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Abstract

Rhetorical biset functors can be defined for any family of finite groups that is closed under subquotients
up to isomorphism. The rhetorical p-biset functors almost coincide with the rational p-biset functors. We
show that, over a field with characteristic zero, the rhetorical biset functors are semisimple and, furthermore,
they admit a character theory involving primitive characters of automorphism groups of cyclic groups.
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1. Introduction and conclusions

Finite group representation theory has been based, essentially, on two methods for reduction
to smaller groups. One of them, reduction to subgroups, is usually effected by means of induction
and restriction. The other, reduction to quotient groups, is sometimes effected by means of infla-
tion and, when it exists, deflation. Isogation is even more important than induction, restriction,
inflation and deflation. In fact, it is so ubiquitous that it normally passes without mention. By
isogation, we mean transport of structure through a group isomorphism. Mackey functors cap-
ture the notions of induction, restriction and isogation. Biset functors, introduced by Bouc [2],
capture all five notions: induction, restriction, isogation, inflation and deflation. It can be said
that, in the theory of biset functors, reduction to subgroups and reduction to quotient groups are
unified within a more general method: reduction to subquotients.
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Throughout this paper, we let R be a commutative unital ring and we let K be a field with
characteristic zero. We let G be a finite group. We let X be a non-empty set of finite groups that
is closed under subquotients up to isomorphism. That is to say, if G is in X , then any subquotient
of G is isomorphic to some group in X . We let p be a prime.

We shall speak of biset functors for X over R. A case of especial concern to us will be
that where R is replaced by K. A local scenario: we understand a biset functor for G to be
a biset functor for X (G), where X (G) is a set of representatives of the isomorphism classes
of subquotients of G. A global scenario: we understand a p-biset functor to be a biset functor
for Xp , where Xp is a set of representatives of the isomorphism classes of finite p-groups.

A biset functor L for X over R can be seen as a family of R-modules together with five kinds
of R-maps. For each group G in X , there is an R-module L(G). There are two “upward” maps,
namely, a transfer map and an inflation map

traν
G,H :L(G) ← L(H), infμF,G :L(F) ← L(G)

where ν :G ← H is a group monomorphism and μ :F ← G is a group epimorphism. There are
two “downward” maps, namely a restriction map and a deflation map

resν
H,G :L(H) ← L(G), defμG,F :L(G) ← L(F).

The fifth kind of map is an isogation map

isoθ
G,G′ :L(G) ← L(G′)

where θ :G ← G′ is a group isomorphism. Some relations are imposed on these five kinds of
map. For instance, the isogation map associated with an inner automorphism of G is required to
be the identity map on L(G). We also require that

isoθ
G,G′ isoθ ′

G′,G′′ = isoθθ ′
G,G′′ .

Those two relations ensure that L(G) is an R Out(G)-module. We shall be regarding the biset
functors for X over R as modules of the R-algebra RΓ X generated by these five kinds of map,
with all the relations accommodated. (Concerning the fifth element, “For if the natural motion is
upward, it will be fire or air, and if downward, water or earth . . . It necessarily follows that circular
movement, being unnatural to these bodies, is the natural movement of some other,” Aristotle,
On the Heavens, I.2.) We call RΓ X the alchemic algebra for X over R. The rationale for the
terminology is that the alchemic algebra is composed of five kinds of elements (two moving
upwards, two moving downwards, one moving in circles) just as the alchemic theory proposes
five kinds of elements (two moving upwards, two moving downwards and one moving in circles).

In close analogy with the Thévenaz–Webb classification of the simple Mackey functors, Bouc
showed how the simple biset functors S

X ,R
H,ν for X over R are parameterized by the pairs (H, ν)

where H is a group in X well-defined up to isomorphism and ν is a simple R Out(H)-module up
to isomorphism. See Section 2. A celebrated theorem of Thévenaz and Webb asserts that every
Mackey functor over K is semisimple. Alas, as a negative result, we have the following necessary
and sufficient criterion for semisimplicity of biset functors over K. The theorem was established
independently and with priority by Bouc (personal communication).
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Theorem 1.1 (Bouc). Every biset functor for X over K is semisimple if and only if every group
in X is cyclic.

We shall see that one direction is easy. The necessity of the criterion will become evident from
a glance at the biset functor KBX associated with the K-linear extension KB(G) of the Burnside
ring B(G). See Corollary 2.7. The sufficiency of the criterion will be demonstrated, in Section 5,
by an argument involving a calculation of dimensions.

This paper is concerned with two classes of biset functors, called rhetorical biset functors and
rational p-biset functors. The rhetorical biset functors are defined for arbitrary X , whereas the
rational p-biset functors are defined only when all the groups in X are p-groups. For p-groups,
the two classes are very similar to each other and, for some coefficient rings, they coincide with
each other. The new term rhetorical has been chosen because the term rational has already been
used by Bouc (and also because, in Elements, Book 10, Euclid uses rhetos to refer to certain
ratios that are close to being rational).

The definitions of the two classes of biset functor will be presented in Section 3. The defini-
tions are very difficult to express, even vaguely, without the prerequisite background machinery.
For now, let us attempt only a very sketchy indication. Something akin to both of the concepts
was implicitly introduced by Hambleton, Taylor and Williams [9]. Their “group ring functors”
differ from biset functors in several ways. One of the differences is that their functors are con-
structed using bimodules, whereas biset functors are constructed using bisets. The notion of a
rhetorical biset functor captures something of this bimodule construction. We shall construct a
quotient algebra RΥ X of RΓ X , and we shall realize the rhetorical biset functors as precisely
those biset functors that can be inflated from RΥ X .

Hambleton et al. showed that, for the class of hyperelementary groups, their functors have, as
they called it, “detection” and “generation” properties. These two properties allow for reduction
to the subclass consisting of the hyperelementary groups whose normal abelian subgroups are
all cyclic. The “generation” condition roughly says that the whole functor can be obtained by
induction and inflation from that subclass. The “detection” property roughly says that the functor
is determined by its deflations and restrictions to that subclass. The rational p-biset functors
of Bouc [4] are defined to be the p-biset functors which satisfy a version of the “generation”
property.

Something the history of this paper can now be narrated. The notion of a rhetorical biset func-
tor, as presented in Section 3, arose initially from some Bilkent seminars by Yalçın, in 2004,
concerning some speculative applications of [9] to the study of Dade groups. It was Yalçın
who noticed the connection between the work of Hambleton et al. and the work of Bouc. In
April 2006, a few days before Bouc came to visit us in Bilkent, I sent Bouc an incomplete ver-
sion of the present paper. At that time, I was presuming that the rhetorical p-biset functors are
the same as the rational p-biset functors, but I had neglected to confirm it. Bouc queried this
gap. Upon his arrival, we found that each of the three of us had a different preference as to the
explanation of the easy direction. In Section 8, the following result will be demonstrated using
the classification of the rhetorical biset functors. Another proof of the result appears in Bouc [7].
Yalçın—who had already recognized the result back in 2004—noted that it can be derived from
the proof of [9, 1.A.11, 1.A.12].

Theorem 1.2 (Hambleton, Taylor, Williams). Supposing that every group in X is a p-group, then
every rhetorical biset functor for X is rational. In particular, every rhetorical p-biset functor is
rational.
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Counterexamples abound for the converse to the main part of the theorem, even in character-
istic zero. See Non-example 3.E below. The issue is more subtle in the case of p-biset functors.
Eventually, Bouc [7] found the counterexample in Non-example 3.F, and he also obtained the
following resolution of the matter.

Theorem 1.3 (Bouc). The rhetorical p-biset functors over a field F coincide with the rational
p-biset functors over F if and only if char(F) �= 2 or p �= 2. In particular, the rhetorical p-biset
functors over K coincide with the rational p-biset functors over K.

Let us sketch an example. We introduce another field J with characteristic zero. Throughout
this paper, we shall tend to use J as a coefficient field for modules of group algebras, whereas we
shall tend to use K as a coefficient ring for biset functors. The J-representation algebra RAJ(G),
also called the J-character algebra, is an R-module freely generated by the JG-irreps; we un-
derstand a JG-irrep to be a simple JG-module, in other words, an irreducible JG-character, or
equivalently, an irreducible JG-representation. The J-representation biset functor for X over R

is defined to be the biset functor

RAX
J =

⊕
G∈X

RAJ(G).

In Example 3.A, we shall show that RAJ is a rhetorical biset functor. We defer to Section 3 for a
more detailed discussion.

The term “rational p-biset functor” testifies to some more history. As usual, the concept
was introduced in a difficult context; easy contexts emerge through subsequent work of ped-
agogues. Bouc [4] introduced the term in connection with the rational p-biset functor DΩ

tors,
where DΩ

tors(G) is the torsion subgroup of the group generated by the relative syzygies in the
Dade group of G. The significance of “rational” is that DΩ

tors has a property that was already
familiar from Bouc’s study [3] of the rational representation functor RAQ as a p-biset functor.

Theorem 1.4. Every rhetorical biset functor over K is semisimple.

In particular, the biset functor KAJ is semisimple. We shall also classify the simple rhetorical
biset functors over K.

Theorem 1.5. The simple rhetorical biset functors for X over K are precisely the simple biset
functors over K that have the form S

X ,K
C,σ where C is a cyclic group in X and σ is a primitive

K Aut(C)-module.

Precisely those simple biset functors have already made an appearance in the following result
of Bouc [2, 10.3].

Theorem 1.6 (Bouc). As a direct sum of rhetorical biset functors over K, we have

KAC
∼=

⊕
C,σ

S
X ,K
C,σ

where C runs over representatives of the isomorphism classes of cyclic groups in X and σ runs
over the isomorphism classes of primitive K Aut(C)-modules.
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In other words, each simple rhetorical biset functor occurs exactly once in the semisimple
biset functor KAC. At the other extreme, the semisimple biset functor KAQ is actually simple;
the following result is Bouc [2, 7.2.1].

Theorem 1.7 (Bouc). As an isomorphism of rhetorical biset functors, KAQ
∼= S1,1.

The notion of primitivity will be recalled in Section 7. A proof of Theorem 1.5 and a new
proof of Theorem 1.6 will be given in Section 8. The following generalization of Theorems 1.6
and 1.7 will be proved in Section 9.

Theorem 1.8. As a direct sum of rhetorical biset functors,

KAJ
∼=

⊕
C,σ

S
X ,K
C,σ .

Here, C still runs over the representatives of the isomorphism classes of cyclic groups in X .
Letting JC be the extension field obtained from J by adjoining a primitive |C|th root of unity,
then the Galois group Gal(JC/J) embeds in Aut(C). The index σ runs over those primitive
K Aut(C)-modules whose kernel contains Gal(JC/J).

The proof will be an application of the character-theoretic principle expressed in the following
theorem. As we shall explain in Section 9, the nearest analogues of this theorem for Mackey
functors involve recursion or a Möbius inversion formula. For Mackey functors in characteristic
zero, the multiplicity of a given simple factor cannot be determined just by examining a single
coordinate module.

Theorem 1.9. Given a rhetorical biset functor L over K, then

L ∼=
⊕
C,σ

mC,σ S
X ,K
C,σ .

For any cyclic group C in X and any primitive K Aut(C)-module σ , the multiplicity mC,σ of SC,σ

in L is equal to the multiplicity of σ in the K Aut(C)-module L(C).

2. Some recollections concerning biset functors

In essential content, this section is just a summary of some prerequisite material from
Bouc [2]. However, by treating biset functors as modules of the alchemic algebra RΥ X and
by allowing the possibility that X is finite, we shall be able to make use of the theory of unital al-
gebras that have finite rank over their coefficient rings. This will be convenient when we discuss
semisimplicity.

The passage from finite X to arbitrary X will be plain sailing, but this is only because it will
follow in the wake of a little ring-theoretic tug. Let us quickly admit the ring theory.

Recall that ring is said to be unital provided it has a unity element. A homomorphism of
unital rings is said to be unital provided the unity element is preserved. A module of a unital
ring is said to be unital provided the unity element acts as the identity map. But we shall be
needing something slightly more general than that. Consider a ring Λ containing a set of mutually
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orthogonal idempotents E which is complete in the sense that Λ = ⊕
e,f ∈E eΛf . Such a ring

Λ is said to be locally unital. A homomorphism of locally unital rings is said to be locally
unital provided the image of some complete E—and then necessarily all complete E—is itself
complete. A Λ-module M is said to be locally unital provided, for some E—and then all E—we
have M = ⊕

e∈E eM . This is equivalent to the condition that the representation Λ → End(M)

is locally unital. Another equivalent condition is that, for all m ∈ M there exists some λ ∈ Λ

satisfying λm = m. For any Λ-module, there is a maximum among the locally unital submodules.
A module, recall, is semisimple provided it is a sum—then necessarily a direct sum—of sim-

ple modules. (The sums may be infinite or empty.) But a ring is said to be semisimple provided
every module is semisimple, in which case the ring can have only finitely many isomorphism
classes of simple modules. Let us list some easy exercises which deal with such matters. Given a
finite subset F ⊆ E , then the sum of the elements of F , denoted 1F , is an idempotent of Λ. Let
M and N be locally unital Λ-modules. The following three conditions are mutually equivalent:
M ∼= N as Λ-modules; for all idempotents i of Λ, we have iM ∼= iN as iΛi-modules; for all
finite subsets F ⊆ E , we have 1FM ∼= 1FN as 1FΛ1F -modules. The next three conditions are
mutually equivalent: M is semisimple; each iM is semisimple; each 1FM is semisimple. Up to
isomorphism, there is a bijective correspondence iS ↔ S between the simple iΛi-modules iS

and those simple Λ-modules S that are not annihilated by i. And the next three conditions are
equivalent: every locally unital Λ-module is semisimple; each ring iΛi is semisimple; each ring
1FΛ1F is semisimple. In that case, we say that Λ is locally semisimple.

The ring theory has passed through, and we can now open our eyes again. Consider finite
groups I , J , K . An I -J -biset is defined to be a finite I × J -set (a finite permutation set for
the group I × J ) with the action on the left. Let X be an I -J -biset and let Y be a J -K-biset.
For (i, j) ∈ I × J and x ∈ X, we write ixj−1 = (i, j)x. The cross product of X and Y over J ,
denoted X ×J Y , is defined to be the I -K-biset consisting of the J -orbits of the I × J × K-set
X × Y . Writing x ×J y for the J -orbit of an element (x, y) ∈ X × Y , then (i, k)(x ×J y) =
ix ×J yk−1.

Recall that the transitive G-sets have the form G/H where H � G. We use square brackets
to indicate an isomorphism class. The isomorphism classes [G/H ] comprise a Z-basis for the
Burnside ring B(G) and, more generally, they comprise an R-basis for the Burnside algebra
RB(G) = R ⊗Z B(G). As an R-module, we define

RΓ (I, J ) = RB(I × J ).

The cross product over J gives rise to a binary operation, called multiplication,

RΓ (I, J ) × RΓ (J,K) → RΓ (I,K).

We shall give two equivalent definitions of a biset functor. According to one definition, which
we shall refer to as the theological definition, the set X is to be regarded as an R-preadditive
category such that, given objects I, J ∈ X , then RΓ (I, J ) is the hom-set to I from J . A biset
functor for X over R is defined to be an R-additive functor from X to the category of R-modules.
The morphisms of these biset functors are defined to be the R-additive natural transformations.

The other definition of a biset functor, which we shall refer to as the occult definition, is
expressed in terms of the R-algebra

RΓ X =
⊕

RΓ (I, J )
I,J∈X
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which we call the alchemic algebra for X over R. The multiplication operation on RΓ X comes
from the multiplication operation defined above. In a moment, we shall explain why RΓ X is
locally unital. A biset functor for X over R is defined to be a locally unital RΓ X -module. The
morphisms of these biset functors are defined to be the module homomorphisms.

Throughout this paper, we shall be working exclusively with the occult definition; we shall
always understand a biset functor to a locally unital module of the alchemic algebra. Soon, we
shall be checking that the two definitions are equivalent, but first let us introduce a little more
notation to facilitate the discussion.

The biset algebra for I over R is defined to be the R-subalgebra RΓ (I, I ) of RΓ X . The
R-algebra RΓ (I, I ) is unital, and its unity element is

isoI = [
(I × I )/Δ(I)

]
where Δ(I) denotes the diagonal subgroup {(i, i): i ∈ I } of I × I . We have

RΓ (I, J ) = isoI RΓ X isoJ .

So {isoI : I ∈ X } is a complete set of mutually orthogonal idempotents of RΓ X . We have now
shown that RΓ X is locally unital. Evidently, the elements of RΓ (I, J ) act as maps L(I) ←
L(J ).

Let L be a biset functor for X over R (a locally unital RΓ X -module). The coordinate module
for L at I is defined to be L(I) = isoI L. Since L is a locally unital module,

L =
⊕
I∈X

L(I)

as a direct sum of R-modules. (We did need to insist that biset functors are locally unital. Without
that hypothesis, we would not have the decomposition as a direct sum of the coordinate modules.)
Consider a morphism λ :L → L′ of biset functors for X over R. Since λ commutes with all the
idempotents isoI , we have λ = ⊕

I λI as a direct sum of R-linear maps λI :L(I) → L′(I ). We
call λI the coordinate map of λ at I .

We can now see why the two definitions of a biset functor are equivalent. Consider θ :L → L′
as above, and write ρ :RΓ X → EndR(L) and ρ′ :RΓ X → EndR(L′) for the representations.
Since L is locally unital, it is determined by the coordinate modules L(I) together with the re-
strictions of ρ to the R-linear maps between hom-sets RΓ (I, J ) → HomR(L(J ),L(I)). Thus,
L and L′ give rise to R-additive functors X → R-Mod, and θ is a natural transformation
between these two functors. These constructions can be reversed, and thus we obtain an equiv-
alence between the category of biset functors over X and the category of R-additive functors
X → R-Mod.

Up to equivalence, the category of biset functors for X over R depends only on R and on
the isomorphism classes of groups that appear in X (and not on the multiplicity of each iso-
morphism class). Indeed, this is already clear from the theological definition of a biset functor,
but the occult definition allows us to express the point a little more precisely. Let Y be a set of
groups such that the isomorphism classes appearing in X and in Y coincide. Consider the RΓ X -
RΓ Y -bimodule XRΓ Y = ⊕

I∈X ,J∈Y RΓ (I, J ) and the similarly defined bimodule YRΓ X .

Tensoring over RΓ Y , there is an evident bimodule isomorphism XRΓ Y ⊗ YRΓ X ∼= RΓ X . So
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the functors XRΓ Y ⊗ − and YRΓ X ⊗ − yield mutually inverse Morita equivalences between
the category of biset functors for X over R and the category of biset functors for Y over R.

Since RΓ (I, J ) has an R-basis consisting of the isomorphism classes of transitive I -J -bisets,
and since these bisets have the form [(I ×J )/S] where S runs over the conjugacy classes of sub-
groups of I × J , we had better recall Goursat’s Theorem concerning the subgroups of a direct
product. For any subgroup S � I × J , let the subgroup ↑S � I be the image of the projection
from S to I . Let the normal subgroup ↓S � ↑S be such that ↓S × 1 is the kernel of the projec-
tion from S to J . We define subgroups S↓ � S↑ � J similarly. The two evident epimorphisms
↑S/↓S ← S → S↑/S↓ both have kernel S/(↓S × S↓). Hence we obtain two group isomor-
phisms

↑S

↓S
∼= S

↓S × S↓
∼= S↑

S↓ .

We let θS be the composite isomorphism ↑S/↓S ← S↑/S↓. By recollection or by easy exercise,
we obtain the following venerable theorem.

Theorem 2.1 (Goursat’s Theorem). For arbitrary groups I and J , there is a bijective corre-
spondence between the subgroups S � I × J and the quintuples (I1, I2, θ, J2, J1) such that
I2 � I1 � I and J2 � J1 � J and θ is an isomorphism I1/I2 ← J1/J2. The correspondence
is such that S ↔ (↑S,↓S, θS, S↓, S↑).

For subgroups S � I × J and T � J × K , the join of S and T is defined to be the subgroup
S ∗T � I ×K such that (i, k) ∈ S ∗T if and only if (i, j) ∈ S and (j, k) ∈ T for some j . The next
result, due to Bouc [2, 3.2], amounts to an explicit formula for the cross product of two transitive
bisets (but we express the formula as the product of two elements of the alchemic algebra).

Theorem 2.2 (Generalized Mackey Product Theorem, Bouc). Given finite groups I , J , K and
subgroups S � I × J and T � J × K , then

[
I × J

S

][
J × K

T

]
=

∑
S↑.j.↑T ⊆J

[
I × K

S ∗ (j,1)T

]

where the notation indicates that j runs over representatives of the double cosets of S↑ and ↑T

in J . The isomorphism class of the I × K-set (I × K)/(S ∗ (j,1)T ) depends only on the double
coset S↑ . j . ↑T .

We can now discuss transfer, inflation, isogation, deflation and restriction. Let H � G � N ,
and suppose that the groups H , G, G/N belong to X . Writing Δ(H,G) = {(h,h): h ∈ H } =
Δ(G,H), we define, respectively, a transfer map and a restriction map

traG,H =
[

G × H
]

∈ RΓ (G,H), resH,G =
[

H × G
]

∈ RΓ (H,G).

Δ(G,H) Δ(H,G)
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Writing Δ(G,G/N) = {(g, gN): g ∈ G} and Δ(G/N,G) = {(gN,g): g ∈ G}, we define an
inflation map and a deflation map

infG,G/N =
[

G × G/N

Δ(G,G/N)

]
∈ RΓ (G,G/N), defG/N,G =

[
G/N × G

Δ(G/N,G)

]
∈ RΓ (G/N,G).

Given an isomorphism θ :G ← G′ between two groups in X , we write Δ(G,θ,G′) =
{(θ(x), x): x ∈ G′}, and we define an isogation map

isoθ
G,G′ =

[
G × G′

Δ(G,θ,G′)

]
∈ RΓ (G,G′).

Of course, we are referring to these elements as maps because, given a biset functor L, then each
of these elements acts as a map between two coordinate modules of L. Note that the unity ele-
ment isoG of the biset algebra RΓ (G,G) can be variously written as isoG = traG,G = infG,G =
iso1

G,G = defG,G = resG,G. Also note that, given an inner automorphism φ of G, then Δ(G,φ,G)

is conjugate to the diagonal subgroup Δ(G) = Δ(G,G), hence isoφ
G,G = isoG. The next result is

Bouc [2, 3.3].

Theorem 2.3 (Butterfly Decomposition Theorem, Bouc). Let I and J be finite groups, and let
S � I × J . Assuming that all the groups involved belong to X then, in the notation of Goursat’s
Theorem above,[

I × J

S

]
= traI,↑S inf↑S,↑S/↓S isoθS↑S/↓S,S↑/S↓ defS↑/S↓,S↑ resS↑,J .

The five kinds of maps that we have defined admit fifteen commutation relations, which can
be determined laboriously but easily using the latest two results. We shall not write them all
down, but we comment on just a few of them. In Section 1, we already discussed the product of
two isogations, and we also explained how the coordinate module L(G) becomes an R Out(G)-
module. Letting H � G and H ′ � G′ be such that the isomorphism θ :G ← G′ restricts to an
isomorphism θ :H ← H ′, then

isoθ
G,G′ traG′,H ′ = traG,H isoθ

H,H ′ .

The isogation maps have similar commutation relations with the inflation, deflation and restric-
tion maps. Two more commutation relations are, with the evident notation,

defG/M,G infG,G/N = infG/M,G/MN defG/MN,G/N,

defG/N,G traG,H = traG/N,HN/N isoHN/N,H/(H∩N) defH/(H∩N),H .

Among the fifteen commutation relations, there is only one where the corresponding sum in
Theorem 2.2 has more than one term: it is the Mackey relation for the product of a restriction
map and a transfer map.
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Dropping the assumption that H is a subgroup of G, and replacing it with the assumption that
H is isomorphic to a subgroup of G, then we can consider a group monomorphism ν :H → G,
and we can define a generalized version of the transfer map

traν
G,H = traG,ν(H) isoν

ν(H),H .

Similarly, one can define generalized versions of the inflation, deflation and restriction maps.
In view of Theorem 2.3, the alchemic algebra RΓ X is generated by the generalized transfer,
inflation, isogation, restriction and deflation maps. Whether or not the groups mentioned in the
proposition belong to X , the isomorphism class of a transitive biset can still be expressed as the
product of a transfer, an inflation, an isogation, a deflation and a restriction, in that order. It is
now clear that, for arbitrary X , the alchemic algebra RΓ X could be defined as the R-algebra
generated by the five kinds of maps. There are seventeen kinds of relations on the maps: the
fifteen commutation relations; the relation expressing the triviality of any isogation associated
with an inner automorphism; the relation asserting that a product is zero when the domain of the
left-hand map is distinct from the codomain of the right-hand map.

The simple biset functors were classified by Bouc [2, Section 4], as follows. Note that any
simple biset functor S for X over R is annihilated by some maximal ideal M of R, and hence S

becomes a biset functor for X over the field R/M .

Theorem 2.4 (Simple Biset Functor Classification Theorem, Bouc). Consider the pairs (H, ν)

such that H is a group in X and ν is a simple R Out(H)-module. Two such pairs (H, ν) and
(H ′, ν′) are deemed to be equivalent provided H ∼= H ′ and the isomorphism H → H ′ transports
ν to ν′. There is a bijective correspondence (H, ν) ↔ SH,ν between the equivalence classes of
pairs (H, ν) and the isomorphism classes of simple biset functors SH,ν . The correspondence is
characterized by the condition that, with respect to the subquotient relation, H is minimal among
the groups J in X satisfying SH,ν(J ) �= 0, and furthermore, SH,ν(H) ∼= ν as R Out(H)-modules.

We sometimes write SH,ν less briefly as SR
H,ν or as S

X ,R
H,ν . However, part (3) of the following

remark reveals a sense in which the simple biset functor S
X ,R
H,ν is essentially independent of X .

The remark is an easy consequence of the comments on locally unital modules at the beginning
of this section. It will be of much use to us as a means for reducing to the case of finite X .

Remark 2.5 (Finite Reduction Principle for Biset Functors). Let L and L′ be biset functors for X
over R. Let F run over those finite subsets of X such that, up to isomorphism, F is closed under
subquotients. Write 1F to denote the unity element of RΓ F . Note that RΓ F = 1FRΓ X 1F as
a subalgebra of RΓ X .

(1) L ∼= L′ if and only if, for all F , we have 1FL ∼= 1FL as biset functors for F over R.
(2) L is semisimple if and only if the biset functor 1FL is semisimple for all F .
(3) For H ∈ F and a simple R Out(H)-module ν, we have S

F ,R
H,ν

∼= 1FS
X ,R
H,ν . In particular, given

K ∈ F , then S
F ,R
H,ν (K) ∼= S

X ,R
H,ν (K) as R Out(K)-modules and as RΓ (K,K)-modules.
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Let us end this section with some comments about three example, two of them quite classical.
The biset functor

RB = RBX =
⊕
G∈X

RB(G)

is called the Burnside biset functor for X over R. The action of RΓ X is such that, given an
I -J -set X and a J -set Y , then the element [X] ∈ RΓ (I, J ) sends the element [Y ] ∈ RB(J ) to
the element [X ×J Y ] ∈ RB(I).

The following result is widely-known, but we draw attention to it because of Proposition 3.6
below, which is an analogous result for rhetorical biset functors.

Proposition 2.6. Suppose that R is a field. Then, as biset functors, the projective cover of the
simple functor S1,1 is the Burnside functor RB .

Proof. Theorem 2.4 tells us that S1,1 is the unique simple biset functor with a non-zero co-
ordinate module at the trivial group. So iso1 annihilates all the simple biset functors except
for S1,1. Furthermore, iso1 S1,1 ∼= S1,1(1) ∼= R as R-modules. Therefore iso1 maps to a prim-
itive idempotent of the semisimple quotient RΓ X /J (RΓ X ). By idempotent lifting theorems,
iso1 is a primitive idempotent of RΓ X . In fact, it must belong to the conjugacy class of prim-
itive idempotents associated with S1,1. Therefore RΓ X iso1 is the projective cover of S1,1.
By regarding I -sets as I -1-bisets, we can make an identification RB(I) = RΓ (I,1), whence
RBX = RΓ X iso1. �

Let us consolidate the sketch we made in Section 1 concerning the biset functor RAJ. All
JG-modules, let us agree, are deemed to be finite-dimensional. We may neglect to distinguish
between the JG-characters and isomorphism classes of JG-modules. Given a JG-module M ,
we write [M] to denote the character of M , in other words, the isomorphism class of M . When
M is simple, we call [M] a JG-irrep. The JG-irreps comprise a Z-basis for the J-representation
ring AJ(G) and they comprise an R-basis for the J-representation algebra RAJ(G) = R ⊗Z

AJ(G). The J-representation biset functor for X over R is defined to be the biset functor

RAJ = RAX
J =

⊕
G∈X

RAJ(G).

Given F,G ∈ X , an F -G-set X and a JG-module M , then the element [X] ∈ RΓ (F,G) sends
the element [M] ∈ RAJ(G) to the element [JX ⊗JG JM] ∈ RAJ(F ). It is easy to check that this
action gives the usual induction, restriction and inflation maps of character theory. The isogation
is, of course, the evident transport of structure. For N � G, we have defG/N,G[M] = [MN ] =
[MN ] where MN and MN denote subspaces of M consisting of the N -fixed points and the N -
cofixed points, respectively.

We define the linearization morphism to be the morphism of biset functors

linXJ :RBX → RAX
J

whose coordinate map at G is the linearization map linJ,G :RB(G) → RAJ(G) which sends the
isomorphism class of a G-set to the isomorphism class of the corresponding JG-module.
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The following is another well-known result. We record it because it implies the easy half of
Theorem 1.1.

Corollary 2.7. Suppose that R is a field and that some group in X is non-cyclic. Then the biset
functor RB is not semisimple.

Proof. By part (2) of Remark 2.5, we may assume that X is finite. When G is non-cyclic, the
linearization map linJ,G is non-zero and non-injective. Since X owns a non-cyclic group, the
linearization morphism linXJ is non-zero and non-injective. Hence RB is non-simple. But the
latest proposition implies that RB is indecomposable. �

Actually, Theorem 1.1 will imply the converse. Thus, when R is a field, RB is semisimple if
and only if every group in X is cyclic.

Let us signal especial interest in less classical example of a biset functor. The kernel
K = KX = Ker(linXJ :BX → AX

J
) is independent of J. Indeed, the coordinate module K(G) =

Ker(linJ,G :B(G) → AJ(G)) consists of those elements x ∈ B(G) such that resC,G(x) = 0 for
every cyclic subgroup C of G. The biset functor K has been studied by, for instance, Bouc [5,7]
and Yalçın [12]. We also mention that the maps considered by Tornehave [11]—parameterized
by an automorphism of C—can be realized as morphisms of biset functors from K to the unit
group of the Burnside ring. For arbitrary p, there are some analogous morphisms from RK to
the dual RB∗ of the Burnside ring. The author intends to discuss these morphisms in a future
paper.

3. Rhetorical biset functors

Rhetorical biset functors were implicitly introduced by Hambleton, Taylor and Williams [9,
1.A.4, 1.A.12], and the notion was further consolidated mainly in some seminars by Yalçın
in 2004. We shall define the hermetic algebra RΥ X as a quotient of the alchemic algebra RΓ X ,
and we shall define the rhetorical biset functors for X over R to be the biset functors that are
inflated from RΥ X .

Rational p-biset functors were introduced by Bouc [4]. Recall that a p-biset functor is de-
fined to be a biset functor for Xp where Xp is set of representatives of the isomorphism classes
of p-groups. In order to make a comparison with rhetorical biset functors, we shall find it conve-
nient to work generally with rational biset functors for any class of p-groups that is closed under
subquotients up to isomorphism. However, Non-example 3.E suggests that these more general
kinds of rational biset functors are unlikely to be of fundamental significance.

In this section, we shall discuss some characterizations of rhetorical and rational biset func-
tors, we shall give some examples, and we shall observe some useful closure properties.

For finite groups I and J , we understand a JI -JJ -bimodule to be a J(I × J )-module; given
i ∈ I and j ∈ J , then the bimodule action of i on the left and j−1 on the right coincides with
the module action of (i, j) on the left. Consider the R-module RΓ (I, J ) = RB(I × J ). Let
RK(I, J ) be the R-submodule of RΓ (I, J ) spanned by the elements having the form [X]− [X′]
where X and X′ are I -J -bisets such that JX ∼= JX′ as an isomorphism of JI -JJ -bimodules.
Observe that the condition is independent of J. Thus, RK(I, J ) = RK(I × J ) where K is the
biset functor discussed at the end of the previous section. The quotient

RΥ (I, J ) = RΓ (I, J )/RK(I, J )
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is a free R-module. Consider another finite group K (there will be no confusion of notation) and
let Y and Y ′ be J -K-bisets such that JY ∼= JY ′. As an isomorphism of JI -JK-bimodules,

J(X ×J Y ) ∼= JX ⊗JJ JY ∼= JX′ ⊗JJ JY ′ ∼= J(X′ ×J Y ′).

So the multiplication on RΓ X gives rise to a multiplication operation

RΥ (I, J ) × RΥ (J,K) → RΥ (I,K).

We give two equivalent definitions of a rhetorical biset functor. One of the definitions is as
follows. Regarding X as an R-additive category such that Hom(J, I ) = RΥ (I, J ), we (could,
if we so wished) define a rhetorical biset functor to be an R-additive functor from X to the
category of R-modules. We shall have no use for this characterization, but we mention that it is
easily shown to be equivalent to the definition in the next paragraph.

As an ideal in RΓ X , we define

RKX =
⊕

I,J∈X
RK(I, J ).

We define the hermetic algebra to be the locally unital R-algebra

RΥ X = RΓ X /RKX =
⊕

I,J∈X
RΥ (I, J ).

A biset functor L for X over R is said to be rhetorical provided L is annihilated by KX . In
other words, L is rhetorical provided, for all I, J ∈ X and all I -J -bisets X and X′ satisfying
JX ∼= JX′, the elements [X], [X′] ∈ RΓ (I, J ) act as the same R-linear maps L(I) ← L(J ). The
rhetorical biset functors are precisely the biset functors that are inflated from the hermetic algebra
RΥ X . So we can regard the rhetorical biset functors as the locally unital RΥ X -modules.

Let us write the canonical R-algebra epimorphism from the alchemic algebra to the hermetic
algebra as

linX :RΓ X → RΥ X .

This is a dangerous abuse of notation because, for arbitrary R, the (I, J )-component of linX is
the canonical R-module epimorphism

linI,J :RΓ (I, J ) → RΥ (I, J )

whereas the (I, J )-component of the linearization map linXQ :RBX → RAX
Q

is the possibly non-
surjective R-module map

linI×J,Q :RB(I × J ) → RA(I × J ).

However, the linearization map linG :RB(G) → RAQ(G) is surjective when R is a field with
characteristic zero. The Ritter–Segal theorem says that the same conclusion holds for arbitrary R

when G is a p-group. So, if R is a field of characteristic zero or if I and J are p-groups, then
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we can identify linI,J with linI×J,Q and, in fact, we can make an identification of short exact
sequences as indicated in the following diagram.

0 RK(I × J ) RB(I × J )
linI×J,Q

RAQ(I × J ) 0

0 RK(I, J ) RΓ (I, J )
linI,J

RΥ (I, J ) 0

In the two special cases that we have indicated, these identifications yield another characteriza-
tion of the rhetorical biset functors. To elucidate the point, let us write RAQ(I, J ) = RAQ(I ×J )

and let us define a multiplication operation

RAQ(I, J ) × RAQ(J,K) → RAQ(I,K)

such that, given a QI -QJ -bimodule U and a QJ -QK-bimodule V , then the product of the
elements [U ] ∈ RAQ(I, J ) and [V ] ∈ RAQ(J,K) is [U ][V ] = [U ⊗QJ V ]. The following propo-
sition is clear from the above comments.

Proposition 3.1. Suppose that R is a field with characteristic zero or that every group in X is
a p-group. Then, for all I, J ∈ X , there is an R-module isomorphism RΥ (I, J ) ∼= RAQ(I, J )

such that, given an I -J -biset X, then the image of [X] in RΥ (I, J ) corresponds to the element
[QX] in RAQ(I, J ). These R-module isomorphisms preserve multiplication and give rise to an
isomorphism of R-algebras

RΥ X ∼=
⊕

I,J∈X
RAQ(I, J )

where the multiplication operation on the right-hand side is the multiplication operation defined
above. In other words, the category of rhetorical biset functors for X over R is equivalent to the
category of R-additive functors X → R-Mod where X is regarded as an R-preadditive category
with Hom(J, I ) = RAQ(I, J ).

Let us quickly review the notion of a rational biset functor for X , where X is such that every
group in X is a p-group. Let L be a biset functor for X over R, and let G ∈ X . As an R-
submodule of L(G), we define

∂L(G) =
⋂

N : 1<N�G

Ker(defG/N,G) = f G
1 L(G).

Here, f G
1 is the idempotent of RΓ (G,G) given by the formula

f G
1 =

∑
Z⊆Ω1(Z(G))

(−1)npn(n−1)/2 infP,P/Z defP/Z,P

where |Z| = pn.
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A p-group F is said to be a Roquette p-group provided every normal abelian subgroup of F

is cyclic. Still assuming that G is a p-group, let ψ be a JG-irrep. A subquotient H/K of G is
called a genetic subquotient for ψ provided H/K is Roquette and there exists a faithful JH/K-
irrep φ such that ψ = indG,H (infH,H/K(φ)) and φ occurs only once in defH/K,H (resH,G(ψ)).
The Genotype Theorem [1, 1.1] asserts that every JG-irrep ψ has a genetic subquotient H/K ,
furthermore, H/K is unique up to isomorphism and, upon fixing a choice of H/K , the JH/K-
irrep φ is unique. As a group well-defined up to isomorphism, H/K is called the genotype of ψ .
We mention that the essential content of the Genotype Theorem is due to Bouc [4, 1.7], [5, 2.6],
who considered the special case J = Q. The extension to arbitrary J is a fairly straightforward
application of a field-changing principle [1, 3.5].

We define a genetic basis to be a set of representatives of the equivalence classes of genetic
subquotients of the p-group G. Given a genetic basis G for G, we define an R-linear map

IL,G =
⊕

H/K∈G
indG,H infH,H/K :

⊕
H/K∈G

∂L(H/K) → L(G).

Bouc [4, 3.2] has shown that the map IL,G is always a split injection. The biset functor L is said
to be rational provided, for all G ∈ X , there exists a genetic basis G for G such that IL,G is an
isomorphism. In that case, [4, 7.3] tells us that, for all G and for all genetic bases G of G, the
map IL,G is an isomorphism.

We now compare some closure properties of rhetorical and rational biset functors. With one
exception, all the closure properties in the next lemma are immediate from the definition of a
rhetorical biset functor. Only the closure under duality requires some explanatory comments.
Recall that the opposite of an I -J -biset X is the J -I -biset Xop such that X = Xop as sets and
the action of I × J on X commutes with the action of J × I on Xop via the group isomorphism
I × J � (i, j) ↔ (j, i) ∈ J × I . The correspondence [X] ↔ [Xop] gives rise to a self-inverse R-
module isomorphism RΓ (I, J ) ↔ RΓ (J, I ) and that, in turn, gives rise to an anti-automorphism
γ ↔ γ op on RΓ X . Thus, the opposite map allows us to identify RΓ X with its opposite alge-
bra. Plainly, the opposite map restricts to self-inverse isomorphisms RK(I, J ) ↔ RK(J, I ), so
it gives rise to an anti-isomorphism on RΥ X . For a biset functor L over R, the dual biset functor
L∗ = HomR(L,R) has coordinate modules L∗(J ) = HomR(L(J ),R) and the action of RΓ X

is such that ([X]ξJ )(xI ) = ξJ ([Xop]xI ) for all ξJ ∈ L∗(J ) and xJ ∈ L(H). If K(J, I ) annihi-
lates L(I) then K(I, J ) annihilates L∗(J ). So if KX annihilates L then KX annihilates L∗. That
is to say, if L is rhetorical, then L∗ is rhetorical.

Lemma 3.2. The rhetorical biset functors for X over R are closed under the taking of subfunc-
tors, quotient functors, direct sums and duals.

A significant advantage of rational biset functors is that they admit a stronger variant of the
lemma, as follows. It is obvious that the rational biset functors are closed under direct sums. The
rest of the following lemma was expressed in Bouc [4, 7.4] only for the case X = Xp , but the
argument carries through to the general case without change.

Lemma 3.3 (Bouc). Suppose that every group in X is a p-group. Then the rational biset functors
are closed in all the senses specified in the previous lemma. Furthermore, given a subfunctor L1
of a biset functor L2 such that L1 and L2/L1 are rational, then L2 is rational.
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Bouc has shown that closure property in the rider fails for rhetorical biset functors. See Non-
example 3.F below.

Lemma 3.4. Let R′ be a unital subring of R and let L′ be a biset functor for X over R′. Consider
the R-linear extension to the biset functor L = RL′ for X over R.

(1) L is rhetorical if and only if L′ is rhetorical.
(2) Suppose that every group in X is a p-group. Then L is rational if and only if L′ is rational.

Proof. If R′KX annihilates L′ then RKX annihilates L. For the converse, we regard L′ and
R′KX as R′-submodules of L and RKX . If RKX annihilates L then R′KX annihilates L, hence
R′KX annihilates L′. Part (1) is established.

The R-module ∂L(G) = f G
1 L(G) is the R-linear extension of the R′-module ∂L′(G) =

f G
1 L′(G). So the domain of IL,G is the R-linear extension of the domain of IL′,G . It is now clear

that the map IL,G is the R-linear extension of the map IL′,G . A split injection of R′-modules is
surjective if and only if its R-linear extension is surjective. So part (2) holds. �
Lemma 3.5 (Another Finite Reduction Principle). Let L be a biset functors for X . Let F run
over those finite subsets of X such that, up to isomorphism, F is closed under subquotients.
Consider the biset functors 1FL for F (in the notation of Remark 2.5).

(1) L is rhetorical if and only if each 1FL is rhetorical.
(2) Suppose that every group in X is a p-group. Then L is rational if and only if each 1FL is

rational.

Let us comment on some examples of rhetorical biset functors; and on two examples of ratio-
nal biset functors that are not rhetorical.

Example 3.A. Plainly, the J-representation functor RAX
J

is rhetorical. In view of the above
comments concerning genotypes of J-irreps, the discussion in [4, 7.2] can easily be extended to
show that, if every group in X is a p-group, then RAX

J
is rational.

The rationality of RAX
J

can also be deduced from Theorem 1.2. However, in Section 8, The-

orem 1.2 will be deduced from the rationality of CAX
C

.

Example 3.B. Let B×(G) denote the unit group of the Burnside ring B(G). Recall that B×(G)

is an elementary abelian 2-group. The realization of B× as a biset functor over the field F2 =
Z/2 goes back to a result of Yoshida [13, Lemma 3.5], which describes the tom Dieck map
as a morphism of biset functors F2A

X
R

→ (B×)X . Tornehave’s Unit Theorem [11] asserts that,
when G is a 2-group, the tom Dieck map F2AR(G) → B×(G) is surjective. Yalçın [12] gave
a new proof of Tornehave’s Unit Theorem by first showing that the 2-biset functor (B×)X2 is
rational. In response, Bouc [6] showed that (B×)X2 is isomorphic to a subfunctor of the dual
functor (F2A

∗
Q
)X2 of the Q-representation functor (F2AQ)X2 . This implies Yalçın’s rationality

result because F2A
∗
Q

is rational and the rational biset functors are closed under the taking of

subfunctors and duals. Alternatively, granted Tornehave’s Unit Theorem, then (B×)X2 must be
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rational because it is a quotient of the rational biset functor (F2AR)X2 . But, in fact, F2A
X2
Q

and

F2A
X2
R

are rhetorical, so these last two arguments both show that (B×)X2 is rhetorical.

Example 3.C. Suppose that G is a p-group. Let D(G) denote the Dade group of G and let
DΩ(G) denote the subgroup generated by those elements of D(G) that correspond to the kernels
of the augmentation maps on the permutation modules. For details, see Bouc [5]. When p is
odd, [5, Theorem 7.7] says that D = DΩ . When p = 2, the quotient group D(P )/DΩ(P ) is
an elementary abelian 2-group. Bouc realized it as a rational 2-biset functor over F2, and in [5,
10.4], he explicitly described it as a subfunctor of (F2AQ)X2 . Via the closure properties again,
we deduce that D/DΩ is a rhetorical 2-biset functor.

Example 3.D. Returning to the case where the prime p is arbitrary, the torsion subgroup DΩ
tors(P )

is a finite abelian 2-group with exponent at most 4. Bouc realized (DΩ
tors)

Xp as a p-biset functor
over Z. In [4, 7.5], he argued that DΩ

tors must be rational because it is a quotient of A∗
Q

. Again,

the argument can equally well be read as a proof that DΩ
tors is rhetorical.

Non-example 3.E. Let G be a Roquette p-group and let ω be any J Out(G)-irrep. Consider
the simple biset functor S = S

X (G),K
G,ω for X (G) over K. We have ∂S(G) = S(G) and ∂S(F ) =

S(F ) = 0 for any strict subquotient F of G. Letting G be a genetic basis for G, then IS,G is the
identity map on S(G). On the other hand, letting F be a genetic basis for F , then IS,F is the
unique R-linear endomorphism of the zero R-module. Thus, somewhat trivially, S is a rational
biset functor. However, by Theorem 1.5 (to be proved in Section 8), S is not rhetorical unless G

is cyclic and ω is primitive.

The latest example indicates that our general definition of a rational biset functor is somewhat
artificial. Our motive for that definition comes from part (2) of Lemma 3.5. However, Theo-
rems 1.3 and 1.5 together imply that, if G is non-cyclic or ω is non-primitive, then the simple

p-biset functor S
Xp,K

G,ω is non-rational. The next example of a rational but non-rhetorical biset
functor is more substantial.

Non-example 3.F. Bouc [7] has shown that the Burnside p-biset functor B has a unique sub-
functor Bδ which is minimal subject to B/Bδ being rational. On the other hand, K is the unique
p-biset functor which is minimal subject to B/K being rhetorical. Bouc [7] also showed that
K � Bδ and the quotient K/Bδ is isomorphic to the cokernel of the exponential morphism
exp :B → B×. In particular, K �= Bδ if and only if p = 2. In that case, we have a non-split
exact sequence of biset functors

0 → K/Bδ → B/Bδ → B/K → 0

such that all three terms are rational and the two end terms are rhetorical but the middle term is
non-rhetorical.

The next two results concern the Q-representation biset functor.

Proposition 3.6. Suppose that R is a field. Also suppose that R has characteristic zero or that all
the groups in X are p-groups. Then, in the category of rhetorical biset functors for X over R,
the Q-representation functor RAQ is the projective cover of the simple functor S1,1.
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Proof. We use some observations that were made in the proof of Proposition 2.6. Since S1,1 is
the unique simple biset functor with non-zero coordinate module at the trivial group, and since
RAQ(1) is non-zero, S1,1 must be a composition factor of RAX

Q
. But RAX

Q
is rhetorical. So, by

Lemma 3.2, S1,1 must be rhetorical. Since iso1 is a primitive idempotent of RΓ X which does
not annihilate S1,1, the image of iso1 in RΥ X is a primitive idempotent of RΥ X (which still
does not annihilate S1,1). Therefore, in the category of rhetorical biset functors, RΥ X iso1 is the
projective cover of S1,1. The hypotheses that we have imposed allow us to invoke Proposition 3.1,
whose isomorphisms yield the identifications

RΥ X iso1 =
⊕
I∈X

RΥ (I,1) =
⊕
I∈X

RAQ(I,1).

By regarding QI -modules as QI -Q1-bimodules, we can also make the identifications RAQ(I ) =
RAQ(I,1) and RAQ = RΥ X iso1. �

The latest proposition and Theorem 1.7 together imply that, for arbitrary X , the simple func-
tor S

X ,K
1,1 is projective in the category of rhetorical biset functors. But that conclusion will be

swallowed by Theorem 1.4. In the case where R has characteristic p, the proposition is more
informative, and it yields the following corollary. I do not know whether the converse to the rider
of the corollary holds.

Corollary 3.7. Suppose that R is a field with characteristic p and that every group in X is a
p-group. Then the simple functor S1,1 is projective in the category of rhetorical biset functors
for X over R if and only if every non-trivial group in X has exponent p. In particular, if the
category is semisimple, then every non-trivial group in X has exponent p.

Proof. A classic theorem of Roquette—see, for instance, the generalization in Hambleton, Tay-
lor and Williams [9, 3.A.6]—asserts that the abelian Roquette p-groups are precisely the cyclic
p-groups; the non-abelian Roquette p-groups exist only when p = 2, and they are the quaternion
groups with order at least 8 and the dihedral and semidihedral groups with order at least 16. Ev-
idently, the only Roquette p-groups with exponent dividing p are the two groups Cp and C1. So
if G has exponent p, then every QG-irrep has genotype Cp or C1. On the other hand, the faithful
QCp2 -irreps have genotype Cp2 .

Of course, the dimension of RAQ(G) is equal to the number of QG-irreps. Bouc [3, 1.4] tells
us that the dimension of S1,1(G) is equal to the number of QG-irreps that have genotype Cp

or C1. So, if G has exponent p, then RAQ(G) = S1,1(G), but RAQ(Cp2) �= S1,1(C
2
p). �

4. A light interlude

In this section, we collect together some easy observations concerning criteria for semisim-
plicity and dimensions of the alchemic and hermetic algebras. We shall also present a kind of
Chinese Remainder Remark for those two algebras.

The following two abstract criteria for semisimplicity are stated in forms which are suited to
our applications. We leave the proofs as easy exercises; and we leave the generalizations as easy
irrelevant exercises.
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Remark 4.1. Let Λ be a finite-dimensional algebra over Q. If the C-linear extension CΛ is
semisimple, then the K-linear extension KΛ is semisimple.

Remark 4.2. Let Λ be a finite-dimensional algebra over C, and let S1, . . . , Sr be Λ-modules
such that HomΛ(Si, Sj ) = 0 for all i �= j . Then dimR(Λ) �

∑
i dimF(Si)

2. If the equality holds,
then Λ is semisimple and S1, . . . , Sr comprise a set of representatives of the isomorphism classes
of simple Λ-modules.

For the next obvious remark, we need a couple of little items of notation. The number of
conjugacy classes of subgroups of G is equal to the R-rank of RB(G); we write this number
as s∗(G). The number of conjugacy classes of cyclic subgroups of G is equal to the number of
isomorphism classes of simple QG-modules, in other words, the R-rank of RAQ(G); we write
this number as k∗(G).

Remark 4.3. Given finite groups I and J , then the free R-modules RΓ (I, J ) and RΥ (I, J )

have R-ranks s∗(I × J ) and k∗(I × J ), respectively.

The next result, too, may seem to be virtually obvious, but we give cautious proof because an
analogous assertion for representation rings can fail. As a widely-known counterexample, it can
be shown that the canonical monomorphism AR(Q8)⊗Z AR(C3) → AR(Q8 ×C3) has cokernel
with order 2. Hint: let Q8 act on R ⊕ Ri ⊕ Rj ⊕ Rk by left multiplication and let a generator
of C3 act as right multiplication by (1 + i

√
3 )/2.

The set X (G) was defined in Section 1, but let us note that the definition can be broken up
into two conditions: firstly, the isomorphism classes of groups in X (G) are precisely the isomor-
phism classes of subquotients of G; secondly, X (G) has only one copy of each isomorphism
class. The second condition ensures that the alchemic algebra RΓ G = RΓ X (G) and the hermetic
algebra RΥ G = RΥ X (G) are determined by G up to isomorphism (and not merely up to Morita
equivalence).

Lemma 4.4 (Chinese Remainder Lemma). Let G1 and G2 be finite groups whose orders are
coprime. Then

(1) RΓ G1×G2 ∼= RΓ G1 ⊗R RΓ G2 ,
(2) RΥ G1×G2 ∼= RΥ G1 ⊗R RΥ G2 .

Proof. Put G = G1 ×G2. We may assume that X (G) and X (G1) and X (G2) are such that each
element I ∈ X (G) decomposes as I = I1 × I2 where Ii ∈ X (Gi). Given I, J ∈ X (G), then any
transitive I -J -biset X decomposes as a direct product X ∼= X1 × X2 where Xi is an Ii -Ji -biset.
Since Γ (I, J ) = B(I × J ), there is an R-module isomorphism

ΘI,J :RΓ (I1, J1) ⊗R RΓ (I2, J2) → RΓ (I, J )

such that [X1] ⊗ [X2] �→ [X]. Letting I and J run over the elements of X (G), then the maps
ΘI,J combine to form an R-algebra isomorphism

Θ :RΓ G1 ⊗R RΓ G2 → RΓ G.
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Part (1) is established. To demonstrate part (2), we shall show that Θ gives rise to an R-
algebra isomorphism for the hermetic algebras. Since the hermetic algebra Υ G = ZΥ G is a free
Z-module, we may assume that R = Z. It is clear that Θ gives rise to a ring homomorphism

Φ :Υ G1 ⊗Z Υ G2 → Υ G.

We must show that Φ is a linear isomorphism. Recall that the Z-module K(I, J ) = Ker(linI,J :
Γ (I, J ) → Υ (I, J )) coincides with the Z-module K(I × J ) = Ker(linI×J,Q :B(I × J ) →
AQ(I ×J )). Hence, as a Z-module, we can identify Υ (I, J ) with the full sublattice lin(B(I ×J ))

of AQ(I, J ). The (I, J )-component of Φ is a linear map

ΦI,J :Υ (I1, J1) ⊗Z Υ (I2, J2) → Υ (I, J ).

In other words, it is a linear map

ΦI,J : lin
(
B(I1 × J1)

) ⊗Z lin
(
B(I2 × J2)

) → lin
(
B(I × J )

)
.

As permutation bimodules, Q(X1 ×X2) ∼= QX1 ⊗Q QX2. So ΦI,J extends to the monomorphism

AQ(I1 × J1) ⊗Z AQ(I2 × J2) → AQ(I × J )

such that [M1] ⊗Z [M2] �→ [M1 ⊗Q M2] where Mi is a QIi -QJi -bimodule. Perforce, ΦI,J is
injective. On the other hand, every element of lin(B(I × J )) lifts to an element of B(I × J )

which, in turn, corresponds to an element of γ of B(I1 ×J1)⊗Z B(I2 ×J2). Thus, every element
of lin(B(I, J )) has the form lin(ΘI,J (γ )) = ΦI,J (lin(γ )). Therefore ΦI,J is surjective. �
5. The negative theorem on semisimplicity

We shall prove Theorem 1.1. The easy direction—the necessity of the criterion for semisim-
plicity—follows immediately from Corollary 2.7.

Let us start on the proof of the theorem in the harder direction. Assuming that every group
in X is cyclic, we are required to show that every biset functor for X over K is semisimple. By
part (2) of Remark 2.5, we may also assume that X is finite. Our task, now, is to show that the
alchemic algebra KΓ X is semisimple.

Applying the Morita equivalence discussed in Section 2, we reduce to the case where X has
only one representative of each isomorphism class. Letting � be the lowest common multiple of
the orders of the groups in X , then KΓ X ∼= iKΓ C�i where the idempotent i is the sum of those
elements isoI such that the group I ∈ X (C�) is isomorphic to a group in X . So it suffices to
show that KΓ C� is semisimple. By decomposing � as a product of powers of distinct primes,
and applying part (1) of the Chinese Remainder Lemma 4.4, we reduce to the case where �

is a power of a prime. By Remark 4.1, we may assume that K = C. Thus, to complete the
proof of Theorem 1.1, we need only show that CΓ C� is semisimple when � = pα for some
natural number α. We shall do this by calculating the dimensions of the simple modules and then
applying Remark 4.2.

For integers x and y, we write x ≡α y when x and y are congruent modulo pα , and we
let [x]α denote the congruence class of x modulo pα . We write the additive group of integers
modulo pα as pα = {[x]α: x ∈ Z}. Thus, pα is a cyclic group with order pα . (We shall be
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employing notation that is peculiar to this particular group, so pα is not to be confused with the
generic representative Cpα of the isomorphism class.) We choose X (pα) = {pβ: 0 � β � α} as
our set of representatives of isomorphism classes of subquotients of pα. By Theorem 2.4, the
simple biset functors for pα over C have the form

Sα
γ,σ = S

X (pα),C
pγ,σ ,

the index γ running over the natural numbers not greater than α, the index σ running over the
C-irreps of Aut(pγ ). For a natural number β not greater than α, we write

Sγ,σ (β) = Sα
γ,σ (pβ).

The notation makes sense by part (3) of Remark 2.5. We mean to say that, if we fix β and vary α

such that α � β , then the coordinate module of Sα
γ,σ at pβ is independent of α. We are about to

see that the dimension of Sγ,σ (β) is also independent of σ .

Lemma 5.1. Let β and γ be natural numbers, and let σ be a C-irrep of Aut(pγ ). Then

dimC

(
Sγ,σ (β)

) =
{

β − γ + 1 if γ � β,

0 otherwise.

Proof. The case γ = 0 has to be examined separately. Theorem 1.7 says that the simple biset

functor CA
X (pα)

Q
is isomorphic to Sα

0,1. (In the present context, we must avoid the ambiguous
notation S1,1.) Hence dim(S0,1(β)) = dim(CAQ(pβ)) = k∗(pβ) = β + 1.

Now let us consider the case γ � 1. We may assume that β � γ , since otherwise the assertion
is trivial. Given two more natural numbers μ � β − γ � ν, we define

Desν
γ,β = {([x]γ ,

[
pνx

]
β

)
: x ∈ Z

}
, Tinμ

β,γ = {([
pμy

]
β
, [y]γ

)
: y ∈ Z

}
as subgroups of pγ × pβ and pβ × pγ respectively. We define

desν
γ,β =

[
pγ × pβ

Desν
γ,β

]
, tinμ

β,γ =
[

pβ × pγ

Tinμ
β,γ

]
as elements of CΓ (pγ, pβ) and CΓ (pβ, pγ ). Writing D = Desν

γ,β , we have

|D↑| = pβ−ν, |D↓| = pβ−γ−ν, |↑D| = pγ , |↓D| = 1.

Therefore—making use of some terminology introduced by Olcay Coşkun—desν
γ,β is a destric-

tion (deflation and restriction) map,

desν
γ,β = isoφ

pγ,C defC,B resB,pβ

where φ is some group isomorphism (whose specification will not be needed), B is the subgroup
of pβ with order pβ−ν and C is the quotient group of B with order pγ . Similarly, tinμ

β,γ is a
inflation (transfer and inflation) map

tinμ = trapβ,B ′ infB ′,C′ isoφ′
′
β,γ C ,pγ
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where |B ′| = pβ−μ and |C′| = pγ . By the Generalized Mackey Product Theorem 2.2,

desν
γ,β tinμ

β,γ = pμν

[
pγ × pγ

Hν,μ

]

where Hν,μ = Desν
γ,β ∗ Tinμ

β,γ = {[x]γ , [y]γ : pνx ≡β pμy}. If ν < μ, then each x is divisible
by p, so ↑Hν,μ is strictly contained in pγ . Similarly, if ν > μ, then Hν,μ↑ is strictly contained
in pγ . Either way, the quotient group Hν,μ/(↓Hν,μ × Hν,μ↓) that appears in the scenario of
Goursat’s Theorem 2.1 has order strictly smaller than pγ . Via the Butterfly Decomposition Theo-
rem 2.3, we deduce that, if μ �= ν, then desν

γ,β tinμ
β,γ factorizes though an isogation in CΓ (pδ, pδ)

where δ < γ , hence desν
γ,β tinμ

β,γ Sγ,σ = 0. On the other hand, β −μ � γ , so Hμ,μ is the diagonal

subgroup of pγ and desμ
γ,β tinμ

β,γ = pμ2
isopγ .

Plainly, Sγ,σ (γ ) is 1-dimensional. Let s be a non-zero element of Sγ,σ (γ ). Since s gener-
ates the simple biset functor Sα

γ,σ , the Butterfly Decomposition Theorem implies that Sγ,σ (β)

is spanned by the elements having the form trapβ,U infU,P isoψ
P,Q defQ,V resV,pγ (s). But any

such element is zero unless Q = V = pγ . Therefore Sγ,σ (β) is spanned by the elements
sμ = tinμ

β,γ (s) where μ runs over the natural numbers with μ � β − γ . By observations in

the previous paragraph, desν
γ,β(sμ) is pμ2

s or 0 when μ = ν or μ �= ν, respectively. So the ele-
ments sμ are C-linearly independent. We have shown that the β − γ + 1 elements sμ comprise a
C-basis for Sγ,σ (β). �

It is worth commenting on the peculiar relation that appears in the argument. Let us understand
a one-step transfer to be a transfer from a coordinate module Sγ,σ (ε) to the next coordinate
module Sγ,σ (ε + 1); likewise for inflation, deflation and restriction. These one-step maps are
well-defined up to isogation factors. One-step transfer and one step inflation commute with each
other up to isogation. A similar comment holds for deflation and restriction. Suppose that γ � 1.
Starting at the lowest non-zero coordinate module Sγ,σ (γ ), if we apply some one-step transfers
and inflations, and then apply some one-step deflations and restrictions to arrive back at Sγ,σ (γ ),
then the result will be zero unless the number of inflations is equal to the number of deflations.
That relation fails for representation functors, and in particular, it fails for the representation
functor CA

pα

Q
∼= Sα

0,1. This is why we had to deal separately with the case γ = 0.
For natural numbers γ � α, the latest lemma yields

dim
(
Sα

γ,σ

)2 =
∑

δ,ε∈[γ,α]
dim

(
Sγ,σ (δ)

)
dim

(
Sγ,σ (ε)

) =
∑
δ,ε

(δ − γ + 1)(ε − γ + 1)

where [γ,α] denotes the set of integers λ in the range γ � λ � α. Meanwhile, by Remark 4.3,

dim
(
CΓ pα

) =
∑

δ,ε∈[0,α]
s∗(pδ × pε).

By Remarks 4.1 and 4.2, the proof of Theorem 1.1 will be complete when we have shown that

dim
(
CΓ pα

) =
∑

dim
(
Sα

γ,σ

)2
γ∈[0,α],σ
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where σ runs over the C-irreps of Aut(pγ ). The calculation is an application of Goursat’s Theo-
rem 2.1.

Lemma 5.2. Let δ � γ � ε be natural numbers. Let s∗(pδ×pε)γ denote the number of subgroups
S � pδ × pε such that the group ↑S/↓S ∼= S↑/S↓ is isomorphic to pγ . Then

s∗(pδ × pε)γ = (δ − γ + 1)(ε − γ + 1)φ
(
pγ

) =
∑
σ

dim
(
Sγ,σ (δ)

)
dim

(
Sγ,σ (ε)

)
where φ denotes the Euler function from classical number theory.

Proof. To choose a subgroup S satisfying the specified condition, we make three independent
choices: the subquotient ↑S/↓S of pδ such that ↑S/↓S ∼= pγ ; the subquotient S↑/S↓ of pε

such that S↑/S↓ ∼= pγ ; the group isomorphism θS between the two subquotients. The numbers
of choices for the first subquotient, the second subquotient and the isomorphism are, respectively,
(δ −γ +1) and (ε −γ +1) and φ(pγ ). The first asserted equality is established. By the previous
lemma, the sum in the assertion is a sum of φ(pγ ) terms that are all equal to (δ − γ + 1)(ε −
γ + 1). �

Summing over δ, γ , ε such that α � δ � γ � ε � α, we obtain the required equality. The
proof of Theorem 1.1 is complete.

Corollary 5.3. Let r be the function N → N such that r(n,m) = r(n)r(m) when n and m are
coprime and r(pα) = (α + 1)3 + α3p + · · · + 23pα−1 + pα . Then the R-rank of the alchemic
algebra for the cyclic group with order n is rankR(RΓ Cn) = r(n).

Proof. Applying the latest lemma and using the equality φ(pγ ) = pγ − pγ−1 for γ � 1, we
have

s∗(pδ × pε) =
∑

γ∈[0,min(δ,ε)]
(δ − γ + 1)(ε − γ + 1)φ

(
pγ

) =
∑

γ∈[0,min(δ,ε)]
(δ + ε + 1 − 2γ )pγ .

Summing now over δ and ε to obtain the dimension of CΓ pα , then the coefficient of p0 is∑
δ,ε∈[0,α]

(δ + ε + 1) = (α + 1)3.

Using the identity ε + δ + 1 − 2γ = (ε − γ ) + (δ − γ ) + 1, we find that dimC(CΓ pα) = r(pα).
Remark 4.3 tells us that the R-rank of RΓ pα is independent of R. The general case follows from
part (1) of the Chinese Remainder Lemma 4.4. �

Let us mention a connection with another result of Bouc [2, Proposition 23]. We review
the constructions (changing some of the notation). Given a G-set X, let β(X) = X × G as
a G-G-biset with action g1(x, g)g2 = (g1x,g1gg2). By [2, Lemme 13], there is an algebra
map β :RB(G) → RΓ (G,G) such that β[X] = [β(X)]. Let eG

G be the primitive idempotent
of KB(G) associated with the species sG

G : KB(G) → K such that sG
G [X] is the number of

G-fixed points in X. Then β(eG) is an idempotent of KΓ (G,G), and [2, Proposition 23] tells
G
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us that the K-algebra E(G) = β(eG
G)KΓ (G,G)β(eG

G) is semisimple if and only if G is cyclic.
But if i is an idempotent of a semisimple ring Λ, then the ring iΛi is semisimple. So the cited
proposition yields another proof of the easy half of Theorem 1.1; the harder half of Theorem 1.1
yields another proof that E(G) is semisimple when G is cyclic.

6. The affirmative theorem on semisimplicity

Let F be a finite non-empty set of finite groups that is closed under isomorphism. That is to
say, F satisfies the hypothesis on X and, furthermore, F is finite. Throughout this section, we
shall work with F in place of X .

We shall prove Theorem 1.4. Thanks to part (2) of Remark 2.5, the task of proving the theorem
reduces to the case where X is finite; in other words, we can put X = F . Curtesy of Lemma 4.1,
the task further reduces to the case where K = C. So Theorem 1.4 will follow when we have
shown that the hermetic algebra CΥ F is semisimple.

Since F is finite, there exists a positive integer � such that every cyclic group in F has order
dividing �. The unit group (Z/�)× of the ring Z/� = Z/�Z can be identified with the automor-
phism group Aut(C�) of the cyclic group C�. Each element a ∈ (Z/�)× is identified with the
automorphism α ∈ Aut(C�) such that α(c) = ca for c ∈ C�. As a finite abelian group, we define

A = (Z/�)× = Aut(C�).

Given any cyclic group C with order dividing �, then A acts as automorphisms on C by a : c �→ ca

where now c ∈ C. By identifying the isomorphism class of a QG-module with its character
G → Q, we can regard CAQ(G) as a subspace of the C-vector space consisting of the functions
G → C.

Lemma 6.1. Suppose that the exponent of G divides �. Let G×A act on G such that an element
(u, a) ∈ G ×A sends an element g ∈ G to the element uga . (We have u(ga) = (ug)a so the nota-
tion uga is unambiguous.) By linear extension, CG becomes a C(G×A)-module. Let (CG)G×A

denote the subspace of CG fixed by G ×A. Then there is a C-linear isomorphism

ΞG : CAQ(G) � ψ �→
∑
g∈G

ψ(g)g ∈ (CG)G×A.

Proof. Recall that two elements f and g of G are said to be QG-conjugate provided the cyclic
groups generated by f and g are G-conjugate to each other. It is well known that the QG-
characters are constant on the QG-conjugacy classes, the irreducible QG-characters are linearly
independent and the number of irreducible QG-characters is equal to the number of G-conjugacy
classes of cyclic groups. Therefore QAQ(G) is the Q-vector space consisting of the functions
G → Q that are constant on the QG-conjugacy classes of G. It follows that CAQ(G) is the C-
vector space of functions G → C that are constant on the QG-conjugacy classes. The assertion
holds because the QG-conjugacy classes are precisely the orbits of G ×A on G. �

Given a subgroup H � G and a CG-module M , we let MH denote the H -fixed subspace
of M . Recall that the H -relative trace map for M is defined to be the C-linear map

trGH :MH � m �→
∑

gm ∈ MG.
gH⊆G
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The map trGH is surjective, because it acts on MG as multiplication by |G : H |.
Writing H † to denote the sum of the elements of H , we define a C-linear map

l̃inG : CB(G) → (CG)G×A, [G/H ] �→ trGH
(
H †) = trG1

(
H †)/|H |.

The next result relates l̃inG to the linearization map linG : CB(G) → CAQ(G).

Lemma 6.2. Suppose that the exponent of G divides �. Then ΞG ◦ linG = l̃inG. Furthermore, the
maps linG and l̃inG are surjective.

Proof. For H � G, let χG/H denote the character of the permutation CG-module CG/H . In
other words, χG/H = linG[G/H ]. Given g ∈ G, then

χG/H (g) = ∣∣{xH ⊆ G: gxH = xH }∣∣ = ∣∣{y ∈ G: yg ∈ H
}∣∣/|H |.

We have ΞG ◦ linG = l̃inG because

ΞG

(
linG[G/H ]) = 1

|H |
∑
g∈G

∣∣{y ∈ G: yg ∈ G
}∣∣g = 1

|H |
∑

y∈G,h∈H

yh = l̃inG[G/H ].

Of course, linG is surjective because the ring of coefficients, in the present context, is the field C,
which has characteristic zero. By the previous lemma, l̃inG is surjective. �

We sketch an alternative proof of the surjectivity of l̃inG. In fact, a slightly stronger conclusion
will emerge. Let C run over the cyclic subgroups of G. Write C# denote the set of generators
of C, and write (C#)† denote the sum of the elements of C#. The sets C# are precisely the A-
orbits of G. By the surjectivity of the relative trace map, (CG)G×A is spanned by the elements
having the form trG1 ((C#)†) = trG×A

1×A ((C#)†). It is now easy to deduce that (CG)G×A is spanned

by the elements having the form l̃inG[G/C]. We omit further details, because we shall not be
making use of this conclusion.

It is worth drawing a diagram to summarize the latest two lemmas. The depicted triangle is
commutative. The notation indicates that the horizontal map is an isomorphism and that the other
two maps are epimorphisms.

CB(G)

linG l̃inG

CAQ(G)
∼

ΞG
(CG)G×G

[G/H ]

lin[G/H ] trGH (H †)

Given elements f,g ∈ G, we write f =G g when f and g are G-conjugate. We let [g]G
denote the G-conjugacy class of g. But we shall now be working not with a fixed G, but with
all the groups in F . Consider the pairs (k,K) such that k ∈ K ∈ F . Two such pairs (k,K) and
(k′,K ′) are deemed equivalent provided K = K ′ and k =K k′. Let [k,K] denote the equivalence
class of (k,K).
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We let MatF and matF be the full matrix algebras over C such that the rows and columns of
the former are indexed by the pairs (k,K) while the rows and columns of the latter are indexed
by the equivalence classes [k,K]. Fixing I, J ∈ F , let MatI,J be the subspace of MatF such
that the rows of MatI,J are indexed by the pairs (i, I ) with i ∈ I and the columns of MatI,J are
indexed by the pairs (j, J ) with j ∈ J . In other words, the rows of MatI,J are indexed by the
elements of I and the columns are indexed by the elements of J . Similarly, we define matI,J
as a subspace of matF . The rows of matI,J are indexed by the conjugacy classes in I and the
columns are indexed by the conjugacy classes in J . Thus,

MatF =
⊕

I,J∈F
MatI,J , matF =

⊕
I,J∈F

matI,J .

Letting i and j run over the elements of I and J , respectively, we write εI,J (i, j) to denote
the (i, j)th elementary matrix in MatI,J . Now letting i and j run over representatives of the
conjugacy classes in I and J , we write εI,J [i, j ] to denote the ([i]I , [j ]J )th elementary matrix
in matI,J . The multiplication operations on MatI,J are given by

εI,J (i, j)εJ,K(j ′, k) = δj,j ′εI,K(i, k), εI,J [i, j ]εJ,K [j ′, k] = δ[j ],[j ′]εI,K [i, k].

Here, δx,y is the Kronecker delta symbol, with value 1 when x = y and with value 0 when x �= y.
We let I × J act as algebra automorphisms on MatI,J such that an element (u, v) ∈ I × J sends
εI,J (i, j) to εI,J (ui, vj).

Lemma 6.3. For each I and J in F , let νI,J be the C-linear map matI,J → (MatI,J )I×J such
that

νI,J

(
εI,J [i, j ]) = 1√|[i]I | . |[j ]J |

∑
i′∈[i]I , j ′∈[j ]J

εI,J (i′, j ′)

where i ∈ I and j ∈ J . Let ν = ⊕
I,J∈F νI,J as a C-linear map matF → MatF . Then each νI,J

is a C-linear isomorphism and ν is a C-algebra monomorphism.

Proof. The formula for νI,J can be rewritten as

νI,J

(
εI,J [i, j ]) = 1√|[i]I | . |[j ]J | trI×J

CI (i)×CJ (j)

(
εI,J (i, j)

) =
√|[i]I | . |[j ]J |

|I | . |J | trI×J
1

(
εI,J (i, j)

)
.

By the surjectivity of the relative trace map, (MatI,J )I×J is spanned by the elements having the
form trI×J

1 (εI,J (i, j)), Furthermore, trI×J
1 (εI,J (i, j)) = trI×J

1 (εI,J (i′, j ′)) if and only if (i, j)

is I × J -conjugate to (i′, j ′), in other words, εI,J [i, j ] = εI,J [i′, j ′]. Therefore νI,J is a lin-
ear isomorphism. Using the above formulas for the product of two elementary matrices, it is
easy to check that ν(εI,J [i, j ])ν(εJ,K [j ′, k]) = ν(εI,J [i, j ]εJ,K [j ′, k]). Therefore ν is an alge-
bra monomorphism. �

Via the embedding ν, we regard matF as a subalgebra of MatF . The first part of the lemma
now says that matI,J = (MatI,J )I×J .
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We allow I × J ×A to act on I × J and on MatI,J such that

(u, v, a)(i, j) = (
uia, vja

)
, (u, v, a)εI,J (i, j) = εI,J

(
uia, vja

)
for (u, v, a) ∈ I × J × A. (As in Lemma 6.1, the notation uia is unambiguous.) This gives rise
to an action of A on matI,J such that a sends εI,J [i, j ] to εI,J [ia, ja]. Plainly,

matAI,J = (MatI,J )I×J×A.

All of the C-vector spaces and some of the C-linear maps in the following diagram have now
been defined. We shall define the other maps in the diagram, and we shall show that the diagram
commutes. We shall also show that all of the vertical and horizontal maps in the diagram are
C-linear isomorphisms and that the other four maps are C-linear epimorphisms.

CAQ(I × J )

ΞI×J

α
CΥ (I, J )

ΞI,JCB(I × J )

l̃inI×J

linI×J

β
CΓ (I, J )

linI,J

l̃inI,J

C(I × J )(I×J )×A γ

(matI,J )A

Lemmas 6.1 and 6.2 tell us that the left-hand triangle commutes, the map ΞI×J is an isomor-
phism and the other two maps in the left-hand triangle are epimorphisms.

Recall that, as a C-vector space, CΓ (I, J ) = CB(I × J ). As explained in Section 3, we
can make the identification CΥ (I, J ) = CAQ(I × J ) (because C is a field with characteristic
zero). We can also identify the two maps linI,J : CΓ (I, J ) → CΥ (I, J ) and linI×J : CB(I ×
J ) → CAQ(I × J ). Let α : CAQ(I × J ) → CΥ (I, J ) and β : CB(I × J ) → CΓ (I, J ) be the
identity maps. Trivially, the top square in the diagram commutes, its two horizontal maps are
isomorphisms and the other two maps are epimorphisms.

Given a subgroup S ⊆ I × J , we define

S+ =
∑

(i,j)∈S

εI,J (i, j)

as an element of (MatI,J )S . We define

I SJ = 1√|I | . |J | trI×J
S

(
S+) = 1

|S|√|I | . |J | trI×J
1

(
S+)

as an element of matI,J . Actually, S+ ∈ (MatI,J )S×A, so I SJ ∈ (matI,J )A. Observe that I SJ

depends only on the I × J -conjugacy class of S. As S runs over the conjugacy classes of sub-
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groups of I × J , the elements [(I × J )/S] run over the elements of a basis of the C-vector space
CΓ (I, J ) = CB(I × J ). So we have a C-linear map

l̃inI,J : CΓ (I, J ) → (matI,J )A,

[
I × J

S

]
�→ I SJ .

There is a C-linear isomorphism

γ̂ : C(I × J ) → MatI,J , (i, j) �→ 1√|I | . |J |εI,J (i, j).

By direct calculation, γ̂ (trI×J
1 (S†)) = I SJ . Plainly, γ̂ commutes with the actions of I × J ×A.

Therefore, γ̂ restricts to an isomorphism

γ : C(I × J )I×J×A → (matI,J )A, trI×J
S

(
S†) �→ I SJ .

Since CB(I × J ) is spanned by the elements having the form [(I × J )/S], the calculation

γ ◦ l̃inI×J

[
I × J

S

]
= γ

(
trI×J

S

(
S†)) = I SJ = β ◦ l̃inI,J

[
I × J

S

]
shows that the lower square in the diagram commutes. We have already seen, in Lemma 6.2,
that l̃inI×J is an epimorphism. Since β and γ are isomorphisms, we deduce that l̃inI,J is an
epimorphism.

We have not yet defined the map ΞI,J but, aside from the assertions concerning ΞI,J , we have
proved everything else that we stated about the latest diagram: the left-hand triangle and the top
and bottom square are commutative, the maps α, β , γ , ΞI×J are isomorphisms, the four maps
denoted by decorations of the symbol lin are epimorphisms. It follows that there exists a unique
isomorphism ΞI,J : CΥ (I, J ) → (matI,J )A such that α, β , γ together comprise an isomorphism
in the category of commutative triangles of C-linear maps. In other words, there exists a unique
isomorphism ΞI,J such that ΞI,J ◦ α = γ ◦ ΞI×J and ΞI,J ◦ linI,J = l̃inI,J . Everything we stated
about the diagram has now been proved. Let us collect some of those statements into a lemma.

Lemma 6.4. There exists a well-defined C-linear isomorphism

ΞI,J : CΥ (I, J ) → (matI,J )A, ΞI,J

(
lin

[
I × J

S

])
= I SJ .

We have ΞI,J ◦ linI,J = l̃inI,J . The maps linI,J and l̃inI,J are surjective.

The actions of A on each C-vector space matI,J combine to give an action of A on the
C-vector space matF = ⊕

I,J matI,J . Using the formula for the product of two elementary ma-

trices, it is easy to see that each element of A acts as an automorphism of matF . Therefore, the
A-fixed subspace (matF )A is a unital subalgebra of matF .

The isomorphisms ΞI,J combine to form a C-linear isomorphism

ΞF =
⊕

ΞI,J : CΥ F =
⊕

CΥI,J → (
matF

)A =
⊕

(matI,J )A.
I,J I,J I,J
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Soon, we shall show that ΞF is an algebra isomorphism. For that purpose, we first need an
obvious remark and a lemma.

Remark 6.5. Let I and J be finite groups and let S � I × J . Then, in the notation of Goursat’s
Theorem 2.1, |↑S| . |S↓| = |S| = |S↑| . |↓S|.

Lemma 6.6. Let I , J , K be finite groups. Let S � I × J and T � J × K . Then

(1) |S ∗ T | . |S↓ ∩ ↓T | . |S↑ . ↑T | = |S| . |T |.
(2) |S↓ ∩ ↓T |(S ∗ T )+ = S+T +.

Proof. Let U = S↑ ∩ ↑T and V = S↓ ∩ ↓T . We claim that

|S ∗ T | . |V | = |U | . |↓S| . |T ↓|.
To demonstrate the claim, we shall count, in two different ways, the elements of the set

L= {
(i, j, k) ∈ I × J × K: (i, j) ∈ S, (j, k) ∈ T

}
.

Fixing (i, k) ∈ I × K , then (i, k) ∈ S ∗ T if and only if the set

Ji,k = {
j ∈ J : (i, j) ∈ S, (j, k) ∈ T

}
is non-empty. In that case, choosing an element j0 ∈ Ji,k , then

Ji,k = {j ∈ U : jS↓ = j0S↓, j↓T = j0↓T } = {j ∈ U : jV = j0V }
and, in particular, |Ji,k| = |V |. Therefore |L| = |S ∗ T | . |V |.

Now let us count the elements of L in a different way. Fixing an element j ∈ J , then j ∈ U if
and only if the set

Mj = {
(i, j) ∈ I × K: (i, j) ∈ S, (j, k) ∈ T

}
is non-empty. In that case, choosing an element (i0, k0) ∈ Mj , we have

Mj = {
(i, k) ∈ ↑S × T ↑: i↓S = i0↓S, kT ↓ = k0T ↓}

which has size |↓S| . |T ↓|. Therefore |L| = |U | . |↓S| . |T ↓|. The claim is now established.
For any two finite subgroups P and Q of a group, we have |P ∩ Q| . |PQ| = |P | . |Q|.

This observation, together with the latest remark, allows us to rewrite the right-hand side of the
established claim as

|S↑ ∩ ↑T | . |↓S| . |T ↓| = |S↑| . |↑T |
|S↑ . ↑T | .

|S|
|S↑| .

|T |
|T ↑| = |S| . |T |

|S↑ . ↑T | .

Part (1) now follows. Part (3) holds because

S+T + =
∑

(i,j,k)∈L
εI,J (i, j)εJ,K(j, k) =

∑
(i,k)∈S∗T

|Ji,k|εI,K(i, k) = |V |(S ∗ T )+. �
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Lemma 6.7. The map ΞF : CΥ F → (matF )A is a unital C-algebra isomorphism.

Proof. First, let us check that ΞF preserves the unity elements. The unity element of CΥ F is
1Υ = ∑

I∈F isoI . As we noted in Section 2, each isoI = [(I × I )/Δ(I)]. Therefore ΞF (1Υ ) =∑
I IΔ(I)I . Consider elements i, j ∈ I . If i =I j , then the coefficient of εI,I (i, j) in the matrix

IΔ(I)I = trI×I
1 (Δ(I)+)/|I |2 is 1/[i]I . If i �=I j , then the coefficient of εI,I (i, j) is zero. There-

fore IΔ(I)I = ∑
i εI,I [i, i] where i runs over representatives of the conjugacy classes in I . In

other words, IΔ(I)I is the identity matrix in matI,I . We have shown that ΞF (1Υ ) is the unity
element of (matF )A.

It remains only to check that ΞF preserves multiplication. The necessary calculations are
complicated but straightforward. Directly from the definition of S+, it is easy to check that
(1,h)S+ . (h,1)T + = S+T + for all h ∈ J . Using that equality, then using part (2) of Lemma 6.6,

trI×J
1

(
S+)

trJ×K
1

(
T +) =

∑
i∈I,h∈J, j∈J, k∈K

(i,h)S+ . (hh−1j,k)T + = |J |
∑
i,j,k

(i,k)
(
S+ . (j,1)T +)

= |J | trI×K
1

(
S+ . (j,1)T +)

=
∑
j∈J

∣∣S↓ ∩ ↓(j,1)T
∣∣ . |J | trI×K

1

((
S ∗ (j,1)T

)+)
.

Hence, making use of part (1) of Lemma 6.6,

√|I | . |K| I SJ . J TK = 1

|S| . |T | . |J | trI×J
1

(
S+)

trJ×K
1

(
T +)

=
∑
j∈J

|S↓ ∩ ↓(j,1)T |
|S| . |T | trI×K

1

((
S ∗ (j,1)T

)+)
=

∑
j∈J

1

|S ∗ (j,1)T | . |S↑ . ↑(j,1)T | trI×K
1

((
S ∗ (j,1)T

)+)
.

As we noted in the Generalized Mackey Product Theorem 2.2, the I × K-conjugacy class of
S ∗ (j,1)T depends only on the double coset S↑ . j . ↑T . Since j (↑T ) = ↑(j,1)T , we have |S↑ .

j . ↑T | = |S↑ . ↑(j,1)T |. Therefore,

I SJ . J TK =
∑

S↑.j.↑T ⊆J

1√|I | . |K| . |S ∗ (j,1)T | trI×K
1

((
S ∗ (j,1)T

)+) =
∑

S↑.j.↑T ⊆J

I

(
S ∗ (j,1)T

)
K

.

Comparing with Theorem 2.2, we see that the composite map ΞF ◦ linF : CΓ F → (matF )A

preserves multiplication. But linF : CΓ F → CΥ F is a C-algebra epimorphism, so ΞF respects
multiplication. �

Let htwF be a C-vector space with a basis indexed by the equivalence classes [k,K] where
k ∈ K ∈ F . Let εK [k] denote the basis element indexed by [k,K]. By regarding htwF as the
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space of column vectors for the full matrix algebra matF , we see that there is a unital C-algebra
isomorphism ρ = ρF : matF → EndC(htwF ) such that

ρ
(
εI,J [i, j ])εK [k] = δ[j,J ],[k,K]εI [i].

(Again, we are employing the Kronecker delta symbol.) We make htwF become a CA-module
via the representation θ = θF : CA → EndC(htwF ) such that

θ(a)εK [k] = εK

[
ka

]
.

We let A act as automorphisms of EndC(htwF ) such that a acts as conjugation by θ(a). The
reason for the notation htwF will become apparent in the next section.

Lemma 6.8. The unital C-algebra isomorphism ρF : matF → EndC(htwF ) commutes with
the actions of A. In particular, ρF restricts to a unital C-algebra isomorphism (matF )A →
EndCA(htwF ).

Proof. We have ρ(aεI,J [i, j ]) = ρ(εI,J (ia, ja)) = θ(a)ρ(εI,J [i, j ])θ(a)−1. �
We can now complete the proof of Theorem 1.4. At the beginning of this section, we explained

why it suffices to show that CΥ F is semisimple. Lemmas 6.7 and 6.8 tell us that the composite
map

ρF ◦ ΞF : CΥ F → EndCA
(
htwF )

is a unital C-algebra isomorphism. (We are abusing notation, writing ρF for both of the isomor-
phisms appearing in the statement of Lemma 6.8.) Since the group algebra CA is semisimple,
the endomorphism algebra EndCA(htwF ) is semisimple, and it follows that the hermetic algebra
CΥ F is semisimple. The proof of Theorem 1.4 is now complete.

Lemma 6.9. The unital C-algebra isomorphism ρF ◦ ΞF : CΥ F → EndCA(htwF ) restricts to
a unital C-algebra isomorphism Z(CΥ F ) → θF (CA).

Proof. By Lemmas 6.7 and 6.8, ρF ◦ ΞF restricts to a unital C-algebra isomorphism
Z(CΥ F ) → Z(EndCA(htwF )). Since θ(A) is a commutative unital subalgebra of EndC(htwF ),
we have Z(EndCA(htwF )) = θ(A). �
7. The biset functor htwF

We continue to work with F in place of X . Thus far, we have realized htwF as a CA-module.
In this section, we shall realize htwF as a rhetorical biset functor over C, in other words, as a
CΥ F -module. Our study of htwF will yield much information about the simple rhetorical biset
functors for F over C. At the end of this section, we shall prove Theorems 1.5 and 1.6 in the
special case where X = F and K = C.

To simplify the discussion, it will be convenient to make several identifications. Via the iso-
morphism ρF discussed in Lemma 6.8, we make the identifications

matF = EndC

(
htwF )

,
(
matF

)A = EndCA
(
htwF )

.
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Recall that the matrix algebra matF has a basis consisting of the elements εI,J [i, j ] and the
vector space htwF has a basis consisting of the elements εK [k]. In view of the identifications
that we have just made, the action of matF on htwF is given by the equality

εI,J [i, j ]εK [k] = δ[j,J ],[k,K]εI [i].

Thus, we have realized htwF as the space of column vectors of the full matrix algebra matF .
Via the isomorphism ΞF discussed in Lemma 6.7, we make the identification

CΥ F = (
matF

)A = EndCA
(
htwF )

.

In this way, CΥ F becomes a unital subalgebra of EndC(htwF ). Hence htwF becomes a unital
CΥ F -module. That is to say, htwF is now a rhetorical biset functor over C. For fixed K ∈ F , the
coordinate module htwF (K) has a basis consisting of the elements εK [k] where k runs over a rep-
resentatives of the conjugacy classes in K . Now that CΥ F has been embedded in EndC(htwF ),
Lemma 6.9 tells us that

Z
(
CΥ F ) = θF (A).

Also recall that MatF has a basis consisting of the elements εI,J (i, j). We define HTWF to
be the C-vector space consisting of the column vectors of the full matrix algebra MatF . In an
evident sense, we have an identification

MatF = EndC

(
HTWF )

.

Let {εK(k): k ∈ K ∈F} be the basis of HTWF such that

εI,J (i, j)εK(k) = δ(j,J ),(k,K)εI (i).

Let HTW(K) be the subspace of HTWF spanned by the elements εK(k) where k now runs over
all the elements of K . We have a direct sum decomposition HTWF = ⊕

K HTW(K). The reason
for the notation HTWF will be explained below.

The identifications that we have made are summarized in the chain of subalgebras

Z
(
CΥ F ) = θF (A) � CΥ F = (

matF
)A = EndCA

(
htwF )

� matF = EndC

(
htwF )

� MatF = EndC

(
HTWF )

.

The first three of these four algebras have the same unity element, which we shall write as 1mat.
Glancing at the proof of Lemma 6.3, we see that

1mat =
∑

K,k,k′: k∈K∈F , k′∈[k]K

1

|[k]K |εK,K(k, k′).

But 1mat does not coincide with the unity element
∑

k∈K∈F εK,K(k, k) of the fourth algebra
unless every group in F is abelian.
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Since matF is a subalgebra of MatF , we can regard HTWF as a matF -module. But we have
just observed that matF need not be a unital subalgebra of MatF , so HTWF need not be a unital
matF -module. However, 1mat . HTWF is a unital matF -submodule of HTWF .

Lemma 7.1. For each K ∈ F , let μK be the C-linear map htwF (K) → 1mat . HTWF (K) such
that

μK

(
εK [k]) = 1√|[k]K |

∑
k′∈[k]K

εK(k)

where k ∈ K . Let μ = ⊕
K∈F μK as a C-linear map htwF → 1mat . HTWF . Then each μK is a

C-linear isomorphism and μ is an isomorphism of matF -modules.

Proof. Using the above formula for 1mat, it is easy to see that 1mat . HTWF (K) has a basis
consisting of the elements

∑
k′∈[k]K εK(k) where k runs over representatives of the conjugacy

classes in K . Therefore each μK is a C-linear isomorphism. It follows that μ is a C-linear
isomorphism. By direct calculation,

εI,J [i, j ]μ(
εK [k]) = 1√|[i]I | . |[j ]J | . |[k]K |

∑
i′∈[i]I , j ′∈[j ]J , k′∈[k]K

εI,J (i′, j ′)εK(k′)

= δ[j,J ],[k,K]
1√[i]I

∑
i′∈[i]I

εI (i) = μ
(
εI,J [i, j ]εK [k]).

Therefore μ is an isomorphism of matF -modules. �
Via the isomorphisms μK and μ, we make the identifications

htwF (K) = 1mat . HTWF (K), htwF = 1mat . HTWF .

The inclusion htw(K) ↪→ HTW(K) can be expressed in terms of the relative trace map,

εK [k] = 1√|[k]K | trKCK(k)

(
εK(k)

) =
√|[k]K |

|K| trK1
(
εK(k)

)
.

At last, we can explain the reason for the notation htwF and HTWF . By restriction, the
MatF -module HTWF can be regarded as a CΥ F -module. Alas, if F owns a non-abelian group,
then HTWF is not a biset functor because HTWF is not unital as a CΥ F -module. Nevertheless,
there is still a functor sending G to HTW(G) and sending bisets to bimodules. The details of this
functor are discussed in Hambleton, Taylor and Williams [9]; it is the “group ring functor” in the
terminology of [9, 1.A.6]. Vaguely speaking, something of Theorem 1.2 can be gleaned from [9,
1.A.11, 1.A.12] by regarding HTWF as a kind of universal biset functor (even though it is not
really a biset functor). We shall be employing something of this idea in our proof of Theorem 1.2
in the next section.
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The representation θ = θF : CA → EndC(htwF ) extends to a representation Θ = ΘF : CA →
EndC(HTWF ) such that Θ(a)εK(k) = ε(ka). We mean to say that htwF is now a CA-
submodule of HTWF . Thanks to the identifications matF = EndC(htwF ) and MatF =
EndC(HTWF ), we can express these two representations by the formulas

θ(a) =
∑

k∈K∈F
εK,K

[
ka, k

]
, Θ(a) =

∑
k∈K∈F

εK,K

(
ka, k

)
.

Let us recall some notions from classical number theory. For the moment, let � be any positive
integer. Given a divisor n of �, then the canonical ring epimorphism Z/� → Z/n restricts to a
group epimorphism from the group (Z/�)× = Aut(C�) to the group (Z/n)× = Aut(Cn). Via this
group epimorphism, we regard Aut(Cn) as a quotient group of Aut(C�). Consider a K-irrep σ

of Aut(C�). We say that σ is primitive provided σ is not inflated from any of those quotient
groups that have the form Aut(Cn) where n is a strict divisor of �. Using the classical Chinese
Remainder Theorem, it is not hard to show that there exists a divisor π(σ) such that σ is inflated
from Aut(Cn) if and only if π(σ) divides n. Evidently, π(σ) is the unique divisor of � such that
σ is inflated from a primitive K-irrep of Aut(Cπ(σ)). We call π(σ) the primitivity index of σ .

We return to the scenario of the previous section, where � is assumed to be divisible by the
order of every cyclic group in F . Again, we put A = (Z/�)× = Aut(C�). We shall examine htwF

as a CA-module and also as a CΥ F -module.

Lemma 7.2. Given a CA-irrep σ , then the following three conditions are equivalent:

(a) π(σ) is the order of some cyclic group belonging to F ,
(b) σ occurs in the CA-module htwF ,
(c) σ occurs in the CA-module HTWF .

Proof. Let n be a divisor of �. Since Aut(Cn) is a quotient group of A, we can regard Aut(Cn)

as a transitive A-set by left translation. Let us write Ωn to denote Aut(Cn) thus regarded as an
A-set. Since A is abelian, the permutation A-module CΩn is a direct sum of mutually non-
isomorphic CA-irreps. Observe that σ occurs in CΩn if and only if the kernel of σ contains
the kernel of the epimorphism A → Aut(Cn). This is equivalent to the condition that σ has
primitivity index dividing n. Therefore, CΩn is isomorphic to the direct sum of those CA-irreps
that have primitivity index dividing n.

Consider the permutation basis {εK(k): k ∈ K ∈ F} for the permutation CA-module HTWF .
Let n(k) denote the order of k. Let MK,k denote the CA-submodule of HTWF gener-
ated by εK(k). Then MK,k is a transitive permutation CA-module with a permutation basis
{εK(ka): a ∈ A}. Evidently, MK,k

∼= CΩn(k). So σ occurs in MK,k if and only if π(σ) di-
vides n(k).

Assume (c). Since HTWF is the sum of the submodules having the form MK,k , there must
be some k and K such that σ occurs in MK,k . So π(σ) divides n(k). Therefore, K contains
a cyclic subgroup with order π(σ). Using the closure hypothesis on F , we deduce (a). Now
assume (a). Let K be a cyclic group with order π(σ) and let k be a generator of K . Then σ

occurs in MK,k . But K is abelian, so εK(k) = εK [k] and MK,k � htwF . We deduce (b). Trivially,
(b) implies (c). �
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The next result makes it clear why the rhetorical biset functor htwF plays such a central role
in the study of the simple rhetorical biset functors over C.

Lemma 7.3. Each simple rhetorical biset functor occurs exactly once as a summand of the
rhetorical biset functor htwF . Furthermore, there are bijective correspondences between:

(a) the CA-irreps σ that occur in the CA-module htwF ,
(b) the primitive idempotents e of Z(CΥ F ),
(c) the isomorphism classes of simple rhetorical biset functors S.

The correspondence σ ↔ e is characterized by the condition that, regarding e . htwF as a
CA-submodule of htwF , then e . htwF is the sum of those CA-submodules of htwF that are
isomorphic to σ . The correspondence e ↔ S is characterized by the condition that, regarding
e . htwF as a biset subfunctor of htwF , then e . htwF ∼= S.

Proof. Letting e run over the primitive idempotents of the algebra Z(CΥ F ) = θF (A), then

htwF =
⊕

e

e . htwF

both as a direct sum of CA-modules and as a direct sum of rhetorical biset functors. The corre-
spondence σ ↔ e is already clear.

We have CΥ F = ⊕
e CΥ Fe as a direct sum of full matrix algebras over C. So e . htwF must

be a direct sum of copies of the simple CΥ Fe-module. But CΥ F = EndCA(htwF ) and each
e . htwF is a direct sum of copies of σ . Therefore e . htwF is simple as a CΥ F -module. The
correspondence e ↔ S is now clear. �

In a sense, the latest lemma already classifies the simple rhetorical biset functors over C, since
it indexes them with the parameter σ . To make the classification explicit, we must determine the
isomorphism class of the simple rhetorical biset functor corresponding to σ .

Lemma 7.4. Let σ be a CA-irrep satisfying the equivalent conditions of Lemma 7.2. Regarding
σ as a primitive C-irrep of the group Aut(Cπ(σ)) = Out(Cπ(σ)), then F owns a copy of the cyclic

group Cπ(σ), so we can form the simple biset functor S
F ,C
Cπ(σ),σ

. Let S be the simple rhetorical biset

functor corresponding to σ as in Lemma 7.3. Then S ∼= S
F ,C
Cπ(σ),σ

.

Proof. The proof of Lemma 7.2 shows that, given a cyclic group K , then σ occurs in htwF (K)

if and only of π(σ) divides |K|. Therefore, the cyclic group Cπ(σ) is a minimal group for Sσ

in the sense of Theorem 2.4. In particular, F owns a copy of Cπ(σ). We have Sσ (Cπ(σ)) ∼= σ as
C Aut(Cπ(σ))-modules. Therefore Sσ

∼= SCπ(σ),σ . �
We can further exploit the fact that the hermetic algebra CΥ F has been realized, quite tangi-

bly, as a subalgebra of a full matrix algebra. Recall that the alchemic algebra CΓ F is so-named
because it is generated by the elements having the form isoθ

G′,G, resH,G, traG,H , infG,G/N ,

defG/N,G. As an abuse of notation, the images of those elements in CΥ F will still be denoted
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by isoθ
G′,G, resH,G, traG,H , infG,G/N , defG/N,G. Since we are regarding CΥ F as a subalgebra

of matF , we can write those five elements of CΥ F as

isoθ
G,G′ = GΔ(G,θ,G′)G′ , resH,G = H Δ(H,G)G, traG,H = H Δ(H,G)G,

infG,G/N = GΔ(G,G/N)G/N, defG/N,G = G/NΔ(G/N,G)G.

Let us describe these five matrices more explicitly.

Lemma 7.5. Let H � G � N , let θ : G ← G′ be a group isomorphism, and suppose that H , G,
G/N , G′ belong to F . Then, as a matrix belonging to the subalgebra CΥ F of matF , we have

isoθ
G,G′ =

∑
g∈GG

εG,G′
[
g, θ−1(g)

]
where the notation indicates that g runs over representatives of the conjugacy classes in G. The
matrices resG,H and infG,G/N are the transposes of the matrices

traG,H =
∑

h∈H H

√
|CG(h)|
|CH (h)|εG,H [h,h], defG/N,G =

∑
g∈GG

√
|CG/N(gN)|

|CG(g)| εG/N,G[gN,g].

Proof. For h ∈ H and g ∈ G, let c(h,g) be the coefficient of εH,G(h,g) in the element

resH,G = H Δ(H,G)G = 1

|H |√|H | . |G| trH×G
1

(
Δ(H,G)+

)
.

If h �=G g then c(h,g) = 0. If h =G g then c(h,g) = c(h,h). We have

|H |√|H | . |G|c(h,h) = ∣∣{(x, y, z) ∈ H × G × H :
(
xz, yz

) = (h,h)
}∣∣ = |H | . ∣∣CG(h)

∣∣.
So the coefficient of εH,G[h,h] in resH,G is√∣∣[h]H

∣∣ .
∣∣[h]G

∣∣c(h,h) =
√∣∣CG(h) : CH (h)

∣∣.
We have shown that

resH,G =
∑

h∈H H

√
|CG(h)|
|CH (h)|εH,G[h,h].

The same method can be used to obtain a similar formula for the inflation or the deflation element.
The rest of the argument is very easy. �
Lemma 7.6. There is an isomorphism of biset functors λ : CAC → htwF such that, letting G ∈F ,
and regarding an element χ ∈ CAC(G) as a class function G → C, then

λG(χ) = 1

|G|
∑
g∈G

χ(g)εG(g) =
∑

g∈GG

χ(g)√|CG(g)|εG[g].
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Proof. It is easy to check that the two expressions for λG(χ) are equal to each other. By compar-
ing dimensions, we see that λG is a C-linear isomorphism. So it suffices to check that λ commutes
with transfer, inflation, isogation, deflation and restriction. Let H � G and ψ ∈ CAC(H). Using
the formula for traH,G in Lemma 7.5, we obtain

traG,H

(
λH (ψ)

) =
∑

g∈GG,h∈H H : h=Gg

√|CG(g)|
|CG(h)| ψ(h)εG[g] = λG

(
indG,H (ψ)

)
.

Now let N �G. The formula for deflation is

defG/N,G(χ)(gN) = 1

|N |
∑
z∈N

χ(zg)

because defG/N,G can be regarded as the projection operator associated with the idempotent∑
z∈N z/|N |. Taking care over the indices of the sums, we find that

defG/N,G

(
λG(χ)

) = 1

|G|
∑
g∈G

√∣∣CG/N(gN)
∣∣χ(g)εG[gN ]

= |N |
|G|

∑
gN∈G/N

√∣∣CG/N(gN)
∣∣defG/N,G(χ)(g)εG[gN ]

= λG/N

(
defG/N,G(χ)

)
.

The commutativity with inflation, isogation and restriction are similar and easier. �
The following result implies Theorems 1.5 and 1.6 in the case where X = F and K = C.

Proposition 7.7. As rhetorical biset functors over C, we have

CAC
∼= htwF ∼=

⊕
C,σ

S
F ,C
C,σ

where C runs over representatives of the isomorphism classes of cyclic groups in F and σ runs
over the C Aut(C)-irreps. Furthermore, the simple rhetorical biset functors for F over C are
precisely those simple biset functors for F over C that appear in the direct sum.

Proof. The second isomorphism and the rider follows easily from Lemmas 7.2, 7.3, 7.4. The
first isomorphism is part of Lemma 7.6. �
8. The simple rhetorical biset functors over KKK

As well as dealing with Theorems 1.2, 1.5, 1.6, we shall also present some results on the
dimensions of the coordinate modules of the simple rhetorical biset functors over K.

First of all, we need a lemma that will help us to pass from the case where K = C to the case
where K is arbitrary. Recall that, given a Galois extension L of K and a semisimple K-algebra Λ

which extends to a semisimple L-algebra LΛ, then there is a bijective correspondence between
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the simple Λ-modules S and the Gal(L/K)-conjugacy classes of simple LΛ-modules S1. The
correspondence is characterized by the condition that the L-linear extension of S has the form
LS ∼= m(S1 ⊕ · · · ⊕ Sr) where S1, . . . , Sr are the Galois conjugates of S1 and m is a positive
integer. Note that, if Λ is commutative, then m = 1. The following lemma is easily established
by considering the coordinate module at H .

Lemma 8.1. Let L be a Galois extension of K. Let H ∈ X , let ν be a simple K Out(H)-module,
and write ν = m(ν1 ⊕ · · · ⊕ νr) where ν1, . . . , νr are the mutually Gal(L/K)-conjugate simple
L Out(H)-modules corresponding to ν. Then

LS
X ,K
H,ν = m

(
S
X ,L
H,ν1

⊕ · · · ⊕ S
X ,L
H,ν1

)
.

If H abelian, then m = 1. Supposing that H is cyclic, then ν is primitive if and only if one of
ν1, . . . , νr is primitive. In that case, ν1, . . . , νr are all primitive.

Let us prove Theorem 1.5. The latest lemma reduces to the case where K is algebraically
closed. But every algebraically closed field with characteristic zero contains a copy of the alge-
braic closure of Q. Therefore, if the required conclusion holds for some algebraically closed K,
then the required conclusion holds for all algebraically closed K. So, in fact, the lemma reduces
to the case where K = C. By part (3) of Remark 2.5, we may assume that X is finite. Thus,
we have reduced to the case that has already been established in Proposition 7.7. The proof of
Theorem 1.5 is complete.

Now let us give a new proof of Bouc’s result, Theorem 1.6. Using the latest lemma again, we
reduce to the case where K = C. Using parts (1) and (3) of Remark 2.5, we reduce to the case
where X is finite. Again, we have reduced to the case already handled in Proposition 7.7. The
proof of Theorem 1.6 is complete.

Theorem 1.2, which originates in the work of Hambleton, Taylor and Williams [9], also merits
an alternative proof. The argument will apply the two theorems that we have just now established.
Assume that every group in X is a p-group. Let F be a free module for the ring Υ X = ZΥ X .
Then CF is a free CΥ X -module. Furthermore, F and CF are locally unital, in other words,
they are rhetorical biset functors. By Theorem 1.4, CF is semisimple, say, CF = ⊕

i Si as a
(possibly infinite) direct sum of simple CΥ X -modules. By Theorems 1.5 and 1.6, each Si is
a quotient of CAC, so CF is a quotient of a direct sum of copies of CAC. As a special case of
Example 3.A, CAC is rational. Lemma 3.3 tells us that the rational biset functors are closed under
quotients and direct sums. Therefore CF is rational. By part (2) of Lemma 3.4, F is rational.

Let L be a rhetorical biset functor for X over R. We mean to say that L is a locally unital
RΥ X -module. We are to show that L is rational. But L is a quotient of a free RΥ X -module,
and any free RΥ X -module has the form RF where F is a free Υ X -module. By the closure
property for quotients, it suffices to show that RF is rational. But we have already shown that
F is rational so, by part (2) of Lemma 3.4 again, RF is rational, as required. The proof of
Theorem 1.2 is complete.

We make two comments on the latest proof. Firstly, one could invoke Lemma 3.5 to reduce to
the case where X is finite, but this reduction would not simplify the argument. Secondly, we did
not use the condition that L is locally unital. But there is no mistake here. Allowing L to be an
arbitrary RΥ X -module, and writing L(G) = isoG L, then what the argument shows is that the
locally unital submodule

⊕
L(G) is a rational biset functor.
G
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The last two results in this section concern the dimensions of the coordinate modules of the
simple rhetorical biset functors in characteristic zero.

Proposition 8.2. Let S be a simple rhetorical biset functor for X over C. Let G ∈ X . Let
C ∈ X be of minimal order such that S(C) �= 0. Note that C is cyclic. For each cyclic sub-
group Z of G, let kZ(G) be the number of conjugacy classes of G which contain a generator
of Z. Let dC(G) be the number of conjugacy classes of cyclic subgroups Z of G such that
|C| divides kZ(G). Then dimC(S(G)) = dC(G). More generally, consider a simple rhetorical
biset functor over K and write it in the form SC,σ where σ is a primitive K Aut(C)-irrep. Then
dimK(SC,σ ) = dimK(σ )dC(G).

Proof. Lemma 8.1 reduces to the case where K is algebraically closed. As before, by considering
the algebraic closure of Q, we see that there is no loss of generality in assuming that K = C.
We can now write S = SC,σ where σ is a primitive C Aut(C)-irrep. Part (3) of Remark 2.5
allows us to assume that X is finite. Let A be as in Sections 6 and 7. By inflation, we regard
σ as a CA-irrep. Our notation here is consistent with the notation in Lemma 7.3, since S is the
simple rhetorical biset functor corresponding to σ . Let e be the primitive idempotent of Z(CΥ X )

corresponding to σ and S. Then S ∼= e . htwX . Lemma 7.3 tells us that dimC(S(G)) is equal to
the multiplicity of σ in htwX (G).

We now adapt the proof of Lemma 7.2. Consider the permutation basis {εG[g]: g ∈G G}
for the permutation CA-module htwX (G). Let Z be a cyclic subgroup of G, and let MZ be
the CA-submodule of htwX such that MZ has a basis consisting of those elements εG[g] such
that Z =G 〈g〉. Then MZ is a transitive permutation CA-module with dimension kZ(G). In the
notation of the proof of Lemma 7.2, MZ

∼= CΩkZ(G). So σ occurs in MZ if and only if kZ(G)

is divisible by the integer π(σ) = |C|. Now letting Z run over representatives of the conjugacy
classes of cyclic subgroups of G, then htwX (G) = ⊕

Z MZ . Therefore, the multiplicity of σ in
htwX (G) is dC(g). �

Recall that, for g ∈ G, the class sum [g]+G is defined to be the sum of the elements in the
conjugacy class [g]G. Of course, the class sums comprise a basis for the center Z(CG). We can
regard Z(CG) as a permutation CA-module such that an element a ∈ A sends the class sum
[g]+G to the class sum [ga]+G. There is a CA-module isomorphism htw(G) ∼= Z(CG) such that
εG[g] ↔ [g]+G. So the proof of the latest proposition shows that, when K = C and σ is a primitive
C Aut(C)-irrep, dimC(SC

C,σ ) is equal to the multiplicity of σ in Z(CG).

Proposition 8.3. Given I, J ∈X , then

rankR

(
RΥ (I, J )

) = k∗(I, J ) =
∑
C,σ

dimC

(
SC

C,σ (I )
)

dim
(
SC

C,σ (J )
)

where C runs over the isomorphism classes of cyclic groups and σ runs over the primitive
C Aut(C)-irreps.

Proof. The first asserted equality is part of Remark 4.3. The sum is finite because SC,σ (I ) = 0
unless C is isomorphic to a subquotient of I . By part (3) of Remark 2.5 yet again, we may
assume that X is finite. Let I × J × A act on I × J as in Section 6. Two elements (i, j) and
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(i′, j ′) of I × J belong to the same A-orbit if and only if (i, j) and (i′, j ′) generate the same
cyclic subgroup. So the number of orbits of I × J ×A on I × J is k∗(I × J ).

As in Section 7, we can inflate the C Aut(C)-irrep σ to a CA-irrep also denoted σ . The CA-
irrep σ determines C up to isomorphism, indeed, C is the cyclic group with order π(σ). So we
can write Sσ = SC,σ without ambiguity. Our task is to show that the above number of orbits is
equal to

∑
σ dim(Sσ (I ))dim(Sσ (J )) where σ now runs over those CA-irreps that satisfy the

equivalent conditions of Lemma 7.2. Plainly, the number of orbits is equal to the multiplicity of
the trivial C-irrep of I ×J ×A in C(I ×J ). The I×J -fixed subspace of C(I ×J ) is isomorphic
to Z(CI ) × Z(CJ ). By the comments above,

Z(CI ) ∼=
∑
σ

dim
(
Sσ (I )

)
σ

and similarly for Z(CJ ). Given CA-irreps σ and ρ, then σ ⊗ ρ is an A-irrep. Furthermore,
σ ⊗ ρ is the trivial irrep if and only if σ and ρ are mutual duals. So the multiplicity of the trivial
irrep in the CA-module Z(CI ) ⊗ Z(CJ ) is k∗(I, J ) = ∑

σ dim(Sσ (I ))dim(Sσ ∗(J )) where σ ∗
is the dual of σ . The result follows because dim(Sσ ∗(J )) = dim(Sσ (J )). �

The character-theoretic aspect of the material will be brought out in the next section, but
we can indicate something of the character-theoretic flavor by indulging in an example to illus-
trate the above two results. Let us examine the hermetic algebra RΥ A5 for the group A5. For
I, J ∈ X (A5), the following values of k∗(I, J ) can be laboriously determined using Goursat’s
Theorem 2.1. Thus, for instance, it can be shown that the group D10 × A5 has 1, 3, 1, 4, 1, 2,
1 conjugacy classes of cyclic subgroups with orders 1, 2, 3, 5, 6, 10, 15, respectively, hence
k∗(D10 × A5) = 1 + 3 + 1 + 4 + 1 + 2 + 1 = 13. The sum of the 81 numbers in the table is
rankR(RΥ A5) = 591.

k∗(I × J ) 1 C2 C3 C5 V4 S3 D10 A4 A5 J

I 1 1 2 2 2 4 3 3 3 4
C2 2 4 4 4 8 6 6 6 8
C3 2 4 5 4 8 6 6 7 8
C5 2 4 4 7 8 6 7 6 9
V4 4 8 8 8 16 12 12 12 16
S3 3 6 6 6 12 9 9 9 12

D10 3 6 6 7 12 9 10 9 13
A4 3 6 7 6 12 9 9 10 12
A5 4 8 8 9 16 12 13 12 17

Meanwhile, Theorem 1.5 tells us that there are precisely five isomorphism classes of simple
rhetorical biset functors for A5 over C. The dimensions of their coordinate modules, shown in
the next table, can quickly be determined using Proposition 8.2.
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dim(S
A5,C
C,σ (I )) 1 C2 C3 C5 V4 S3 D10 A4 A5 I

SG
1,1 1 2 2 2 4 3 3 3 4

SG
C3,−1 0 0 1 0 0 0 0 1 0

SG
C5,−1 0 0 1 0 0 0 1 0 1

SG
C5,i

0 0 1 0 0 0 0 0 0

SG
C5,−i 0 0 1 0 0 0 0 0 0

A faster way of obtaining the values in the first table is to apply Proposition 8.3 to the values in
the second table. For instance, k∗(D10 ×A5) = 3.4+0.0+1.1+0.0+0.0 = 13. The dimensions
of the simple modules are the sums of the numbers in the rows: 24, 2, 3, 1, 1. We recover the
equality rankR(RΥ A5) = dimC(CΥ A5) = 242 + 22 + 32 + 12 + 12 = 591.

These observations can be turned around to yield a variant of the proof we gave for Theo-
rem 1.4. (The author discovered the theorem by examining the above two tables, and the similar
tables for the groups A4 and S4 and the non-abelian group with order 21.) The hardest part of the
argument we gave in Section 6 was in showing that ΞF (CΥ F ) and θF (CA) are mutual central-
izers. It is comparatively straightforward just to show that ΞF is a unital algebra monomorphism
CΥ F → matF and that ΞF (CΥ F ) and θF (CA) centralize each other. The argument can then
be completed as follows. Let eσ be the primitive idempotent of θF (CA) corresponding to σ . We
first observe that the idempotents θ(eσ ) belong to ΞX (CΥ X ) ∩ θX (CA). Therefore, the sub-
spaces Sσ = eσ . htwX are CΥ X -modules and, furthermore, HomCΥ X (Sσ , Sσ ′) = 0 for σ �= σ ′.
By Proposition 8.3,

dimC

(
CΥ X ) =

∑
I,J

k∗(I, J ) =
∑
σ

(∑
I

dim
(
Sσ (I )

))2

=
∑
σ

dim(Sσ )2.

Remark 4.2 now implies that CΥ X is semisimple and that each CΥ X -module Sσ is simple.
The alternative variant of the proof of Theorem 1.4 is now complete. Moreover, as a bonus, the
argument has also supplied us with the essential content of Lemma 7.3 and Theorem 1.5.

9. Some character theory

We introduce a character-theoretic technique for determining the multiplicities of the simple
factors of a rhetorical biset functor over K. The technique, expressed in Theorem 1.9, is a special
feature of these functors, and it uses more than the mere fact that these functors are semisimple.
As we shall explain, the technique does not seem to be applicable, in any very straightforward
way, to Mackey functors over K, despite the fact that such Mackey functors are semisimple.
After proving Theorem 1.9, we shall use it to prove Theorem 1.8.

In an abstract sense, any finite-dimensional algebra Λ over K admits a kind of character the-
ory. Indeed, given a finite-dimensional Λ-module N , then the composition factors of N , and their
multiplicities, are determined by the character Λ � λ �→ trN(λ) ∈ K where trM(λ) is the trace
of λ as an operator on N . When Λ is semisimple, the isomorphism class of M is uniquely deter-
mined by the character of M . Of course, from the point of view of usefulness to non-specialists,
the main successes of finite group representation theory have derived from applications of this
character-theoretic principle to the group algebra CG.
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For details of the theory of Mackey functors, we refer to Thévenaz and Webb [10]. Let M

be a finite-dimensional Mackey functor for G over K. In other words, M is a finite-dimensional
module of the Mackey algebra Kμ(G). Recall that M = ⊕

H�G M(H), each coordinate module

M(H) being a KNG(H)/H -module, where N(H) = NG(H)/H . Also recall that, letting J run
over representatives of the conjugacy classes of subgroups of G, and letting W run over the
KN(J )-irreps, then SJ,W runs over the isomorphism classes of simple Mackey functors for G

over K. Each SJ,W is characterized by the condition that J is minimal subject to the condition
SJ,W (J ) ∼= W . It can be shown that, imposing the evident KH -module and KNG(J )-module
structures,

SJ,W (H) ∼=
⊕

HgNG(J )⊆J

indH,H∩gNG(J )

(
g
(
WHg∩NG(J )

))
.

Since Kμ(G) is semisimple, the isomorphism class of M is determined by its simple composition
factors and their multiplicities. The multiplicity mH,V of SH,V in M is equal to the multiplicity
of V in the KN(H)-module M(H) = M(H)/IM(H). Here, IM(H) = ∑

J<H traH,J (M(J ))

where traH,J denotes the transfer map M(H) ← M(J). On the other hand, the isomorphism
class of M is determined by the character of M . Actually, in view of the classification of the
simple Mackey functors, the isomorphism class of M is determined by the characters [M(H)] ∈
AK(N(H)). Given those characters, then mH,V can be obtained using the following recursive
algorithm.

• Letting J run over representatives of the G-conjugacy classes of subgroups of G such that
some G-conjugate of J is strictly contained in H , and letting W run over the KN(J )-irreps,
first calculate each mJ,W using this algorithm.

• Determine the KN(H)-module M(H) = M(H) − ∑
J,W mJ,WSJ,W (H), then calculate

mH,V as the multiplicity of V in M(H).

Using Möbius inversion on the poset of G-conjugacy classes of subgroups of H , the multiplicity
mH,V can be expressed in terms of the characters [M(H)] without mentioning the multiplici-
ties mJ,W . Perhaps these observations could lead to some form of character theory for Mackey
functors in characteristic zero. The author has not pursued the matter.

The situation is quite different for rhetorical biset functors in characteristic zero. Theorem 1.9
shows how, for these functors, the multiplicities of the simple composition factors can be read off
from the coordinate modules of the cyclic groups. No recursion or Möbius inversion is needed.

Let us prove Theorem 1.9. Consider a biset functor L for X over K. In the notation of The-
orem 1.5, and also appealing to Theorem 1.4, we can write L ∼= ⊕

C,σ mC,σ SC,σ . Let C′ be a
cyclic group in X , and let σ ′ be a primitive K Aut(C′)-irrep. By once again reducing to the case
where X is finite and K = C, and then applying Proposition 7.7, we deduce that, if SC′,σ ′(C) �= 0,
then |C′| divides |C| and the K Aut(C)-module SC′,σ ′(C) is a direct sum of copies of the inflation
of σ ′. But, if |C′| strictly divides |C|, then σ ′ is imprimitive as a K Aut(C)-module. Therefore
σ does not occur in SC′,σ ′(C) unless C′ ∼= C. We conclude that mC,σ is equal to the multiplicity
of σ in L(C). Theorem 1.9 is now proved.

To complete this paper, all that remains is to prove Theorem 1.8. We begin by recalling a
classical description of the coordinate module JAJ(G). Fixing G, let n be a multiple of the
exponent of G. Let L be a Galois extension field of J such that L owns a primitive nth root of
unity ω. Note that L is a splitting field for G. Let G denote the image of the group homomorphism
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Gal(L/J) � θ �→ a ∈ (Z/n)× where θ(ω) = ωa . We allow G×G to act on G such that an element
(u, a) ∈ G × G sends an element g ∈ G to the element u(ga) = (ug)a . The orbits of G × G are
called the JG-conjugacy classes of G. A well-known theorem of Berman and Witt asserts that,
identifying the isomorphism class of a JG-module with its character G → J, then JAJ(G) is the
J-vector space of functions G → J that are constant on each JG-conjugacy class. See Curtis and
Reiner [8, 21.3, 21.5].

We shall be using that result only in a special case, as follows. Let C be a finite cyclic group.
We put G = C and n = |C|. Then the subgroup G � (Z/n)× depends only on J and C, not on L.
We shall consider two different values of L. Taking L to be the algebraic closure J of J, we see
that G is the group consisting of those units a in Z/n such that θ(ω) = ωa for some θ ∈ Gal(J/J).
On the other hand, if we take L to be the field JC = J[ω], then the group homomorphism
Gal(JC/J) → (Z/n)× is injective because the elements of Gal(JC/J) are determined by their
values on ω. Via this injective group homomorphism, we can identify the domain Gal(JC/J)

with the image G. A further identification can be made. Much as we did at the beginning of
Section 6, we identify Aut(C) with (Z/n)× in such a way that each group automorphism α is
identified with the unit a of Z/n such that α(c) = ca for c ∈ C. To summarize these identifica-
tions,

G = Gal(JC) � Aut(C) = (Z/n)×.

Since C is abelian, the above theorem of Berman and Witt tells us that JAJ(C) is the J-vector
space of functions G → J that are constant on each G-orbit of G. Perforce, JAJ(C) is the J-
vector space of functions G → J that are constant on each G-orbit.

Thanks to Lemma 8.1, it suffices to demonstrate Theorem 1.8 in the case K = J. By embed-
ding Q in J and in C, we obtain isomorphisms of biset functors AJ

∼= AQ
∼= AC, so Theorem 1.6

yields

JAJ
∼=

⊕
C

⊕
σ∈P(C)

S
J
C,σ

where C runs over representatives of the isomorphism classes of cyclic groups in X and P(C) is
the set of primitive J Aut(C)-irreps. Since AJ is a biset subfunctor of AJ, there must be a subset
P(C,J) ⊆ P(C) such that

JAJ
∼=

⊕
C

⊕
σ∈P(C,J)

S
J
C,σ .

Fix C, let G be as above, and consider an element σ ∈ P(C). We shall be finished when we
have shown that σ ∈ P(C,J) if and only if G � Ker(σ ). By Theorem 1.9, σ ∈ P(C,J) if and
only if σ occurs in the J Aut(C)-module JAJ(C). Above, we noted that JAJ(C) is the L-vector
space of functions G → L that are constant on each G-orbit. So σ occurs in JAJ(C) if and only
if σ is constant on each G-orbit. This is equivalent to the condition that G � Ker(σ ). We have
shown that σ ∈ P(C,J) if and only if G � Ker(σ ), as required.
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