and subfunctors of Mackey functors for G are μR(G)-module homomorphisms
and μR(G)-submodules, and conversely.

Theorem 2.1. (See [9].) Letting H and Krun over all subgroups of G, letting g run over rep-
resentatives of the double cosets HgK ⊆ G, and letting J runs over representatives of the
conjugacy classes of subgroups of Hg ∩ K, then tHgJ c

g
J rK

J comprise, without repetition, a free
R-basis of μR(G).

Let M be a Mackey functor for G over R. A subgroup H of G is called a minimal subgroup
of M if M(H) 	= 0 and M(K) = 0 for every subgroup K of H with K 	= H . Given a simple
Mackey functor M for G over R, there is a unique, up to G-conjugacy, minimal subgroup H

of M . Moreover, for such an H the RNG(H)-module M(H) is simple, where the RNG(H)-
module structure on M(H) is given by gH.x = c

g
H (x), see [8].

Theorem 2.2. (See [8].) Given a subgroup H � G and a simple RNG(H)-module V, then
there exists a simple Mackey functor SG

H,V for G, unique up to isomorphism, such that H is

a minimal subgroup of SG
H,V and SG

H,V (H) ∼= V . Moreover, up to isomorphism, every simple

Mackey functor for G has the form SG
H,V for some H � G and simple RNG(H)-module V . Two

simple Mackey functors SG
H,V and SG

H ′,V ′ are isomorphic if and only if, for some element g ∈ G,

we have H ′ = gH and V ′ ∼= c
g
H (V ).

We now recall the definitions of restriction, induction and conjugation for Mackey functors
[1,7–9]. Let M and T be Mackey functors for G and H, respectively, where H � G, then the re-
stricted Mackey functor ↓G

H M is the μR(H)-module 1μR(H)M and the induced Mackey functor
↑G

H T is the μR(G)-module μR(G)1μR(H) ⊗μR(H) T , where 1μR(H) denotes the unity of μR(H).
For g ∈ G, the conjugate Mackey functor |gH T = gT is the μR(gH)-module T with the module
structure given for any x ∈ μR(gH) and t ∈ T by x.t = (γg−1xγg)t, where γg is the sum of all

c
g
X with X ranging over subgroups of H . Obviously, one has |gLSL

H,V
∼= S

gL
gH,c

g
H (V )

. The subgroup

{g ∈ NG(H): gT ∼= T } of NG(H) is called the inertia group of T in NG(H).

Theorem 2.3. (See [7].) Let H be a subgroup of G. Then ↑G
H is both left and right adjoint of ↓G

H .

Given H � G � K and a Mackey functor M for K over R, the following is the Mackey
decomposition formula for Mackey algebras, which can be found in [9],

↓L
H ↑L

K M ∼=
⊕

HgK⊆L

↑H
H∩gK↓gK

H∩gK |gKM.

We finally recall some facts from [8] about inflated Mackey functors. Let N be a normal sub-
group of G. Given a Mackey functor M̃ for G/N, we define a Mackey functor M = InfGG/N M̃

for G, called the inflation of M̃, as M(K) = M̃(K/N) if K � N and M(K) = 0 otherwise.
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The maps tKH , rK
H , c

g
H of M are zero unless N � H � K in which case they are the maps

t̃
K/N
H/N , r̃

K/N
H/N , c̃

gN
H/N of M̃ . Evidently, one has InfGG/N S

G/N
H/N,V

∼= SG
H,V .

Given a Mackey functor M for G we define Mackey functors L+
G/NM and L−

G/NM for G/N

as follows:

(
L+

G/NM
)
(K/N) = M(K)

/ ∑
J�K: J�N

tKJ
(
M(J)

)
,

(
L−

G/NM
)
(K/N) =

⋂
J�K: J�N

Ker rK
J .

The maps on these two new functors come from those on M . They are well defined because the
maps on M preserve the sum of images of traces and the intersection of kernels of restrictions,
see [8].

Theorem 2.4. (See [8].) For any normal subgroup N of G, L+
G/N is a left adjoint of InfGG/N and

L−
G/N is a right adjoint of InfGG/N .

Theorem 2.5. (See [8].) For any simple μK(G)-module SG
H,V , we have

SG
H,V

∼= ↑G
NG(H) InfNG(H)

NG(H)/H S
NG(H)
1,V .

3. Kernels, inflations, and relative projectivity

In this section, we want to define and study a notion of a kernel of a Mackey functor, and also
want to relate this notion to the adjoints of the inflation functor given in 2.4. We also study the
relative projectivity of inflated Mackey functors.

Let M be a μK(G)-module. We first study the existence of a normal subgroup N of G such
that M ∼= InfGG/N T for some μK(G/N)-module T . There is an obvious such N, namely the
trivial subgroup of G. Indeed, we will show that there is a unique largest normal subgroup K(M)

of G such that M is inflated from the quotient G/K(M).
For any nonzero μK(G)-module M we define

K(M) =
⋂
X

X

where X ranges over all minimal subgroups of M . Since the set of minimal subgroups of M

is closed under taking G-conjugates (as the maps c
g
H are bijective), K(M) is the unique largest

normal subgroup of G satisfying K(M) � H for any subgroup H of G with M(H) 	= 0.

Remark 3.1. Let N be a normal subgroup of G and M̃ be a μK(G/N)-module. Then, letting
M = InfGG/N M̃ we have N ⊆ K(M) and K(M)/N = K(M̃).

Proof. This is obvious by the definition of inflated Mackey functors. �
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For a μK(G)-module M with maps t, r, c we define a μK(G/K(M))-module M0 (see 3.2)
with maps t̃ , r̃, c̃ as follows:

M0(H/K(M)
) = M(H),

t̃
K/K(M)

H/K(M)
= tKH , r̃

K/K(M)

H/K(M)
= rK

H , and c̃
gK(M)

H/K(M)
= c

g
H ,

for any H,K and g ∈ G with K(M) � H � K � G.

Lemma 3.2. M0 is a μK(G/K(M))-module satisfying M = InfG
G/K(M)

M0 and K(M0) = 1.

Proof. Let H be a subgroup of G. If M(H) 	= 0 then K(M) ⊆ H so that

M(H) = (
InfGG/K(M) M

0)(H).

This shows that M = InfG
G/K(M)

M0 as sets. Moreover, it follows by the construction of M0 that

the maps t̃ , r̃, c̃ of M0 satisfy the required axioms so that M0 becomes a Mackey functor because
the maps t, r, c satisfy the similar axioms. Therefore M0 is a well defined μK(G/K(M))-module
such that M = InfG

G/K(M)
M0. Finally, 3.1 shows that K(M0) = 1. �

We note that the Mackey functor M0 constructed above is equal to both of L+
G/K(M)

M and

L−
G/K(M)M .

Proposition 3.3. For any μK(G)-module M, the set of all normal subgroups N of G such that
M is inflated from the quotient G/N has a unique largest element with respect to inclusion.
Moreover, this largest element is equal to K(M).

Proof. 3.2 implies that M is inflated from the quotient G/K(M). Suppose that N is a normal
subgroup of G such that M is inflated from the quotient G/N . Then N is a subgroup of K(M)

by 3.1. Hence K(M) is the largest normal subgroup of G such that M is inflated from the quotient
G/K(M). �

It is evident that 3.3 is true for Mackey functors over any commutative ring R, not just over a
field K.

It is clear that any μK(G)-module M can be inflated from G/N where N is any normal
subgroup of G with N �K(M).

Let M be a μK(G)-module. By the kernel of M we mean the subgroup K(M). We say that
M is faithful if it is not inflated from a proper quotient of G, equivalently K(M) = 1.

For a subgroup H of G, we denote by HG the core of H in G, that is the largest normal
subgroup of G contained in H, equivalently the intersection of all G-conjugates of H .

We now describe the kernels of simple Mackey functors.

Corollary 3.4. K(SG
H,V ) = HG for any simple μK(G)-module SG

H,V . In particular, for any nor-
mal subgroup N of G contained in H, we have

SG
H,V

∼= InfGG/N S
G/N
H/N,V .
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Proof. It is clear that K(SG
H,V ) = HG, because the minimal subgroups of SG

H,V are precisely the

G-conjugates of H . So 3.3 implies that SG
H,V

∼= InfGG/N T for some μK(G/N)-module T . As Inf

is an exact functor, T must be simple which is isomorphic to S
G/N
H/N,V by the definition of inflated

functors. �
As in [9] we denote by P G

H,V the projective cover of the simple μK(G)-module SG
H,V .

Corollary 3.5. Let K be a field of characteristic p > 0 and H be a p-subgroup of G. Then for
any simple KNG(H)-module V the μK(G)-module P G

H,V is faithful.

Proof. This follows from [9, (12.2) Corollary] stating that 1 is a minimal subgroup of P G
H,V . �

Before going further we need the following.

Lemma 3.6.

(1) Let M be a μK(G)-module and H be a subgroup of G such that ↓G
H M 	= 0. Then K(M) �

K(↓G
H M).

(2) K(M) � K(T ) for any μK(G)-module M and any submodule T of M .
(3) Let M → T be an epimorphism of μK(G)-modules. Then K(M) � K(T ).
(4) Let H be a subgroup of G and T be a μK(H)-module. Then K(↑G

H T ) �K(T ).
(5) For any exact sequence

0 → S → M → T → 0

of μK(G)-modules, K(M) = K(S) ∩K(T ).
(6) K(M1 ⊕ M2) = K(M1) ∩K(M2) for any μK(G)-modules M1 and M2.

Proof. (1) If K is a minimal subgroup of ↓G
H M then M(K) 	= 0 so that K contains a minimal

subgroup of M . This shows that K(M) � K(↓G
H M).

(2) Let T be a submodule of M . Then it is clear that any minimal subgroup of T contains a
minimal subgroup of M, implying that K(M) � K(T ).

(3) Let K be a minimal subgroup of T . As T is an epimorphic image of M, there is a surjective
map M(K) → T (K), implying that M(K) 	= 0 because T (K) 	= 0. Therefore K contains a
minimal subgroup of M . Consequently, K(M) �K(T ).

(4) By the Mackey decomposition formula T is a direct summand of ↓G
H ↑G

H T . Then parts (1)
and (3) imply that

K
(↑G

H T
)
� K

(↓G
H ↑G

H T
)
� K(T ).

(5) Parts (2) and (3) imply that K(M) � K(S) ∩ K(T ). For the reverse inclusion, if K is a
minimal subgroup of M then it follows from the exactness of the given sequence that S(K) or
T (K) is nonzero, implying that K(M) ⊇ K(S) ∩K(T ).

(6) Follows by part (5). �
We now note that the inclusions in the previous results may be strict inclusions.
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Let M = SG
H,K. Then it is clear that ↓G

H M = SH
H,K. Therefore 3.4 implies that K(M) = HG

and K(↓G
H M) = H . So the inclusion in part (1) of 3.6 may be strict.

Let K be a field of characteristic p > 0 and C be a subgroup of G of order p. Then the socle
of any principal indecomposable μK(G)-module of the form P G

C,V is isomorphic to SG
C,V by [9,

(19.1) Lemma]. Therefore if we put M = P G
C,V and T = SG

C,V , then T is a subfunctor of M such
that K(M) = 1 (by 3.5) and K(T ) = CG. Furthermore, T is an epimorphic image of M . This
shows that the inclusions in parts (2) and (3) of 3.6 may be strict.

We next record some commuting relations of induction and restriction with inflation.

Lemma 3.7. Let N be a normal subgroup of G and H be a subgroup of G.

(1) If N � H then for any μK(H/N)-module T̃ ,

InfGG/N ↑G/N
H/N T̃ ∼= ↑G

H InfHH/N T̃ .

(2) Let M̃ be a μK(G/N)-module. If ↓G
H InfGG/N M̃ is nonzero then N � H . Moreover, for

N � H we have

↓G
H InfGG/N M̃ ∼= InfHH/N ↓G/N

H/N M̃.

Proof. (1) One may prove the result by using the explicit description of induced Mackey functors
given in [7]. Alternatively we prove the result by using the adjointness of functors given in 2.3
and 2.4. From the adjointness of the pairs

(
L+

G/N, InfGG/N

)
and

(↓G/N
H/N,↑G/N

H/N

)
we see that the pair

(↓G/N
H/N L+

G/N, InfGG/N ↑G/N
H/N

)
is an adjoint pair. Similarly, the adjointness of the pairs(↓G

H ,↑G
H

)
and

(
L+

H/N, InfHH/N

)
imply that the pair (

L+
H/N ↓G

H ,↑G
H InfHH/N

)
is an adjoint pair. It is clear by the definition of L+ (see Section 2) that the functors

↓G/N
H/N L+

G/N and L+
H/N ↓G

H

are naturally isomorphic. Consequently, the functors

InfGG/N ↑G/N
H/N and ↑G

H InfHH/N,

being right adjoints of two isomorphic functors, must be naturally isomorphic.
(2) This is obvious by the definitions of inflated and restricted Mackey functors. �
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Part (1) of 3.7 is straightforward, when Mackey functors are viewed as functors on the cat-
egory of finite G-sets [2]. Induction of Mackey functors corresponds to restriction of G-sets,
and inflation of Mackey functors corresponds to fixed points. If X is a G-set, then the G/N -sets
(ResG

H X)N and ResG/N
H/N(XN) are obviously isomorphic. See [1,2].

We also need the following commuting relations between L+,L−, Inf and ↑.

Lemma 3.8. Let N be a normal subgroup of G and H be a subgroup of G. Given a μK(G/N)-
module M̃ and a μK(H)-module T we have

(1) L+
G/N InfGG/N M̃ ∼= M̃ .

(2) L−
G/N InfGG/N M̃ ∼= M̃ .

(3) L+
G/N ↑G

H T ∼= ↑G/N
H/N L+

H/NT if N � H .

Proof. (1) We note that (InfGG/N M̃)(J ) = 0 for any J not containing N . Then the result follows
immediately by the definition of L+.

(2) Follows from part (1), since the functor L−
G/N InfGG/N is right adjoint to the functor

L+
G/N InfGG/N .

(3) Firstly it is easy to see from the definitions of ↓ and Inf that the functors

↓G
H InfGG/N and InfHH/N ↓G/N

H/N

are naturally isomorphic. Therefore their left adjoints must be naturally isomorphic. As in the
proof of the previous result we see using the adjoint functors given in 2.3 and 2.4 that the respec-
tive left adjoints of the functors

↓G
H InfGG/N and InfHH/N ↓G/N

H/N

are

L+
G/N ↑G

H and ↑G/N
H/N L+

H/N . �
Now we can study the relative projectivity of inflated Mackey functors. An indecomposable

Mackey functor M for G over K is said to be H -projective for some subgroup H of G if M is
a direct summand of ↑G

H ↓G
H M , equivalently M is a direct summand of ↑G

H T for some Mackey
functor T for H . For an indecomposable Mackey functor M , up to conjugacy there is a unique
minimal subgroup H of G, called the vertex of M , so that M is H -projective, see [7].

Although the definition of relative projectivity of Mackey functors is similar to the that of
modules of group algebras, there are some differences. Any principal indecomposable μK(G)-
module P G

H,V has vertex H . If M is an indecomposable μK(G)-module and K is of characteristic

p > 0, then vertices of M are not necessarily p-subgroups of G in which case we have ↓G
P M = 0

where P is a Sylow p-subgroup of G. For more details see [9].

Remark 3.9. Let H be a subgroup of G and M be an indecomposable H -projective μK(G)-
module. Then K(M) � HG.
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Proof. M is a direct summand of ↑G
H ↓G

H M . Thus ↓G
H M 	= 0. So we may find a minimal sub-

group of M contained in H . This shows that K(M) � H . The result follows by the normality of
K(M) in G. �

Note that by their definitions all of the functors Inf, L+, and L− commute with finite direct
sums. Indeed, by 2.4 we see that L+ and Inf commute with arbitrary direct sums, while L−
commutes with arbitrary direct products.

Lemma 3.10. Let N be a normal subgroup of G and M̃ be a μK(G/N)-module. Then

(1) InfGG/N M̃ is indecomposable if and only if M̃ is indecomposable.

(2) If InfGG/N M̃ is projective then M̃ is projective.

Proof. We let M = InfGG/N M̃ .

(1) It is clear by the definition of the functor Inf that EndμK(G)(M) ∼= EndμK(G/N)(M̃) as K-
algebras. Then, the result follows, because a module is indecomposable if and only if the identity
is a primitive idempotent of its endomorphism algebra.

(2) By the functorial properties of the functors L+
G/N and InfGG/N given in 2.4, we see that

L+
G/N sends projectives to projectives. Hence, if M is projective then L+

G/NM, which is isomor-

phic to M̃ by 3.8, is projective. �
In the next result we show that inflation preserves the vertices of Mackey functors, which is

not the case for modules of group algebras.

Theorem 3.11. Let N be a normal subgroup of G, let M̃ be an indecomposable μK(G/N)-
module, and let M = InfGG/N M̃ . If Q is a vertex of M and P/N is a vertex of M̃ then Q =G P .

Proof. As P/N is a vertex of M̃, there is a μK(P/N)-module T̃ such that M̃ is a direct sum-
mand of ↑G/N

P/N T̃ . Since Inf commutes with direct sums, M is a direct summand of

InfGG/N ↑G/N
P/N T̃

which is by 3.7 isomorphic to

↑G
P InfPP/N T̃ .

So M is P -projective. This implies that Q �G P because M is indecomposable.
Moreover, having Q as a vertex, M is a direct summand of ↑G

Q T for some μK(Q)-module T .

Then, for L+
G/N commutes with finite direct sums, we see that L+

G/NM is a direct summand of

L+
G/N ↑G

Q T,

isomorphic to

↑G/N
L+ T
Q/N G/N
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by 3.8, where we also use 3.9 to see that N � Q. Hence L+
G/NM is Q/N -projective. It follows

by 3.8 that

L+
G/NM = L+

G/N InfGG/N M̃ ∼= M̃.

Consequently P/N �G/N Q/N, or P �G Q. �
Almost the whole proof of 3.11 holds for modules over group algebras, the only difference is

the point where we use 3.9 to see that N � Q.
We next give a result about inflations of principal indecomposable Mackey functors.

Corollary 3.12. Let P G
H,V be a principal indecomposable μK(G)-module. If N is a normal sub-

group of G in the kernel of P G
H,V then

P G
H,V

∼= InfGG/N P
G/N
H/N,V .

Proof. We may write

P G
H,V

∼= InfGG/N M̃

for some μK(G/N)-module M̃ . Then 3.10 implies that M̃ is isomorphic to a principal indecom-
posable μK(G/N)-module, say M̃ ∼= P

G/N
K/N,W . We may assume that H = K because H =G K

by 3.11. As InfGG/N is an exact functor and P
G/N
K/N,W is the projective cover of S

G/N
K/N,W , there is a

μK(G)-module epimorphism

P G
H,V → InfGG/N S

G/N
H/N,W

∼= SG
H,W .

This shows that SG
H,V

∼= SG
H,W , and hence V ∼= W . �

The previous result shows that inflation of some projective Mackey functors are still projec-
tive, which is not true for some other projective Mackey functors. Therefore, given a principal
indecomposable μK(G/N)-module P

G/N
H/N,V it is not true in general that

P G
H,V

∼= InfGG/N P
G/N
H/N,V .

For example, let K be a field of characteristic p > 0 and H be a p-group. If the above isomor-
phisms holds then considering kernels of both sides we get 1 = N (see 3.5 and 3.1).

Lemma 3.13. Let N be a normal subgroup of G. If P
G/N
H/N,V is a principal indecompos-

able μK(G/N)-module such that M = InfGG/N P
G/N
H/N,V is a projective μK(G)-module, then

M ∼= P G
H,V .

Proof. Being an exact functor, InfGG/N induces a μK(G)-module epimorphism

M → InfGG/N S
G/N ∼= SG

H,V .
H/N,V
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Then by 3.10 M is indecomposable. Since it is also projective, M is isomorphic to the projective
cover P G

H,V of SG
H,V . �

For any group X, we denote by PX( ) the projective cover of its argument which is a μK(X)-
module. We also denote by J ( ) the radical of its argument.

By the following we can easily describe the image of a principal indecomposable μK(G)-
module under the functor L+.

Theorem 3.14. Let N be a normal subgroup of G and M be a μK(G)-module. Then

(1) L+
G/NPG(M) ∼= PG/N(L+

G/NM).

(2) L+
G/NPG(M) is nonzero if and only if M/J(M) has a simple summand with kernel contain-

ing N .

Proof. It follows by 2.4 that L+ sends projectives to projectives. Letting M1 = L+
G/NPG(M)

and M2 = PG/N(L+
G/NM), we will show that M1/J (M1) ∼= M2/J (M2). This clearly shows that

M1 ∼= M2 because both are projective.
For any simple μK(G/N)-module T = S

G/N
H/N,V , by the adjointness of the pair (L+, Inf) given

in 2.4, we have the following K-space isomorphisms:

HomμK(G/N)

(
M1/J (M1), T

) ∼= HomμK(G/N)(M1, T )

∼= HomμK(G)

(
PG(M),SG

H,V

)
∼= HomμK(G)

(
PG(M)/J

(
PG(M)

)
, SG

H,V

)
∼= HomμK(G)

(
M/J(M),SG

H,V

)
∼= HomμK(G)

(
M,SG

H,V

)
.

Similarly we have

HomμK(G/N)

(
M2/J (M2), T

) ∼= HomμK(G/N)

(
L+

G/NM/J
(
L+

G/NM
)
, T

)
∼= HomμK(G/N)

(
L+

G/NM,T
)

∼= HomμK(G)

(
M,SG

H,V

)
.

Consequently,

HomμK(G/N)

(
M1/J (M1), S

) ∼= HomμK(G/N)

(
M1/J (M1), S

)
for any simple μK(G/N)-module S. This proves that M1/J (M1) ∼= M2/J (M2).

Finally, from

HomμK(G/N)

(
M1/J (M1), S

G/N
H/N,V

) ∼= HomμK(G)

(
M,SG

H,V

)
,

it follows that M1 	= 0 if and only if HomμK(G)(M,SG
H,V ) 	= 0, equivalently M/J(M) has a

simple summand of the form SG
H,V with N � H . Then part (2) follows by 3.4. �
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Corollary 3.15. Let N be a normal subgroup of G and P G
H,V be a principal indecomposable

μK(G)-module. Then L+
G/NP G

H,V is nonzero if and only if N � H . Moreover, if N � H then

L+
G/NP G

H,V
∼= P

G/N
H/N,V .

Proof. Letting M = SG
H,V , it follows by 3.14 that

L+
G/NP G

H,V
∼= PG/N

(
L+

G/NSG
H,V

)
,

and also that it is nonzero if and only if N � K(M) � H . Suppose now that N � H . Then 3.4
implies

SG
H,V

∼= InfGG/N S
G/N
H/N,V .

Finally, applying the functor L+
G/N to the both sides of the latest isomorphism, by 3.8 we obtain

L+
G/NSG

H,V
∼= L+

G/N InfGG/N S
G/N
H/N,V

∼= S
G/N
H/N,V .

This finishes the proof. �
We also have the following obvious consequence of 3.14.

Corollary 3.16. Let N be a normal subgroup of G and M be a μK(G)-module. Then, L+
G/NM

is nonzero if and only if M/J(M) has a simple summand with kernel containing N .

Although it is clear by the definition of L+, the proof of 3.15 shows that

L+
G/NSG

H,V
∼= S

G/N
H/N,V

if N � H (and 0 otherwise).
Given a principal indecomposable μK(G/N)-module P

G/N
H/N,V , it follows by 3.12 and 3.13

that InfGG/N P
G/N
H/N,V is projective if and only if N � K(P G

H,V ). However, for the projective cover
of an inflated Mackey functor we have the following.

Proposition 3.17. Let N be a normal subgroup of G and M be a μK(G/N)-module. Then

PG

(
InfGG/N M

) ∼= PG

(
InfGG/N PG/N(M)

)
.

Proof. Letting M1 = PG(InfGG/N M) and M2 = PG(InfGG/N PG/N(M)), it suffices to show that

HomμK(G)(M1, S) ∼= HomμK(G)(M2, S)

for any simple μK(G)-module S because M1 and M2 are projective.
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Take any simple μK(G)-module S. If HomμK(G)(Mi, S) 	= 0 for i = 1 or i = 2, then we first
observe that S can be inflated from the quotient G/N . Indeed, if

HomμK(G)(Mi, S) ∼= HomμK(G)

(
Mi/J (Mi), S

) 	= 0

then it follows by part (3) of 3.6 that K(Mi/J (Mi)) �K(S). As

M1/J (M1) ∼= InfGG/N M/J
(
InfGG/N M

)
,

part (3) of 3.6 implies that

N � K
(
InfGG/N M

)
� K

(
InfGG/N M/J

(
InfGG/N M

)) = K
(
M1/J (M1)

)
.

Similarly, we can deduce that N � K(M2/J (M2)). Thus we may assume that N � K(S).
As N � K(S), by the proof of 3.15 the μK(G/N)-module L+

G/NS is simple and

S ∼= InfGG/N L+
G/NS.

Now by using the adjointness of the pair (L+, Inf) and part (1) of 3.8 we obtain

HomμK(G)(M1, S) ∼= HomμK(G)

(
M1/J (M1), S

)
∼= HomμK(G)

(
InfGG/N M/J

(
InfGG/N M

)
, S

)
∼= HomμK(G)

(
InfGG/N M,S

)
∼= HomμK(G)

(
InfGG/N M, InfGG/N L+

G/NS
)

∼= HomμK(G/N)

(
L+

G/N InfGG/N M,L+
G/NS

)
∼= HomμK(G/N)

(
M,L+

G/NS
)
.

In a similar way we obtain also that

HomμK(G)(M2, S) ∼= HomμK(G/N)

(
PG/N(M),L+

G/NS
)

∼= HomμK(G/N)

(
M,L+

G/NS
)

where the last isomorphism follows from the simplicity of L+
G/NS. �

The argument of the proof of 3.17 uses 3.6 which implies that if HomμK(G)(M,S) 	= 0 for
a simple μK(G)-module S and a μK(G)-module M with N � K(M) then N � K(S) so that
L+

G/NS is simple and S ∼= L+
G/N InfGG/N S. As in the proof of 3.17 we can conclude by using the

adjointness of the pair (L+, Inf) that

InfGG/N T/J
(
InfGG/N T

) ∼= InfGG/N

(
T/J (T )

) ∼= InfGG/N T/ InfGG/N J (T )

for any μK(G/N)-module T . In particular, InfGG/N T is semisimple if and only if T is semisim-
ple.

The following is immediate from 3.17.
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Corollary 3.18. Let N be a normal subgroup of G and P
G/N
H/N,V be a principal indecomposable

μK(G/N)-module. Then

PG

(
InfGG/N P

G/N
H/N,V

) ∼= P G
H,V .

We are aiming to characterize the normal subgroups N of G such that the functor InfGG/N sends
projectives to projectives. The example given before 3.13 shows that this problem is related to
the problem of finding kernels of principal indecomposable μK(G)-modules.

For any prime p and group H, we denote by Op(H) the minimal normal subgroup of H such
that the quotient H/Op(H) is a p-group. If H = Op(H) then H is said to be p-perfect.

The following is an immediate consequences of some results proved in Section 9 of [9], by
analyzing the action of the Burnside ring on a Mackey functor.

Lemma 3.19. Let K be a field of characteristic p > 0 and H be a subgroup of G. Then, for any
indecomposable μK(G)-module M with vertex H,

(
Op(H)

)
G

� K(M) � HG.

Proof. The inclusion K(M) � HG follows by 3.9. According to the results of [9] mentioned
above, if M(X) is nonzero then Op(H) �G X. Therefore (Op(H))G � K(M). �

Since any principal indecomposable μK(G)-module of the form P G
H,V has vertex H, the pre-

vious result applies to P G
H,V .

Lemma 3.20. Let N be a normal subgroup of G. If the functor InfGG/N sends projectives to pro-

jectives then the same is true for the functor InfHH/N where H is any subgroup of G containing N .

Proof. Let M be a projective μK(H/N)-module. By 2.3 both of the functors ↓ and ↑ send
projectives to projectives. Therefore the μK(G)-module

InfGG/N ↑G/N
H/N M ∼= ↑G

H InfHH/N M

is projective, where we use 3.7 for the isomorphism. It follows by the Mackey decomposition
formula that InfHH/N M is a direct summand of the projective μK(H)-module

↓G
H ↑G

H InfHH/N M.

Therefore InfHH/N M is projective. �
We now characterize the normal subgroups N of G for which the right adjoint L−

G/N of the

functor InfGG/N is exact.

Theorem 3.21. Let K be a field of characteristic p > 0, and N be a normal subgroup of G.
Then, the functor InfG sends projectives to projectives if and only if N is p-perfect.
G/N
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Proof. Suppose that the functor InfGG/N sends projectives to projectives. Then the same is true

for the functor InfNN/N by the virtue of 3.20. Thus, inflating the following isomorphic projective
μK(N/N)-modules

P
N/N

N/N,K
∼= S

N/N

N/N,K,

we get the following isomorphic projective μK(N)-modules

InfNN/N P
N/N

N/N,K
∼= InfNN/N S

N/N

N/N,K
∼= SN

N,K.

Then 3.13 implies that

P N
N,K

∼= SN
N,K.

Therefore SN
N,K is a projective simple μK(N)-module. [9, (13.2) Corollary] states that for a

simple Mackey functor SG
H,V to be projective it is necessary that H is p-perfect. This result

allow us to deduce that N is p-perfect.
Conversely, we assume that N is p-perfect. We take any principal indecomposable μK(G/N)-

module P
G/N
H/N,V . We want to show that InfGG/N P

G/N
H/N,V is a projective μK(G)-module. As

Op(H) is a normal subgroup of H and H contains N, we see that N ∩ Op(H) is a normal
subgroup of N . Then, from

N/N ∩ Op(H) ∼= NOp(H)/Op(H) � H/Op(H),

we obtain that N = N ∩ Op(H) because N is p-perfect. Hence

N � Op(H) � H

implying by the normality of N in G that

N �
(
Op(H)

)
G

� H.

Now, 3.19 yields N � K(P G
H,V ). Finally, from 3.12 we get

P G
H,V

∼= InfGG/N P
G/N
H/N,V .

This proves that InfGG/N P
G/N
H/N,V is projective. �

The proof of 3.21 suggests the following result connected to 3.19.

Proposition 3.22. Let K be a field of characteristic p > 0 and H be a subgroup of G. Then, any
indecomposable μK(G)-module M with vertex H satisfies

Op
(
K(M)

) = Op(HG).
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Proof. Let N be any normal subgroup of G with N � H . Then we see that N ∩Op(H) is a nor-
mal subgroup of N, and the corresponding quotient is isomorphic to a subgroup of H/Op(H),

and so

Op(N) � N ∩ Op(H) � Op(H).

Since Op(N) is a normal subgroup of G contained in Op(H), it follows by 3.19 that

Op(N) �
(
Op(H)

)
G

� K(M) � HG.

Letting N = HG we obtain

Op
(
K(M)

) = Op(HG). �
Let M be an indecomposable μK(G)-module with vertex H and K be field of characteristic

p > 0. We know that H is a p-group if and only if ↓G
S M 	= 0 where S is a Sylow p-subgroup

of G, see [9]. A slight stronger form of this is the following.

Remark 3.23. Let K be a field of characteristic p > 0 and M be an indecomposable μK(G)-
module with vertex H . Then, H/HG is a p-group (equivalently, Op(H) � G) if and only if

↓G
K(M)S M 	= 0

where S is a Sylow p-subgroup of G.

Proof. There is a μK(G/N)-module M̃ such that

M = InfGG/N M̃,

where N = K(M). By 3.10 and 3.11, M̃ is indecomposable and has vertex H/N . Then using 3.7
we get

↓G
NS M = InfNS

NS/N ↓G/N
NS/N M̃.

Since NS/N is a Sylow p-subgroup of G/N, it follows by the explanation above that H/N is a
p-group if and only if

↓G/N
NS/N M̃ 	= 0.

Finally, from the proof of 3.22 we see that

Op(HG) � K(M) = N � HG � H,

and so H/K(M) is a p-group if and only if H/HG is a p-group. �
In the situation of 3.23 we can find the kernels of some principal indecomposable μK(G)-

modules.
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Remark 3.24. Let K be a field of characteristic p > 0. If H/HG is a p-group then K(P G
H,V ) =

Op(H).

Proof. Let M = P G
H,V and N = Op(K(M)). Then N is a p-perfect normal subgroup of G, and

so from 3.21 and 3.13 we get M = InfGG/N M̃ where M̃ = P
G/N
H/N,V . By the proof of 3.22,

Op(HG) = Op
(
K(M)

) = N �
(
Op(H)

)
G

� K(M) � HG � H.

Thus, if H/HG is a p-group then H/N is a p-group and 3.5 implies that K(M̃) = N/N . Conse-
quently, K(M) = N from 3.1 and it is then easy to see that N = Op(H). �

Another case for which we can find the kernel of P G
H,V is explained in the next result.

Proposition 3.25. Let K be an algebraically closed field of characteristic p > 0. If G is nilpotent,
then for any principal indecomposable μK(G)-module P G

H,V we have K(P G
H,V ) = (Op(H))G.

Proof. Since G is nilpotent, Op(X) = Xp′ for any subgroup X of G where Xp′ is the unique
Hall p′-subgroup of X. If G is nilpotent then by Section 7 of [12] the Mackey algebra μK(G)

admits a tensor product decomposition μK(Gp′) ⊗K μK(Gp). It is easy to see that under this
identification of μK(G), the module P G

H,V corresponds to the module

S
Gp′
Hp′ ,V ⊗K P

Gp

Hp,K,

see [12] and the proof of 6.11. Then the result follows because the functor InfGG/N corresponds
to

Inf
Gp′
Gp′/Np′ ⊗K Inf

Gp

Gp/Np
. �

4. Projective covers of Mackey functors for quotient groups

We devote this section to obtaining a relationship between principal indecomposable Mackey
functors of the form P

G/N
H/N,V and P G

H,V . Let V be a simple KG-module and N be a normal
subgroup of G acting on V trivially. Then it is well known that the KG and K(G/N)-module
projective covers PG(V ) and PG/N(V ) of V satisfy:

PG/N(V ) ∼= PG(V )/J (KN)PG(V ).

We mainly want to obtain a similar result for Mackey functors, see 4.9.
For any normal subgroup N of G we put

eN =
∑

X�G:X�N

tXX .

It is clear that eN is an idempotent of μK(G) with the property that, for a μK(G)-module M,

eNM = M if and only if N � K(M).
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We now record some well-known (and widely used in representation theory of symmetric
groups) basic facts about the modules of an algebra A and its corner subalgebra eAe where e is
an idempotent of A. We have the following functors some of whose properties are recalled in the
next result:

Re : Mod(A) → Mod(eAe) and Ce, Ie : Mod(eAe) → Mod(A)

given on the objects by

Re(V ) = eV, Ce(W) = HomeAe(eA,W) and Ie(W) = Ae ⊗eAe W.

The definitions on morphisms of these functors are obvious (and well known).

Remark 4.1. Let A be a finite dimensional algebra over a field and e be an idempotent of A.
Then:

(1) Ie and Ce are full and faithful linear functors such that both of the functors ReIe and ReCe

are naturally isomorphic to the identity functor.
(2) (Ie,Re) and (Re,Ce) are adjoint pairs.
(3) Both of Ie and Ce send indecomposable modules to indecomposable modules.
(4) Any simple eAe-module is of the form eS for some simple A-module S, and conversely for

any simple A-module S the eAe-module eS is either zero or simple.
(5) Given simple A-modules S and S′ that are not annihilated by e, one has S ∼= S′ as A-modules

if and only if eS ∼= eS′ as eAe-modules.
(6) Given a simple eAe-module T , the A-module Ie(T ) has a unique maximal A-submodule JT

and one has Re(Ie(T )/JT ) ∼= T and JT is the sum of all A-submodules of Ie(T ) annihilated
by e.

The above fact is well known, and can be found in [5, pp. 83–87].
Let P G

H,V be a principal indecomposable μK(G)-module. If N is a normal subgroup of G

such that eNSG
H,V 	= 0, then by an application of the following result eNP G

H,V is the projective

cover of the simple eNμK(G)eN -module eNSG
H,V , and IeN

ReN
(P G

H,V ) ∼= P G
H,V .

Lemma 4.2. Let A be a finite dimensional algebra over a field and e be an idempotent of A.
Suppose that S is a simple A-module such that eS 	= 0. If P is the projective cover of the A-
module S, then eP is the projective cover of the eAe-module eS.

Proof. Let P ′ be the projective cover of the simple eAe-module eS. By 4.1 the functor Ie,

which is right exact, preserves indecomposability and projectivity. Therefore, by parts (5) and (6)
of 4.1, we have an A-module epimorphism Ie(P

′) → Ie(eS) → Ie(eS)/JeS
∼= S. Consequently,

Ie(P
′) ∼= P proving that P ′ ∼= eP . �

To make use of the existing results about functors between module categories it may be useful
to identify the inflation functor InfGG/N given in Section 2 with the functor

μK(G)μK(G/N) ⊗μK(G/N) −.
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Let N be a normal subgroup of G. Then the Mackey algebra μK(G/N) can be regarded as a
left μK(G)-module if we identify μK(G/N) with the inflated μK(G)-module InfGG/N μK(G/N).
Therefore, the left μK(G)-module action on μK(G/N) is given by

tHgJ c
g
J rK

J .x = t
H/N
gNJ/N

c
gN
J/Nr

K/N
J/N x

if N � J and 0 otherwise. In a similar way μK(G/N) has a right μK(G)-module structure.

Lemma 4.3. Let N be a normal subgroup of G. Then the functors

InfGG/N and μK(G)μK(G/N) ⊗μK(G/N) −
are naturally isomorphic.

Proof. Although this is evident from the definition of inflated Mackey functors given in Sec-
tion 2, one may also deduce the result from the characterization of additive right exact covariant
functors commuting with direct sums between module categories given in [10, Theorem 1]. This
results says that if F is such a functor from modules of a ring A to modules of a ring B then F

is naturally isomorphic to the functor BF(A) ⊗A −. �
It is now clear that the inflation functor InfGG/N can be identified with the restriction functor

along the unital morphism of algebras μK(G) → μK(G/N) given by

tHgJ c
g
J rK

J �→ t
H/N
gNJ/N

c
gN
J/Nr

K/N
J/N

if N � J and 0 otherwise. The left and right μK(G)-module structures on μK(G/N) come from
this algebra homomorphism. See also the algebra homomorphism ψN introduced after 4.5.

We can also make similar identifications for the functors L− and L+. Let A and B be algebras,
and let AUB be an (A,B)-bimodule. It is well known that the pair(

AU ⊗B −,HomA(AUB,−)
)

is an adjoint pair, and in the case UB is finitely generated and projective the pair(
B HomB(AUB,BBB) ⊗A −, AU ⊗B −)

is an adjoint pair.

Remark 4.4. Let N be a normal subgroup of G. We have the following natural isomorphisms of
the functors:

L+
G/N

∼= μK(G/N)μK(G/N) ⊗μK(G) − and L−
G/N

∼= HomμK(G)

(
μK(G)μK(G/N),−)

.

Proof. Letting A = μK(G) and U = B = μK(G/N) and noting that HomB(ABB,BBB) and
BBA are isomorphic as (B,A)-bimodules, the result follows by the explanation given above. �

We want to relate the functor InfGG/N with the functors ReN
, CeN

, and IeN
where A is the

algebra μK(G).
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Given a normal subgroup N of G we define the following function

ϕN : μK(G/N) → eNμK(G)eN

whose image at a nonzero element x of μK(G/N) of the form

x = t
H/N
gNJ/N

c
gN
J/Nr

K/N
J/N

is given by

ϕN(x) = tHgJ c
g
J rK

J .

Proposition 4.5. The K-linear extension of the map ϕN is a unital K-algebra monomorphism,
and we have the direct sum decomposition

eNμK(G)eN = ImϕN ⊕ IN

where IN is a two sided ideal of eNμK(G)eN having the elements of the form tHgJ c
g
J rK

J with
H � N � K and J not contain N as K-basis.

Proof. This follows easily by the basis Theorem 2.1 and by the axioms in the definition of
Mackey algebras. �

By the previous result, we have a K-algebra epimorphism

ψN : eNμK(G)eN → μK(G/N)

whose kernel is equal to the ideal IN . Thus its image at a nonzero element of eNμK(G)eN of the
form

y = eN tHgJ c
g
J rK

J eN

is given by

ψN(y) = t
H/N
gNJ/N

c
gN
J/Nr

K/N
J/N

if N � J and 0 otherwise. We note that y is nonzero if and only if N � H ∩ K, and in this case
y = tHgJ c

g
J rK

J . Furthermore, the left μK(G)-module action on μK(G/N) described before 4.3
satisfies a.x = ψN(eNaeN)x.

The K-algebra epimorphism ψN induces the following well-known functors, some of whose
properties are recalled in the next result, between the module categories of the algebras
eNμK(G)eN and μK(G/N):

ReseN
= eNAeN

B ⊗B −, IndeN
= BB ⊗eNAeN

−, and

CoindeN
= HomeNAeN

(eNAeN
B,−),

where A = μK(G) and B = μK(G/N).
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Remark 4.6.

(1) (IndeN
,ReseN

) and (ReseN
,CoindeN

) are adjoint pairs.
(2) Both of the functors IndeN

ReseN
and CoindeN

ReseN
are naturally isomorphic to the identity

functor.

The above result is well known, and its second part follows from the surjectivity of ψN .

Lemma 4.7. The functor IndeN
is naturally isomorphic to the functor

Mod(eNAeN) → Mod(B), M → M/INM

where N is a normal subgroup of G, A = μK(G), and B = μK(G/N).

Proof. As in the proof of 4.3 the latter functor is naturally isomorphic to the functor

B(eNAeN/INeNAeN) ⊗eNAeN
−.

Then from 4.5 we see that

eNAeN/INeNAeN
∼= ImϕN

∼= B

as (B, eNAeN)-bimodules. �
Proposition 4.8. Let N be a normal subgroup of G. Then we have the following natural isomor-
phisms of functors:

ReseN
∼= ReN

InfGG/N, IndeN
∼= L+

G/NIeN
, and CoindeN

∼= L−
G/NCeN

.

Proof. InfGG/N and AB ⊗B − are naturally isomorphic by 4.3, where A = μK(G) and B =
μK(G/N). Since A-module action on B is given by a.x = ψN(eNaeN)x, it follows that ReseN

and ReN
InfGG/N are naturally isomorphic. By the uniqueness of adjoints, the other isomorphisms

of functors follow from 4.6, 4.1 and 2.4. �
Theorem 4.9. Let N be a normal subgroup of G. For any principal indecomposable μK(G/N)-
module P

G/N
H/N,V , one has

P
G/N
H/N,V

∼= eNP G
H,V /INP G

H,V .

Proof. Noting that eNSG
H,V 	= 0, we have by 4.2

IeN
ReN

(
P G

H,V

) ∼= P G
H,V .

Then using 4.7 and 4.8 we obtain
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eNP G
H,V /INP G

H,V
∼= IndeN

ReN

(
P G

H,V

)
∼= L+

G/NIeN
ReN

(
P G

H,V

)
∼= L+

G/NP G
H,V

∼= P
G/N
H/N,V ,

where we use 3.15 for the latest isomorphism. �
5. Inflations of projective covers

This section concerns inflations of principal indecomposable Mackey functors. Given a
μK(G)-module M and a normal subgroup N of G we first want to study the relationship be-
tween the μK(G)-modules

InfGG/N L+
G/NM, InfGG/N L−

G/NM, and M.

In fact, we will observe that the first two are isomorphic to a quotient module and a submod-
ule of M, respectively. These results will allow us to relate the μK(G)-modules of the form
InfGG/N P

G/N
H/N,V and P G

H,V .
We begin with recalling from [8] that if χ is a family of subgroups of G closed under taking

subgroups and taking G-conjugates then any Mackey functor M for G has the following two
subfunctors defined by:

(
Im tMχ

)
(K) =

∑
X∈χ :X�K

tKX
(
M(X)

)
,

(
Ker rM

χ

)
(K) =

⋂
X∈χ :X�K

Ker
(
rK
X : M(K) → M(X)

)
.

For any normal subgroup N of G we denote by YN the set of all subgroups of G not contain-
ing N . That is,

YN = {J � G: N is not in J }.

It is obvious that YN is closed under taking subgroups and taking G-conjugates.

Lemma 5.1. Let N be a normal subgroup of G and M be a μK(G)-module. Then we have the
following μK(G)-module isomorphisms:

InfGG/N L+
G/NM ∼= M/ Im tMYN

and InfGG/N L−
G/NM ∼= Ker rM

YN
.

Proof. For a subgroup X of G, if X does not contain N then X ∈ YN so that by their definitions
Im tMYN

(X) = M(X) and Ker rM
YN

(X) = 0. Suppose now that X is a subgroup of G containing N .
Then the set {J ∈ YN : J � X} consists of all subgroups J of X not containing N . Therefore, the
result follows by the definitions of L+, L−, and Inf given in Section 2. �
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Lemma 5.2. Let N be a normal subgroup of G and M be a μK(G)-module. For a μK(G)-
submodule T of M we have:

(1) If the kernel of M/T contains N, then Im tMYN
� T .

(2) If the kernel of T contains N, then T � Ker rM
YN

.

Proof. (1) By its definition it is clear that ImM
YN

is the minimal subfunctor of M such that

ImM
YN

(X) = M(X) for all X ∈ YN . Therefore, it is enough to show that T (X) = M(X) for any
X ∈ YN . Suppose that T (X) 	= M(X) for some subgroup X of G. Then (M/T )(X) 	= 0 and so
X � K(M/T ) � N, implying that X /∈ YN .

(2) By the definition of Ker rM subfunctor, T � KerMYN
if and only if rK

X (T (K)) = 0 for
all K � G and X ∈ YN with X � K . Indeed, if T (X) 	= 0 for some subgroup X of G then
X � K(T ) � N implying that X /∈ YN . Consequently, for any subgroup K of G and an element
X of YN with X � K, we have rK

X (T (K)) ⊆ T (X) = 0. �
The previous two results suggest the following.

Proposition 5.3. Let N be a normal subgroup of G and M be a μK(G)-module. Then

(1) M has a unique smallest μK(G)-submodule JN(M) such that M/JN(M) has kernel con-
taining N . Moreover, JN(M) is equal to Im tMYN

.
(2) M has a unique largest μK(G)-submodule SN(M) such that SN(M) has kernel contain-

ing N . Moreover, SN(M) is equal to Ker rM
YN

.

Proof. Let M1 and M2 be μK(G)-submodules of M .
(1) Since M/M1 ∩ M2 is isomorphic to a submodule of M/M1 ⊕ M/M2, it follows by 3.6

that if M/Mi has kernel containing N for i = 1,2 then the kernel of M/M1 ∩ M2 contains N .
Therefore, JN(M) is the intersection of all μK(G)-submodules M ′ of M such that M/M ′ has
kernel containing N . Finally it follows by 5.1 that JN(M) � ImM

YN
. The reverse inclusion follows

from 5.2.
(2) We have an exact sequence

0 → M1 → M1 + M2 → M2/M1 ∩ M2 → 0

of μK(G)-modules, from which we can conclude by 3.6 that K(M1) ∩K(M2) � K(M1 + M2).
Therefore, SN(M) is the sum of all μK(G)-submodules of M with kernel containing N . Fi-
nally, 5.1 and 5.2 imply that SN(M) = Ker rM

YN
. �

Theorem 5.4. Let N be a normal subgroup of G and M be a μK(G)-module. Then

(1) InfGG/N L+
G/NM is isomorphic to the largest quotient of M with kernel containing N .

(2) InfGG/N L−
G/NM is isomorphic to the largest submodule of M with kernel containing N .

Proof. Immediate from 5.1 and 5.3. �
We can also give the following identifications of the subfunctors Im tMYN

and KerMYN
whose

proof is easy and hence omitted.
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Remark 5.5. Let N be a normal subgroup of G and M be a μK(G)-module. Then

ImM
YN

= JN(M) = μK(G)(1 − eN)M,

Ker rM
YN

= SN(M) = {
m ∈ M: eNam = am ∀a ∈ μK(G)

}
.

Theorem 5.6. Let N be a normal subgroup of G and M be a μK(G)-module. Then, the largest
quotient of PG(M) with kernel containing N is isomorphic to

InfGG/N PG/N

(
L+

G/NM
)
.

Proof. By 5.4 the largest quotient of PG(M) with kernel containing N is isomorphic to

InfGG/N L+
G/NPG(M) ∼= InfGG/N PG/N

(
L+

G/NM
)

where we use 3.14 for the isomorphism. �
Corollary 5.7. Let N be a normal subgroup of G and P

G/N
H/N,V be a principal indecomposable

μK(G/N)-module. Then, InfGG/N P
G/N
H/N,V is isomorphic to the largest quotient of P G

H,V with
kernel containing N .

Proof. Letting M = P G
H,V , it follows by 3.15 that L+

G/NM ∼= P
G/N
H/N,V . Then the result follows

from 5.4. �
6. Imprimitive Mackey functors

A μK(G)-module M is called imprimitive if there is a subgroup H of G with H 	= G and a
μK(H)-module T such that M ∼= ↑G

H T . If M is not imprimitive then it is called primitive. Our
aim in this section is to study imprimitive Mackey functors.

Lemma 6.1. Let K be a subgroup of G and T be a μK(K)-module. Then

(1) If ↑G
K T is simple then T is simple.

(2) If ↑G
K T is indecomposable then T is indecomposable.

(3) If ↑G
K T is projective then T is projective.

(4) If ↑G
K T is simple (respectively, indecomposable) then ↑L

K T is simple (respectively, inde-
composable) for any L with K � L � G.

(5) If M = ↑G
K T is indecomposable then M and T have a vertex in common.

(6) The minimal subgroups of ↑G
K T are precisely the G-conjugates of the minimal subgroups

of T .

Proof. We first note that if ↑G
K T = 0 then T = 0, because by the Mackey decomposition formula

T is a direct summand of ↓G
K↑G

K T .
(1) Let T ′ be a μK(K)-submodule of T . By the exactness of the functor ↑G

K (see 2.3), we get
an exact sequence

0 →↑G
K T ′ →↑G

K T →↑G
K T/T ′ → 0
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of μK(G)-modules. Since ↑G
K T is simple, it follows that either ↑G

K T ′ or ↑G
K T/T ′ is zero,

implying that T ′ = 0 or T = T ′. Hence T is simple.
(2) For the functor ↑G

K commutes with direct sums.
(3) As the functor ↓G

K sends projectives to projectives by 2.3, the result is clear from the
Mackey decomposition formula implying that T is a direct summand of the projective μK(K)-
module ↓G

K↑G
K T .

(4) This is obvious because we may write ↑G
K T ∼= ↑G

L↑L
K T and use parts (2) and (1).

(5) Let P and Q be vertices of M and T , respectively. Then there are μK(P ) and μK(Q)-
modules M ′ and T ′ such that M and T are respective direct summands of ↑G

P M ′ and ↑K
Q T ′.

From M = ↑G
K T we see that M is a direct summand of ↑G

Q T ′. This shows that P �G Q. On the

other hand, from the Mackey decomposition formula T is a direct summand of ↓G
K M which is a

direct summand of

↓G
K↑G

P M ′ ∼=
⊕

KgP⊆G

↑K
K∩gP ↓gP

K∩gP |gP M ′.

This shows that Q �K K ∩ gP for some g ∈ G. Consequently Q =G P .
(6) We use the following explicit formula for the induced Mackey functors from [7], see also

[8],

(↑G
K T

)
(H) =

⊕
HgK⊆G

T
(
K ∩ Hg

)
.

If Y is a minimal subgroup of ↑G
K T , then T (K ∩Yg) 	= 0 for some g ∈ G implying the existence

of a minimal subgroup X of T such that X � K ∩Yg �G Y . Moreover, for any minimal subgroup
X′ of T , from

0 	= T (X′) ⊆
⊕

X′gK⊆G

T
(
K ∩ X′g) = (↑G

K T
)
(X′),

we see that there is a minimal subgroup Y ′ of ↑G
K T such that Y ′ � X′. Evidently, these imply

the result. �
The last part of the previous result implies

Remark 6.2. Let K be a subgroup of G. Then K(↑G
K T ) = (K(T ))G for any μK(K)-module T .

We now study primitive simple Mackey functors. The next result is an immediate consequence
of explicit construction of simple Mackey functors given in [8].

Remark 6.3. Let SG
H,V be a simple μK(G)-module. If SG

H,V is primitive then H is a normal
subgroup of G.

Proof. It is clear from 2.5. �
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Lemma 6.4. If SG
H,V is a simple μK(G)-module satisfying SG

H,V
∼= ↑G

K S for a subgroup K of

G and a μK(K)-module S, then S ∼= SK
gH,W for some g ∈ G with gH � K and for some simple

NK(gH)-module W .

Proof. Follows from parts (1) and (6) of 6.1. �
For future use we record the following from [11, Lemma 3.4 and Proposition 3.5].

Lemma 6.5. Let H � K � G be such that gH � K for every g ∈ G. Given a simple μK(K)-
module SK

H,W we put

S = ↑G
K SK

H,W and V = ↑NG(H)

NK(H)
W.

Then S(H) ∼= V, and S is a simple μK(G)-module if and only if V is a simple KNG(H)-module.
Moreover S ∼= SG

H,V if V is simple.

Theorem 6.6. Let SG
H,V be a simple μK(G)-module. Then, SG

H,V is imprimitive if and only if
either H is a nonnormal subgroup of G, or H is a normal subgroup of G different from G and
V is an imprimitive KG/H -module.

Proof. Suppose that SG
H,V is imprimitive. There is a K � G with K 	= G and a μK(K)-module T

such that SG
H,V

∼= ↑G
K T . Assume that H is a normal subgroup of G. From 6.1 we get H � K , and

so H is different from G. Now 6.4 implies that T ∼= SK
H,W for some simple KK/H -module W .

Since H is normal, we may apply 6.5 to deduce that V ∼= ↑G/H
K/H W . Therefore V is an imprimitive

KG/H -module.
Conversely, suppose that a simple μK(G)-module SG

H,V is given. If H is a nonnormal sub-

group of G then 6.3 implies that SG
H,V is imprimitive. Thus we assume that H is a normal

subgroup of G different from G and V is an imprimitive KG/H -module. Then there is a sub-
group K with H � K � G and K 	= G such that V ∼= ↑G/H

K/H W for some necessarily simple

KK/H -module W . Now it follows by 6.5 that SG
H,V

∼= ↑G
K SK

H,W . Consequently, SG
H,V is im-

primitive. �
Corollary 6.7. Let K be algebraically closed, G be a nilpotent group, and SG

H,V be a simple

μK(G)-module. Then, SG
H,V is primitive if and only if H is a normal subgroup of G and V is one

dimensional.

Proof. Suppose that SG
H,V is primitive. Then H is a normal subgroup of G by 6.3. Since G/H is

nilpotent and K is algebraically closed, the simple KG/H -module V must be monomial, see [6,
Theorem 3.7, p. 205]. Hence V ∼= ↑G/H

K/H W for some subgroup K with H � K � G and some

one dimensional KK/H -module W . Now 6.5 implies that SG
H,V

∼= ↑G
K SK

H,W . Hence, if V is not

one dimensional then K 	= G, implying that SG
H,V is imprimitive.

The converse statement follows from 6.6 because H is a normal subgroup of G and, being
one dimensional, V is primitive. �
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The above result follows also from [11, Corollary 3.9].

Corollary 6.8. Any faithful simple μK(G)-module M whose minimal subgroup is different from
1 is imprimitive.

Proof. Let M = SG
H,V with H 	= 1. By the condition K(M) = HG = 1, the subgroup H is not

normal in G, and so the result follows by 6.6. �
We next investigate primitive principal indecomposable μK(G)-modules. However, except for

nilpotent groups we have no criteria for a μK(G)-module P G
H,V to be primitive. Obviously, im-

primitivity of an indecomposable μK(G)-module is related to indecomposability of an induced
μK(G)-module from a proper subgroup of G. A classical result about indecomposability of an
induced module in the context of group algebras is Green’s theorem. It is shown in [11, Theo-
rem 6.3] that an analogue of Green’s theorem works in the context of Mackey functors. Namely,
letting K be an algebraically closed field of characteristic p > 0 and N be a normal subgroup
of G, for an indecomposable μK(N)-module T the induced module ↑G

N T is indecomposable if
and only if L/N is a p-group where L is the inertia group of T in G.

Let M be a simple μK(G)-module and PG(M) be its projective cover. One may wonder about
the connections between primitivity of μK(G)-modules M and PG(M). For example, suppose
that G is a p-group and K is an algebraically closed field of characteristic p > 0. Then, SG

H,K
is primitive if and only if H is a normal subgroup of G (by 6.7), while P G

H,K is primitive if and
only if H = G (by Green’s theorem). Therefore, in general primitivity of one of M or PG(M)

does not imply primitivity of the other. However we have the following trivial result.

Remark 6.9. Let K be a subgroup of G. For a simple μK(K)-module T and a simple μK(G)-
module M , if PG(M) ∼= ↑G

K PK(T ) then ↑G
K T/J (↑G

K T ) ∼= M .

Proof. Since the functor ↑G
K is exact and sends projectives to projectives (see 2.3), PG(↑G

K T )

is a direct summand of ↑G
K PK(T ) which is indecomposable. Therefore PG(↑G

K T ) ∼= PG(M),

proving the result. �
We next provide a result about principal indecomposable μK(G)-modules induced from

p-subgroups of G where p is the characteristic of K.

Proposition 6.10. Let K be an algebraically closed field of characteristic p > 0. If a principal
indecomposable μK(G)-module M is induced from a p-subgroup of G then NG(H) is a p-group
where H is the vertex of M .

Proof. Let M = P G
H,V be induced from a p-subgroup K of G, and write M = ↑G

K T for some

μK(K)-module T . Using 6.1 we see that T is isomorphic to a μK(K)-module of the form P K
gH,K

for some g ∈ G with gH � K . We first show that f = t
gH
gH is a primitive idempotent of μK(G).

Now, it follows by [12, Proposition 3.1] that f is a primitive idempotent of μK(K) and T ∼=
μK(K)f . Then

M = ↑G
K T ∼= μK(G) ⊗μK(K) μK(K)f ∼= μK(G)f,

implying from the indecomposability of M that f is a primitive idempotent of μK(G).



E. Yaraneri / Journal of Algebra 319 (2008) 1993–2029 2021
For any subgroup L of G, it is shown in [11, Proposition 5.17] that if tLL is a primitive idem-
potent of μK(G) then NG(L) is a p-group. This implies that NG(H) is a p-group. �

For any group X and prime p, we denote by Xp and Xp′ the respective largest normal p and
normal p′-subgroups of G.

Let G be nilpotent. Since the subgroups X of G satisfy X ∼= Xp ×Xp′, it follows by the basis
Theorem 2.1 that the Mackey algebra μK(G) admits a tensor product decomposition

μK(G) ∼= μK(Gp) ⊗K μK(Gp′), tHgJ c
g
J rK

J ↔ t
Hp
gp Jp

c
gp

Jp
r
Kp

Jp
⊗ t

Hp′
g
p′

Jp′
c
gp′
Jp′ r

Kp′
Jp′ ,

see Section 7 of [12]. Therefore, if K is algebraically closed, then any μK(G)-module M can
be identified with a μK(Gp) ⊗K μK(Gp′)-module of the form M ′ ⊗K M ′′ for some μK(Gp)

and μK(Gp′)-modules M ′ and M ′′. Moreover, if X is a subgroup of G, if M ′ is a μK(Xp)-
module, and M ′′ is a μK(Xp′)-module, then considering M ′ ⊗K M ′′ as a μK(X)-module we
have a μK(G)-module isomorphism

↑Gp

Xp
M ′⊗K ↑Gp′

Xp′ M ′′ ∼= ↑G
X (M ′ ⊗K M ′′) given by

(
t
Hp
gp Jp

c
gp

Jp
r
Kp

Jp
⊗ m′) ⊗ (

t
Hp′
g
p′

Jp′
c
gp′
Jp′ r

Kp′
Jp′ ⊗ m′′) ↔ tHgJ c

g
J rK

J ⊗ (m′ ⊗ m′′).

Theorem 6.11. Let K be an algebraically closed field of characteristic p > 0. Suppose that G is
nilpotent. Then, a principal indecomposable μK(G)-module P G

H,V is primitive if and only if H

is a normal subgroup of G such that G/H is a p′-group and dimK V = 1.

Proof. Under the tensor product decomposition of μK(G), the simple μK(G)-module SG
H,V

corresponds to the simple μK(Gp) ⊗K μK(Gp′)-module

S
Gp

Hp,K ⊗K S
Gp′
Hp′ ,V ,

see the proof of [12, Corollary 7.4]. Therefore, the projective cover P G
H,V of SG

H,V corresponds
to the principal indecomposable μK(Gp) ⊗K μK(Gp′)-module

P
Gp

Hp,K ⊗K S
Gp′
Hp′ ,V ,

where we also use the semisimplicity of the algebra μK(Gp′) from [8]. Therefore, it follows

by the explanation given above that P G
H,V is primitive if and only if both of P

Gp

Hp,K and S
Gp′
Hp′ ,V

are primitive. Green’s indecomposability theorem for Mackey algebras implies that P
Gp

Hp,K is
primitive if and only if Hp = Gp . Thus, the result follows from 6.7. �

When K is an algebraically closed field of characteristic p > 0 and G is p-solvable, by a
theorem of Fong [3, Theorem (2D)], any principal indecomposable KG-module V is isomorphic
to an induced module ↑G

K W of a KK-module W where K is a Hall p′-subgroup of G. We next
try to obtain a similar result for Mackey functors.
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Let K be a subgroup of G and T be a simple μK(K)-module with minimal subgroup H where

K is any field. In the next result we relate the KNG(H)-modules (↑G
K T )(H) and ↑NG(H)

NK(H)
T (H).

A similar result appears also in part (iv) of [11, Lemma 3.4] where it is assumed also that gH � K

for every g ∈ G which is necessary only for the other parts of that result (see also 6.5). For
convenience, we give its similar justification.

Lemma 6.12. Let H � K � G. For any simple μK(K)-module T = SK
H,W we have the following

KNG(H)-module isomorphism:

(↑G
K T

)
(H) ∼= ↑NG(H)

NK(H)
W.

Proof. Because of T = SK
H,W , for a g ∈ G we see that T (K ∩ Hg) 	= 0 if and only if K ∩ Hg

is equal to Hg and Hg is a K-conjugate of H, which is equivalent to g ∈ NG(H)K . Moreover,

T (K ∩ Hg) = c
g−1

H (W) if g ∈ NG(H)K where c is the conjugation map for T . Then using the
explicit formula for the induced Mackey functors given in [7,8] we obtain

(↑G
K T

)
(H) =

⊕
gK⊆NG(H)K

c
g−1

H (W).

If c̃ denotes the conjugation map for ↑G
K T then k ∈ NG(H) acts on an element

x =
⊕

gK⊆NG(H)K

xg ∈ (↑G
K T

)
(H) as

k.x = c̃k
H (x) =

⊕
gK⊆NG(H)K

(
c̃k
H (x)

)
g

where
(
c̃k
H (x)

)
g

= xk−1g,

see [7,8]. Therefore NG(H) permutes the summands c
g−1

H (W) of (↑G
K T )(H) transitively, and

the stabilizer of the summand c1
H (W) = W is NG(H)∩K = NK(H). This proves the result. �

For simple Mackey functors, part (6) of 6.1 has the following stronger form.

Lemma 6.13. Let K be a subgroup of G and T = SK
H,W be a simple μK(K)-module. Then for

any μK(G)-submodule M of ↑G
K T the minimal subgroups of M are precisely the G-conjugates

of H .

Proof. Let X be a minimal subgroup of M . Then M ′(X) 	= 0 where M ′ = ↑G
K T . Therefore there

is a minimal subgroup of M ′ contained in X, implying from part (6) of 6.1 that H �G X. Using
the adjointness of the pair (↓G

K,↑G
K) we get

0 	= HomμK(G)

(
M,↑G

K T
) ∼= HomμK(K)

(↓G
K M,T

)
.

As T is simple, the above isomorphism of K-spaces implies the existence of a μK(K)-module
epimorphism ↓G

K M → T . Therefore it follows from T (H) 	= 0 that M(H) 	= 0. This shows that
X =G H . �
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Over characteristic 0 fields, in the next result we observe that dropping some conditions from
the hypothesis of 6.5 does not alter the conclusion.

Proposition 6.14. Let K be a field of characteristic 0 and K be a subgroup of G. For any
simple μK(K)-module SK

H,W , the induced module ↑G
K SK

H,W is simple if and only if the KNG(H)-
module

V = ↑NG(H)

NK(H)
W

is simple. And if this is the case then

↑G
K SK

H,W
∼= SG

H,V .

Proof. Since the Mackey algebra μK(G) is semisimple in this case [8], the μK(G)-module
M = ↑G

K SK
H,W is semisimple. By 6.13 the minimal subgroups of the simple summands of M are

all (G-conjugate to) H, and so the result follows from 6.12. �
We next obtain a result about indecomposability of induced Mackey functors from p′-

subgroups where p is the characteristic of the coefficient field.

Theorem 6.15. Let K be a field of characteristic p > 0 and K be a p′-subgroup of G. For any
simple μK(K)-module SK

H,W , the induced module ↑G
K SK

H,W is indecomposable if and only if the

KNG(H)-module

U = ↑NG(H)

NK(H)
W

is indecomposable. Moreover, if this is the case then U is a principal indecomposable KNG(H)-
module and

↑G
K SK

H,W
∼= P G

H,V

where V = U/J (U).

Proof. T = SK
H,W is a projective μK(K)-module because μK(K) is a semisimple algebra by

[8]. Since the functor ↑G
K sends projectives to projectives, ↑G

K T is a projective μK(G)-module.
Moreover, as H is a vertex of T , the indecomposable summands of ↑G

K T are all projective
μK(G)-modules which are H -projective. Therefore if M is an indecomposable summand of
↑G

K T then M is of the form P G
X,W ′ for some subgroup X with X � H and some simple KNG(X)-

module W ′. On the other hand, it follows from 6.13 that H is a minimal subgroup of P G
X,W ′ . This

gives X = H because P G
X,W ′(X) 	= 0. Consequently we may write

↑G
K T ∼=

⊕
′

nV ′P G
H,V ′
V
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where nV ′ are nonnegative integers and V ′ ranges over a complete set of isomorphism classes of
simple KNG(H)-modules. Then by 6.12

U ∼= (↑G
K T

)
(H) ∼=

⊕
V ′

nV ′P G
H,V ′(H).

Noting that each P G
H,V ′(H) is nonzero, we see that if U is indecomposable then ↑G

K T is
indecomposable.

Conversely, suppose that ↑G
K T is indecomposable. Then ↑G

K T = P G
H,V ′ for some simple

KNG(H)-module V ′ so that U ∼= P G
H,V ′(H). Using the fact that H is a p′-group, one can prove

that U is indecomposable. (Indeed, in 7.5 we will prove that it is a projective indecomposable
KNG(H)-module.)

Now suppose that U is indecomposable. Then we have

↑G
K T ∼= P G

H,V ′

for some simple KNG(H)-module V ′. This shows

↑G
K T/J

(↑G
K T

) ∼= SG
H,V ′

from which we may obtain by evaluation at the group H that

U/J ∼= V ′

where J = (J (↑G
K T ))(H). We next see that U is a principal indecomposable KNG(H)-module

because U = ↑NG(H)

NK(H)
W, because KNK(H) is a semisimple algebra and the functor ↑NG(H)

NK(H)

sends projectives to projectives. Hence, being a principal indecomposable module, U has a
unique maximal submodule J (U), implying from the isomorphism U/J ∼= V ′ and from the
simplicity of V ′ that J = J (U). Hence V ′ ∼= U/J (U). �

We now provide a Mackey algebra version of Fong’s theorem on induced modules.

Theorem 6.16. Let K be an algebraically closed field of characteristic p > 0, let G be a p-
solvable group, and let K be a Hall p′-subgroup of G. Then, for any principal indecomposable
K-projective μK(G)-module M, there is a μK(K)-module T such that M ∼= ↑G

K T .

Proof. Let M = P G
H,V with H � K be given. Let U be the projective cover of the simple

KNG(H)-module V . Evidently, NG(H) is p-solvable and NK(H) is a Hall p′-subgroup of
NG(H). Then by Fong’s theorem for group algebras there is a simple KNK(H)-module W such
that

U ∼= ↑NG(H)

NK(H)
W.

Now, letting T = SK the result follows from 6.15. �
H,W
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Before stating a consequence of 6.16, we observe the projectivity of any indecomposable
μK(G)-module having a p′-group as vertex where p is the characteristic of the field K (this
follows easily from the semisimplicity of the Mackey algebras of p′-groups over K, see also [12,
Remark 4.4]).

Corollary 6.17. Let K be an algebraically closed field of characteristic p > 0 and G be a p-
solvable group whose order is divisible by p. Then any indecomposable μK(G)-module whose
vertex is a p′-group is imprimitive.

Proof. Follows from 6.16 because any p′-subgroup of G is contained in a Hall p′-subgroup K

of G (so that an indecomposable μK(G)-module whose vertex is a p′-group is K-projective) and
K 	= G. �
7. Evaluations

Let M be a Mackey functor for G over K. For any subgroup H of G, the coordinate module
M(H) becomes a KNG(H)-module via the action gH.x = c

g
H (x). The aim of this section is to

give some results about properties of the coordinate module P G
H,V (H) considered as a KNG(H)-

module where P G
H,V is a principal indecomposable Mackey functor for G. We mainly investigate

subgroups H of G such that P G
H,V (H) is the projective cover of the KNG(H)-module V . By the

methods of [9, Section 12] one may deduce some of the results presented here, except possibly
for 7.5, 7.7, and 7.10.

Lemma 7.1. Let P G
H,V be a principal indecomposable μK(G)-module. For any subgroup K of G

with SG
H,V (K) 	= 0, the module P G

H,V (K) is the projective cover of SG
H,V (K) as tKK μK(G)tKK -

modules.

Proof. This is immediate from 4.2 by taking A = μK(G), S = SG
H,V , and e = tKK . �

As we want to study coordinate modules like P G
H,V (K) as KNG(K)-modules, we next give a

result about the algebras like tKK μK(G)tKK and KNG(K).

Lemma 7.2. For any subgroup K of G we have the direct sum decomposition

tKK μK(G)tKK = AK ⊕ JK

where AK is a unital subalgebra of tKK μK(G)tKK isomorphic to the group algebra KNG(K) and
JK is a two sided ideal of tKK μK(G)tKK . Moreover, the elements c

g
K with gK ⊆ NG(K) form

a K-basis of AK, and the set of elements of the form tKgJ c
g
J rK

J with KgK ⊆ G, J � Kg ∩ K,

J 	= K contains a K-basis of JK .

Proof. The basis Theorem 2.1 implies that

tKK μK(G)tKK =
( ⊕

Kc
g
K

)
⊕ JK
gK⊆NG(K)
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as K-spaces, where JK is the K-subspace with basis elements of the desired form. We see easily
that ⊕

gK⊆NG(K)

Kc
g
K and KNG(K)

are isomorphic algebras with isomorphism given by c
g
K ↔ gK . Finally, using the axioms in the

definition of Mackey algebras we observe that JK is a two sided ideal of tKK μK(G)tKK . �
7.1 and 7.2 imply

Theorem 7.3. Let P G
H,V be any principal indecomposable μK(G)-module. For any subgroup K

of G with SG
H,V (K) 	= 0, if JKSG

H,V (K) = 0 then the module

P G
H,V (K)/JKP G

H,V (K)

is the projective cover of the KNG(K)-module SG
H,V (K).

We note that the condition JKSG
H,V (K) = 0 in the statement of 7.3 is equivalent to the condi-

tion JKP G
H,V (K) 	= P G

H,V (K).
The following is obtained at once from 7.3 by putting K = H .

Corollary 7.4. For any subgroup H of G and for any simple KNG(H)-module V, the module

P G
H,V (H)/JH P G

H,V (H)

is the projective cover of the KNG(H)-module V . In particular, P G
H,V (H) is the projective cover

of the KNG(H)-module V if and only if JH P G
H,V (H) = 0.

We next single out a case in which the ideal JH annihilates the module P G
H,V (H).

Proposition 7.5. Let K be a field of characteristic p > 0 and H be a p′-subgroup of G. Then for
any simple KNG(H)-module V, the KNG(H)-module P G

H,V (H) is the projective cover of V .

Proof. There is an indecomposable μK(H)-module T such that P G
H,V is a direct summand of

↑G
H T . By the transitivity of induction it follows that H is a vertex of T . Using the semisimplicity

of the algebra μK(H) we conclude that T ∼= SH
H,K. Then P G

H,V is a direct summand of ↑G
H SH

H,K.

By part (6) of 6.1 the minimal subgroups of ↑G
H SH

H,K are precisely the G-conjugates of H .

Consequently, any K-basis element tHgJ c
g
J rH

J of the ideal JH annihilates the module ↑G
H SH

H,K
because J 	= H . So JH annihilates the direct summand P G

H,V of ↑G
H SH

H,K. Finally, as JH P G
H,V =

JH P G
H,V (H) = 0, the result follows by 7.4. �

Needless to say, the conclusion of 7.5 is not true in general. It may happen that P G
H,V (H) is

not indecomposable, and not projective as KNG(H)-module. See 7.8, 7.9.
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Lemma 7.6. Let P G
H,V be a principal indecomposable μK(G)-module, and let K and X be

subgroups of G such that SG
H,V (X) is nonzero. Suppose that P G

H,V (K) is nonzero. Then

(1) P G
H,V (K) is a direct summand of tKK μK(G)tXX as tKK μK(G)tKK -modules.

(2) If K is a normal subgroup of G, then P G
H,V (K) is a direct summand of

n
(↑G/K

KX/K KKX/K

)
as K(G/K)-modules where KKX/K is the trivial K(KX/K)-module and n is the number of
conjugacy classes of subgroups of K ∩ X.

Proof. Let A be a finite dimensional algebra over a field and e be an idempotent of A. If eS 	= 0
for a simple A-module S, then it is obvious and well known that there is a primitive idempotent
ε of A such that the projective cover P of S is isomorphic to Aε and that eε = ε = εe. Thus P

is a direct summand of Ae. Consequently for any idempotent f of A, the f Af -module f P (if
nonzero) is a direct summand of f Ae.

(1) This follows from the above explanation by putting A = μK(G), S = SG
H,V , e = tXX and

f = tKK .
(2) By the first part P G

H,V (K) is a direct summand of tKK μK(G)tXX . Using the normality of K,

the basis Theorem 2.1 implies

tKK μK(G)tXX =
⊕

J�K∩XK∩X

⊕
gKX⊆G

Kc
g
KtKJ rX

J .

Now it is easy to see that for any J � K ∩ X, the K-space

⊕
gKX⊆G

Kc
g
KtKJ rX

J

is isomorphic to ↑G/K
KX/K KKX/K as K(G/K)-module. �

Proposition 7.7. Let H be a normal subgroup of G. Then, P G
H,V (H) is a projective K(G/H)-

module for any simple K(G/H)-module V .

Proof. Letting K = X = H in part (2) of 7.6, the result follows. �
Remark 7.8. Let K be an algebraically closed field of characteristic p > 0 and G be a p-group.
For a subgroup H of G, the module P G

H,K(H) is an indecomposable KNG(H)-module if and
only if H = 1.

Proof. By [12, Proposition 3.1] P G
H,K

∼= μK(G)tHH so that P G
H,K(H) is isomorphic to

tHH μK(G)tHH as tHH μK(G)tHH -modules. Therefore, it follows by 7.2 that

P G
H,K(H) ∼= KNG(H) ⊕ JH
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as KNG(H)-modules. Consequently, P G
H,K(H) is indecomposable if and only if JH = 0, which

is equivalent to H = 1. �
Example 7.9. Let K be an algebraically closed field of characteristic 2, and G be the dihedral
group of order 8. Take a nonnormal subgroup H of G of order 2. Then P G

H,K(H) is a nonprojec-

tive KNG(H)-module.

Proof. Let K be an algebraically closed field of characteristic p > 0 and G be a p-group. For any
subgroup H of G, if P G

H,K(H) is a projective KNG(H)-module, then (since KNG(H) is a local

algebra) it follows that the order of NG(H) divides the dimension of P G
H,K(H) ∼= tHH μK(G)tHH .

In this special case, using the basis Theorem 2.1 we easily calculate the dimension of
tHH μK(G)tHH as 5. Since 5 is not divisible by 2 which is the order of NG(H), P G

H,K(H) can-
not be projective. �

For nilpotent groups, using the tensor product decomposition of Mackey algebras we may
give the following general form of 7.8.

Proposition 7.10. Let K be an algebraically closed field of characteristic p > 0 and G be a
nilpotent group. For a subgroup H of G, the module P G

H,V (H) is an indecomposable KNG(H)-
module if and only if H is a p′-group.

Proof. As in the proof of 6.11, under the tensor product decomposition of μK(G) the μK(G)-
module P G

H,V corresponds to the

μK(Gp) ⊗K μK(Gp′)-module P
Gp

Hp,K ⊗K S
Gp′
Hp′ ,V .

Therefore, the KNG(H)-module P G
H,V (H) corresponds to the

KNGp(Hp) ⊗K KNGp′ (Hp′)-module P
Gp

Hp,K(Hp) ⊗K V.

Consequently, P G
H,V (H) is an indecomposable KNG(H)-module if and only if P

Gp

Hp,K(Hp) is an

indecomposable KNGp(Hp)-module. The result now follows from 7.8. �
Using the results obtained about the kernels of P G

H,V we have

Remark 7.11. Let K be a field of characteristic p > 0 and H be a p-perfect normal subgroup
of G. Then, P G

H,V (H) is the projective cover of the K(G/H)-module V for any simple K(G/H)-
module V .

Proof. From 3.19 the kernel of P G
H,V is H so that we may write

P G
H,V

∼= InfGG/H P
G/H

.
1,V
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Evaluating at H we get a K(G/H)-module isomorphism P G
H,V (H) ∼= P

G/H

1,V (1). Finally, it fol-

lows by 7.5 that P
G/H

1,V (1) is the projective cover of the K(G/H)-module V . �
If N is a p-perfect normal subgroup of G where p is the characteristic of the field K, then

InfGG/N induces an isomorphism between some full subcategories of Mackey functor categories,
see [9, Section 10]. 7.11 may also be deduced easily by using this category isomorphism.

There are some similar results obtained in [9] about evaluations of Mackey functors. In the
next result we summarize these related results from [9, Sections 12 and 13].

Remark 7.12. (See [9].) Let K be a field of characteristic p > 0 and H be a subgroup of G.

(1) P G
H,V (1) 	= 0 if and only if H is a p-group.

(2) If H is a p-group then P G
H,V (1) is an indecomposable direct summand of ↑G

H KH .

(3) If H is a normal p-subgroup of G then the K(G/H)-module P G
H,V (1) is the projective cover

of the K(G/H)-module V .
(4) P G

1,V is isomorphic to the fixed point functor FP G
PV

where PV is the projective cover of the
KG-module V .

For example we note the similarity of parts (2) of 7.12 and 7.6.

Acknowledgment

The author would like to thank the referee for the detailed corrections.

References

[1] S. Bouc, Green Functors and G-Sets, Lecture Notes in Math., vol. 1671, Springer-Verlag, 1997.
[2] A. Dress, Contributions to the theory of induced representations, in: Lecture Notes in Math., vol. 342, Springer-

Verlag, Berlin, 1973, pp. 183–240.
[3] P. Fong, Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 103 (1962) 484–494.
[4] J.A. Green, Axiomatic representation theory for finite groups, J. Pure Appl. Algebra 1 (1971) 41–77.
[5] J.A. Green, Polynomial representations of GLn , Lecture Notes in Math., vol. 830, Springer-Verlag, New York, 1980.
[6] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Inc., Boston, MA, 1989.
[7] H. Sasaki, Green correspondence and transfer theorems of Wielandt type for G-functors, J. Algebra 79 (1982)

98–120.
[8] J. Thévenaz, P. Webb, Simple Mackey functors, Rend. Circ. Mat. Palermo (2) Suppl. 23 (1990) 299–319.
[9] J. Thévenaz, P. Webb, The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995) 1865–1961.

[10] C.E. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc. 11 (1960) 5–8.
[11] E. Yaraneri, Clifford theory for Mackey algebras, J. Algebra 303 (2006) 244–274.
[12] E. Yaraneri, A Swan length theorem and a Fong dimension theorem for Mackey algebras, J. Algebra 311 (2007)

365–379.


