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Abstract

Let m be a real measure on the line such that its Poisson integral MðzÞ converges and

satisfies

jMðx þ iyÞjpAe�cya ; y-þN;

for some constants A; c40 and 0oap1: We show that for 1=2oap1 the measure m must have

many sign changes on both positive and negative rays. For 0oap1=2 this is true for at least

one of the rays, and not always true for both rays. Asymptotical bounds for the number of

sign changes are given which are sharp in some sense.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let f be a real-valued function from LNðRÞ and let

FðzÞ ¼ 1

p

Z
N

�N

yf ðtÞ dt

ðx � tÞ2 þ y2
; z ¼ x þ iyAC\R;
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be its Poisson integral. Shapiro [7] asks how many sign changes a real even function f

must have if its Poisson integral satisfies

FðiyÞ ¼ Oðe�cyaÞ; y-þN; ð1Þ
for some c40 and 0oap1: As shown in [6, Theorem L] and [5, Theorem 7.6.3], for
a ¼ 1 and an even function f condition (1) is equivalent to

jFðzÞjpAe�cjyj; z ¼ x þ iyAC\R; ð2Þ
where A40 is independent of x and y: Condition (2) is of interest because [5,
Theorem 7.6.3] it is equivalent to the condition that the spectrum of f (i.e. the
support of its Fourier transform) is disjoint from ð�c; cÞ:

The following phenomenon has been known for a long time: if a real function (or
more generally: measure, distribution) has a spectral gap at the origin then it must
have many sign changes. This phenomenon has been deeply studied in the recent
work by Eremenko and Novikov [1]. In [4], it has been established that a similar
phenomenon occurs when the Fourier transform is real analytic in a neighborhood
of the origin but not on the whole real line.

We shall consider the following question: Let mc0 be a real Borel measure on R

such thatZ
N

�N

djmjðtÞ
1 þ t2

oN; ð3Þ

and let

MðzÞ ¼ 1

p

Z
N

�N

y dmðtÞ
ðx � tÞ2 þ y2

; z ¼ x þ iyAC\R;

be its Poisson integral. Assume there are positive constants c;A; q and a constant
0oap1 such that

jMðzÞjpAe�cjyja ; for jyjXq; z ¼ x þ iy: ð4Þ
How many sign changes must the measure m have?

To make this question precise, let us introduce counting functions for the sign
changes of a real measure. Let m be a locally finite real Borel measure on R and let
½a; bÞ be a finite half-interval. Let J be a partition of ½a; bÞ; that is a finite set of points
fx1; x2;y; xng such that aox1ox2o?oxnob: Consider the finite sequence

mð½a; x1ÞÞ; mð½x1; x2ÞÞ;y; mð½xn; bÞÞ;
and denote by nJ the number of its sign changes. We define the number of sign
changes of m on ½a; bÞ as follows:

nð½a; bÞÞ ¼ sup
J

nJ ;

where sup is taken over all partitions J of ½a; bÞ: Clearly, nð½a; bÞÞ is either a non-
negative integer or þN; and in the first case the sup is attained. Observe also that
nð½a; bÞÞ is a non-decreasing function of ½a; bÞ: For t40 we set

nþðtÞ ¼ nð½0; tÞÞ; nðtÞ ¼ nð½�t; tÞÞ: ð5Þ
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These functions are non-negative, non-decreasing and integer-valued (in extended
sense).

2. Results

Our approach is based on some ideas of Levin [3, pp. 403–404] and also an idea of
Kahane [2, pp. 76–77].

The following result is due to Levin [3, Appendix II, Theorem 5]: Let mc0
be a real finite Borel measure on the real line whose spectrum is disjoint from ð�c; cÞ:
Then

lim inf
R-N

Z R

0

nðtÞ
t

dt � 2c

p
R

� �
4�N:

Observe that there is no non-trivial function F satisfying (4) with a41: This
follows, for example, from the mentioned Theorem 7.6.3 in [5]. We shall consider the
cases a ¼ 1 and 0oao1 separately. Our first result extends Levin’s theorem to
measures satisfying (3), and also gives one-sided estimates on the number of sign
changes:

Theorem 1. Let mc0 be a real Borel measure on R satisfying (3). If its Poisson integral

satisfies condition (4) with a ¼ 1; then:

ðiÞ lim inf
R-N

Z R

1

1

t2
þ 1

R2

� �
nþðtÞ dt � c

p
log R

� �
40;

ðiiÞ lim inf
R-N

Z R

1

nðtÞ
t

dt � 2c

p
R þ 3 log R

� �
40:

Corollary. Let m be a real Borel measure on R satisfying (3). If its spectrum is disjoint

from ð�c; cÞ; then the assertion of Theorem 1 holds.

This corollary has been announced without proof in [4] and later extended in [1]
(with a bit less precise estimates of the asymptotical behavior of nþ and n) for much
more general class of measures (and distributions).

Our next result extends the part (ii) of Theorem 1 to the case ao1:

Theorem 2. Let mc0 be a real Borel measure on R satisfying (3). If its Poisson integral

satisfies condition (4) with 0oao1; then

lim inf
R-N

Z R

1

nðtÞ
t

dt � c Gðð1 þ aÞ=2Þffiffiffi
p

p
Gð1 þ a=2Þ Ra þ 3 log R

� �
40:
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One may ask if the measures whose Poisson integral satisfies (4) with ao1 must have
many sign changes on both half-lines ð�N; 0Þ and ð0;NÞ: Our Example 3 in the
next section shows that the answer is negative for 0oap1=2: It means that for these
values of a there is no analogue of the assertion (i) of Theorem 1. However, if
1=2oao1 then such an estimate is possible:

Theorem 3. Let mc0 be a real Borel measure on R satisfying (3). If its Poisson integral

satisfies condition (4) with 1=2oao1; then

lim inf
R-N

1

log R

Z R

1

1

taþ1
þ ta�1

R2a

� �
nþðtÞ dt � ½sinðp=ð2aÞÞ�ac log R

� �
4�N:

3. Sharpness of Theorems 1–3

Example 1 (Sharpness of Theorem 1). Let m be an absolutely continuous measure
with the density sin ct: Then a direct calculation shows that

MðzÞ ¼ ðsgn yÞe�cjyj sin cx; zAC\R;

nþðtÞ ¼ ðc=pÞt þ Oð1Þ; nðtÞ ¼ 2ðc=pÞt þ Oð1Þ; t-N:

The following example is similar to the example in [3], p. 410.

Example 2 (Sharpness of Theorems 2 and 3). Let 0oao1: Set

faðzÞ ¼
YN
k¼1

1 � z2

k2=a

� �
; 0oao1:

Standard arguments show that, for IðreiyÞX1;

log j faðreiyÞj ¼ p cosðaðy� p=2ÞÞ
sinðap=2Þ

� �
ra þ Oðlog rÞ; r-N; ð6Þ

and (cf. [3, p. 196])

log j f 0
að7k1=aÞj ¼ ðp cotðpa=2ÞÞkð1 þ oð1ÞÞ; k-N:

These relations imply that the following representation holds:

1

faðzÞ
¼
XN
k¼1

1

f 0
aðk1=aÞðz � k1=aÞ þ

1

f 0
að�k1=aÞðz þ k1=aÞ

� �
:
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Let us introduce the atomic measure

ma ¼ p
XN
k¼1

1

f 0
aðk1=aÞ dk1=a þ 1

f 0
að�k1=aÞ d�k1=a

� �
:

Evidently,

I
1

faðzÞ

� �
¼ 1

p

Z
N

�N

y dmaðtÞ
ðx � tÞ2 þ y2

is the Poisson integral of the measure ma:
Since

sgn f 0
aðka sgn kÞ ¼ ð�1Þksgn k; k ¼ 71;72;y;

then

nþðtÞ ¼ ta þ Oð1Þ; nðtÞ ¼ 2ta þ Oð1Þ; t-N;

and, by (6),

I
1

faðzÞ

				
				pexp½�ðp cotðpaÞÞjyja þ Oðlog jyjÞ�; for jyjX1;

we see that the inequalities of Theorems 2 and 3 are sharp in the sense of
order. We do not know whether the coefficients of Ra and log R are the best
possible.

The following example shows that there exist measures m satisfying (3) and (4) with
0oap1=2 such that m is positive on a half-line.

Example 3. Let 0oao1=2 and

gaðzÞ ¼
YN
k¼1

1 þ z

k1=a

� �
:

Then

log jgaðreiyÞj ¼ p cos ay
sin pa

ra þ Oðlog rÞ; r-N; jIðreiyÞjX1: ð7Þ

and

log jg0
að�k1=aÞj ¼ ðp cot paÞkð1 þ oð1ÞÞ; k-N:

Then

1

gaðzÞ
¼
XN
k¼1

1

g0ð�k1=aÞðz þ k1=aÞ;
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and

I
1

gaðzÞ
¼ 1

p

Z
N

�N

y dmaðtÞ
ðx � tÞ2 þ y2

is the Poisson integral of the measure

ma ¼ p
XN
k¼1

1

g0ð�k1=aÞ d�k1=a :

Evidently, (7) implies

I
1

gaðzÞ

				
				pexp

p
2 sinðpa=2Þ jyj

a þ Oðlog yÞ
� �

for jyjX1;

nevertheless, nþðtÞ � 0:

In the case a ¼ 1=2 we replace ga with ð1 þ zÞ cosh
ffiffiffi
z

p
:

4. Proof of Theorem 1

We assume that a real measure m satisfies conditions (3) and (4) with a ¼ 1:
The following function analytic in C\R will play an important role:

GðzÞ ¼ 1

p

Z
N

�N

1

t � z
� t

1 þ t2

� �
dmðtÞ:

Evidently, it satisfies

GðzÞ ¼ Gð%zÞ ð8Þ

and

IGðzÞ ¼ MðzÞ; zAC\R: ð9Þ

Lemma 1. The estimate holds:

jGðzÞjpA
jzj2 þ 1

jzj ; zAC\R:

(Here and further we denote by A a positive constant not necessary the same

everywhere.)

Proof. Clearly, G is a difference of two functions analytic in C\R and having positive
(negative) imaginary part in the upper (lower) half-plane. The assertion of
Lemma 1 follows immediately from the well-known Caratheodory inequality (see,
e.g. [3, p. 18]. &
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Lemma 2. The estimate holds:

jG0ðzÞjpAe�cjyj for jyjX2q: ð10Þ

Proof. By (9) and the Schwarz formula we have

Gðz þ zÞ ¼ i

2p

Z 2p

0

Mðz þ qeiyÞ qeiy þ z
qeiy � z

dyþ RGðzÞ for jIzjX2q; jzjoq:

Differentiating with respect to z and then setting z ¼ 0; we obtain

G0ðzÞ ¼ i

pq

Z 2p

0

Mðz þ qeiyÞe�iy dy for jIzjX2q:

Hence

jG0ðzÞjp2

q
max

0pyp2p
jMðz þ qeiyÞj;

and condition (4) with a ¼ 1 implies (10). &

Lemma 3. There exists a real constant D such that the estimate holds:

jGðzÞ � DjpAe�cjyj for jyjX2q: ð11Þ

Proof. Let us define, for Iz40;

HðzÞ ¼
Z

N

z

G0ðzÞ dz;

where the integral is taken along the vertical line going upwards from z: Using (10), it
is easy to see that the integral is an analytic function in the upper half-plane and
satisfies

jHðzÞjpAe�cjyj for jyjX2q: ð12Þ

For Izo0 we set HðzÞ ¼ Hð%zÞ: The function H is analytic in the lower half-plane

and satisfies (12). Since ½G þ H�0 � 0; we see that G þ H is a constant Dþ (D�), say,
in the upper (lower) half-plane. Since I½G þ H�ðiyÞ ¼ ½M þ IH�ðiyÞ tends to zero as
jyj-N; the constants D7 are real. Since R½G þ H�ðiyÞ ¼ R½G þ H�ð�iyÞ; we
conclude that Dþ ¼ D�: &

Corollary. Function G is not constant.

Proof. Since IG ¼ Mc0; G cannot be a real constant. On the other hand, Lemma 3
shows that GðiyÞ tends to real constant D as y-N: &
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Lemma 4. The support of the measure m is unbounded from right and left.

Proof. Assume, that supp mCð�N; dÞ; doþN; Noting that

1

t � z
� t

1 þ t2
¼ z þ z2 þ 1

t � z

� �
1

1 þ t2
; ð13Þ

and using condition (3), we see that

jGðzÞjp
Z d

�N

jzj þ jzj2 þ 1

jt � zj

 !
djmjðtÞ
1 þ t2

pAðjzj2 þ 1Þ for RzX2d: ð14Þ

This bound and (11) show that the well-known Carlson theorem (see, e.g. [8, Section
5.8]) is applicable to G � D and hence G � D: Nevertheless, IG ¼ Mc0; and we
obtain a contradiction. &

Let us introduce the sequence of atomic measures

mp ¼
XN

k¼�N

mð½k2�p; ðk þ 1Þ2�pÞÞdk2�p ; p ¼ 1; 2;y;

where da denotes the unit measure at point a: According to Lemma 3, each measure
mp has support unbounded from right and left. Condition (3) implies

sup
pX1

Z
N

�N

djmpjðtÞ
1 þ t2

oN: ð15Þ

Let us define the sequence of meromorphic in C functions

GpðzÞ ¼
Z

N

�N

1

t � z
� t

1 þ t2

� �
dmpðtÞ; p ¼ 1; 2;y:

Each function Gp takes real values on R and its poles are real and simple; the set of

the poles is unbounded from right and left. Note that, for any real constant A;
function Gp � A has a zero between any two consecutive poles having residues of the

same sign.
The following lemma concerns convergence of the sequence fGpg as p-N:

Lemma 5. (i) On any compact set K lying entirely in the upper or lower half-plane the

sequence Gp tends to G uniformly as p-N:

(ii) On any compact set in C the following estimate holds:

jGpðzÞjpAjyj�1;

where A is independent of z and p:

ARTICLE IN PRESS
I. Ostrovskii, A. Ulanovskii / Journal of Approximation Theory 126 (2004) 218–232 225



Proof. (i) We have

GðzÞ � GpðzÞ

¼
XN

k¼�N

Z ðkþ1Þ2�p

k2�p

1

t � z
� 1

k2�p � z
� t

1 þ t2
þ k2�p

1 þ ðk2�pÞ2

 !
dmðtÞ

¼ �
XN

k¼�N

Z ðkþ1Þ2�p

k2�p

Z t

k2�p

1

ðu � zÞ2
� 1 � u2

ð1 þ u2Þ2

 !
du

" #
dmðtÞ:

For z belonging to a fixed compact set lying entirely in the upper or lower half-plane
the following inequality holds:

1

ðu � zÞ2

					
					p 1

1 þ u2
max
uAR

1 þ u2

ðu � zÞ2

					
					p A

1 þ u2
;

where A is independent of z and u: Therefore

jGðzÞ � GpðzÞjp
A

2p

Z
N

�N

djmpjðuÞ
1 þ u2

:

Using (14), we conclude that on the compact set

jGðzÞ � GpðzÞjpA2�p-0 as p-N:

(ii) Observe that (13) implies

1

t � z
� t

1 þ t2

				
				p jzj þ jzj2 þ 1

jyj

 !
1

1 þ t2
:

Hence, for z belonging to a compact set in C;

jGpðzÞjp
A

jyj

Z
N

�N

djmpjðtÞ
1 þ t2

;

where A is independent of z and p: By condition (14) the integral in the right hand
side is bounded by a constant independent of p: &

Let Z40 be a number such that GðiZÞ � Da0; where D is the constant from
Lemma 3. Such Z exists in virtue of corollary to Lemma 3. Set

f ðzÞ ¼ Gðz þ iZÞ � D; fpðzÞ ¼ Gpðz þ iZÞ � D; p ¼ 1; 2;y

Choose eAð0; ZÞ so small that f does not vanish in the closed disc fz: jzjpeg: By
Lemma 5(i), fp also does not vanish in the disc for all sufficiently large p: Further we

shall consider only such values of p:
Let us start with the proof of assertion (i) of Theorem 1.
Denote by zk;p zeros and by zk;p poles of fp situated in the right half-plane. We

agree to enumerate zj;p; j ¼ 1; 2;y; in order of increasing real parts. By the

Carleman formula for the right half-plane (see, e.g., [3, p. 224] where it is written for
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the upper half-plane) we have for any R4e:X
jzk;pjoR

R
1

zk;p
� Rzk;p

R2

� �
�

X
jzk;pjoR

R
1

zk;p

�
Rzk;p

R2

� �

¼ 1

pR

Z p=2

�p=2

log j fpðReiyÞ cos y dyþ 1

2p

Z R

e

1

t2
� 1

R2

� �
log j fpðitÞfpð�itÞ dt

þ 1

2p

Z p=2

�p=2

R log fpðeeiyÞ e�iy

e
þ eeiy

R2

� �� �
dy: ð16Þ

Let us take lim sup as p-N:
To do this in the right-hand side of (16) we note, by Lemma 5(ii), that the

following inequality holds on any compact set:

log j fpðzÞjplog
A

jy þ Zj:

Taking into account Lemma 5(i) and the Fatou lemma, we obtain that

lim sup
p-N

fthe right-hand side of ð16Þg

p
1

pR

Z p=2

�p=2

log j f ðReiyÞj cos y dyþ 1

2p

Z R

e

1

t2
� 1

R2

� �
log j f ðitÞf ð�itÞj dt

þ 1

2p

Z p=2

�p=2

R log f ðeeiyÞ e�iy

e
þ eeiy

R2

� �� �
dy:

Using Lemmas 1 and 3, we conclude that

lim sup
p-N

the right-hand side of ð16Þf g

p� c

p
log R þ Oð1Þ; as R-N: ð17Þ

Let us now estimate from below the left-hand side of (16). Note that the poles zj;p of

fp are simple and situated on the line fz: Iz ¼ �Zg; and between any two

consecutive poles having residues of the same sign there is at least one zero of fp on

the same line. Let us denote by Qp the set of all poles zj;p such that the nearest pole

from the right has residue of opposite sign. If zj;p ¼ xj;p � iZeQp; then there is a zero

zkð jÞ;p ¼ xkð jÞ;p � iZ such that the ‘interlacing condition’ holds

xj;poxkð jÞ;poxjþ1;p: ð18Þ

Set

S
ðpÞ
1 ðRÞ ¼

X
jzk;pjoR

R
1

zk;p
� Rzk;p

R2

� �
�

X
jzj;pjoR; zj;peQp

R
1

zj;p

� Rzj;p

R2

� �
;

S
ðpÞ
2 ðRÞ ¼

X
jzj;pjoR; zj;pAQp

R
1

zj;p

�
Rzj;p

R2

� �
;
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so that the left-hand side of (16) is S
ðpÞ
1 ðRÞ � S

ðpÞ
2 ðRÞ: Observe that

lim sup
p-N

the left-hand side ofð16Þf g

¼ lim sup
p-N

ðSðpÞ
1 ðRÞ � S

ðpÞ
2 ÞðRÞX lim sup

p-N

S
ðpÞ
1 ðRÞ � lim sup

p-N

S
ðpÞ
2 ðRÞ: ð19Þ

Let us first estimate S
ðpÞ
1 ðRÞ from below. To this end we omit all summands which

correspond to the zeros zk;p being not zkð jÞ;p: Then we get

S
ðpÞ
1 ðRÞX

X
jzkð jÞ;pjoR; zj;peQp

R
1

zkð jÞ;p
�

Rzkð jÞ;p
R2

� �
�

X
jzj;pjoR; zj;peQp

R
1

zj;p

�
Rzj;p

R2

� �

¼
X

jzkð jÞ;pjoR; zj;peQp

xkð jÞ;p

x2
kð jÞ;p þ Z2

�
xkð jÞ;p

R2

 !
�

X
jzj;pjoR; zj;peQp

xj;p

x2
j;p þ Z2

�
xj;p

R2

 !

¼
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

t

t2 þ Z2
� t

R2

� �
dðb1ðtÞ � b2ðtÞÞ

¼
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

t2 � Z2

ðt2 þ Z2Þ2
þ 1

R2

 !
ðb1ðtÞ � b2ðtÞÞ dt;

where

b1ðtÞ ¼ #fxkð jÞ;p: xkð jÞ;pot; zj;peQpg; b2ðtÞ ¼ #fxj;p: xj;pot; zj;peQpg:

The ‘interlacing condition’ (18) implies that

jb1ðtÞ � b2ðtÞjp1:

Thus,

lim sup
p-N

S
ðpÞ
1 ðRÞX� A4�N; ð20Þ

where A does not depend on R:

Now, let us estimate S
ðpÞ
2 ðRÞ from above. Set

b3ðtÞ ¼ #fxj;p: 0oxj;pot; zpAQpg; t40:

Then we have

S
ðpÞ
2 ðRÞ ¼

Z ffiffiffiffiffiffiffiffiffiffi
R2�Z2

p

0

t

t2 þ Z2
� t

R2

� �
db3ðtÞ

¼
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

t2 � Z2

ðt2 þ Z2Þ2
þ 1

R2

 !
b3ðtÞ dt

p
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

1

t2 þ Z2
þ 1

R2

� �
b3ðtÞ dt:
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Recall that the residue at pole zj;p is mð½j2�p; ð j þ 1Þ2�pÞÞ and the set Qp consists of

poles zj;p; for which the next pole from the right has residue of opposite sign. Hence,

it follows that b3ðtÞpsj þ 1 where sj is the number of sign changes in the sequence

mð½0; 2�pÞÞ; mð½2�p; 2 � 2�pÞÞ;y; mð½j2�p; ð j þ 1Þ2�pÞÞ;

where j is the greatest integer such that j2�pot: Evidently, sjpnþðtÞ; where nþ is

defined by (5), and we have

b3ðtÞpnþðtÞ þ 1:

Hence

lim sup
p-N

S
ðpÞ
2 ðRÞp

Z ffiffiffiffiffiffiffiffiffiffi
R2�Z2

p

0

1

t2 þ Z2
þ 1

R2

� �
ðnþðtÞ þ 1Þ dt

p
Z R

1

1

t2
þ 1

R2

� �
nþðtÞ dt þ A; ð21Þ

where A does not depend on R (without loss of generality we assume that nþðtÞoN

for each t40; otherwise the assertion (i) of Theorem 1 is trivial).
Taking together the inequalities (17), (19), (20) and (21), we obtain the assertion (i)

of Theorem 1.
The proof of assertion (ii) is similar to the proof of (i), but instead of the Carleman

formula we use the Jensen formula.
Let us denote by fzk;pg the set of all zeros of fp and by fzj;pg the set of all its poles.

We agree to enumerate zj;p; �NojoN; in order of increasing real parts.

By the Jensen formula,X
jzk;pjoR

log
R

jzk;pj
�
X

jzj;pjoR

log
R

jzj;pj
¼ 1

2p

Z 2p

0

log j fpðReıyÞj dy� log j fpð0Þj: ð22Þ

Let us take lim sup as p-N:
The same arguments as in the proof of assertion (i) give

lim sup
p-N

fthe right-hand side of ð22Þg

p
1

2p

Z 2p

0

log j f ðReiyÞj dy� log j f ð0Þj: ð23Þ

Hence, using Lemmas 1 and 3, we get

lim sup
p-N

fthe right-hand side of ð22Þgp� 2c

p
R þ Oð1Þ; R-N: ð24Þ

To estimate the left-hand side of (22) from below, we denote by Qp the set of all (not

only in the right half-plane as in the proof of assertion (i)) poles zj;p such that the

nearest pole from the right has the residue of opposite sign. Then, again, if zj;p ¼
xj;p � iZeQp; then there is a zero zkð jÞ;p ¼ xkð jÞ;p � iZ such that (18) holds.
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Denote

T
ðpÞ
1 ðRÞ ¼

X
jzk;pjoR

log
R

jzk;pj
�

X
jzj;pjoR; zj;peQp

log
R

jzp;jj
;

T
ðpÞ
2 ðRÞ ¼

X
jzj;pjoR; zj;pAQp

log
R

jzj;pj
;

so that the left-hand side of (22) is T
ðpÞ
1 ðRÞ � T

ðpÞ
2 ðRÞ and

lim sup
p-N

the left-hand side of ð22Þf g

X lim sup
p-N

T
ðpÞ
1 ðRÞ � lim sup

p-N

T
ðpÞ
2 ðRÞ: ð25Þ

Let us estimate T
ðpÞ
1 ðRÞ from below. We have

T
ðpÞ
1 ðRÞX

X
jzkð jÞ;pjoR; zj;peQp

log
R

jzkð jÞ;pj
�

X
jzj;pjoR; zj;peQp

log
R

jzj;pj

¼
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

log
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ Z2
p dðb1ðtÞ � b2ðtÞÞ

¼
Z ffiffiffiffiffiffiffiffiffiffi

R2�Z2
p

0

t

t2 þ Z2
ðb1ðtÞ � b2ðtÞÞ dt;

where

b1ðtÞ ¼ #fxkð jÞ;p: jxkð jÞ;pjot; zj;peQpg;

b2ðtÞ ¼ #fxj;p: jxj;pjot; zj;peQpg for t40:

The ‘interlacing condition’ (18) implies that

jb1ðtÞ � b2ðtÞjp2:

Therefore

lim sup
p-N

T
ðpÞ
1 ðRÞ4� 2 log R: ð26Þ

To estimate T
ðpÞ
2 ðRÞ from above, we set

b3ðtÞ ¼ #fxj;p: jxj;pjot; zj;pAQpg:
Then

T
ðpÞ
2 ðRÞ ¼

Z ffiffiffiffiffiffiffiffiffiffi
R2�Z2

p

0

log
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ Z2
p db3ðtÞ ¼

Z ffiffiffiffiffiffiffiffiffiffi
R2�Z2

p

0

t

t2 þ Z2
b3ðtÞ dt:

As by estimation of S
ðpÞ
2 ðRÞ in the proof of assertion (i), we see that b3ðtÞpsj

l þ 1

where sj
l is the number of sign changes in the sequence

mð½l2�p; ðl þ 1Þ2�pÞÞ;y; mð½j2�p; ð j þ 1Þ2�pÞÞ;
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where l is the smallest integer such that l2�p
X� t and j is the greatest integer such

that j2�pot: Since sj
lpnðtÞ; where n is defined by (5), we obtain b3ðtÞpnðtÞ þ 1 and

lim sup
p-N

T
ðpÞ
2 ðRÞp

Z ffiffiffiffiffiffiffiffiffiffi
R2�Z2

p

0

t

t2 þ Z2
ðnðtÞ þ 1Þ dt

p
Z R

1

nðtÞ
t

dt þ log R þ A; ð27Þ

where A is independent of R:
Joining (22), (24), (25), (26) and (27), we obtain assertion (ii). &

5. Proofs of Theorems 2 and 3

The proof of Theorem 2 is similar to that of Theorem 1. Lemmas 1, 2, 3, 5 and

corollary to Lemma 3 remain in force when we replace jyj with jyja in the right-hand
sides of (10) and (11).

Lemma 4 remains in force only under additional condition 1=2oao1: In this case
it is easy to see that (12) remains in force in the angle fz: j argðz � 2dÞjpp=ð2aÞg:
Taking into account the mentioned change in (11), we see that the function Gðw1=a þ
2dÞ satisfies conditions of the Carlson theorem in the half-plane fw: RwX0g; and we
obtain the desired contradiction. In the general case 0oao1; the assertion of
Lemma 4 should be replaced by the following: supp m cannot be bounded (from both
sides simultaneously). Indeed, if the support is bounded, then G � D is analytic at N
and therefore cannot tend to zero faster than some power of 1=jzj without being
constant.

We introduce functions f and fp as in the proof of Theorem 1 and denote by fzk;pg
and fzj;pg sets of zeros and poles of fp; respectively with the same agreement

concerning enumeration of the latter set (however, if supp m is bounded from
the left (right), then j ¼ 1; 2;y; (j ¼ ?;�2;�1)). Then we apply the Jensen
formula (22). Evidently, (23) remains in force. Since change of bound in
Lemma 3 we have

1

2p

Z 2p

0

log j f ðReiyÞj dyp� cGðð1 þ aÞ=2Þffiffiffi
p

p
Gð1 þ a=2Þ Ra þ Oð1Þ:

Noting that (25), (26), (27) remain in force, we obtain the assertion of
Theorem 2.

The proof of Theorem 3 differs from that of Theorem 1(i) by application
of the Carleman formula for the angle fz: j arg zjpp=ð2aÞg instead of the
right half-plane. We apply this formula to the same function fp and with the

same meaning of notations zk;p; zj;p and e: Denoting by AR the sector
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fz: jzjoR; j arg zjop=ð2aÞg; we haveX
zk;pAAR

R
1

zak;p

 !
�

Rðza�1
k;p Þ

R2a

 !
�
X

zj;pAAR

R
1

zaj;p

 !
�

Rðza�1
j;p Þ

R2a

 !

¼ a
pRa

Z p=ð2aÞ

�p=ð2aÞ
log j fpðReiyÞj cos ay dy

þ a
2p

Z R

e

1

t2a �
1

R2a

� �
log j fpðteip=ð2aÞÞfpðteip=ð2aÞÞj dt

þ a
2p

Z p=ð2aÞ

�p=ð2aÞ
R log fpðeeiyÞ e�iay

ea
� eaeiay

R2a

� �� �
dy:

The rest of the proof differs from that of Theorem 1 only by routine technical details.
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