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Abstract

This paper proposes a novel method that enhances numerical approximation of infinite
horizon optimal control problems. For direct numerical optimization, a continuous-time
infinite horizon model needs to be first recast as a discrete-time, finite-horizon control
problem. The very transformation itself may significantly degrade the quality of the
optimization results, if due care is not taken to preserve the salient features in the original
model. Mercenier and Michel (1994. Econometrica 62, 635-656, 2001. Journal of Economic
Dynamics and Control 25, 1179-1191), for instance, propose time aggregation methods that
minimize approximation errors at the steady-state. Using their scheme, we show that overall
optimization performance can be further improved if the discretization of the transient phase
is optimal as well. Three sample problems are numerically solved to demonstrate the potential
benefits.
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1. Introduction

Infinite horizon continuous-time optimization problems appear frequently in
various fields of economics. Generally, the nonlinearities in cost functionals and/or
system dynamics and the presence of path constraints do not allow for an explicit
solution. Despite the challenges posed by high-dimensional nonlinearity, recent
advances in computing technology have enabled economists to study richer and
more complex sets of economic dynamics rather than a compromise on the modeling
exercise to obtain analytical solutions. In this vein, there has been a growing interest
in computational aspects of infinite horizon optimal control problems.’

Often, an approximation is adopted at the outset that assumes quadratic objective
and linear dynamics which affords an analytical solution. In cases where linear/
quadratic approximation is not appropriate, the solution has to be computed
numerically. For given initial states, open-loop solutions can be computed either by
a numerical approximation of the necessary conditions by the Pontryagin’s
Maximum Principle, or by direct optimization of the objective functional using
nonlinear programming techniques. If a feedback solution is more appropriate to the
problem at hand then, numerical dynamic programming algorithms can be used.

Numerical methods for open-loop solutions can be classified into two broad
classes: indirect and direct methods (Von Stryk and Bulirsch, 1992; Kraft, 1994).
Indirect methods iterate on solutions until they satisfy the necessary conditions by
the Pontryagin’s Maximum Principle. Generally, gradient and shooting methods are
applied (Bryson, 1999; Bryson and Ho, 1975). Direct methods, on the other hand,
first approximate the original problem by discretizing the system dynamics in time
and thus transforming them into a set of equality and inequality constraints. Then, a
suitable nonlinear programming algorithm, local or global, can be used to
numerically optimize the objective functional subject to the constraints.”

Dynamic programming yields optimal policies as feedback solutions. However, in
practice dynamic programming methods are limited by the size of the problem. The
term curse of dimensionality (Bellman, 1961) refers to the fact that an increase in the
dimensionality of the problem causes an exponential increase in computational and
memory requirements to find a solution.” There exists two broad approaches to
dynamic programming: higher order approximations and adaptive gridding
techniques. High-order approximations, which can be very efficient when the
optimal value function is sufficiently smooth, include approximations using smooth
functions like Chebyshev polynomials (Rust, 1996; Judd, 1996; Jermann, 1998),
Splines (Daniel, 1976; Johnson et al., 1993; Trick and Zin, 1993, 1997) or piecewise
high-order approximations (Falcone and Ferretti, 1998) and other high-order
strategies, like in finite difference approximations (Candler, 2001), Gaussian

ISee among others, Flam and Wets (1987), Griine (1997), Judd (1992), Kehoe and Levine (1992) and
Mercenier and Michel (1994a, b, 2001).

2See Hull (1997) and Betts (1998) for surveys.

3There exists approaches such as randomly distributed grid points (Rust, 1997) or so called low
discrepancy grids (Rust, 1996; Reiter, 1999) which are able to break the curse of dimensionality.
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Quadrature discretization (Tauchen and Hussey, 1991; Burnside, 2001) and
perturbation techniques (Judd, 1996). Adaptive gridding schemes are based on
flexible grids generated using local and/or global error estimates (Marcet, 1994;
Griine, 1997; Munos and Moore, 2002; Griine and Semmler, 2003).4

In this paper, our focus will be on the direct methods of optimization. More
specifically, we aim to contribute to direct optimization methods by showing that an
optimal choice of time intervals in the discrete representation of the problem will
enhance optimization performance. Direct methods transform the original optimal
control problem into a nonlinear programming problem through discretization in
time thereby relieving the computational burden relative to the methods that rely on
the necessary conditions for numerical approximation. Consequently, an optimal
choice of time grids will further improve the efficiency of direct optimization.

Mercenier and Michel (1994a) propose a time aggregation method for optimal
control programs that have steady-steady solutions. The method ensures that
discrete models have the same steady-states as the infinite-horizon continuous-time
counterparts. The steady-state invariance property is achieved by imposing some
simple restrictions on the discount factor in the time aggregated model. Later,
Mercenier and Michel (2001), extend their results to optimal control programs that
exhibit endogenously generated constant steady-state growth.

The time aggregation method in Mercenier and Michel (1994a, 2001) works for
any given partition of the decision horizon provided that the truncation date is
sufficiently late, and that the discount factor in the time-aggregated model obeys a
certain recursion. That is, the steady-state in the discrete model will closely
approximate that of the continuous-time analog, independent of how exactly the
transient phase is divided. Thus, the proposed method is geared towards minimizing
steady-state approximation errors from a discrete transformation.

Unlike in continuous models where controls are active at every instant, in discrete
models, control frequency is also subject to a choice. An arbitrary choice of time
intervals between decisions may significantly worsen the numerical results. This
aspect of discrete approximation is often ignored in computational exercises where
the frequency of decision making is assumed to be uniform; or, even if it is
recognized, the dates so chosen are not necessarily optimal.

Mercenier and Michel (1994b), for instance, develops a measure which determines
decision dates with frequencies that die out as time elapses (referred as M—M
gridding hereafter). This criterion rests crucially upon the assumption that the speed
of convergence along the transient phase is constant.” We show in our sample
problems, the above uneven sampling method does indeed improve the optimization
accuracy over uniform time steps when it is used in conjunction with the steady-state
invariance restrictions. Unfortunately, however, in order for this idea to be useful,

“In passing, we note that adaptive ‘state’ gridding is similar in spirit to the optimal ‘time’ gridding
suggested in this paper.

SUnless the system dynamics are linear, the speed of convergence will not generally be constant. Thus,
time intervals given by this scheme will be suboptimal with nonlinear dynamics that start far from steady-
state.
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one needs to know the largest stable root of the linearized system around the
stationary equilibrium. This is a significant drawback as it is computationally
inefficient. After having derived the necessary conditions, linearized the system
dynamics around the stationary equilibrium and computed the stable root, what
would be the advantage of going back to approximate it once again, this time, with
the direct methods?

Hence, the important question as to how ‘best’ to divide the decision horizon is
still left unresolved. In fact, not only that time grids themselves should be best in
some sense, but also that the method to discover them should also be efficient. This is
the specific problem we tackle in this paper. The answer is simple enough: Use direct
methods to also optimize the time intervals in the discrete models aggregated as in
Mercenier and Michel (1994b, 2001). Indeed, given the number of decisions, the
computational tradeoff that exists between the minimization of approximation
errors at the steady-state and the transient phase, is an integral part of the
optimization approach we propose. This way, the most important advantage of the
direct methods namely, computational efficiency will not be compromised. We show
that if time aggregation is carried out with a view to minimizing the overall
approximation errors, the optimization performance, accuracy and speed, will
significantly improve.

We take up three sample optimal control problems that frequently appear in the
literature and compare our method with approximations using uniform decision
dates and nonuniform decision dates as suggested by Mercenier and Michel (1994b,
2001). For numerical optimization, we use genetic algorithms (GAs) as a global
search heuristic.® First, a simple regulator problem is adopted for its analytical
tractability. Given a fixed number of inputs, optimal and M—M gridding enhance
optimization accuracy over uniform gridding equivalently. Direct optimization of
the time intervals is however more efficient in terms of better average performance
and lower standard deviation over a number of runs than both M—M and uniform
discretization. Next, we reconsider the Ramsey growth model in Mercenier and
Michel (1994a). Again, if investments take place at optimal dates as per our method
or, at unequally spaced M—M dates, welfare significantly improves over equally
spaced investment dates. Our direct method has a slight performance advantage over
M-M, but the real gain again is in terms of computational efficiency. Over a number
of runs, the average performance is substantially higher with a lower variance
compared to both approximations with uniform and M-M time grids. Finally,
Lucas’ (1988) growth model is numerically solved with the same parametrization as
in Mercenier and Michel (2001). Since the model involves an economy wide
externality, approximation involves both optimization and solution to a fixed point
problem. We develop parallel GAs to tackle both tasks simultaneously. With the
given parameters the approach to steady-state is almost linear so that the manner in
which the transient phase is partitioned does not matter much. However, our method

SGA implementation, however, is not essential to our results; any other direct numerical optimization
routine could do just as well.
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approximates more efficiently, and captures better the qualitative features of the
transient phase.

2. Optimal step sizes in time aggregated models

Generally speaking, two critical decisions need to be made for any discrete
representation. First, the length of the transient phase and the stationary conditions
thereafter have to be considered. Assuming that a continuous-time problem becomes
stationary after some date, say 7, then the objective functional can be truncated at T’
with the stationary tail adjoined. Analogously, the discrete objective functional can
also be appended with the stationary tail as a terminal criterion to approximate the
model at the steady-state. Obviously, if additional accuracy is desired in
approximating the transition dynamics, this will require a relatively larger 7 with,
of course, incremental computational costs.

Second, given the length of the transient phase, 7, one must then decide on a
specific sequence of dates, 7, € [0, 7] and n € {0, 1,..., N — 1}, at which controls will
be activated. Any sequence of dates will partition [0, 7] such that ZnN:_Ol N, =T,
where A, = t,,1 — t, and ¢ty = 0. Obviously, the closer the dates, (the smaller A,) the
better will be the approximation. At this juncture, the experimenter has to again
weigh the enhanced numerical accuracy against the increased computational costs
associated with a more frequent decision making.

Note that for any given T, a specific sequence of decision dates is comprised of the
number, N, and the frequency of control actions, A,. For instance, if 7T is arbitrarily
fixed and decision intervals are assumed uniform, as is usually done in
computational exercises, then, A, = A for all n e {0,1,...,N — 1} and N = T/A.
As an alternate paradigm, we propose to fix the number of control actions, N, and
treat the intervals, A,, also as control parameters. Thus, if 7 is fixed ahead of time,
then a sequence of optimal intervals, A¥, must obey the constraint, Y0 ' A* = T.
Otherwise, the time at which the system becomes stationary is approximated as

N—1 A "

Zn:O An =T1"

2.1. Steady-state invariance

Consider the following generic multi-dimensional infinite horizon control
problem, with a state vector x(¢) € #" and h(t) € # and a control vector u(t) € Z2™:

J = max /00 e P h(6)" g(x(1), u(?)) dt,
0

st X(0) = f(x(0), u(r)), x(0) = %,
h(t) -
o= o(x(1),u(1)), h(0) = h. (1)

Under standard differentiability conditions Pontryagin’s maximum principle will
hold and a balanced-growth path will exist. Assuming the maximized functional in
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Eq. (1) is concave, Mercenier and Michel (2001) propose the following discrete
transformation of Problem (1):

00 An
J4 = max Z 9(Xis hsy)s
n=0-Ilp41
s.t. X;n_H — Xty = Anf(xtnaufn)’ Xy = X,
yln+1 = ytn[l + Du(p — ap(xy,, ury))], Yig = y @

with no restriction on the choice of A,.

The discrete approximation above preserves the steady-state invariance property
in the sense that the constant optimal values of the control, state and the co-state
variables for problem (2) will also be the optimal values for the continuous time
problem (1) at the steady-state. Moreover, since the optimal values of x,, and u,, do
not depend on y,, it can arbitrarily be set to one. Finally, defining o, = 1/ Vi, and
substituting in the equation governing the motion of Viyirs Mercenier and Michel
(2001) gets

_ Olp—1

1 + A‘n(p - a(p(xtns uln)) .
The recursion (3) is a generalization of the results in Mercenier and Michel (1994a)
where growth is assumed to have ceased in the long-run, i.e., ¢ = 0.

Now, assuming that problem (1) reaches a stationary equilibrium (%, ) at some 7,
it can be restated as

(©)

Up

T
J = max/ e~ =D g(x (1), u(r)) dt + G(X),
0

where, by definition,

o . ef(pfaﬂ:’)T
G(x) = / e g(R, i) dt = ———— ¢(%, ).
T p—ay

The time aggregated version of the truncated problem becomes
- g(xtn’ uln) + ﬁN G(xN)~ (4)

N—1
J4 = max E
n=0yn+l

Mercenier and Michel (2001) shows that if G(X) = G(xy) and recursion (3) holds
forn=0,1,...,N — 2 with yy = (p(u,N,x,N) and iy = l/y,N then (X, %) will be a
solution also to (4).

Note that the steady-state invariance holds for any sequence of time intervals,
ANy,,n=0,1,...,N — 1. However, in passing from continuous to discrete time, a new
state variable, decision dates, is introduced which evolves according to
thr1 = t, + Ay, with the initial condition ¢y = 0. If T is fixed ahead of time, the
evolution of decision dates, ¢,, will terminate with ¢ty = T otherwise, ¢y is also freely
chosen. In Mercenier and Michel (1994b, 2001), this state evolution is ignored as it is
immaterial to the steady-state (or steady-growth) invariance results. Hence, by

A
t
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choosing the decision intervals optimally, the decision dates can be optimized
without nullifying the recursion (3).

Given any N, assuming 7 is free, we constrain the intervals by, 0 <A, <Apax SO
that 2’11\1;01 A, <T" where T" = fo;(} Amax- Now, if we can show the existence of a
sequence of time intervals that maximizes problem (4), then that sequence will
also satisfy the steady-state invariance (steady-growth invariance) restrictions in
problem (1).

The following argument establishes the existence of a sequence, {A:}ff:_ol,
that maximizes problem (4). Since x, = Xio + Aqf(x,o, u,o) and Vi = Yz0(1+
No(p — a(p(xo,u,o))), x;, depends continuously on Uy, Ay and Xty and Vi depends
continuously on utO,Ao, Xqq and y, . Also, because Xy = Xy +A1f(xt1,ut1) and
Yiy = y,l(l + Ai(p — ap(x1,u,))), X1, is a continuous function of uy,, u,, Ay, Ay and
X1 and Yiy is a continuous function of Uy s Uy, Ay, Ay and Xt and Vi Proceeding in

this manner, it can be shown that Xtys Xty oo Xey, all depend continuously on
Uy Upys -5 Uiy s No,Ny,..., Ay_; and Xiy- Similarly, ViysVigs- -2 Vsy are all
continuous functions of Uy U5 - ..,u,N_l,Ao,Al, o ANC, Xt and y, . Thus, the

objective function in problem (4) is a continuous function of those 2N variables since
x;, and Yy, are fixed. Since the constraint set

{(ufoaulla .. "uZN713A05A1’ e 5AN—1)|utn € Ua

N—1
0< Ay <At =0,1,...,N —1Tand > An<T“}
n=0

is compact, we conclude that problem (4) possesses a solution.”

3. Numerical solution method

Once the original problem is transformed into a nonlinear programming problem
as per our method, then any local/or global search algorithm can be used for
numerical optimization. Though, it is not essential for our main argument, we use
GAs to approximate the solutions. There are several good reasons why we choose
GAs to implement our solution method. GAs are global search algorithms which
start completely blind but, learn as they solve. Starting from a random initial
population of candidate solutions, they ensure convergence to an approximate
global optimum by exploiting the domain space and relatively better solutions
through genetic operators. Gradient based optimization methods, on the other hand,
may get stuck in a local optimum or fail to converge at all, depending on the initial
parameters. Furthermore, in addition to the inherent parallelism in a single GA,

"Note that for the steady-state invariance to hold, the continuous-time problem has to be concave. If the
original control problem is nonconcave, neither the steady-state invariance nor optimization of time
intervals will be valid.
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several GAs can be implemented in parallel to approximate dynamic games or
distribute computational tasks that require task-specific learning. Indeed, in one of
our sample problems, we ease the computational burden by assigning one GA to
optimize while another one to solve a fixed point problem. Against the afore-
mentioned advantages, however, GAs are considerably slower than gradient based
local search routines.

3.1. Genetic algorithms as an optimization heuristic

A GA, is an iterative search heuristic based on the mechanics of natural evolution.
At any generation, say s, the algorithm maintains a constant-size population, Pop(s),
of candidate solutions to breed yet better solutions. By iterating on a population of
well-adopted sample points rather than a single point, the probability of getting
stuck at a local optimum is reduced. The GA operators are simple enough, involving
no more than random number generation, string copying and partial string
exchanging; yet, the resulting search performance is impressive (Goldberg, 1989).

The first step of optimization with a GA is to code the parameter set of the
optimization problem as a finite-length string, usually over the binary alphabet
({0, 1}). The initial population, Pop(0), is generally random. To approximate the
control problem (4), GA evolves {u}.,,n,A},’n, N7 m,Af’n}ffz_ol, a k-sized population
of candidate solutions, which is random at s = 0.

Next, given an objective function, each string, /, is evaluated by computing its
performance relative to the population, namely, its fitness score. For the control
problem (4) this is

1
Jd(xlo )yto 5 ui[na A5,;«,)
P - -
Zj’c:l‘]d(xlo ] yto ’ u_]S',tn s A{g,n)

Based on the fitness scores, the individuals in Pop(s — 1) are copied into Pop(s) by a
randomized selection procedure. The probability of a certain schemata, a given
binary configuration, in Pop(s — 1) being present in Pop(s) is proportional to that
schemata’s fitness score in Pop(s — 1). By selecting structures for reproduction in
such a way that the number of offspring of a given structure is proportional to that
structure’s performance (relative to the population), a GA achieves the important
property of inherent parallelism: the number of structures that contain any given
schemata, changes at a rate roughly proportional to the observed average
performance of all structures that contain the given schemata (Holland, 1975;
Theorem 6.2.3, p. 102.).® This operation is an artificial version of natural selection, a
Darwinian survival of the fittest among individuals. GA searches the space of binary
combinations by generating and testing points in the space of structures. Since the
latter space is exponentially smaller than the former, a GA is a highly efficient search
procedure (Holland, 1975).

prob; = for all / and s.

8A schema is a similarity template: it is the set of all potential strings (chromosomes) with prespecified
characters occupying designated positions.
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Next, in order to breed fitter individuals (explore other points in the search space),
some variation is introduced into the new population by means of genetic
recombination operators without disrupting the selection process. Crossover is the
primary recombination operator in generating new populations. Crossover
recombines two binary strings at a random point by exchanging the segments to
the right of this point. Thus crossover provides for further exploration within the
search space. The secondary search operator, mutation, also introduces diversity in
the population by randomly changing 1’s or 0’s of the structure at particular
locations. Finally, the evolution terminates after a specified number of generations.
The general outline of a GA is

procedure GA;
begin
initialize population Pop(0) ;
evaluate Pop(0) ;
t=1;
repeat
select Pop(s) from Pop(s-1);
recombine Pop(s) ;
evaluate Pop(s) ;
until (termination condition) ;

Our third sample problem requires parallelization of the above procedure as it
involves both optimization and solution to a fixed point problem.’ There, a
representative agent takes a sequence of externality w,, as given and optimizes by
choosing a sequence of actions w,, and v,,. In optimizing, she is, however, unaware
that in equilibrium w,, = W,,. We construe this as a Nash equilibrium between two
artificially intelligent players.

Player one is a GA, GA®, which evolves {w] in> “n,Ajn,... K Ve AL,
k-sized population of candidate solutions, based on the fitness score

k ke \N-1
w VAN S|

! ! 1 =%
Jd(x’o’yto’ Wy tno Us.tns Asn’ Wi 1 tn)

k
Z/:]Jd(xr()»yro W]”n,l/”n,Am, Ve lf)

where wy_ | is the best performing candidate solution in the previous generation
communicated by the second player.

The second player is also a GA, GA", evolving a k-sized population of potential

solutions, {w!, ,..., Wk [n}n o » based on the fitness score,

prob, = for all / and s,

Jf(M}Y In’ _S l,tn)
Zj:lJf(W{v,tnv W)

prob; = for all / and s,

The details of the parallel GAs can be found in Alemdar and Ozyildirim (1998). This parallelism is later
extended to an online approximation of Stackelberg equilibria in Alemdar and Sirakaya (2003) and
feedback Nash equilibria in Sirakaya and Alemdar (2003).
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where wy | is the the best performing candidate solution in the last generation

exchanged by GA®. The raw fitness of the second player is equal to,

N—1 1/2
Jf = min (Z |th — Wi |2> .

n=0

The exchange of best-to-date candidate solutions takes place via the computer
shared memory synchronously at every generation. Essentially, GA®, optimizes
while GAY forecasts. Under evolutionary pressure GA® learns to optimize better for

any given forecast W}, . GAY, on the other hand, learns from past forecasts to
better predict given any wy ;. Thus, the equilibrium of this game between the

optimizer, GA®, and the forecaster, GAF, is the approximation of J4 and also the
equilibrium wy, = w;,. The following pseudo code outlines the steps involved in the
parallel GA search.

procedure GA®; procedure GA;
begin begin
Randomly initialize Pop®(0); Randomly initialize PopF(0);
copy initial wlo,m to shared memory; copy initial w{,’m to shared memory;
synchronize; synchronize;
evaluate Pop®(0); evaluate Pop(0);
s = 1; s = 1;
repeat repeat
select Pop©(s) from Pop®(s — 1); select Pop(s) from PopF(s — 1);
copy best w{, to shared memory; copy best w{, to shared memory;
synchronize; synchronize;
crossover and mutate Pop©(s); crossover and mutate Pop"(s);
evaluate Pop©(s); evaluate Pop'(s);
s=s+1; s=s+1;
until(termination condition); until(termination condition);
end; end;

4. Numerical experiments

For numerical optimization, we use the genetic operators in Genesis 5.0
(Grefenstette, 1990), a GA package. We fine tune search parameters and/or
distribute computational tasks as the problem demands it. Each experiment starts
with a randomly initialized constant size, 50, population. In Genesis 5.0, the selection
of individuals is done by a stochastic procedure whereby each structure is allocated a
portion of a spinning wheel proportional to that structure’s relative fitness. A single
spin of the wheel determines the number of offsprings assigned to every structure.
The selection pointers are then randomly shuffled, and the selected structures are
copied into the new population. This selection procedure is quite successful when the



N.M. Alemdar et al. | Journal of Economic Dynamics & Control 30 (2006) 569-593 579

search terrain is relatively free of noise; it leads to a fast convergence. If, however, the
search terrain is highly erratic as is the case in the third sample problem where
optimization and fixed point iterations go in parallel, it may lead to a premature
convergence. Consequently, to avoid false convergence, we use rank selection in
parallel GAs. Furthermore, we use a selection strategy that ensures that the best
performing structures always survive intact from one generation to the next. In the
absence of such an elitism, it is possible that the best structure may disappear after a
mutation or a crossover operation. In all simulation, we adopt a crossover rate of
0.60 and a mutation rate of 0.001 which are both suggested by Grefenstette (1986)
after experimenting on a number of optimization problems. We gradually increase
the number of generations until no substantial improvement in performance is
observed. Genesis 5.0 is compiled on a IBM RS/6000 running AIX 5.2.

In order to compare our discretization method with those using uniform and
nonuniform M—M step sizes, we take up three sample problems. All our sample
problems involve equality and inequality constraints. We simply substitute the
equality constraints. If inequality constraints are violated, the fitness is reduced
by a large penalty. The simple infinite-horizon discounted cost continuous-time
regulator problem admits a unique closed-form solution, thus allowing for a direct
comparison with the exact solution. Indeed, given N, optimal and M-M time-
gridding equally improves performance accuracy over uniform gridding. Next, we
reconsider the Ramsey growth problem. Though, there is a small advantage in favor
of our method over M—M, both methods improve welfare over uniform gridding
substantially. The improvement becomes more pronounced when the initial capital
stock is relatively small compared to the steady-state. As a last experiment, we
numerically solve Lucas’ (1988) human capital model using the parametrization in
Mercenier and Michel (2001). Here, rapid dynamics are further compounded by the
presence of an externality. Our solution algorithm is novel, and successfully handles
both complications. However, since the approach to steady-state is very fast and
almost linear, transient dynamics do not matter much in terms of overall
performance: The welfare gain from a more accurate approximation of the
transition path is small. Nonetheless, the qualitative features of the transition, such
as early full allocation of labor to production, is only captured by optimal time
gridding.

4.1. Example I: a simple regulator

As a benchmark for comparison, consider the following continuous-time regulator
problem,

J = min /OO e P((x(1) — 1)* + u(t))) dt,
0
s.t. X(f) = x(¢) + u(?) — 1,

and x(0) = x. Particularly, assume an initial state, x(0) = 0.1 and a discount rate,
p =0.1. In this problem, the optimal state and control trajectories are, x(f) =
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1 —0.9e 132 and wu(f) = 2.0964e~132%3 respectively. The feedback control is,
u = 2.3293(1 — x), yielding a minimum cost, J = 1.8869.

For direct numerical optimization, the regulator problem is first recast in the time
aggregated form as

N-1

Jo=min > oAy — 1P 1) + By(Cry — 1P +17),
n=0
.t Xy = Xy = Dy, +uy, — 1)

and the initial condition x(0) = 0.1. The discount factor, «,, obeys Eq. (3) for n =
0,1,..., N —2 and terminates with = ay_;. When approximating with uniform
step sizes, we fix the number of inputs, N, at 25 and assume the system to have
reached the steady state at T = 10 so that A = 0.40. After T = 10, the terminal cost,
(xey — 1)’ + u,N, becomes zero. When control intervals are also optimized, they are
constrained by 0.01 <A, <10, so that Z 02, <250. M-M decision dates are given
by t, = (1/)1log(l — (n/N)(1 — exp(AT)) for n=0,...,N, where A is the stable
eigenvalue which is —1.3293 in this example.

Table 1 and Fig. 1 summarize our numerical results. From Table 1, observe the
improvement in performance that comes along with nonuniform sampling times.
The minimum total cost is reduced from 2.4630 with uniform steps to 1.9601 with
optimized decision intervals, and to 1.9650 with M—M time gridding. In both cases,
there is a gain in performance of around 20 percent. This reduction in costs is largely
achieved by a more assiduous use of the fixed number of inputs, which calls for a
more frequent control action early on to steer the system more rapidly towards the
steady-state. Recall however, that in order for M—M time gridding method to realize
this gain in accuracy, it would require the knowledge of the negative eigenvalue
whereas our interval selection method assumes no such information and it is
completely blind.

Reported in Table 1 are also the optimal and M—M decision dates. Note that in
our method T is not fixed ahead of time so that the final decision date is optimally
chosen weighing the incremental reduction in the transient versus the steady-
state costs. The final M—M decision date, on the other hand, is always equal to 7,
the assumed length of transient phase. In Fig. 1, the exact trajectory of the state
variable is also displayed to better gauge the gain in accuracy from optimal time-
aggregation.

4.2. Example II: transient growth

In order to demonstrate the computational payoffs and the potential welfare gains
from an optimal sequencing of decision dates, we next adopt the one sector optimal
growth model in Mercenier and Michel (1994a).'°

%The growth model in Mercenier and Michel (1994a) is standard and adopted from Manne (1991) for
numerical comparisons.
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Table 1
A simple regulator®
Uniform grids Optimal grids M-M grids
n AN, Xt, ut, A, ty Xt, ut, A, Iy Xt, ut,
0 040 0.00 0.1000 1.6982 0.0100 0.0000 0.1000 2.1574 0.0307 0.0000 0.1000 2.0941
1 040 040 0.4193 1.0959 0.0341 0.0100 0.1126 2.0640 0.0320 0.0307 0.1367 2.0092
2 040 0.80 0.6254 0.7069 0.0356 0.0474 0.1527 1.9700 0.0334 0.0627 0.1733 1.9240
3 040 1.20 0.7583 0.4562 0.0372 0.0865 0.1927 1.8770 0.0350 0.0962 0.2100 1.8387
4 040 1.60 0.8441 0.2942 0.0387 0.1284 0.2325 1.7846 0.0367 0.1312 0.2467 1.7529
5 040 2.00 0.8994 0.1899 0.0405 0.1716 0.2719 1.6933 0.0386 0.1679 0.2834 1.6676
6 040 240 0.9351 0.1224 0.0423 0.2170 0.3111 1.6008 0.0407 0.2065 0.3201 1.5816
7 040 280 0.9581 0.0792 0.0446 0.2641 0.3496 1.5125 0.0430 0.2471 0.3568 1.4961
8 040 3.20 0.9730 0.0510 0.0467 0.3118 0.3880 1.4232 0.0456 0.2901 0.3934 1.4106
9 040 3.60 0.9826 0.0329 0.0492 0.3622 0.4258 1.3345 0.0486 0.3357 0.4301 1.3251
10 0.40 4.00 0.9888 0.0212 0.0520 0.4153 0.4632 1.2477 0.0519 0.3843 0.4668 1.2400
11 040 440 0.9928 0.0134 0.0552 0.4718 0.5002 1.1613 0.0557 0.4362 0.5035 1.1537
12 040 4.80 0.9953 0.0090 0.0587 0.5319 0.5367 1.0764 0.0602 0.4919 0.5401 1.0687
13 040 520 0.9970 0.0058 0.0630 0.5947 0.5727 0.9928 0.0655 0.5521 0.5767 0.9830
14 040 560 0.9981 0.0037 0.0684 0.6614 0.6083 0.9094 0.0717 0.6176 0.6134 0.8975
15 040 6.00 0.9988 0.0022 0.0745 0.7335 0.6437 0.8269 0.0793  0.6893 0.6500 0.8126
16 040 640 0.9992 0.0016 0.0823 0.8111 0.6788 0.7450 0.0886 0.7686 0.6867 0.7275
17 0.40 6.80 0.9995 0.0010 0.0920 0.8964 0.7137 0.6639 0.1005 0.8572 0.7234 0.6418
18 040 7.20 0.9997 0.0005 0.1044 0.9909 0.7484 0.5830 0.1160 0.9576 0.7601 0.5568
19 040 7.60 0.9998 0.0004 0.1211 1.0970 0.7830 0.5029 0.1372 1.0736 0.7969 0.4717
20 0.40 8.00 0.9999 0.0001 0.1448 1.2199 0.8176 0.4222 0.1679 1.2107 0.8337 0.3867
21 0.40 8.40 0.9999 0.0003 0.1805 1.3651 0.8523 0.3410 0.2164 1.3786 0.8708 0.3018
22 0.40 8.80 1.0000 0.0000 0.2400 1.5458 0.8872 0.2597 0.3050 1.5950 0.9081 0.2167
23 0.40 9.20 1.0000 0.0000 0.3573 1.7870 0.9224 0.1777 0.5214 1.9000 0.9462 0.1314
24 040 9.60 1.0000 0.0000 0.7085 2.1448 0.9582 0.0940 7.5785 2.4215 0.9866 0.0151
25 10.00 1.0000 0.0000 2.8519 0.9953 0.0047 10.0000 0.9992 0.0008

#Respective minimum costs with uniform, optimal and M—M intervals are 2.4630, 1.9601 and 1.9650.

The model assumes logarithmic preferences, a Cobb—Douglas production
technology, no capital depreciation, a constant population growth at rate g, and a
post terminal growth at rate g over an infinite horizon. The time-aggregated
economic model is

N-1
1+ - oN_
max ZO{ g I~ (1 + 9", IOg(c,n)} + L log(ery,)
s.t.
1 .
ktn+l o k’” = a [1-(+9) ][ltn - gkm],
Cip + il‘n = akfn,

¢y, and ky, >0 and k;, = k.
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— Exact solution

--- Uniform step sizes

----- Optimal step sizes
: : 3 : : : --- M-M step sizes
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0 1 2 3 4 5 6 7 8 9 10

Fig. 1. Exact and approximate state trajectories.

The discount rate follows the recursion
Op—1

I — (149

g

Uy

for any 09 >0, and n<N — 1, and the terminal welfare becomes

UN—1

oN—
log(ery) ==~ log(aky, — gk,

where p is the rate of pure time preference in the continuous time analog.

Undoubtedly, the best test of the strength of our method would be to weigh our
numerical results against the exact solution to the continuous-time growth model as
in the previous section. Unfortunately, however, because of the inherent
nonlinearities, no closed form solution exists to allow for such a comparison. To
proceed further, we fix the parameter values, p = 0.05/4, g =0.03/4, a = 0.2, b =
0.24 as in Mercenier and Michel and approximate the growth model using uniform
and optimal time intervals assuming two different initial capital stocks, k’o =24and
ki, = 0.01.

In approximations with uniform grids, we assume 7 = 350 and N = 35 so that
A, = 10. Thus, whether starting poor, k,o = 0.01, or with a head-start, k,o =24,
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economic growth has to be optimized by a choice of 35 investment rates at equally
distanced dates of 10 periods. In contrast, when the time intervals are optimized, as
per our method, GAs also search for the optimal investment dates, subject to the
constraints, 0.01 <A, <350, so that Ziio A, <12,250. M—M grids, on the other
hand, are given by #, = (1/log(2))log(l — (1 — 2")(n/N)) for n =0,..., N, where 2
is the stable root and equal to 0.972."!

Table 2 reports our numerical results. Note that a major source of approximation
error using time-aggregation along the transient phase is the assumption that
controls are constant within given time intervals. Consequently, the sharper are the
optimal adjustments during the transition, the larger will be the approximation
errors with uniform step sizes. When the economy starts relatively well-off, with the
initial capital stock, k,, = 2.4, only 25 percent below the steady-state, the desired
adjustments along the state trajectory are relatively small. Nonetheless, even with
such a ‘smooth’ transition to the steady-state, our solution algorithm improves the
optimization performance from —131.8716 with uniform time intervals to
—117.6428, a welfare gain of more than 10 percent. Improvement over approxima-
tion with M—M time intervals is relatively small from —119.1260 to —117.6428, a
gain of about 1 percent. In contrast, when the economy begins relatively poor,
ki, = 0.01, the desired initial adjustments along the state trajectories are sharp, and
so is the performance enhancement that comes along with an optimal choice of
discretization steps. Our method improves welfare from —166.4245 to —139.0410
compared to uniform time intervals, a gain of more than 15 percent, and from
—141.3519 to —139.0410 compared to M—-M time intervals, a gain of about 2
percent. However, to able to use M—M method, one would again need the dominant
stable root from the linearized system dynamics.

From Table 2, it is also apparent that the M—M sequence of investment dates are
suboptimal. In contrast, when investment dates are also optimized, we observe a
more frequent investment activity at earlier stages when the desired adjustments are
larger. As the capital stock approaches its steady-state value, investment becomes
less frequent and eventually dies out.

Also noteworthy from Figs. 2 and 3 is the fact that the steady-state invariant
optimal time aggregation method captures the stationary equilibrium reasonably
well. Though, the steady-state performance worsens a bit when k¢ = 0.01, this is
more than offset with the superior performance along the transient phase.
Obviously, in order to improve the steady-state performance, either T can be fixed
at a relatively larger number, e.g., T = 350, or the number of sample points N can be
increased, or both. While the former is suboptimal, the latter is simply costly.
Ultimately, given N, optimal choice of time aggregation with steady-state
equivalence better captures the transition dynamics thus providing a better
approximation to the continuous model.

"Mercenier and Michel (1994a) find the stable root by assuming equal unit grids and linearizing the
discrete dynamics around the steady-state with the above parameters.
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4.3. Example III: permanent growth

Consider now the Lucas’ (1988) model with a constant population that is
normalized to unity:

o0
J = max / e Pe(n)’ dt
0

s.t.
K(1) = F(K(t), W(OH(O)H (1)) — ¢(t) — uK(1), K(0) = K, given,
H(t) =61 —w(t))H(1), H(0)= H, given,

where ¢ is consumption, K and H are physical and human capital, w is the share of
non-leisure time devoted to the production of goods and 1 — w the share devoured to
human capital accumulation, an overbar denotes an externality, F(.) has constant
returns, and vy, 6 and u are all positive scalars. Using the following transformations:

h(t) = H(H (), x(t) = K(0)/h(2),  v(2) = e(2)/h(D)
and rearranging we get

J = max / e P h() v(0)* dt
0

S.t.
X(1) = F(x(0), (1)) — e(t) — px(7) — o(1 — w(n)x(2)
— (1 —w(0)x(1) — v(n),

h(t) _

ol o(1 — w(®)) + v6(1 — w(2)),

x(0) = x¢ given, Ah(0) = hy given.
For direct numerical optimization, the problem is first recast in the time aggregated
form as

J4 = max jf Do v+ B U?N
d = me _
n=0-"tpy] " N p = a(5(1 - WzN) + V5(1 — W,N))
s.t.
Xy — X = Dy(F (x4, W) — €ty — X1y — (1 — Wy )Xy,

—90(1 — Wy, xy, — y), X0 = 0.5,
Vit = L+ Balp = a1 = w,) + 7601 =, )], ¥y = 1.0

with fy = l/y,N.

Assuming temporal aggregation with uniform intervals, we fix the number of
inputs, N, at 25 and assume the system to have reached the steady-state at 7= 500
so that A = 20. If time aggregation is optimal, on the other hand, control intervals
must also obey, 0.01 <A, <500 so that ZiioAng 12,500. A quarterly model serves
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as benchmark. We use the following parameter values: ¢ = 0.1, y = 0.01, 6 = 0.05/4,
p=0.04/4, u=0.04/4 and f=0.25. We generate the M-M grids using ¢, =
log(l —n/(N + 1))/(1/T)log(1/(N + 1)) for n=0,...,N. This formula builds on
the criterion in Mercenier and Michel (1994b) and is proposed by Mercenier and
Michel (2001) for endogenous growth models.'?

As mentioned earlier we use parallel GAs to approximate the model. Every
generation, GA" evolves a population of externalities, 7,,s best of which are passed
to the GA® which breeds a population of Wi, U, and A, to optimize economic
growth. Simultaneously, GA® copies the best performing individual wy, to the
computer shared memory so that GA® can evaluate fitness of the individual forecasts
in its population. GA" ranks forecasts in the population, Wwy,s, according to their
fitness based on, J; = min(Z,]1V=_()1 (Wi, — Wi, |2)1/ 2. The Nash equilibrium of this game
between the optimizer and the forecaster are: w,,, v, and A, that maximize
economic growth and w,, that solves the fixed point problem w,, = wy,.

From Table 3, observe that optimal policy calls for a full allocation of time to
production until physical capital grows sufficiently large. This is so since labor can
immediately increase production while the physical capital is still relatively low.
Subsequently, more time is devoted to accumulate human capital thereby increasing
the efficiency of now reduced labor time. Moreover, as also depicted in Figs. 4 and 5,
all these transient adjustments are rather fast so that the economy can get on the
balanced growth path as quickly as possible. Consequently, on balance, welfare that
accrues along the steady-state path weighs relatively more than the welfare enjoyed
along the transient phase. Though, the transition dynamics do not feature
prominently in this model, nonetheless, optimal time aggregation improves welfare
albeit, by small margins. More significantly, qualitative features of the transition
dynamics, such as initial full allocation of time to production, are better captured
under optimal time aggregation.

5. Computational efficiency

Thus far, we have emphasized the improved accuracy due to the optimal time-
aggregation of the transient phase. Enhanced accuracy, however, also comes with
higher computational costs. Since, the intervals are also optimized, the number of
variables subject to search increases by N — 1. It can be argued that perhaps the
same, or maybe a better degree of accuracy can be achieved with the equivalent
computational resources by simply adding N — 1 sample points to a transient phase
that is divided either by a uniform or M—M gridding scheme thereby shrinking the
time intervals. A theoretical exposition of this query is beyond the scope of this

>Note that this discretization scheme does not require the stable root of the linearized system. When
this measure is used for discretization, the regulator problem has a minimum cost of 2.1254 while the
transient growth problem has a maximum welfare of —121.7689 when k(0) = 2.4 and —146.6402 when
k(0) = 0.01. Since, the general performance is substantially worse than for the other criterion, we do not
report the results in detail.



N.M. Alemdar et al. | Journal of Economic Dynamics & Control 30 (2006) 569-593

588

‘0S10°0 PUB $00°0
PUB G0()’( 1B SIOLID }SB2210J 2A10ASIY 9509 H01 PUB L96 401 ‘SLI6 €01 T8 S[RAIIUL SWI) AN PuE [ewundo ‘WIojiun yim sanIjin Wnwixew 9A100dsay,

VLLL'O SLLL'O 9L8F'T LLET61 0000005 O0E£LE90T PLLL'O VLLL'O ¥L8Y'T ¥IET 61 €TSO'IS OLLL'O 08LL'O 068Y'1T 06vC'61 00S 0T ST
LLLL'O 9LLL'O 088%'1 6LPCT6I 0LT9€6E TYTTTY  19LL°0 L8LL'O SO8F'T SITI'6I 66¥8°L9 STOTEl O08LL'0 08LL'O 0681 06vC61 08y 0C +C
OLLL'O 9LLL'O 9L8F'T €9€T61 LTOV'ICE 8PPy  $06L0 688L°0 LL8F'T 068061 ¥IPTIS S809°TT 08LL'O O08LL'O 068%'1 OIST6I 09% 0OC €T
SLLL'O 9LLL'O T88Y'T 66VC61 6£STLYT SPYTHE  LT8L'O 0€8L°0 6£9%v'1 88YL'8T HETS'8F O8IL'L  06LL'0 08LL'O 068F'I 0O¥ST6I Ovy 0T CCT
VLLL'O SLLL'O LL8Y'T 98YT61 S600°€ST 86L6'LT  6V8L'0 8PSL'0 €8SH'1 OSLY'81 ¥CES TV 11669 06LL0 O08LL'0O 068%'1 0LST61 0CF 0OC 1T
ELLLO SLLL'O SL8Y'T 1evT61 L6CO'STT 99S9°€C  vE6L0 ¥TO6L'0 OLYY'1 S8LO'ST TOL8'SE €T99°S  OLLL'O OLLL'O OL8F'T 08ST6I 00y 0T 0T
LLLL'O SLLL'O TL8Y'T 6£€T61 TELETOT TCO6V'OT 69180 ILIB0 680F'1 €SEELl TIL9TE 6€61'v 08LL'O O08LL'O 088%'1 06¥CT61 08¢ 0C 61
OLLL'O 9LLL'O PL8Y'T 98CT61 6088°081 #SLO8T  LTH80 0€P80 808E'T T8ISOT CIS6LT 0STL'E O08LL'O0 08LL'O 088’1 06TC’61 09¢ 0T 8I
VLLL'O SLLL'O OL8F'T OITT6I SSO08°TIT 069191  #6L8°0 LISRD 00€E' T 991¥'S1 SE88HPC 8L90°€  08LL'O O08LL'O 006%'1 OIST6I OvE 0C LI
LLLLO LLLL'O S98F'T TEOT 61 S9€9°9F1 LI9T9PI 14060 €€06°0 0I0E'T T8IEHI 09¢eh'CC SLYP'C  08LL'0 OLLL'O OL8P'T 09ST'61 0CE 0T 91
LLLLO 6LLL'O LS8Y'T OCLI'61 8600°CEl T€SEECl  L8P6'0 9L¥V6°0 S6ECT 619TEl 1€S1°0C 6C8CTT  08LL'O0 OLLL'O 088F'1 0OLLT 61 00€ 0OC SI
C8LL'O T8LL'O SE€8Y'T TOILI'61 L9S9'8IT LEBTTI  0186°0 ST86'0 89811 6¥SOTI LITI'8T #I€0T  06LL0 08LL'O OL8Y'1 06¥C61 08T 0T ¥l
68LL0 68LL'0O LOSY'T +PCO'61 0ELE90T 6CLETT  S666°0 00001 6CEl'l LYC6'01 61191 66L6T  OSLL'O OLLL'O 098F'1 0CkCT61 09C 0C €I
96LL'0 TOSL'0 O8LY'T 996881 1000°S6 648501  8666°0 00001 I¥LO'T 9LIL'6  O06LI'PI 6C96°1T  OLLL'O OLLL'O 098F'1 0I¢T6l 0ObCT 0T TI
608L°0 OI8L°0 ¥OL¥'T €00L8T TCIYPS €¥06°6 $866'0 1666°0 PEIO T T€IS8  LSSETI €€C8T  09LL0 O0O8LL'O 088F'1 0SIT6l 0CC 0OC 11
LEBL'O YESL'O ¥IOP'T OCIP'8T 6LOSPL LEOE'6 16660 66660 vLY6'0 OILEL TSE9'0l 90CTL'T  08LL'O O08LL'O0 098%°'I 0C8I'61 00C 0T 01
0L8L0 TL8L'O €9%F'1T 6186°LT THPOT'S9  LILL'S 06660 0000°T LSL8'0 9€9T9 06206 <T909'T 08LL'O O8LL'O 0S8F'1 0€CI'61 081 0OC 6
LTOL'O LTO6L'O $9TH'T STLELT STEY9S  PL6T'S 6660 0000°T 8II80 10€TS O9ber’'L SP6S'T  08LL'0 0SLL'O OI8F'T 0LOO'6GT 091 0T 8
L0080 L0080 CTL6E'T TICSOI 1S€l'8y LIL8'L L6660 8666°0 08€L0 SO06CY L9009  6LTY'T  08LL'O O08LL'O OvLP'T 096L°81 OvI 0T L
6LT8°0 8TIRO 19SE°T VISCST $E9C 0y  SL8Y'L 6660 6666°0 L¥99°0 8YIY'E 9089t  19CC' 1T  06LL°0 06LL0 0T9%'T 0CO¥'8T OCI 0T 9
€0€8°0 TOEL8'0 T86T'T 1I8LLEl 6SLLTE T16E1°L 8666°0 00001 9S6S°0 L8L9T 109S°€ SOTI'T 008L°0 OI8L'O0 OIv¥'I 00L9°LT 00T 0C S
GGS8°0 96680 6LITT HTIL'IT 89¢9°ST  LITY9 76660 0000'T 6LTS0 ¥ISO'CT  9T6S'T  9L96'0 0S8L'0 OF8L'O0 066¢£T 00C€9T 08 0T ¥
€168°0 €168°0 890I'T 000I'6 OSI88I +IES9 96660 00001 #E€9%°0 S8TS'T  899L'T  LST80 088L°0 088L'0 00CE'l 06C6'€El 09 0C €
TOE6'0 16£6'0 1€56°0 €966'S LESTTI  L¥IT9 6660 0000°T TIOP'0 0L60'T 8090°'T 090L°0 0S6L°0 096L°0 OSLI'T 09L6'6 oy 0T ¢
81660 9166°0 90¥L0 TILL'T 06109 06109 L6660 00001 69%Y€0 T119L°0 €180 96,50 01080 0£08°0 0€I6°0 0995V 0c 0C 1
76860 ¥686°0 0ISF'0 00050 00000 66660 0000°T €€6C°0 000S°0 00000 €I8Y'0 08LL'O 09LLO 09870 00050 0 0C 0

S@ g g Uy uy :4 Eh: L g Uy uy :4 S@ U g Uy uy :4 u

spus IN-IN spus reundQ SpLIS uLIojIu)

L[PPOW IMOIT JUSURWIS]
€ 9lqeL



N.M. Alemdar et al. | Journal of Economic Dynamics & Control 30 (2006) 569-593 589

20 ! !

18

16

14

12

o Uniform step sizes

—— Optimal step sizes ||

; . . . . . - -- M-M step sizes

0 . . T

0 50 100 150 200 250 300 350 400 450 500
t

Fig. 4. Transformed capital stock.

111 Uniform step sizes
= Optimal step sizes
= = M-M step sizes

0.9

b
1
1
1
0.95
1
1
1
fl
1

0.85

=

-

0.8

L
V<

111 Uniform step sizes &‘ .

| . | == Optimal step sizes
. . . . . . | = = M-M step sizes

0.2 - - - . - - 0.75

50 100 150 200 250 300 350 400 450 500 0 50

(a) t (b)

100 150 200 250 300 350 400 450 500

Fig. 5. (a) transformed consumption (b) labor time'>.

paper. Instead, we experiment on the sample problems to test this proposition. For

each test problem, we repeat the optimization experiment from different random
populations for 30 times.

3The observed non-monotonicity in the labor time is due to approximation and certainly not optimal.
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Table 4
Comparison of computational efficiency

Uniform grid Optimal grid M-M grid
Regulator
# of generations 1000 1000 1000
Average performance 3.4351 2.4678 6.5350
Standard deviation 0.3029 0.0634 1.8537
CPU time 45.39s 42.71s 44.72s
Transient growth
# of generations 7000 7000 7000
Average performance —124.3065 —117.3030 —120.1896
Standard deviation 1.4233 1.0107 1.7124
CPU time 1071.04s 872.14s 1323.33s
Permanent growth
# of generations 2000 2000 2000
Average performance 104.1450 104.6165 104.5313
Standard deviation 0.0141 0.0436 0.0611
CPU time 737.14s 547.10s 735.11s

When decision intervals are objects of search, we keep the number of sample
points, N, unchanged. However, N is increased for uniform and M—-M gridding so
that all three methods search for the same number of optimal values. We increase N
to 50 in the regulator, 70 in the transient growth and 37 in the permanent growth
problems so that the respective uniform step sizes are now reduced to 0.2, 5 and
13.5135. We increase numbers of sample points in the aforementioned formulas to
generate the M-M grids which are now denser. All sample problems are
approximated 30 times each of which starts with a randomly initialized population
of 50. For each problem, we increase the number of generations by increments of
1000 until all 30 runs contain at least one feasible solution in the population. A
summary of the numerical findings is reported in Table 4.

Numerical experiments indicate that with comparable computational effort,
optimal time-aggregation of transient phase yields better average performance.
Furthermore, this conclusion is robust since optimal time-aggregation also reduces
the variance across random initial populations. From Table 4, it is also noteworthy
that an added advantage of direct optimization of discretization steps is its speed.
The method proposed in this paper not only improves accuracy, but it computes
faster than the other alternative methods. Given the extra time needed for paper and
pencil derivation and offline computation of the stable root for the M—M method, we
conclude that our direct optimization method complements the steady-state
invariant time aggregation by increasing its efficiency.

We attribute the increased efficiency in our method to the fact that our search
algorithm evolves not only a fixed number of sample points on the state trajectories,
but also the associated distances between them. Thus, the fitness of a candidate
solution in the population depends not only on how well it approximates the ‘level’
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of the sample points, but also on how accurately it represents the ‘speed’ with which
a sample point is reached from another. Consequently, step-sizes are accordingly
adjusted in evolutionary steps to improve overall performance thereby speeding up
learning of the transient phase. Ultimately, our method reduces approximation
errors not only at the steady-state, but also during transition phase. Of course,
further numerical accuracy can be achieved by increasing the number of control
actions, N, at the expense of larger computational costs.

6. Conclusion

This paper has shown that an optimal choice of discretization steps in time-
aggregated models with steady-state invariance would significantly enhance the
numerical approximation of the transient dynamics. Conversely, if the length of the
transient phase is arbitrarily set and uniformly partitioned as is usually done,
numerical results can deteriorate dramatically. An alternative scheme that sets
nonuniform intervals is the M—M method. Since, this approach relies on the stable
root of the linearized dynamics around the steady-state, it is less efficient than the
direct method we propose.

We have demonstrated the benefits from our method in three sample problems: a
simple regulator, a transitory and an endogenous growth models. All experiments
indicate that optimal timing of control actions also becomes important in time-
aggregated discrete models. Furthermore, repeated experiments from random initial
populations, have shown the proposed method to be numerically efficient. Extension
of our results to time-optimal control problems is immediate.
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