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Abstract

Agents with single-peaked preferences share a resource coming from different suppliers; each agent is
connected to only a subset of suppliers. Examples include workload balancing, sharing earmarked funds,
and rationing utilities after a storm.

Unlike in the one supplier model, in a Pareto optimal allocation agents who get more than their peak
from underdemanded suppliers, coexist with agents who get less from overdemanded suppliers.

Our Egalitarian solution is the Lorenz dominant Pareto optimal allocation. It treats agents with equal
demands as equally as the connectivity constraints allow. Together, Strategyproofness, Pareto Optimality,
and Equal Treatment of Equals, characterize our solution.
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1. Introduction

Egalitarianism, the central principle of fair division, may conflict with incentives, feasibility
or efficiency constraints. Maximizing the leximin ordering over profiles of relevant characteris-
tics (a.k.a. the Rawlsian approach) is the most common implementation of egalitarianism under
constraints. It is however a controversial method. Indeed, it recommends to take arbitrarily large
amounts of resources from the “rich” if this allows to raise by even a tiny amount the lot of the
“poor”. The only case where egalitarianism eschews this critique is when we can find a Lorenz
dominant distribution of welfare, or resources: at the Lorenz dominant outcome, we simultane-
ously maximize the share of the k poorest individuals, for any number k of agents.1 But unlike
the leximin ordering that always reaches a unique maximum in any closed convex set, a Lorenz
dominant outcome may not exist. We know very few fair division models admitting Lorenz dom-
inating solutions over a reasonably rich domain of problems. The two main instances follow.

Dutta and Ray [11] observed that the core of a supermodular (convex) cooperative game is
one general instance where a Lorenz dominant solution exists; this solution has been known after
their work as the egalitarian selection in the core. The second model, due to Sprumont, is the
fair division of a single commodity under single-peaked preferences and no free disposal [3,25].
The uniform solution selects for each agent either his peak or a common share, in such a way
that the resource is fully distributed. Although the original motivation of the uniform solution
was its incentive properties [3], its most compelling fairness property, and its shortest definition,
is to be Lorenz dominant among all Pareto optimal allocations of the resource [10]. While the
Lorenz dominance property of the Uniform solution is central in our paper, the solution satisfies
many other compelling fairness criteria; see for instance [23] for an alternative characterization
in terms of distributions of shares among agents.

Our contribution: We study a considerable generalization of the Sprumont model, where
a homogeneous commodity (the resource) is still shared by several agents with single-peaked
preferences, but the resource is coming from any number of different suppliers, under arbitrary
bilateral feasibility constraints: each supplier can only deliver to a certain subset of agents.2

Consider a translation office which pays its employees a per page fee. Given the constant per
page rate, each employee has a preferred amount of workload, which is private information to
the agent. The total workload of the office is exogenous and must be allocated to the translators
according to their publicly known language abilities: simplifying, each employee can handle a
certain subset of languages. More generally the suppliers of our model can be different jobs,
each one with a given size in work-hours, to be completed by a set of workers (the agents)
with different skills, so each worker can only perform certain jobs. Another example involves
the distribution of grants with earmark constraints: the resource is money, and there are several
suppliers of funds (the granting agencies) to support different projects (the agents). Each agency
must spend a certain budget, but the earmarks limit the set of projects that a given fund can sup-
port.3 Or the resource can be water available from several sources, and geographical constraints
limit the set of consumers (the agents) that a given source can serve. And so on.

The resources coming from different suppliers are, strictly speaking, different commodities,
but any two commodities are perfect substitutes for an agent who can consume both. Thus we

1 References on Lorenz dominance: [24,16,13].
2 In the sequel, we sometimes refer to the Sprumont model as the standard model.
3 In United States politics, an earmark is a congressional provision that directs approved funds to be spent on specific

projects.
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speak of a single commodity, like in the standard model, but of different resources (the suppli-
ers in the above examples). Our agents have single-peaked preferences over the total amount
of commodity they consume. We explore the implications of efficiency (Pareto Optimality),
incentive-compatibility, and fairness in our bipartite model.

The set of Pareto optimal allocations has a much more complicated structure than in the stan-
dard model. There everyone consumes at most his peak if total demand exceeds the available
resource, while everyone consumes at least his peak if total demand is smaller than the available
resource. Here a Pareto optimal allocation involves typically some agents consuming more than
their peak, and other agents consuming less. More precisely, the Pareto set is described by a
three-components partition of the agents and resources: the first set of overdemanded resources
are consumed exclusively by the first set of agents, who each receives at most their peak alloca-
tion; the second set of underdemanded resources are consumed exclusively by the second set of
agents, who each receives at least their peak allocation; and the third set of balanced resources
is allocated to the third set of agents, who each receives exactly their peak allocation.

We take Strategyproofness (truthful report of one’s preferences is a dominant strategy) as our
incentive compatibility design constraint. We identify the Egalitarian solution that generalizes
the Uniform solution of the standard model. As in that model, this solution selects a Pareto
optimal allocation, defines a Strategyproof direct revelation mechanism, and is fair in the strong
sense that it selects the Lorenz dominant Pareto optimal allocation.

Our axiomatic characterization resembles closely that of the Uniform solution in [25,7]. Re-
call that in the standard model the Uniform solution is the unique solution that simultaneously
satisfies Pareto Optimality, Strategyproofness and Equal Treatment of Equals – or No Envy. In
our model the most restrictive interpretation of Equal Treatment of Equals says that two agents
with identical preferences and access to the same sets of suppliers should receive the same alloca-
tion. We impose a stronger requirement, which does not hold agents responsible for their supply
constraints. Our axiom Equal Treatment of Equal Demands says that two agents with identical
preferences should get identical total shares, unless the feasibility constraints make this impossi-
ble (the precise definition is in Section 6). The alternative viewpoint is to hold agents responsible
for theirs connections in the following sense: if Ann and Bob have identical preferences while
Ann is able to consume more types of resources than Bob, she should end up with a bigger share.
The manager of the translation office may want to treat trilingual Ann better than bilingual Bob,
to reward Ann for having developed this additional skill; or she may view this as irrelevant to
the distribution of the workload, unless of course the only available jobs are in the language that
Ann masters but Bob does not. We take here the latter viewpoint, and refer the reader to [18] for
a development of the former viewpoint in a bipartite model closely related to the current one. See
also more comments in Section 6, when we formally define Equal Treatment of Equal Demands.

Our definition of No Envy takes a similarly neutral view on the pattern of compatibility con-
straints: Ann’s envy of Bob’s share matters even if she is less – or differently – connected than
Bob. If it is feasible to improve Ann’s share at the expense only of Bob, i.e., while preserving the
shares of every agent other than Bob, then it is a legitimate objection ruled out by our No Envy
axiom (Section 6).

The Egalitarian solution meets both properties above, and is characterized by the combina-
tion of Strategyproofness, Pareto Optimality and Equal Treatment of Equal Demands/No Envy,
a result inspired by, and generalizing, the one in [7] for the standard model.

Related literature:
1) In a recent paper, Kar and Kıbrıs [15] also consider the division of a single commodity

coming from multiple suppliers. Every agent can consume from any supplier, but must receive
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his entire allocation from a single supplier: in effect, agents form coalitions to consume different
private goods. It turns out that efficiency is incompatible with using a simple division rule, such
as the Uniform rule, for every supplier.

2) Our characterization of the Pareto set is a consequence of the Gallai–Edmonds (henceforth,
GE) decomposition for bipartite graphs (see [19]). This technique has already been applied to
matching problems in [5] and [21].

3) The GE decomposition appears also in our companion paper [4], where we develop a
model of bipartite trade in which both suppliers and demanders are active agents, in contrast to
this paper where the supply side is inactive and must unload all the resources on active agents.
In [4] each supplier (resp. demander) has single peaked preferences over the amount of com-
modity he wants to supply (resp. receive); the homogeneous commodity can only be transferred
across certain bilateral edges. The set of relevant Pareto optimal allocations is described by the
same GE decomposition as here, it contains again a Lorenz dominant allocation, which defines
a strategyproof direct revelation mechanism. However the two models differ in important ways.
The mechanism in [4] ensures Voluntary Participation by all agents, therefore no supplier (or
demander) ever gets to supply (or receive) more than her ideal level. In the current model, the
underdemanded suppliers unload all their endowment to agents who end up with more than their
peak consumption. By contrast in [4] these suppliers are rationed (cannot unload their peak sup-
ply) while the corresponding demanders consume their peak allocation. On the other hand the
overdemanded suppliers here become the suppliers who supply their peak load in [4], and the
corresponding demanders are rationed in [4] exactly as they are here. Thus an allocation problem
in [4] amounts to the concatenation of two problems here, each with one overdemanded side and
the other side rationed (consuming below peak).

Another difference arises when we consider the impact of destroying one edge in the bipartite
graph of compatibility constraints. In [4] this is (weakly) detrimental to the agents at both ends
of the edge. By contrast, in our model, dropping an edge can be good or bad news for the agent
at one end of this edge, as well as to other agents: this is explained in the concluding Section 8. It
implies that if the edges are not verifiable (agents can freely claim to be incompatible with some
suppliers) our solution is vulnerable to manipulation, while the mechanism in [4] is not.

We note finally that the proofs in [4] rely on the techniques of flows on graphs, in particular
the max-flow min-cut theorem, instead of the GE decomposition we use here. The flow approach
simplifies some proofs there, and could have been used here as well, at some notational cost.

4) We conclude with three follow up papers. Chandramouli and Sethuraman [6] establish that
our Egalitarian solution is actually Group-Strategyproof, thus answering an open question in an
earlier version of this paper (see Proposition 4 in Section 6).

Szwagrzak [26] obtains an alternative characterization of the Egalitarian solution where in-
stead of Strategyproofness he uses a bipartite version of the Preference Replacement property,
that is the basis of an alternative characterization of the Uniform rule in the standard model
(Thomson [28]).

Finally, Moulin and Sethuraman [18] discuss the extension to our bipartite model of other
solutions of the standard rationing problem, such as the Proportional and Equal Losses solutions.
They assume complete information of demands and supplies, and take the viewpoint that agents
are responsible for their own connections. They generalize the familiar Consistency property to
the bipartite context. Consistency in our model is briefly discussed in comment 4 of Section 8.

Contents: After a numerical example in the next section, we introduce the model in Section 3,
and characterize Pareto optimal allocations in Section 4. The Egalitarian solution is defined in
Section 5 and its fairness and incentives properties are the subject of Section 6. Section 7 contains
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Fig. 1. A bipartite problem and its canonical decomposition.

the characterization result, and Section 8 collects final comments about variants and possible
extensions of our model.

2. A numerical example

We have four resources r, s, t, u, and four agents A,B,C,D. Fig. 1 shows the compatibility
constraints: e.g., agent A can consume from any resource, while agent D can only consume from
resource u. Total supply 11 + 15 + 8 + 6 = 40 equals total demand 10 + 15 + 10 + 5 = 40.
In the standard model, this would allow to give every agent her peak allocation. The bipartite
constraints do not allow this: A, for instance, must consume at least 11 units, because no one else
can consume the first resource. On the other hand, D should not consume more than 5 units in
a Pareto optimal allocation: for instance if we give him 6 units, C can get at most 8 units, and
transferring one unit of resource u from D to C is a Pareto improvement.

The three-component partition identifies r as the underdemanded resource, and A as the agent
consuming exclusively the r-resource. There are two overdemanded resources t and u, whose re-
sources go exclusively to C and D. Finally resource s is balanced with agent B . By Proposition 1
below, an allocation is Pareto optimal if and only if: A gets 11 units from r ; B gets 15 from s;
D gets θ units from u, where 4 � θ � 5, and C gets all of t plus (6 − θ) from u. This guarantees
that each one of C,D gets no more than his peak.

Within the Pareto set, our Egalitarian solution picks the most equal feasible set of shares,
corresponding to θ = 5: C gets 9 units and D gets 5.

3. The model

We have a set M of agents with generic elements i, j, k, . . . , and m = |M|; and a set Q of
resources with generic element r, s, . . . , and q = |Q|. Resource r is of size ωr , where ωr > 0.

All resources must be allocated between the agents, but each resource can only be assigned
to some of the agents. The bipartite graph G, a subset of M × Q, represents the compatibility
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constraints between resources and agents: ir ∈ G means that it is possible to transfer resource r

to agent i. We assume throughout that the graph G is connected, else we can treat each connected
component of G as a separate problem.

We use the following notation: for any subsets S ⊆ M,T ⊆ Q the restriction of G is
G(S,T ) = G ∩ {S × T } (not necessarily connected); the set of resources compatible with agents
in S is f (S) = {r ∈ Q | G(S, {r}) �= ∅}, the set of agents compatible with resources in T is
g(T ) = {i ∈ M | G({i}, T ) �= ∅}.

A transfer of resources from Q to M is described by a G-flow ϕ, i.e., a vector ϕ ∈ RG+ such
that ϕir > 0 ⇒ ir ∈ G. We call a G-flow ϕ feasible if it allocates all the resources and we write
x(ϕ) for the allocation it realizes:

for all r ∈ Q:
∑

i∈g(r)

ϕir = ωr ; for all i ∈ M: xi(ϕ) =
∑

r∈f (i)

ϕir (1)

We write F(G;ω) for the set of feasible G-flows, and A(G,ω) = x(F(G;ω)) for the set of
allocations achieved by some feasible G-flow. Both sets are obviously nonempty.

Agent i has single-peaked preferences over her total share of resources. A single-peaked pref-
erence Ri is transitive and complete over the nonnegative real line R+. The symmetric and
asymmetric parts of Ri are denoted by Ii and Pi , respectively. Preference Ri has a “peak”
p[Ri] ∈ R+ such that for each xi, x

′
i ∈R+

x′
i < xi � p[Ri] ⇒ xiPix

′
i

p[Ri] � xi < x′
i ⇒ xiPix

′
i

Let R be the set of single-peaked preferences over R+. A preference profile is then R =
(Ri)i∈M ∈ RM . For each R ∈RM , we let p[R] = (p[Ri])i∈M be the associated profile of peaks.
Several of our definitions and results bear on a fixed profile R; thus, whenever this causes no
confusion, we simply write pi in place of p[Ri] and p in place of p[R].

An economy is a triple (G,ω,R).
We use the following notation throughout: for any finite sets D,E such that D ⊂ E, and any

vector t ∈ RE , we write tD = ∑
e∈D te , and tD for the projection of t on RD .

4. Feasible and Pareto optimal allocations

We describe first the set A(G,ω) of feasible allocations.
The allocation x ∈ RM is in the lower (resp. upper) core of the cooperative game (M,w) if

xM = w(M), and xS � w(S) (resp. xS � w(S)) for all S ⊆ M . The game (M,w) is supermodular
(resp. submodular) if w(S) + w(T ) �w(S ∪ T ) + w(S ∩ T ) (resp. �) for all S,T ⊆ M .

Lemma 1 (Feasible allocations). The following statements are equivalent:

i) x ∈ A(G,ω);
ii) for all S ⊆ M,xS � ωf (S) and xM = ωQ;

iii) for all T ⊆ Q,ωT � xg(T ) and ωQ = xM ;
iv) x is in the lower core of the supermodular TU game (M,w), where

w(S) = max
T : g(T )⊆S

{ωT } (2)
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v) x is in the upper core of the submodular TU game (M,v), where

v(S) = ωf (S) (3)

Proof. By a standard continuous version of the Marriage Lemma (a.k.a. Hall’s theorem [14],
see [1]), i) is equivalent to either of ii) or iii).

Statements ii) and v) are clearly equivalent.
We show finally that statements iv), v) are equivalent. Because G is connected we have

w(M) = ωQ, and v(M) = ωQ. We let the reader check that (M,w) and (M,v) are dual games,
i.e., w(S) + v(M�S) = ωQ for all S. The inequality ωf (S) + ωf (S′) � ωf (S∪S′) + ωf (S∩S′) fol-
lows from f (S) ∪ f (S′) = f (S ∪ S′) and f (S) ∩ f (S′) ⊇ f (S ∩ S′). It implies that (M,v) is
submodular. Hence the dual game (M,w) is supermodular. The equivalence follows by duality
again. �

An allocation x ∈ A(G,ω) is Pareto optimal in the economy (G,ω,R) if for any other x′ in
A(G,ω), we have{

x′
iRixi for all i ∈ M

} ⇒ {
x′
iIixi for all i ∈ M

}
We write PO(G,ω,R) for the set of Pareto optimal allocations. The structure of this set is

given by a three-component partition of M ∪ Q that we derive as a variant of the classic Gallai–
Edmonds decomposition for bipartite graphs [19]. This partition, as well as the set PO(G,ω,R)

itself, depend only upon the profile of peaks p[R], but not on the way Ri compares allocations
across pi .

We call a triple (G,ω,p) a problem, keeping in mind it represents all economies where p is
the profile of peaks in R. Until the end of Section 5 it is enough to work with problems rather
than economies. We define three properties of a problem:

• (G,ω,p) is balanced if p ∈ A(G,ω);
• (G,ω,p) exhibits underdemand if for all S ⊆ M , pS < ωf (S);
• (G,ω,p) exhibits overdemand if for all T ⊆ Q, ωT < pg(T ).

In a balanced problem we can give exactly his peak allocation to every agent. By Lemma 1
in a problem with underdemand we can give each agent at least his peak, and must give strictly
more to at least one agent; in a problem with overdemand we can give each agent at most his
peak, and must give strictly less to at least one.

We show now that any allocation problem (G,ω,p) can be decomposed in three subproblems,
one of each type above, and at most two types may be absent. When we speak of the subproblem
restricted to S × T ⊆ M × Q, we mean that the resources in T must be assigned to the agents
in S along the restricted graph G(S,T ) (which may not be connected), i.e. we talk about the
subproblem (G(S,T ),ωT ,pS) and the set of feasible allocations A(G(S,T ),ωT ).

Lemma 2. For any problem (G,ω,p) where G is connected, and p � 0, ω  0, there exist
unique partitions M+,M0,M− of M , and Q+,Q0,Q− of Q such that

i) G(M−,Q0) = G(M−,Q−) = G(M0,Q−) = ∅;
ii) (G(M+,Q−),ωQ− ,pM+) exhibits underdemand;

iii) (G(M0,Q0),ω
Q0,pM0) is balanced;

iv) (G(M−,Q+),ωQ+ ,pM−) exhibits overdemand.
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We repeat that up to two of the pairs (M+,Q−), (M0,Q0), or (M−,Q+) may be empty. For
instance, if there are no bilateral constraints (G = M × Q), our model is a generalization of
Sprumont’s [25], where the GE decomposition reduces to a single component: if ωQ < pM we
have overdemand, M = M−,Q = Q+; if ωQ > pM underdemand and M = M+,Q = Q−; if
ωQ = pM the problem is balanced and M = M0,Q = Q0. See the discussion of this special case
after Proposition 2 in Section 5.

Proof of Lemma 2. Constructing the partitions. Fix (G(M,Q),ωQ,pM) and define the par-
titions with the help of two simple maximization problems. Set D = arg maxS⊆M{pS − ωf (S)}
if there is at least one S such that pS > ωf (S), D = ∅ otherwise. As S → pS − ωf (S) is super-
modular, the set D is closed under intersection and union. If D �= ∅, we define M− as its smallest
element, and M− ∪M0 as its largest element. Set similarly B = arg maxT ⊆Q{ωT −pg(T )} if there
is at least one T such that ωT > pg(T ), B = ∅ else. Then if B �= ∅, it is closed under intersection
and union, and Q− is its smallest element, while Q− ∪ Q0 is its largest element.

Proof of property i). Suppose first that D and B are both nonempty, and check G(M−,Q− ∪
Q0) = ∅ by contradiction. If this set is nonempty, we define A = g(Q− ∪ Q0) ∩ M−, and B =
f (M−)∩{Q− ∪Q0}, so that A = g(B)∩M− and B = f (A)∩{Q− ∪Q0}. Consider the equality

(pM−�A − ωf (M−)�B) + (pA − ωB) = pM− − ωf (M−)

By construction f (M−�A) ⊆ f (M−)�B , therefore the inequality pM−�A − ωf (M−)�B �
pM− − ωf (M−) would imply that M−�A is a smaller element of D than M−. Thus we must
have pA − ωB > 0. Consider now the equality

(ω{Q−∪Q0}�B − pg(Q−∪Q0)�A) + (ωB − pA) = ωQ−∪Q0 − pg(Q−∪Q0)

By construction g({Q− ∪ Q0}�B) ⊆ g(Q− ∪ Q0)�A; combining this with ωB − pA < 0, we
see that T = {Q− ∪ Q0}�B gives a higher ωT − g(T ) than Q− ∪ Q0, the desired contradiction.

A symmetrical argument, omitted for brevity, establishes G(M− ∪ M0,Q−) = ∅.
Next we define Q+ = f (M−), and check that Q+,Q0,Q− partition Q. We already know that

these sets are disjoint. If they are not a partition, the set T = Q�{Q+ ∪ Q− ∪ Q0} is nonempty.
Because T ∪ {Q− ∪ Q0} is not in B, we have pg(T )�g(Q−∪Q0) > ωT . Therefore the set S =
g(T )�g(Q− ∪ Q0) is nonempty. Moreover S and M− are disjoint and f (M− ∪ S) ⊆ Q+ ∪ T .
This gives a contradiction of the definition of M−:

pM−∪S − ωf (M−∪S) � pM−∪S − ωQ+∪T = pM− − ωQ+ + pS − ωT > pM− − ωQ+

We omit the symmetrical argument establishing that M+ = g(Q−) completes the partition of
M as M+,M0,M−.

Proof of property iv). To check the overdemand in (G(M−,Q+),ωQ+ ,pM−) recall that
ωQ+ < pM− because D is nonempty. Then fix a proper subset T of Q+ and assume ωT �
pg(T )∩M− . The equality

(pM−�g(T ) − ωQ+�T ) + (pg(T )∩M− − ωT ) = pM− − ωQ+

implies that M−�g(T ) is a smaller element of D than M−, contradiction.
Proof of properties iii) and ii). The proof that (G(M0,Q0),ω

Q0,pM0) is balanced proceeds
along similar lines. If there is S ⊆ M0 such that pS > ωf (S)∩Q0 , it follows that S′ = M− ∪ S

gives a higher pS′ − ωf (S′) than M−. We omit the details.
We also omit for brevity the symmetrical proof that (G(M+,Q−),ωQ− ,pM+) is underde-

manded, and the treatment of the remaining cases where at least one of D or B is empty. For
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Fig. 2. Sensitivity of the Gallai–Edmonds decomposition.

instance if they are both empty we have pS � ωf (S) and ωT � pg(T ) for all S ⊆ M,T ⊆ Q, and
Lemma 1 implies that (G,ω,p) is balanced; so M = M0 and Q = Q0. �

The above proof shows that the canonical partition obtains by maximizing two supermodular
set functions, one over the subsets of M , the other those of Q. This can be done by the standard
greedy algorithm,4 of polynomial complexity in the number of nodes |M|+ |Q| (see for instance
Chapter 16 in [8]).

We already described the partition in the example of Section 2: M+ = {A}, M0 = {B}; M− =
{C,D}; Q− = {r}; Q0 = {s}; Q+ = {t, u}. For another example consider a variant of Fig. 1 in
which the only change is that the resource s is of size 17 instead of 15. See Fig. 2. Now the
canonical partition has only two components: r, s are the underdemanded resources, while t, u

remain overdemanded, i.e., M+ = {A,B}; M− = {C,D}; Q− = {r, s}; Q+ = {t, u}.
Figs. 1 and 2 illustrate a general property, an immediate consequence of Lemma 2: for any pair

of agents i, j such that f (i) ⊆ f (j), we have {j ∈ M− ⇒ i ∈ M−} and {i ∈ M+ ⇒ j ∈ M+},
and if two resources r, s satisfy g(r) ⊆ g(s), then {s ∈ Q− ⇒ r ∈ Q−} and {r ∈ M+ ⇒ s ∈ M+}.

Our first proposition uses the familiar meta-property Peak-Only that we now define. Given
some property X, let X (G,ω,R) be the set of allocations that satisfy property X in economy
(G,ω,R).

Peak-Only. Fix an economy (G,ω,R). Property X is Peak-Only if for each R′ ∈ RM with
p[R] = p[R′], we have X (G,ω,R) =X (G,ω,R′).

We describe now the set PO(G,ω,R) of Pareto optimal allocations in terms of the canonical
decomposition of Lemma 2.

4 If S → v(S) is supermodular over 2M , we solve first maxi∈M v(i), keep a winner i∗, then solve
maxi∈M�{i∗} v({i, i∗}), and so on.
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From now on we write a subproblem such as (G(M+,Q−),ωQ− ,pM+) simply as
(G(M+,Q−),ω,p), and the feasible allocation set A(G(S,T ),ωT ) as A(G(S,T ),ω). This
will cause no confusion if we keep in mind that only the coordinates of ω in Q−, T , etc., matter.

Proposition 1. Fix G and ω.

i) For any profile R ∈ RM with peaks p, the set PO(G,ω,R) is nonempty, convex and com-
pact;

ii) The property of Pareto Optimality is Peak-Only;
iii) A flow implementing a Pareto optimal allocation is null on G(M+,Q+), G(M+,Q0), and

G(M0,Q+);
iv) The allocation x is Pareto optimal if and only if

in M+: xM+ ∈ A
(
G(M+,Q−),ω

)
, and pM+ � xM+ (4)

in M0: xM0 = pM0 (5)

in M−: xM− ∈ A
(
G(M−,Q+),ω

)
, and xM− � pM− (6)

In words, agents in M+ consume precisely all the resources in Q−, each one gets at least his
peak, and at least one, strictly more (Lemma 2); those in M− share the resources in Q+, consume
no more than their peak, and at least one gets strictly less; those in M0 consume the resources in
Q0 and each one gets precisely his peak.

The Peak-Only property allows us to write the Pareto optimal set simply as PO(G,ω,p).
From statements iv) and v) in Lemma 1, we can also describe PO(G,ω,p) as the cartesian prod-
uct of three sets: in M+, the subset of the upper core of (M+, v+) such that xM+ � pM+ , where
v+ is the game (3) for the restricted problem (G(M+,Q−),ω,p); in M− the subset of the lower
core of (M−,w−) such that xM− � pM− , where w− is the game (2) for (G(M−,Q+),ω,p); and
pM0 in M0.

Proof of Proposition 1. Note first that statements i) and ii) follow at once from statement iv).
Step 1. Proving the “if” part of statement iv). By statement ii) in Lemma 1, and the fact that

(G(M+,Q−),ω,p) exhibits underdemand (Lemma 2), the set A(G(M+,Q−),ω) is nonempty;
the set A(G(M−,Q+),ω) is similarly nonempty because (G(M−,Q+),ω,p) exhibits overde-
mand. Finally, A(G(M0,Q0),ω,p) is nonempty because (G(M0,Q0),ω,p) is balanced. Sup-
pose now that an allocation x satisfying (4), (5), (6) is Pareto dominated by some y ∈ A(G,ω).
Clearly we have yM0 = xM0 . Because G(M− ∪M0,Q−) = ∅ we have yM+ � ωQ− = xM+ ; on the
other hand if yi > xi for some i ∈ M+, this agent with peak pi � xi strictly prefers xi to yi which
our assumption precludes. We conclude yM+ = xM+ . The argument establishing yM− = xM− is
entirely similar.

Step 2. Proving the “only if” part of statement iv), and statement iii). We fix throughout
Step 2 an economy (G,ω,R), a Pareto optimal allocation x, and a flow ϕ implementing x. We
color agent i in green if xi < pi , in red if xi > pi , and in black if xi = pi . We also construct a
directed graph Gϕ as follows: all edges in G are oriented from M to Q; if ϕij > 0, and only
then, we add a “backward” edge from resource j to agent i.
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We claim there is no directed path in Gϕ from a green agent to a red one.5 If there was such
a path from i to i′, we could increase a little the flow along that path (with the convention that
increasing the flow on a backward edge amounts to decrease by the same amount the flow ϕij

in G), and obtain a new allocation where i consumes a little more, i′ a little less, and everyone
else as before; this would contradict Pareto Optimality.

Define now X as the set of all green nodes in M together with the nodes in M ∪ Q that one
can reach in Gϕ from a green node; Y as the set of nodes in M ∪ Q that are either a red agent,
or a node from which one can reach a red node in Gϕ ; and Z as the remaining subset of M ∪ Q.
Thus X,Y,Z partition M ∪ Q, and every agent in X ∩ M (resp. Y ∩ M , resp. Z ∩ M) is green or
black (resp. red or black, resp. black). Also, there is no path in Gϕ from X to Z or Y , or from Z

to Y .
Substep 2.1. In this substep we focus on M− and Q+ and show M−,Q+ ⊆ X, in particular

there is no red agent in M−, and xM− � pM− .
Assume to the contrary (Y ∪ Z) ∩ M− �= ∅. Then x(Y∪Z)∩M− � p(Y∪Z)∩M− , because all such

agents are red or black. We also have x(Y∪Z)∩M− � ω(Y∪Z)∩Q+ , because the only positive flow
out of (Y ∪Z)∩M− goes to (Y ∪Z)∩Q+: it cannot go to X without creating a path in Gϕ from
X to Y ∪Z, and there is no edge from M− to Q− ∪Q0. If (Y ∪Z)∩Q+ = ∅, then (Y ∪Z)∩M−
must be empty as well, contradiction. If (Y ∪ Z) ∩ Q+ �= ∅, apply statement iv) in Lemma 2:

ω(Y∪Z)∩Q+ < pg((Y∪Z)∩Q+)∩M− � p(Y∪Z)∩M− (7)

where the second inequality follows from the fact that there is no edge between an agent in X

and a resource in Y ∪ Z. This is the desired contradiction.
Substep 2.2. We focus now on M+ and Q−, and show M+,Q− ⊆ Y , in particular, there is no

green agent in M+, and xM+ � pM+ .
Assume to the contrary (X ∪ Z) ∩ M+ �= ∅. Then we have

x(X∪Z)∩M+ � p(X∪Z)∩M+ < ωf ((X∪Z)∩M+)∩Q− � ω(X∪Z)∩Q− (8)

where the first inequality is because the nodes in (X ∪ Z) ∩ M+ are green or black, the second is
from statement ii) in Lemma 2, and the third because there is no edge from X ∪Z to Y . Similarly
we have

x(X∪Z)∩M0 � p(X∪Z)∩M0 � ωf ((X∪Z)∩M0)∩Q0 � ω(X∪Z)∩Q0 (9)

where the only differences are that the middle inequality, from statement iii) in Lemma 2, is not
strict, and the fact that (X ∪ Z) ∩ M0 could be empty. On the other hand

x(X∪Z)∩(M+∪M0) � ω(X∪Z)∩(Q−∪Q0) (10)

because the only edges in G to Q− ∪Q0 are from M+ ∪M0, and a resource in X ∪Z can receive
a positive flow only from one in X ∪ Z.

Summing up inequalities (8), (9), (10), gives a contradiction. Hence (X ∪ Z) ∩ M+ must
be empty after all, i.e., M+ ⊆ Y . Now (10) becomes x(X∪Z)∩M0 � ω(X∪Z)∩(Q−∪Q0), whereas
(9) gives x(X∪Z)∩M0 � ω(X∪Z)∩Q0 . Whether (X ∪ Z) ∩ M0 is empty or not, this implies
ω(X∪Z)∩Q− = 0, i.e. Q− ⊆ Y as announced.

We derive a few more facts. First, all inequalities in (9) must be equalities, therefore
x(X∪Z)∩M0 = p(X∪Z)∩M0 . Second, a positive flow to (X ∪Z)∩Q0 cannot come from M− (state-
ment i) in Lemma 2), or from M+ (because M+ ⊂ Y ), therefore it only comes from (X∪Z)∩M0.

5 When we speak below of a path, we always mean a directed path.
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Fig. 3. Gallai–Edmonds decomposition and Pareto set I.

We showed in the previous paragraph x(X∪Z)∩M0 = ω(X∪Z)∩Q0 . Therefore the entire flow from
(X ∪ Z) ∩ M0 goes to (X ∪ Z) ∩ Q0.

Substep 2.3. We focus finally on (Y ∪Z)∩M0. The flow from (Y ∪Z)∩M0 cannot go to Q−
(G(M0,Q−) = ∅), or to Q+ (contained in X), or to X ∩ M0, so it must end up in (Y ∪ Z) ∩ Q0.
Together with the last statement in Step 2.2, this shows that the entire flow from M0 goes to Q0.

Assume for a moment that on M0 we have xM0 = pM0 : because (G(M0,Q0),ω,p) is bal-
anced, this implies that there is no other flow coming to Q0, in particular there is no flow on
G(M+,Q0), or G(M0,Q+). Finally, as Q+ ⊆ X and M+ ⊆ Y , there is no flow on G(M+,Q+)

either, which completes the proof of statements iii) and iv).
It remains to show x(Y∪Z)∩M0 = p(Y∪Z)∩M0 (we already know this is true on (X ∪ Z) ∩ M0

from Step 2.2). We have

p(Y∪Z)∩M0 � x(Y∪Z)∩M0 � ω(Y∪Z)∩Q0 (11)

The first inequality because the nodes in Y ∪ Z are red or black, the second one because we saw
above that the flow from (Y ∪ Z) ∩ M0 goes to (Y ∪ Z) ∩ Q0. Next we have

ω(Y∪Z)∩Q0 � pg((Y∪Z)∩Q0)∩M0 � p(Y∪Z)∩M0 (12)

the first one because (G(M0,Q0),ω,p) is balanced, the second one because there is no edge
from X ∩ M0 to Y ∪ Z. Together, (11) and (12) imply x(Y∪Z)∩M0 = p(Y∪Z)∩M0 , as desired. �

We illustrate Proposition 1 by two examples, each with four agents and four resources.
In Fig. 3, the peaks are p = (10,10,5,10) and the resources ω = (11,10,8,9). The two

dashed-line boxes show the GE decomposition: resources r, s, t are underdemanded by A,B,C,
u is overdemanded by D ((M0,Q0) is absent). Most of the inequalities in the system (4), (5), (6)
are redundant, and the Pareto optimal set is given by

xA + xB + xC = 29, xD = 9

xA � 11, xB � 10, xC � 5



O. Bochet et al. / Journal of Economic Theory 148 (2013) 535–562 547
Fig. 4. Gallai–Edmonds decomposition and Pareto set II.

In Fig. 4, we use the same profile of peaks and resources as in the previous example, but
the feasibility constraints have changed. The GE decomposition has now resources r, s underde-
manded by A, while t, u are overdemanded by B,C,D ((M0,Q0) is absent). Note that the graph
G(M−,Q+) is disconnected. The system (4), (5), (6) reduces to

xA = 21, xB + xC = 8, xC � 5, xD = 9

5. The Egalitarian solution

There are two ways to define the Egalitarian solution, one algorithmic, the other as the Lorenz
dominant element Pareto optimal allocation: Proposition 2 below shows the equivalence of these
two definitions. We start by the algorithmic definition, using an ascending algorithm for the M+
coordinates of the solution, and a descending one for the M− coordinates.6

Given a problem (G,ω,p), we write our solution as E(G,ω,p). By Pareto Optimality (5),
E(G,ω,p)M+ satisfies (4), E(G,ω,p)M− satisfies (6), and E(G,ω,p)M0 = pM0 .

The notation Z1,2,...,k = ⋃k
1 Zl is used in the definition below and beyond.

Computing E(G,ω,p)M+ . We use an ascending algorithm based on the following system
Θ(λ) of inequalities, where λ is a nonnegative parameter:

Θ(λ): γS(λ) � ωf (S)∩Q− for all S ⊆ M+ (13)

where for all i ∈ M+, γi(λ) = max{λ,pi}, so that pM+ � γ (λ) for all λ.
For λ = 0, γ (0) = pM+ and Θ(0) holds true, even strictly, because there is underdemand in

(G(M+,Q−),ω,p) (Lemma 2). For λ = ∞, γ (∞) = ∞. Therefore there is a smallest num-
ber λ1, strictly positive, such that one of the inequalities in Θ(λ1) is tight. As S → ωf (S)∩Q− −
γS(λ1) is submodular, if two different subsets of M+ satisfy the equality γS(λ1) = ωf (S)∩Q−

6 Chandramouli and Sethuraman [6] propose a single algorithm to define the Egalitarian solution, but the proof of
Proposition 2 is more transparent with our two-pronged algorithm.
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then so do their union and intersection. We call S1 the largest such subset. By statement ii) in
Lemma 1 applied to G(S1, f (S1)∩Q−), the (restricted) allocation γi(λ

1) for the agents in S1 is
feasible by using all the resources in f (S1) ∩ Q− and no more.

In the restricted problem (G(M+�S1,Q−�f (S1)),ω) the bilateral graph is described by
f 1(S) = (f (S)�f (S1)) ∩ Q−. We claim γS(λ1) < ωf 1(S) for all nonempty S ⊆ M+�S1. In-
deed Θ(λ1) is true and S1 is the largest set such that the corresponding inequality is tight,
therefore γS∪S1(λ1) < ωf (S∪S1)∩Q− ⇔ γS(λ1) + γS1(λ1) < ωf 1(S) + ωf (S1)∩Q− .

Repeating the argument above, there is a smallest number λ2, strictly above λ1, at which one
of the inequalities γS(λ) < ωf 1(S), S ⊆ M+�S1, becomes an equality. We call S2 the largest such
subset of M+�S1. The allocation γi(λ

2) for the agents in S2 is achievable by using precisely all
the resources in f (S2)�f (S1) (Lemma 1).

Continuing in this fashion, we obtain a partition S1, S2, . . . , SK , of M+, and a strictly in-
creasing sequence λ1 < λ2 < · · · < λK , such that for all k,1 � k � K , the allocation γi(λ

k) to
the agents in Sk is feasible by assigning the resources in f (Sk)�f (S1,...,k−1) to these agents.
By construction this allocation is bounded below by pM+ .

Computing E(G,ω,p)M− . Turning to the agents in M−, we use a descending algorithm based
on the system Ξ(μ) with nonnegative parameter μ:

Ξ(μ): ωT � δg(T )∩M−(μ) for all T ⊆ Q+ (14)

where for all i ∈ M−, δi(μ) = min{μ,pi}, so that δ(μ) � pM− for all μ.
We have δ(∞) = pM− , so Ξ(∞) is true, even strictly, because there is overdemand in

(G(M−,Q+),ω,p) (Lemma 2). Also, δ(0) = 0, therefore there is a largest number μ1 such
that one of the inequalities in Ξ(μ1) is tight. We let T 1 be the largest subset of Q+ for which we
have an equality (its existence guaranteed by the submodularity of T → δg(T )∩M−(μ1) − ωT ).
The allocation δi(μ

1) to the agents of g(T 1) ∩ M− is feasible by using exactly the resources
in T 1 (statement iii) in Lemma 1 applied to G(g(T 1) ∩ M−, T 1)). We repeat this construction in
the restricted problem (G(M−�g(T 1),Q+�T 1),ω,p), etc.

We end up with a partition T 1, . . . , T L of Q+, and a strictly decreasing sequence μ1 >

· · · > μL, such that for all l,1 � l � L, the allocation δi(μ
l) to the agents in g(T l)�g(T 1,...,l−1)

is feasible by assigning exactly the resources in T l to these agents. By construction this allocation
is bounded above by pM− . This concludes the definition of E(G,ω,p).

By Proposition 1, E(G,ω,p) is Pareto Optimal. It is also Peak-Only.
The main normative property is Lorenz dominance. For any finite set N and any z ∈ RN ,

denote by z∗ the order statistics of z, obtained by rearranging the coordinates of z in increasing
order: z∗1 � z∗2 � · · · � z∗n. Say that z Lorenz dominates w, written z LD w, if for all k,1 �
k � n

k∑
t=1

z∗t �
k∑

t=1

w∗t

We say that z obtains from w by a Pigou–Dalton transfer if there exist i, j,1 � i < j � n, such
that zk = wk for all k �= i, j , and

wi < zi � zj < wj and zi + zj = wi + wj

In this case z Lorenz dominates w, strictly. This fact is used in the proofs of Proposition 3 and
Theorem 1.
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Finally we say that z is Lorenz dominant in the set A if z LD z′ for all z′ ∈ A. The relation L

is a partial ordering: not every set, even convex and compact, admits a Lorenz dominant element.
On the other hand, in a convex set A there can be at most one Lorenz dominant element.

Proposition 2. For any economy (G,ω,R) with peaks p, the Egalitarian solution E(G,ω,p) is
the Lorenz dominant Pareto optimal allocation:

E(G,ω,p) LD x for all x ∈ PO(G,ω,p)

Proof. We set x = E(G,ω,p). By Proposition 1, we need to prove two statements: xM+

(resp. xM− ) is Lorenz dominant within A(G(M+,Q−),ω) ∩ {y ∈ R
M++ | y � pM+} (resp.

A(G(M−,Q+),ω) ∩ {y ∈R
M−+ | y � pM−}). We prove each statement in turn.

Step 1. We show that xM+ is Lorenz dominant in A(G(M+,Q−),ω)∩{y ∈ R
M++ | y � pM+}.

Recall that M+ is partitioned by S1, . . . , SK , such that for all k, γSk (λk) = ωf (Sk)�f (S1,...,k−1),
and for i ∈ Sk we have xi = max{λk,pi}. Moreover λk is strictly increasing in k. We further
partition Sk as follows

Ak = {
i ∈ Sk

∣∣ xi = λk > pi

}; Bk = {
i ∈ Sk

∣∣ xi = pi � λk
}

We check first that Ak is nonempty for all k. By Lemma 2 ii)

pS1 < ωf (S1) =
∑
i∈S1

max
{
λ1,pi

}

so A1 is nonempty. Next

pS2 � γS2

(
λ1) < ωf (S2)�f (S1) =

∑
i∈S2

max
{
λ2,pi

}

where the strict inequality is explained in the construction of E(G,ω,p). So A2 is nonempty.
And so on by induction on k.

The key to the proof is to choose a particular labeling of the agents in M+ as {1,2, . . . ,m+}
such that the sequence xi is weakly increasing in i. We define

B̃k = {
i ∈ B1,...,k

∣∣ λk � xi < λk+1} for all k, 1 � k � K

with the convention λK+1 = ∞.
Then the first |A1| coordinates of xM+ are those of A1 (they are all equal to λ1), the next

|B̃1| ones are those of B̃1 in increasing order, followed by those of A2, those of B̃2 in increasing
order, and so on. Clearly B̃1,...,K = B1,...,K because if xi = pi ∈ [λk,λk+1[, then i is in some Bk′

for k′ � k.
We fix now y ∈ A(G(M+,Q−),ω) such that y � pM+ , and prove it is Lorenz dominated

by xM+ . We write y∗(i) = ∑i
j=1 y∗j for the sum of the i smallest coordinates of y, so that

yS � y∗(|S|) for all S ⊆ M+, and y∗(i)
i

increases weakly in i. As the coordinates of xM+ are
weakly increasing, we have x{1,...,i} = x∗(i) for all i. We must prove y∗(i) � x∗(i) for all i. We
show by induction on k = 1, . . . ,K , the property

Pk: y∗(i) � x∗(i) for 1 � i �
∣∣A1,...,k

∣∣ + ∣∣B̃1,...,k
∣∣
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We start with P1. By feasibility (Lemma 1) yS1 � ωf (S1) = xS1 . On the other hand y � pM+

implies yB1 � xB1
(as well as yB1,...,K � xB1,...,K

). As S1 = A1 ∪ B1, the latter inequalities imply
yS1�S � xS1�S for any S such that A1 ⊆ S ⊆ S1, therefore

yS � xS for all S such that A1 ⊆ S ⊆ S1 (15)

Choosing S = {1, . . . , i} in (15), with |A1|� i � |A1| + |B̃1|, we deduce

y∗(i) � y(S) � xS = x∗(i) (16)

Next for S = {1, . . . , i} with i � |A1|, the inequality y∗(i) � x∗(i) follows from (15) applied
to A1, the fact that y∗(i)

i
increases weakly in i, and that all coordinates of xM+ are equal in A1:

y∗(i)
i

� y∗(|A1|)
|A1| � yA1

|A1| �
xA1

|A1| = x∗(i)
i

Thus P1 holds true. Turning to P2, we note that feasibility implies yS1∪S2 � ωf (S1∪S2) = xS1∪S2 ,

and on the other hand yB1∪B2 � xB1∪B2
; from S1,2 = A1,2 ∪ B1,2 we deduce as above

yS � xS for all S such that A1,2 ⊆ S ⊆ S1,2 (17)

If S = {1, . . . , i} with |A1,2| + |B̃1| � i � |A1,2| + |B̃1,2|, the same inequalities (16) imply
y∗(i) � x∗(i). It remains to check the latter for |A1| + |B̃1| � i � |A1,2| + |B̃1|.

We set a = i − (|A1| + |B̃1|), and check first the inequality

y∗(i) � yA1∪B̃1 + a

|A2|yA2 (18)

Setting z = yA2
, we have z∗(a)

a
� z

A2

|A2| = y
A2

|A2| (by construction a � |A2|). Thus a

|A2|yA2 is not

smaller than the a smallest coordinates of y in A2. Inequality (18) follows.
Because all coordinates of xM+ are equal in A2, we have

x∗(i) = xA1∪B̃1 + a

|A2|xA2 =
(

1 − a

|A2|
)

xA1∪B̃1 + a

|A2|xA1,2∪B̃1

We rewrite inequality (18) as

y∗(i) � yA1∪B̃1 + a

|A2|yA2 =
(

1 − a

|A2|
)

yA1∪B̃1 + a

|A2|yA1,2∪B̃1 (19)

and note that inequality yS � xS holds for S = A1 ∪ B̃1 by (15), and for S = A1,2 ∪ B̃1 by (17).
The proof of P2 is complete.

The induction step from Pk to Pk+1, proceeds in exactly the same way.
Step 2. We show that xM− is Lorenz dominant in A(G(M−,Q+),ω)∩{y ∈R

M−+ | y � pM−}.
Recall that Q+ is partitioned as T 1, . . . , T L, such that the resources of T 
 are entirely assigned to
agents in S
 = g(T 
)�g(T 1,...,
−1), and ωT 
 = δS
(μ
) for all k, where μ
 is strictly decreasing;
moreover xi = min{μ
,pi} for i ∈ S
. As in Step 1 we partition S
 as follows

A
 = {
i ∈ S


∣∣ xi < pi ⇔ μ
 < pi

}; B
 = {
i ∈ S


∣∣ xi = pi ⇔ μ
 � pi

}
The set A1 is nonempty because

∑
i∈S1 min{μ1,pi} = ωT 1 < pS1 ; A2 is nonempty because

pS2 � δS2

(
μ1) > ωT 2 =

∑
2

min
{
μ2,pi

}

i∈S
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and so on by induction on 
. As above the key is to choose a particular labeling of the agents in
M− as {1,2, . . . ,m−} such that the sequence xi is weakly increasing in i. We define

B̃
 = {
i ∈ B1,...,


∣∣ μ
 � xi > μ
+1} for all 
, 1 � 
 � L

with the convention μL+1 = −∞.
Then in the reverse sequence {xm−, xm−−1, . . . , x1} the first |A1| coordinates are those of A1

(they are all equal to μ1), the next |B̃1| ones are those of B̃1 in decreasing order, followed by
those of A2, those of B̃2 in decreasing order, and so on. Clearly B̃1,...,L = B1,...,L because if
xi = pi ∈ ]μ
+1,μ
] then i is in some B
′

for 
′ � 
.
For an arbitrary y ∈ A(G(M−,Q+),ω) such that y � pM− , we write y∗(i) = ∑m−

j=m−−i+1 y∗j

for the sum of the i largest coordinates of y, so that yS � y∗(|S|) for all S ⊆ M−. The end of
the proof that y is Lorenz dominated by xM− is entirely similar to the one in Step 1, upon re-
versing the direction of inequalities. That is, the feasibility constraints ωT � yg(T ) imply now

yS1 � ωT 1 = xS1 ; on the other hand yB1 � xB1
, and so (15) follows (up to a change of sign).

Similarly the inequality yS1,2 � ωT 1,2 = xS1,2 holds by feasibility of y. We omit the details. �
We illustrate the Egalitarian solution with a few examples.

No bilateral constraints. Here G is the complete graph G = M × Q. As mentioned already
after Lemma 2, the model is equivalent to Sprumont’s standard model. Suppose first we have
overdemand, ωQ < pM . Then M = M−, Q = Q+, and g(T ) = M for all T . Therefore system
(14) reads

ωT �
∑
i∈M

min{μ,pi} for all T

When μ is the largest number such that this is an equality for some T , it must be an equality
for Q, therefore μ1 solves

∑
i∈M min{μ,pi} = ωQ and the algorithm stops after one step.

When the resources are underdemanded, ωQ > pM , the algorithm stops similarly in one step:
the number λ1 solves

∑
i∈M max{λ,pi} = ωQ, and S1 = M .

Want all or nothing. In the standard model, the Egalitarian solution when all peaks are zero
(resources are all “bad”), is the same as when all are infinite (resources are all “good”), namely
it divides the resource equally. This is still true in the bipartite model. By Proposition 1, when
p = 0 we have M = M+,Q = Q−, and PO(G,ω,0) = A(G,ω). Similarly M = M−,Q = Q+
when p = ∞, and PO(G,ω,∞) = A(G,ω). By Proposition 2, the Egalitarian solution picks
the Lorenz dominant feasible allocation in both problems. Note that it is also the Dutta–Ray
Egalitarian solution [11] of the supermodular game (M,w), and of its dual game (M,v).

In the example of Fig. 2, Pareto optimal allocations assign the 14 units of overdemanded
resources t, u to agents C,D, and the 28 units of underdemanded r, s to A,B . The Egalitarian
solution is xA = 13, xB = 15, xC = 9, xD = 5.

In the example of Fig. 3, Pareto optimal allocations distribute 29 units to A,B,C, with peaks
10,10,5 and the Egalitarian solution is xA = 11, xB = 10, xC = 8; and xD = 9.

In the example of Fig. 4, we need to divide 8 units between B,C. Full equality xB = xC = 4
is feasible and stays below both peaks, so B and C receive 4 in the Egalitarian solution.
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6. The Egalitarian rule and its properties

Definition. Given M and Q, a rule ψ selects for every economy (G,ω,R) a feasible allocation
ψ(G,ω,R) ∈ A(G,ω). The Egalitarian rule E selects the Egalitarian solution E(G,ω,p) for
each R ∈RM with peak profile p ∈RM+ .

Whenever G and ω are fixed and this causes no confusion, we simply write a rule ψ(G,ω,R)

as ψ(R). In particular the definitions of properties are written for a generic solution ψ and fixed
G as well as ω.

We start with the generalization of Equal Treatment of Equals. There are two ways to state this
requirement. The first one is welfarist: equal agents should be indifferent between their respective
shares. The other one is physical: equal agents should receive the same share. Our generalization
of Equal Treatment of Equals is in the physical form.

In our model agents differ in their preferences and in their feasibility constraints, so they are
fully “equals” only when they share both characteristics. An egalitarian social planner concerned
with efficiency will surely not treat equally two agents with different preferences, but, as noted in
the introduction, he may or may not make them accountable for the differences in their connec-
tions. If he does not, as we assume in this paper, he will strive to compensate as much as possible
for these ethically irrelevant differences.7 In particular he will try to give identical shares to any
two agents with identical preferences, or at least to make their shares as equal as the feasibil-
ity constraints permit. Thus, ultimately, the difference in the shares of two agents with identical
preferences comes from the difference in their respective feasibility constraints, but only because
the latter precludes full equality of shares.

Consider the following example: two agents Ann (A) and Bob (B) with identical preferences
peaking at 4, and two resources with 2 units each: ω1 = ω2 = 2. Ann can consume both resources,
f (A) = {1,2}, while Bob can only consume ω2, f (B) = {2}. It is possible to give 2 units to
Ann and 2 units to Bob (Ann gets ω1, and Bob gets ω2) thus ignoring the fact that Ann is
better connected than Bob. If ω1 = 1,ω2 = 2, we would similarly give 1.5 units to each. But if
ω1 = 2,ω2 = 1, the best we can do for Bob is to give him 1 unit (ω2) while Ann gets 2 units
(ω1).8 We now state our generalizations of Equal Treatment of Equals and No Envy. We then
come back to the above example to illustrate in turn these two properties.

Equal Treatment of Equal Demands. For each R ∈ RM and {i, j} ⊆ M such that Ri = Rj , if
ψj (R) �= ψi(R) there exists no x ∈ A(G,ω) such that

ψk(R) = xk for each k �= i, j and |xi − xj | <
∣∣ψi(R) − ψj(R)

∣∣ (20)

In a classic fair division problem, the shares xi, xj of two agents i and j can always be
reallocated between these two, without affecting other agents’ shares. In our model such a redis-
tribution may not be feasible, or it may require to alter the allocation of agents other than i and j .
The axiom says that equalizing transfers among agents with identical preferences are legitimate
only if they are feasible, and do not disrupt other agents’ allocations.

7 Modern theories of distributive justice (e.g., Roemer [20], Fleurbaey [9]) emphasize the distinction between individ-
ual characteristics for which we are or are not held responsible, e.g., effort versus innate talent. A just distribution rule
should reward more the most hardworking agent, but avoid penalizing the less talented.

8 If agents are held responsible for their connections, a consistent division rule gives all ω1 to Ann, then uses a standard
method to divide ω1 between Bob with a claim of 4 and Ann with a residual claim of (4 − 2). See [18].
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Turning to the familiar test of No Envy, we postulate similarly that agent i’s envy of agent j ’s
allocation is legitimate only if it is feasible to improve upon agent i’s allocation without altering
the allocation of anyone other than agent j .

No Envy. For each R ∈ RM and {i, j} ⊆ M such that ψj (R)Piψi(R), there exists no x ∈
A(G,ω) such that

ψk(R) = xk for each k �= i, j and xiPiψi(R) (21)

We now go back to the preceding example to illustrate the two axioms. We show that each
one of Equal Treatment of Equal Demands or No Envy may (or may not) force the Egalitarian
solution for three possible resource endowments.

Modify the example above as follows: keep the resources constant at (ω1,ω2) = (2,2), and
add three agents C,D,E, all with preferences identical to A and B (in particular peak at 4).
The pattern of compatibility is: f (A) = {1,2}, f (B) = {2}, f (C) = f (D) = f (E) = {1}. Equal
Treatment of Equal Demands forces the allocation (xA, xB, xC, xD,xE) = (1,1, 2

3 , 2
3 , 2

3 ) where
A and B share ω2 while C,D,E share ω1.

On the other hand, suppose that C,D,E’s peaks are each 2 instead of 4, with no other
changes in the problem. Then Equal Treatment of Equal Demands is satisfied by the alloca-
tions (α,α,β,β,β), where 0 � β � 2

3 , 1 � α � 2, 2α + 3β = 4, and only those. But No Envy
singles out the Egalitarian solution (1,1, 2

3 , 2
3 , 2

3 ).
This example shows that Equal Treatment of Equal Demands does not by itself select the

Lorenz dominant Pareto optimal allocation.
Our final illustration is one where No Envy does not single out this allocation either. Consider

the problem of Fig. 3. There the Egalitarian allocation is (11,10,8,9). Note that A prefers the
share of B but no feasible allocation allows a lower load for A, so No Envy holds. Consider the
Pareto optimal allocation (xA, xB, xC, xD) = (11,11,7,9), where each of A,B,C bears a piece
of the excess supply. If 11PB7 this allocation meets No Envy. If 7PB11 (recall that the peak of
RB is at 10), B envies C, and this is legitimate because (11,10,8,9) is feasible and improves
upon B while affecting only C.

In the standard model, No Envy implies the welfarist Equal Treatment of Equals, and No Envy
coupled with Pareto Optimality implies the physical Equal Treatment of Equals. Only the latter
implication is true in our model.

Proposition 3. Fix G and ω.

i) Pareto Optimality and No Envy imply Equal Treatment of Equal Demands.
ii) The Egalitarian rule E satisfies No Envy.

Proof. Statement i). Suppose the rule ψ violates Equal Treatment of Equal Demands and check
it violates either No Envy or Pareto Optimality. Fix a profile R, an allocation x, and two agents
1,2 as in the premises of (20). Write y = ψ(R) and assume without loss of generality y1 < y2.
Distinguish two cases. If 1 and 2’s common peak p is in ]y1, y2[, then for ε small enough the allo-
cation z = (1−ε)y+εx, feasible by convexity of A(G,ω), is Pareto superior to y. If p � y1 < y2

(y1 < y2 � p), then 2 envies 1 (1 envies 2), and the allocation x satisfies (21), contradiction.
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Statement ii). Fix a profile R and set y = E(R). Assume 1 envies 2 at y via the feasible
allocation x. Recall that x1 + x2 = y1 + y2, and xk = yk for k � 3. No Envy at y via x means
y2P1y1 and x1P1y1, so it precludes y1 = p[R1].

We now assume y1 < p[R1] and derive a contradiction. Agent 1 is in M− by Proposition 1,
and single-peakedness of R1 implies y1 < y2, x1. We claim that agent 2 must be in M− as well:
if he is not, it is feasible to increase the share of 1 at y while keeping that of all other M− agents
constant, which cannot be because M− can only consume Q+, and is already eating all up at y

(Proposition 1). Thus {1,2} ⊆ M−. Now we have y1 < x1, y2 > x2 (as x1 + x2 = y1 + y2), and
for ε small enough the allocation εx + (1 − ε)y is Pareto optimal by Proposition 1. Because
y1 < y2, it is also, for ε small enough, a Pigou–Dalton transfer from 2 to 1 at y, contradicting the
Lorenz dominance property of y.

When we assume y1 > p[R1], agent 1 is in M+, and single-peakedness of R1 implies y1 >

y2, x1. If agent 2 was not in M+, it would be feasible to decrease the share of 1 at y while
keeping everyone else in M+ fixed. But M+ must consume all of Q− in any feasible allocation,
contradiction. From there the argument exactly parallels that in the previous case. �

We turn to Strategyproofness, and go back for clarity to the notation p[Ri] for the peak of Ri .
We define two additional properties, already familiar in the standard model.

Monotonicity. For all R ∈RM , i ∈ M , and R′
i ∈Ri

p
[
R′

i

]
� p[Ri] ⇒ ψi

(
R′

i ,R−i

)
� ψi(R)

Invariance.9 For all R ∈RM , i ∈ M , and R′
i ∈Ri

{
p[Ri] < ψi(R) and p

[
R′

i

]
�ψi(R)

} ⇒ ψi

(
R′

i ,R−i

) = ψi(R) (22){
p[Ri] > ψi(R) and p

[
R′

i

]
�ψi(R)

} ⇒ ψi

(
R′

i ,R−i

) = ψi(R) (23)

As in the standard model [7], Monotonicity implies own-peak-only, namely p[R′
i] = p[Ri] ⇒

ψi(R
′
i ,R−i ) = ψi(R): my allocation depends only upon the peak of my preferences. Abusing

notation, we can write ψi(pi,R−i ) instead of ψi(R). Then Monotonicity and Invariance imply
that the mapping pi → ψi(pi,R−i ) is continuous (because it is constant around any pi such that
pi �= ψi(pi,R−i )).

Strategyproofness. For all R ∈RM , i ∈ M , and R′
i ∈Ri ,

ψi(R)Riψi

(
R′

i ,R−i

)
The next lemma states two important connections between the three axioms above.

Lemma 3. Fix G and ω.

i) If a rule is Monotonic and Invariant, it is Strategyproof ;
ii) A Pareto Optimal and Strategyproof rule is Monotonic and Invariant.

9 Invariance is sometimes called Uncompromisingness in the literature on Strategyproofness.
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Proof. Statement i) is proven just as in the standard model (see [7]).
Statement ii). Fix a Pareto Optimal and Strategyproof rule ψ . We show first that the map-

ping Ri → ψi(Ri,R−i ) is Peak-Only. Fix R−i and consider two preferences Ri,R
′
i such that

p[Ri] = p[R′
i]. The GE decomposition (Lemma 2) is the same in R and (R′

i ,R−i ), so by Pareto
Optimality agent i’s allocations xi = ψi(R) and x′

i = ψi(R
′
i ,R−i ) are on the same side of p[Ri].

Now Strategyproofness implies Peak-Only.
We show now that ψ is Invariant. Under the premises of property (22), if ψi(R

′
i ,R−i ) > ψi(R)

we have p[R′
i] � ψi(R) < ψi(R

′
i ,R−i ), hence a violation of Strategyproofness for agent i

at R′
i . If ψi(R

′
i ,R−i ) < ψi(R) we can find a preference R∗

i such that p[R∗
i ] = pi[Ri] and

ψi(R
′
i ,R−i )P

∗
i ψi(R). By Peak-Only, ψi(R

∗
i ,R−i ) = ψi(R), so agent i with preferences R∗

i ben-
efits by reporting R′

i . The proof of (23) is identical.
Next we prove Monotonicity. We fix i,R and R′

i such that p′
i = p[R′

i] � p[Ri] = pi , and
let p,p′ be the profile of peaks at R and (R′

i ,R−i ) respectively. Set as above xi = ψi(R), x′
i =

ψi(R
′
i ,R−i ). We use the notation M−(p) for the M− component of the GE decomposition at

(G,ω,p), and define similarly M+(p′) etc.
We distinguish two cases.
Case 1: i ∈ M−(p). Assume first p′

i > xi . Then the decomposition is unchanged, in particular
M−(p) = M−(p′), so by Pareto Optimality x′

i � p′
i . Assume xi < x′

i ; then we have xi < x′
i �

p′
i � pi , and we get a contradiction of Strategyproofness for agent i at profile R. Assume next

p′
i � xi . Then xi < x′

i would give p′
i � xi < x′

i , a violation of Strategyproofness for agent i with
preference R′

i .
Case 2: i ∈ (M0 ∪ M+)(p). Then pi � xi , so xi < x′

i would give p′
i � pi � xi < x′

i , hence a
violation of Strategyproofness for agent i at R′

i . �
Proposition 4. The Egalitarian rule is Monotonic and Invariant, hence Strategyproof as well.

Proof. We fix (G,ω,p), an agent i and a benchmark profile of peaks p, with corresponding
Egalitarian allocation x. We consider a change of peak by agent i only, to p′

i , and we write
p′

j = pj for all j �= i, so that p′ = (p′
i , p−i ). We use the notation M+(p),M−(p′), etc., as in the

previous proof. The long proof of Monotonicity is organized as follows.
Consider a shift pi → p′

i such that the GE decomposition does not change: by Lemma 2
this means i ∈ M+(p) = M+(p′) or i ∈ M−(p) = M−(p′) (if i ∈ M0(p) any shift destroys the
budget-balance of M0(p) hence alters the decomposition). In Step 1 we prove Monotonicity of
E for such a shift where i ∈ M+(p) = M+(p′). The decomposition does not change if p′

i � pi ;
we characterize in Step 2 the smallest report p∗

i , p
∗
i > pi , at which it does change, proving in

particular that i ∈ M0(p
∗). Symmetric results hold if we start from the situation i ∈ M−(p)

(Step 3). It is then a simple matter to conclude in Step 4 by “concatenating” the moves from p

where i ∈ M+(p) to p∗ such that i ∈ M0(p
∗), then from p∗ to p′ such that i ∈ M−(p′).

Step 1. We prove Monotonicity for a shift pi → p′
i such that i ∈ M+(p) = M+(p′).

Substep 1.a: assume p′
i < pi . We show x′

i � xi by distinguishing two cases. Write in both
cases Sk,λk for the partition and corresponding parameters of the ascending algorithm at p, and
let i ∈ S
, xi = λ
 ∨ pi .

Case 1: pi < λ
 = xi . Then the partition and corresponding parameters are unchanged at p′
so that x′

i = xi .
Case 2: pi = xi � λ
. Then Sk,λk are unchanged for 1 � k � 
 − 1, but S
,λ
 may change.

However for λ = pi we have
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∑
j∈S


λ ∨ p′
j �

∑
j∈S


λ
 ∨ p′
j = ωT 


where we set T 
 = f (S
)�f (S1,...,
−1). Therefore if S
 changes, the new set S̃
 contains i and
λ̃
 � pi , hence x′

i � pi = xi .
Substep 1.b: assume pi < p′

i . If p′
i � xi notice that i ∈ M+(p′) implies x′

i � p′
i so we are

done. We are left with the case pi < p′
i < xi = λ
, that requires more work.

We prove by induction on 
 that the first 
 pairs (Sk, λk), 1 � k � 
, are unchanged at p′. We
write (S̃k, λ̃k) for these pairs at p′.

Suppose 
 = 1, then
∑

j∈S λ1 ∨ pj = ∑
j∈S λ1 ∨ p′

j for all S ⊆ M+(p), so the claim holds.

Next suppose 
 � 2. Assume S1 �= S̃1 and derive a contradiction. This implies there exists
S ⊆ M+(p), S a strict subset of S1, such that∑

j∈S

λ1 ∨ p′
j � ωf (S) (24)

Indeed suppose (24) fails for all such sets S: as p and p′ coincide inside S1, we would get
S1 = S̃1. Fix S as in (24), that must contain i, hence S ∩ S
 is nonempty. By definition of
the ascending algorithm, the sets T 1 = f (S ∩ S1), . . . , T k = f (S ∩ Sk)�(T 1,...,k−1), . . . , are
pairwise disjoint and

∑k
S∩Sk λk ∨ pj � ωT k for all k, therefore

∑
1�k�K

[ ∑
S∩Sk

λk ∨ pj

]
� ωf (S)

In view of (24), we get∑
1�k�K

[ ∑
S∩Sk

λk ∨ pj

]
�

∑
j∈S

λ1 ∨ p′
j

For all k �= 
, we have λk � λ1 and pS∩Sk = p′S∩Sk
, implying

∑
S∩Sk λk ∨pj �

∑
S∩Sk λ1 ∨p′

j .

As λ
 is larger than λ1,p′
i , and pi , and S ∩ S
 is nonempty, we get

∑
S∩S
 λ
 ∨ pj >∑

S∩S
 λ1 ∨ p′
j . The desired contradiction follows and we conclude S1 = S̃1.

To show next S2 = S̃2, we replicate the above argument as follows. If 
 = 2, then
∑

j∈S λ2 ∨
pj = ∑

j∈S λ2 ∨ p′
j for all S ⊆ M+(p)�S1, because pi,p

′
i < λ2, and the claim holds. If 
 � 3

and S2 �= S̃2, we can pick S ⊆ M+(p)�S1 such that S ⊂ S2 and∑
j∈S

λ2 ∨ p′
j � ωf (S)�S1

and proceed as above by decomposing S along Sk , 2 � k � K . The induction step is now clear.
Step 2. Starting from i ∈ M+(p) we study the critical value p∗

i , at which i ∈ M+(p′) ceases
to be true.

In the shift from p to p′, the subproblems (G(M0,Q0),ω,p) and (G(M−,Q+),ω,p) are
unchanged, so by Lemma 2 the equality M+(p) = M+(p′) holds as long as (G(M+,Q−),ω,p′)
exhibits underdemand, i.e., as long as p′

S < ωf (S)∩Q−(p) for all S ⊆ M+(p). This is true in
particular if p′

i < pi . Therefore the critical report p∗
i at which the GE decomposition and the

status of agent i change is larger than pi ; it is the smallest number such that

pS�i + p∗ = ωf (S)∩Q−(p) (25)
i
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for some subset S of M+(p) containing i. Let S∗ be the largest S satisfying (25) (well defined
by the usual submodularity argument). Recall from the proof of Lemma 2 that (M− ∪ M0)(p)

is the largest solution of arg maxS⊆M {pS − ωf (S)}. Writing for brevity S̃ = (M− ∪ M0)(p), we
claim that S̃ ∪ S∗ is the largest solution of arg maxS⊆M {p∗

S − ωf (S)}, in other words S̃ ∪ S∗ =
(M− ∪ M0)(p

∗).
Recall f (S̃) = (Q+ ∪ Q0)(p) and compute

p∗̃
S∪S∗ − ωf (S̃∪S∗) = (pS̃ − ωf (S̃)) + (

p∗
S∗ − ωf (S∗)∩Q−(p)

) = pS̃ − ωf (S̃)

(because the second parenthesis is 0 by Eq. (25)). Moreover by the definitions of S̃ and S∗, the
difference p∗

S′∪S
− ωf (S′∪S) is not larger for any S′ ⊆ S̃, S ⊆ M+(p), and is strictly smaller

if S is not contained in S∗. This proves the claim. Moreover M−(p) is still a solution of
arg maxS⊆M {p∗

S − ωf (S)}, therefore it is the smallest. So i ∈ M0(p
∗), and Ei (p

∗) = p∗
i .

For every p′
i ∈ [pi,p

∗
i [, we have xi � Ei (p

′) by Step 1, hence xi � Ei (p
∗) by continuity of

p′
i → xi (explained just before the definition of Strategyproofness). We have shown

p∗
i � xi � pi (26)

Step 3. The proof of Monotonicity for a shift pi → p′
i such that i ∈ M−(p) = M−(p′) par-

allels that of Step 1. Similarly if i ∈ M−(p) there is a critical peak p∗
i , p

∗
i < pi , at which the

decomposition changes for the first time. The details of the decomposition at p∗ are similar and
they only matter to prove i ∈ M0(p

∗) and

p∗
i � xi � pi (27)

Step 4. End of proof. We consider now a move from pi to p′
i when i ∈ M0(p). If p′

i > pi , we
have i ∈ M−(p′) by Lemma 2 (M+ is unchanged, and M0 shrinks, and may disappear). Then in
the downward shift starting at p′

i , the critical value at which the status of i changes is precisely pi ,
so by (27) x′

i � pi = xi as desired. Symmetrically p′
i < pi gives i ∈ M+(p′) and pi is the critical

value in the upward shift starting at p′
i , so (26) gives x′

i � pi = xi .
To conclude the proof of monotonicity, it remains to look at a shift from pi to p′

i such that
i ∈ M+(p) and i ∈ M−(p′). This requires p′

i > pi ; clearly the critical value p∗
i for pi in Step 2

is the same as the critical value for p′
i in Step 3. Therefore (26) and (27) imply

pi � xi � p∗
i � x′

i � p′
i

The invariance property is now clear from (26) and (27) and the arguments of Steps 1 and 3. �
7. Characterization result

Our characterization of the Egalitarian rule generalizes Ching’s characterization [7] of the
Uniform rule in the standard model.

Theorem 1. The Egalitarian rule is characterized by Pareto Optimality, Strategyproofness and
Equal Treatment of Equal Demands.

Proof. We fix G,ω and a rule ψ meeting the three properties. We show in Step 1 that ψ = E
for “extremists” profiles of demands where agents in M+ want as little commodity as possible,
while those in M− want as much as possible. Then in Step 2 we borrow an argument from [7] to
extend this equality to all profiles.
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Step 1. We fix in this step two partitions M+,−,0 of M and Q+,−,0 of Q, that coincide with
the GE decomposition for some profile of peaks p.10 Then we choose a profile of preferences R̃

with peaks p̃ such that

R̃i = R̃j if i, j ∈ M+ or if i, j ∈ M−
p̃i = 0 if i ∈ M+; p̃j > ωQ if j ∈ M−; (

G(M0,Q0),ω, p̃
)

is balanced

We show that ψ(R̃) = E(R̃). Setting y = ψ(R̃), x = E(R̃), by Proposition 2 it is enough to check
that yM+ (resp. yM− ) is Lorenz dominant in the corresponding component of PO(G,ω, R̃).

As explained immediately after the statement of Proposition 1, the M+-component of
PO(G,ω, R̃) contains z � 0 iff z is in the upper core of the submodular game (M+, v+), where

v+(S) = ωf (S)∩Q− for all S ⊆ M+; v+(M+) = ωQ−

Similarly the M−-component of PO(G,ω, R̃) contains z iff z is in the lower core of the super-
modular game (M−,w−) where

w−(S) = max
{
ωT

∣∣ T ⊆ Q+, g(T ) ∩ M− ⊆ S
}

for all S ⊆ M−; w−(M−) = ωQ+

(note that, by our choice of p̃, the constraints z � p̃ are not binding).
We use only Equal Treatment of Equal Demands and Pareto Optimality to show yM+ = xM+ .

We omit for brevity the similar argument establishing this equality on M−. Set m+ = |M+| and
recall that y∗m+ � y∗(m+−1) � · · ·� y∗1 is the order statistics of y.

Claim 1. Fix an agent i1 ∈ M+, such that yi1 = y∗m+ ; then

yi1 = xi1 = y∗m+ = x∗m+ (28)

Because x Lorenz dominates y, we have y∗m+ � x∗m+ . If yi = y∗m+ for all i ∈ M+ then yM+ =
xM+ at once and we are done. If yi1 = 0 (recall in M+ all peaks are 0) then xi1 � 0 implies
xi1 = yi1 and (28) is again proven. From now on we assume yi1 > 0, and that there is at least one
agent i such that yi < y∗m+ . We show there exists a subset S(i) ⊂ M+ such that

i1 /∈ S(i), i ∈ S(i), and yS(i) = v+(
S(i)

)
(29)

Otherwise yS < v+(S) for all S in M+ containing i but not i1. Choosing ε > 0 smaller than the
smallest such difference v+(S) − yS , we see that an ε-transfer from agent i1 to agent i (a Pigou–
Dalton transfer) preserves the core property (inequalities yS � v+(S) for S containing i are
automatically satisfied), and yi1 > 0 ensures the new allocation is nonnegative. This contradiction
of (20) proves (29).

Set S∗ = ⋃
i: yi<y∗m+ S(i). Submodularity of v+ implies yS∗ = v+(S∗), so

xS∗ � v+(
S∗) = yS∗ ⇒ xM+�S∗ � yM+�S∗

But by construction yj = y∗m+ � xj for all j ∈ M+�S∗, therefore xj = y∗m+ for all j ∈
M+�S∗. Combining this with y∗m+ � x∗m+ proves (28).

Claim 2. Fix an agent i2 ∈ M+, such that i2 �= i1 and yi2 = y∗(m+−1), then

yi2 = xi2 = y∗(m+−1) = x∗(m+−1) (30)

10 It is easy to check from Lemma 2 that this is possible iff f (M−) = Q+ , g(Q−) = M+, and f −1(Q0) ⊇ M0,

g−1(M0) ⊇ Q0.
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As x Lorenz dominates y, we have y∗m+ + y∗(m+−1) � x∗m+ + x∗(m+−1) ⇒ y∗(m+−1) �
x∗(m+−1) (by Claim 1). If yi = y∗(m+−1) for all i ∈ M+�i1 then y � x so y = x by yM+ = xM+ ,
and we are done. If yi2 = 0 then xi2 � 0 implies xi2 = yi2 and (30) is again proven. From now on
we assume yi2 > 0, and that there is at least one agent i ∈ M+ such that yi < y∗(m+−1). For any
such agent, we claim there is a subset S(i) ⊂ M+ such that

i2 /∈ S(i), i ∈ S(i), and yS(i) = v+(
S(i)

)
Otherwise, we can construct as above a Pigou–Dalton transfer from agent i2 to agent i, in con-
tradiction of (20). Set S∗ = ⋃

i: yi<y∗m+−1 S(i), then submodularity of v+ gives yS∗ = v+(S∗),
hence

xS∗ � v+(
S∗) = yS∗ ⇒ xM+�S∗ � yM+�S∗ ⇒ xM+�(S∗∪{i1}) � yM+�(S∗∪{i1})

But by construction yj � xj for all j ∈ M+�(S∗ ∪ {i1}) (as yj � y∗2), and M+�(S∗ ∪ {i1})
contains i2. Combining this with y∗(m+−1) � x∗(m+−1) proves (28).

The inductive argument establishing y = x is now clear.
Step 2. Extending ψ = E to all profiles. We fix an arbitrary profile R∗ ∈ RM with peaks p∗,

and associated GE decomposition M+,−,0, Q+,−,0 of (G,ω,p∗). We choose R̃ with peaks p̃

as in Step 1, and the additional requirements p∗M− � p̃M− and p∗M0 = p̃M0 ; we also have
p̃M+ = 0 � p∗M+ .

Given S ⊂ M , we write (R∗S, R̃(M�S)) for the profile equal to R∗ for agents in S and to R̃

for agents in M�S. For any integer n, 0 � n � m, consider the following subset of preference
profiles

Dn = {(
R∗S, R̃(M�S)

) ∣∣ for some S ⊂ M: |S| � n
}

We prove by induction on n the property H+(n): ψ = E on Dn. This is enough because Step 1
establishes H+(0), and H+(m) means ψ(R∗) = E(R∗) for an arbitrary R∗.

Assume H+(n− 1) is true, and fix R = (R∗S, R̃(M�S)) with |S| = n. We claim ψ(R)S∩M+ =
E(R)S∩M+ . Pick an arbitrary agent i ∈ S ∩ M+. By Pareto Optimality p∗

i � ψi(R),Ei (R). To
prove ψi(R) = Ei (R) we consider the profile R′ = (R∗(S�i), R̃(M�S)∪{i}) ∈ Dn−1 where the
inductive assumption gives ψi(R

′) = Ei (R
′) = zi . We compare ψi(R),Ei (R) and zi by distin-

guishing two cases.
If p∗

i � ψi(R) < Ei (R) then zi � ψi(R) by Monotonicity of ψ (Lemma 3) and p̃M+ � p∗M+ .
As E is Invariant (Proposition 4) and p̃i , p

∗
i < Ei (R

∗
i ,R−i ), we have Ei (R̃i ,R−i ) = Ei (R

∗
i ,R−i ),

i.e., zi = Ei (R). This is a contradiction. If p∗
i � Ei (R) < ψi(R) the same contradiction obtains

by exchanging the role of ψ and E . The claim is proven.
We check next ψ(R)M+�S = E(R)M+�S . Write ψ(R)M+ = y, E(R)M+ = x, and consider

the set

C(R) = {
z ∈R

M+�S
+

∣∣ (
z, xS∩M+)

is in the upper core of
(
M+, v+)}

It contains yM+�S because yS∩M+ = xS∩M+ . Clearly xM+�S is still Lorenz dominant in C(R),
hence we can mimic the proof of Step 1 to show that Equal Treatment of Equal Demands and
Pareto Optimality imply the desired equality of xM+�S and yM+�S . The key is that the restric-
tion of the profile R̃ to M+�S consists of pairwise identical preferences, therefore we can apply
Equal Treatment of Equal Demands to any pair of agents in M+�S. To copy the proof of Step 1,
observe that C(R) is defined, besides the constraints z � 0, by the inequalities
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zA � v̂+(A) = v+(
A ∪ (S ∩ M+)

) − xS∩M+ for all A ⊂ M+�S

and the equality zM+�S = xM+�S . Thus C(R) is the upper core of the submodular game
(M+�S, v̂+) and the proof proceeds exactly as in Step 1. We omit the details.

We also omit the entirely similar proof that ψi(R) = Ei (R) on M−. �
8. Concluding comments

We first list four more normative requirements for our model, three of which are satisfied by
the Egalitarian rule.

1) Group-Strategyproofness strengthens Strategyproofness by ruling out profitable joint misre-
ports by arbitrary subsets of agents. In the standard model it is well known that the Uniform
rule is group-strategyproof and Barbera et al. [2] offer a group-strategyproof allocation rule
which may treat agents unequally. Chandramouli and Sethuraman [6] recently established
that the present Egalitarian rule is group-strategyproof as well.

2) Resource Monotonicity requires that the share of every agent increases weakly when the
amount of one of the resources (one of the numbers ωr ) increases [27]. For instance we go
from Fig. 1 (Section 2) to Fig. 2 (Section 4) by adding 2 units to resource s, and the Egalitar-
ian solution goes from (11,15,9,5) in Fig. 1 to (13,15,9,5) in Fig. 2. Our Egalitarian rule
is Resource Monotonic. The proof mimics that of the analog “Peak Monotonicity” property
in the companion paper [4]; it is omitted for brevity.

3) Consistency plays a central role in characterizing the parametric rules of the standard model
(these include the Uniform rule and many more): see [30] and [29]. It can be adapted to
our model in two ways, by dropping an agent or dropping a resource (see [18] for a for-
mal definition). Consider a rule ψ , a problem (M,G,ω,R), and a G-flow ϕ implementing
ψ(M,G,ω,R). If agent i leaves with her share of ϕ, we delete from G all edges between i

and Q, and reduce the endowment of resource r to ωr(−i) = ωr − ϕir . Agent-Consistency
of ψ requires that ϕ(−i) implements the allocation ψ(M�i,G(−i),ω(−i),R−i ). From its
Lorenz dominance property, it is clear that the Egalitarian solution is agent-consistent.
Symmetrically, Resource-Consistency considers dropping a resource r , deleting from G all
edges between M and r , and shifting the preferences of agent i by ϕir , i.e., the flow that
agent i gets from resource r at ψ(M,G,ω,R). Her peak then becomes (pi − ϕir ) if pi −
ϕir > 0, and 0 otherwise. The preference relation Ri(−ϕir ) resulting from this operation is
the obvious translation of Ri around the new peak (pi − ϕir ) if pi − ϕir > 0, or the always
decreasing preference if pi −ϕir � 0. Resource-Consistency requires that ϕ(−r) implements
the solution ψ(M,G(−r),ω(−r),R(−r)). The Egalitarian rule fails this property, as one
sees in the examples of Fig. 1 and Fig. 2 by dropping resources r, s, t . The reduced one-
resource problem has C with peak 2, and D with peak 5, sharing 6 units: the Uniform
solution is x̃C = 2, x̃D = 4, whereas the Egalitarian solution of the initial problem gives only
one unit of resource u to C, and xD = 5.
As mentioned in the introduction, the follow-up paper [18] focuses on rules meeting both
versions of Consistency. In particular the standard Uniform rule admits infinitely many con-
sistent extensions to the bipartite model.

4) Edge Monotonicity: what happens when we drop or add an edge? Suppose agent i is rationed
(i ∈ M−), and we are adding an edge to an overdemanded resource r in Q+: we expect i

to benefit (weakly) while other rationed agents are weakly hurt. This is indeed the case,
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and follows from Proposition 4 in [4]. However if the new edge connects i to an underde-
manded resource r ′ in Q−, the impact on i can be good or bad: he is now able to relieve the
overloaded agents in M+ of some of their burden, so he may end up overloaded himself.11

We discuss finally three extensions of our model.

5) We can add capacity constraints to the total allocation of each agent. Fix c−, c+ ∈ RM+
such that c− � c+, and insist that an allocation x ∈ RM+ is feasible only if c−

i � xi � c+
i .

Combining this with the bipartite constraints, the set of feasible allocations becomes
A(G,ω) ∩ [c−, c+]. This set is nonempty if and only if

for all S ⊆ M, c−
S � ωf (S); and for all T ⊆ Q, ωT � c+

g(T ) (31)

an assumption we must maintain. Then the “core” representations of feasible allocations,
statements iv) and v) in Lemma 1, are easily adapted.12 Preferences of agent i bear only
on [c−

i , c+
i ], so the profile of peaks p is in [c−, c+]. The GE decomposition (Lemma 2) is

unchanged, and so is the description of Pareto optimal allocations (Proposition 1), except for
the addition of the capacity constraints. For instance in M+ the constraints become xM+ ∈
A(G(M+,Q−),ω), and pM+ � xM+ � c+: they are compatible because the system (31) is
true when p replaces c−.
To define the Egalitarian solution in M+, we use the same system Θ(λ) but with the median
function γi(λ) = med{λ,pi, c

+
i }, guaranteeing that γi(λ) remains below c+

i . Similarly in
system Ξ(μ) we set δi(μ) = med{μ,c−

i , pi}. The Lorenz dominant position of E(G,ω,p, c)

in the Pareto set (Proposition 2) follows from the same argument, and so does the proof that
the Egalitarian rule is Strategyproof (Proposition 4).
On the other hand, the properties of Equal Treatment of Equals, and No Envy have much
less bite in the presence of arbitrary capacity constraints. Two agents with disjoint capacity
ranges ([c−

i , c+
i ] ∩ [c−

i , c+
i ] = ∅) cannot envy one another, nor can we talk of their prefer-

ences being equal. So our Egalitarian rule passes the version of these two axioms applying
only to overlapping (or even equal) capacity ranges, but this is not enough to extend the
characterization result.

6) There is a “discrete” variant of the standard model where indivisible units have to be dis-
tributed. Two papers [22,12] characterize in this case the randomized Uniform rule for the
standard model. It is possible that their result could be adapted to include bilateral con-
straints.

7) We have considered only symmetric rules. In the standard model, the rich family of allot-
ment rules [2] preserves the incentive properties of the Uniform rule while allowing a very
different treatment of the agents. Similarly the family of fixed paths rules [17] is charac-
terized by the combination of Pareto Optimality, Strategyproofness, Resource Monotonicity
and Consistency. Both families can be extended to our model, though the corresponding
characterization results, if any, would require further research.

11 In the example of Fig. 2 the rule E selects (xA,xB,xC,xD) = (13,15,9,5). Adding an edge from agent C to resource
r yields a new problem where all resources are underdemanded (M = M+,Q = Q−), and the new Egalitarian allocation
is (10.5,15,10.5,6). Agent A strictly benefits in the change, while D is hurt. If 9PC10.5, agent C is hurt as well.
12 x ∈ A(G,ω) ∩ [c−, c+] ⇔ {x � c+ and x is in the lower core of the supermodular game (M,w), where w(S) =
maxT : g(T )⊆S {ωT + c−

S�g(T )
}} ⇔ {x � c− and x is in the upper core of the submodular game (M,v), where v(S) =

minS′⊆S {ωf (S′) + c+ ′ }}.
S�S
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