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Abstract

Let u be a finite non-negative Borel measure. The classical Lévy—Raikov—Marcinkiewicz the-
orem states that if its Fourier transforfincan be analytically continued to some complex half-
neighborhood of the origin containing an interv@l i R) then i admits analytic continuation into
the strip{r: 0 < It < R}. We extend this result to general classes of measures and distributions,
assuming non-negativity only on some ray and allowing temperate growth on the whole line.

0 2004 Elsevier Inc. All rights reserved.

Keywords: Borel measure; Temperate distribution; Fourier transform; Analytic continuation

1. Introduction
Let u be a finite Borel measure, and denote/bits Fourier transform,

L) = / e M dp(x). 1)
R

The following principle is well known in harmonic analysiQuppose . is a positive
finite Borel measure. If its Fourier transform £ is ‘smooth’ at the origin then it is ‘ smooth’
on the whole real line. For example [4, Theorem 2.1.1], i is 2n-times differentiable at
the origin,n > 1 being a natural number, then it is-2mes differentiable on the whole real
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line and|2@(1)| < |1®V(0)|, t € R. For a manifestation of the principle for non-analytic
infinite differentiability see [1].

The following result due to P. Lévy and D. Raikov (see, e.g., [4, Theorem 2.2.1, p. 24])
deals with reablnalyticity: If the Fourier transform f coincides in a real neighborhood
(—a, a) of the origin with a function analytic in arectangle {¢: |[N¢| <a, —R < 3t < R},
then i admits analytic continuation to the strip {z: |3t| < R}.

As a generalization ofhie real analyticity in(—a, a) C R, one can consider a weaker
property of a functiory to be the boundary value of a function analytic in a complex upper
half-neighborhood of—a, a):

(A) g coincides in a real neighborhodé«, a) of the origin with a function analytic in a
rectangle(zr: |R¢| < a, 0 < 3t < R} and continuous in its closure.

Marcinkiewicz (see, e.g., [4, Theorem 2.2.3, p. 25]) showed that the principle also works
with this generalized real analyticity. We state this result in the following form.

L évy—Raikov-M ar cinkiewicz theorem. Suppose 1 isanon-negativefinite Borel measure
whose Fourier transform satisfies assumption (A). Then & admits analytic continuation
into the strip {r: 0 < 37 < R} and is representable there by the absolutely convergent
integral (1).

Itis convenientfor us to consider also the property to be the boundary value of a function
analytic in a complex lower half-neighborhood(@fa, a):

(—A) g coincides in a real neighborhodd«, a) of the origin with a function analytic in
arectangldz: |9it| <a, 0> 3t > —R} and continuous in its closure.

One can easily reformulate the Lévy—Raikov—Marcinkiewicz theorem for this case.

This paper is devoted to extensions of the Lévy—Raikov—Marcinkiewicz theorem to
some general classes of measures and distributions assuming non-negativity only on a half-
line.

2. Statement of results

We show that the assumptions of the Lévy—Raikov—Marcinkiewicz theorem can be sub-
stantially relaxed: It is enough to assume non-negativity @h some half-lingb, +00).
Moreover, one can also allow a temperate growtp @i this half-line:

wb,x)<Clx|V, x>b, (2)

whereC and N are some positive constants. Observe that the Fourier transform of mea-
suresu satisfying (2) exists in the sense of distributions.

Theorem 1. Assume . is a Borel measure non-negative on some half-line (b, co), sat-
isfies (2), and is finite on (—oo, b]. If its Fourier transform [ satisfies (A), then the
conclusion of the Lévy—Raikov—Marcinkiewicz theorem holds.
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Measures satisfying (2) form a subset of the set of temperate distributions (t.d.). We
refer the reader to the book [3] for the terminology related to temperate distributions and
their basic properties. We shall say that a §.datisfies assumption (A) if the restriction of
g to (—a, a) agrees (as a temperate distribution) with a function analytic in the rectangle
{t: |Nt] <a, 0< It < R} and continuous in its closure. The following theorem extends
the Lévy—Raikov—Marcinkiewicz theorem to temperate distributions.

Theorem 2. Let f be a temperate distribution non-negative on some half-line (b, +00).
Assume that its Fourier transform f satisfies (A). Then f is the boundary value in
S’-topology of a function which is analytic in the strip {r: 0 < Jr < R} and O (|¢|V) for
some N > 0ast — oo inany interior smaller strip.

Changing roles off and f and using the well-known identitj = 2r f, one can refor-
mulate Theorem 2 as follows.

Theorem 3. Let f beat.d. satisfying (—A). Assume that its Fourier transform f is non-
negative on aray (b, o0), b € R. Then f isthe boundary value on R in &’-topology of a
function which is analytic in the strip {r: —R < 3t < 0} and O(|¢|") for some N > 0 as
t — oo inany interior smaller strip.

We also give a variant of Theorem 2 fér-functions. In this case the assertion of
Theorem 2 can be sharpened:

Theorem 4. Let f be a function belonging to L2(R) and non-negative a.e. on a ray
(b, +00), b € R. Assume that its Lo-Fourier transform f satisfies a.e. in (—a, a) con-
dition (A). Then f is the angular boundary value of the function analytic in the strip
{t: 0 < 3t < R} and representable there as the sum f = g1 + go, where g1 belongs to
the Hardy class H in any strip {t: 0 < Jt <r < oo}, and g» is analytic in the strip
{r: 0 < 3t < R}, continuousand tendingtoO at co inany stripof kind {r: 0 < 37 <r < R}.

The following version of Theorem 3 for a finite Borel measure may be of interest
because it gives conditions on the Fourier transform of such a measure under which its
absolute continuity in a neighborhood of the origin implies its absolute continuity on the
whole real line.

Theorem 5. Let 1 be a finite Borel measure on R. Assume that it is absolutely continuous
in a neighborhood of the origin (—a, a), and its density satisfies condition (—A). If the
Fourier transform (i of w is non-negative on a ray (b, o0), b € R, then p is absolutely
continuouson R and its density is the angular boundary value of a function analytic in the
strip {t: —R < 3t < 0} and belongingto theHardy class H; inanyrectangle {¢: |0¢]| < A,
—R <3t <0},A>0.

This paper is an extended version of [5] where the results of this paper were announced
without proof. Note that Theorem 2 has important applications to the well-known prob-
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lem (see [2,7]) of oscillation of real functions having a spectral gap at the origin. These
applications are considered in [6].

3. Auxiliary result
In this section we shall prove the following

Proposition 1. Let f beat.d. non-negativeon {x: |x| > 8}, 8 > 0. Assumethat its Fourier
transform f coincideson (—a, a) with a function analyticinarectangle {t: —r < 3t < R,
—a < Mt <a}. Then f coincides on R with a function analyticin strip {t: —r < 3t < R}
and being O (|¢|V) for some N > 0 ast — oo inany interior smaller strip.

To prove Proposition 1 we need

Lemma 1. Let f be a non-negative temperate distribution. Assume that its Fourier trans-
form f coincides in a neighborhood of the origin with a function analytic in a rectangle
{t: —r <3t < R, —a <Nt <a}. Then f coincides on the whole real axis R with a func-
tion (denoteit also by f) analyticinthestrip {r: —r < 3t < R} and representabletherein
the form

o0

F) = / e dp s (), @3)

—00

where ¢ is a non-negative finite Borel measure on R and the integral converges ab-
solutely.

Proof. It is well known (see, e.g., [3, p. 38]) thatis a non-negative locally finite Borel
measure ¢, say). Let us show that, for each non-negagive S, one has

o]

(f. @)= / p(x)duf(x) < oo. (4)

—00

Lety» € D be non-negative and such that0) = 1, whereD = C3°(R). It can be readily
seen that

Y(hx)p(x) — ¢(x) ash— 0, (5)
in S-topology. Sincay (hx)¢(x) € D, we have

(fo v (h)e)= / Y (hx)p(x)dr(x).

In virtue of (5), the left-hand side has finite limftf, ¢) ash — 0. Sinceyr(hx) — 1
pointwise, the Fatou lemma implies finiteness of the integral in (4). Using dominated con-
vergence theorem, we get (4).
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Now, letg, ¢(0) = (27)~1, be a non-negative dR entire function of exponential type 1
belonging taS. Theng € D, suppp < [—1, 1], and

o]

/ @) dt =1.

—00

Setgy, := @(h-), h > 0, and observe that supp < [—h, h] andg, — do in D’-topology
ash — 0. Sincef is an analytic function in a neighborhood of the origin, we have for
sufficiently smallx,

o0

A

(@ns )= (F. n) =2 (f, ¢n) =27 f Gn(x)dup(x).

—00

Sinceg;, — (27)~1 pointwise ash — 0, we derive with help of the Fatou lemma that

oo oo

fo=2xfim [ gnodusw> [ .

—0o0 —0o0

Thus, the distributiory is a finite non-negative measugg:. Applying the Lévy—Raikov
theorem, we get assertion of Lemma 1o

Proof of Proposition 1. Let 0< xs < 1 (8§ > 0) be a function fromD supported by
[—B8—6, B+48]and equalto 1 op—B, B]. Considerthe t.df1 := xs f andfo := (1—xs) f.
We have

f=A+f. (6)

Since f1 has a compact support-g — g, 8 + 4], then, by the Paley—Wiener-Schwartz
theorem [3, Theorem 7.3.1, p. 1814 is the restriction taR of an entire function (we
denote it also byf;) of exponential type admitting the estimate

A0 <c(1+ |t|)Ne(ﬁ+5)|;‘w|’ o

whereC andN are positive constants. By the assumptions of Proposition 1, the distribution
fo = f — f1 coincides in a neighborhood of the origin with a function analyti¢-in <

St < R, —a < Nt < a}. Since the distributiory, is non-negative, we can apply Lemma 1
and conclude thaﬁz coincides orR with a function analytic in strigs: —r < 3t < R} and
representable there by the absolutely convergent integral (3). Therefore (6) and (7) imply
the assertion of Proposition 1.0

4. Proofsof Theorems 1-5
Proof of Theorem 2. Without loss of generality we may assume that 0, so that the t.d.

f is non-negative on the positive ray.
The proof of Theorem 2 will be divided into several steps.



I. Ostrovskii, A. Ulanovskii / J. Math. Anal. Appl. 296 (2004) 314-325 319

Sep 1. Let 0< x5 < 1 (8 > 0) be aC*-function equal to 1 or(—o0, 0) and 0 on
(8, 00). Set

fi=xsf, fa=A=xs)f. (8)
Evidently, f1, f2 € &', suppfr C (—o0, 8], suppfz C [0, 00), and the t.d.f> is non-
negative.

Sincexse” € S for n > 0 and(1 — xs)e" € S for n < 0, we have by Lemma 7.4.1
[3, p.191] that

fiee S’ forn>0, foe"e S forn<O0.

By Theorem 7.4.2 [3, p. 192], the Fourier transform of the fi@&." (f2¢") is a function
f1(E +in) (f2(€ +in)) analytic inr = & + in in the upper (lower) half-plane and growing
asO(|&|N) for someN > 0 ast — oo in any interior smaller strip.

Sep 2. Let us show that

fit-+in) — fi asy— 40, fa(-+in) — fo asy— -0, 9

hold in S’-topology.
The proofs of these relations are similar, so we prove only the first relation. For any
¥ € S, we have

(AC+in), ¥)=(fre" ¥) = (fr. xs¢"P).
Sincexse ™ — x5y asn — +0 in S-topology, we see that
I|m (fl( +in), v) = (fL. xs¥) = (fr. ¥).

Step 3. Letp andgy, have the same meaning as in the proof of Lemma 1. SipeeD,
the distributions

= Fwn f=rxon 3=l (10)
areC*-functions by Theorem 4.1.1 [3, p. 88]. Note that
f'=1n+1. (11)

Sep 4. By the assumptions of Theorem 2, the ffctoincides or(—a, ) with a function
analyticin{z: —a <9t <a, 0< 3t < R}. Then, for O< i < a, the t.d.f" coincides with
a function analytic in the rectangle: |%¢| <a —h, 0 < 3t < R} in a neighborhood of
the origin.

Let us show thaC>-function £} (') is the boundary value oR of a function ana-
lytic in the upper (lower) half-plane and continuous in its closure. Again, we can restrict
ourselves by the funcnogfl Let usdefine fl in the upper half-plane in the following
way:

AW =(fie =, ¢n)=(AC+in, onE =), 1=E+in, n>0.
This function is also analytic in the upplealf-plane and according to (9) we have

niqoff(s+in>=(fl,¢h(s—o>>=(f1*¢h)(s). (12)
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The limitin (12) is uniform iné on each finite interval. Indeed,

fE+in=(AC+in. onE — )= (f1. 2r xse EH D gy).
It remains to observe that

—i(E+in)-

Xse on— xse Sgp asn— 40,

in any seminorm of the spaceuniformly in & on each finite interval.

Remark. In a similar way it can be shown that each derivativef{i(é + in) tends as
n — +0 to the corresponding derivative of1 % ¢»)(&) uniformly in & on each finite
interval. So in factflh is the boundary value oR of a function analytic in the upper half-
plane and infinitely differentiable in its closure. We will not use this fact.

Sep 5. From (11) we derive that
Ao=f"0-fiwo, ter. (13)

The function in the left-hand side is analytic in the lower half-plane and continuous in its
closure. The function in the right-hand side is analytic in rectangle

{t: 1Mt <a—h, 0<3t <R} (14)

and continuous in its closure. Therefq?§ admits analytic continuation into (14). Theo-
rem 7.1.15 [3, p. 166] implies that the distributighl (= f2 * ¢) is the Fourier transform
of the distribution 2 fo¢, which is non-negative by the construction f Therefore we
may apply Lemma 1 t(fzh We see that this function admits analytic continuation into strip
{t: 0 <3t < R} (and, hence, half-plarfe: 3t < R}) and is representable there in the form

0 =2n/e—"“¢h(x)duf2(x), 3t <R, (15)
0

where u s, is the non-negative measure representfagand the integral converges ab-
solutely.

Sep 6. We have just proved that all members of equality (13) can be considered as
analytic in the region (14). Therefore this equality holds true in (14). Let us consider it at
pointz =in, 0 < n < R. Taking into account (15), we can write it in the form

2 / e Mop(x)dp p,(x) = f(in) — fin). (16)
0

It was mentioned in Step 1 th4i is analytic in the upper half-plane. By the assumptions
of the theorem/f is analytic in{r: —a < s < a, 0 < Jr < R}. Therefore the limit as

h — —+0 of the right-hand side of (16) exists (and is equafton) — f1(in)). Sincey;, —
(27)~1 pointwise, we conclude by the Fatou lemma that

/ex”dufz(x)<oo (17)
0
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for 0 < n < R and, hence, foroo < < R.
Let us write down the equality (13) for0 i < a/2 at an arbitrary point of the rectangle
{: 01| <a/2, 0< It <R},

2 / e (x)dp g, (x) = f1(0) — fl ). (18)
0

Now, leth — +0. The limit of the right-hand side evidently f&¢) — 1(). Using (17) and
dominated convergence theorem, we can take limit under the integral sign in the left-hand
side, and we obtain the following equality in the mentioned rectangle:

/ e dup(x) = f0) = ). (19)
0
Sep 7. The equality (19) can be rewritten in the form
f® = f) +/€7”x df,(x). (20)
0

It has been shown that it holds true in the rectarglg)is| < a/2, 0 < It < R}. But the

first term of right-hand side is (see Step 1) analytic in the upper half-plane and has growth
not exceeding a power of| in any strip of kind{¢: 0 < r; < 3t < rp < oo}. The second

term of right-hand side is analytic and bounded in the half-p{an&r < r, < R} because

the integral converges there absolutely and uniformly by virtue (17). Taking into account
that f1(- +in) — f1 in S’-topology (see (9)), we get the assertion of Theoremi2.

Proof of Theorem 4. If in the proof of Theorem 2 one assumes tifat L2(R), then we
have
f1, f2, £+ f1, f2 € L2(R),

and f1 belongs to the Hardy clag$, in any strip of kind{z: 0 < 37 < r < oo}. Since the
measureu s, coincides (in the distributional sense) with the functinwe conclude that
du s, = fadx. Therefore (17) is equivalent to

o0
/ex”fz(x)dx <00, —00<n<R,
0
and, in particular, we gef; € L1(R). Hence
o0
fot) = / e fo(x) dx
0

admitsAthe gnalxtic continuation froRito the half-plands: It < R} and tends to O ato.
Sincef = f1 + f2, we obtain the desired conclusion
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Remark. The question arises whethgrbelongs toH> in {r: 0 < J7 < R}. In general, the
answer is negative, moreovet,may not belong ta4, even in any smaller strip. A coun-
terexample can be constructed in the following way.

It suffices to construct a non-negative functipe Lo(R.) satisfying conditions:

o0

0] /ex”f(x)dx<oo, vy >0,

0
(ii) /ezx”fz(x)dxzoo, vn > 0.
0

Indeed, (i) implies thay can be analytically extended to the whole plane, and, hence, the
conditions of Theorem 6 are satisfied forOn the other hand, (ii) implies (by the Parseval
equality) thatf (- +in) ¢ L2(R) for anyn > 0 and, hencef does not belong téf, in any
parallel strip lying in the upper half-plane.

A function f satisfying (i) and (ii) can be taken in form

Flao) = {1/|x — k| ]:;Lgrv;ig< Sk k=1,2,...,
where the parameters0§; < 1/2 and O< o < 1/2 are defined by the equations
Si=e X 81— 20y) =k 72, k=12..... (21)
Indeed, fom > 0,
T oo e“Mdx as i du
O/ex"f(X) dx = Xl:k/& oy < 22126(]""1)"0/ o

l ok 00
=2 e(k+l)'7 % <4e" K1 /8y < 00
Dt <ary
by the first of conditions (21). Further

k8 _
51 20,

dx >
dx = —— =2 k
/f(x) > [ > g <

1k5k

by the second of the conditions (21). Finally, fp& 0,

251 20

20 gy
2xn @k=Dn="k
/ f(x)dx_z / x — k[2 Z 1—20

0 k—6k
also by the second of conditions (21).

Proof of Theorem 1. If in the proof of Theorem 2 one assumes thfats a temperate
measureu, then f1 and f> are also temperate measurgs,and u» say, defined by:; =
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Xsit, m2 = (1 — xs)u. The proof of Theorem 2 shows thap (= uy,) is a non-negative
finite measure o satisfying (17). Thereforg|(R+) < |u|((0, 8)) + u2(R4) < oo and
hence|u|(R) < co. Moreover,ji2 is analytic in{r: 3t < R}, continuous and bounded in

{t: 3t < R1 < R}. Since|u|(R-) < oo, the functionji1(¢) is analytic in the upper half-
plane and continuous in its closure. In the proof of Theorem 2 (Step 7) it had been shown
thati(r) = 11(r) + f12(¢) for 0 < It < R. Since is the boundary value gi(z) onR in
S’-topology, we get the assertion of the theorerm

Proof of Theorem 5. Let a measurg satisfy conditions of Theorem 5. Sét= /. This
is a continuous bounded function &) and we shall consider it as a distribution frath
The conditions of Theorem 5 imply that is non-negative on the positive ray, and the
distribution / = 27 /1 coincides in(—a, a) with a function analytic if0 < Jr < R, —a <
Nt < a}. Hence,f satisfies the conditions of Theorem 2 and therefore all arguments from
its proof are applicable.

The distributionsf, f» defined by (8) are now continuous bounded functionsRon
with suppfi C (—o0, 81, suppfz C [0, c0). Functionsf", £, fi are C*-functions on
R and, moreoverf!' (f}) is the boundary value of a functiofi (r) (f}(r)) analytic in
the upper (lower) half-plane. Furthéf(t) admits analytic continuation to the half-plane
{r: 3t < R}, is representable there by formula (15), and

oy =flaoy+ fa), o<t <R.
Let us show that the following estimate holds for any @ < 1:

\fh(t)|<£ 0<3r <R, (22)

o~

St
whereC is a positive constant depending on neithaor 4.

Since f1 is a continuous bounded function & with suppf1 C (—oo, 8], then its
Fourier transformyy is analytic in the upper half-ptee and satisfies the inequality

R C
|A] < 3—: 31> 0. (23)

Noting that
o =(A*o)@) = / A +ingnE —x)dx, t=¢&+in,

we get from (23),

o o
~ C1 R C1 A C
\f{'(r>|<—/\¢h(x)\dx=— /|¢(x)\dx=—. (24)
n n n
—00 —00
It follows from (15) and (17) that the functiorygf, 0 < h <1, are uniformly bounded in
the half-plandz: It < R}. Hence by (24) we obtain (22).
Let us fix any rectangle

My ={r: |Re| <A, 0<Ir < R/2}.
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Functions
@)= ") (A2=12), teMy, O<h<1,

are analytic in infl4, continuous in74 and, by (22), uniformly bounded dii14. By the
maximum modulus theorem, these functions are uniformly boundéginThe compact-
ness principle says that any sequence of valudstehding to 0 contains a subsequence
hx — 0 such thag’* converges uniformly on compacta in ifi; to a functiong analytic
ininti7,.

By the Cauchy integral formula we have

1 / M: {gh(t) forr eintfly, (25)

2mi c—t 0 fors ¢ I1y.

A,
Observe that, forr € 0174 \ [—A, A], we hqvef"(;) — f(g) and henceg"(¢) —

f(&)(A% — £2) boundedly as: — +0. Sincef = 271 is a finite measure, we have for
te[—A,AlL,h— 0,

@) de =27 (i gn) () di — 2w dju(©),

in the sense of weak-star convergenteerefore we can pass to the limit &s= i, — 0
under the integral sign in (25) and obtain

1 dv(;)_{(AZ—tz)f(t) fors eintily, (26)
2mi c—t |0 forr ¢ Iy,
dIlz

wherev is a measure oAl defined by
(A2 =12 f(@©)ds  forgeda\[-A, Al
(A2 —1?)2mdpu(c) forc e[—A, Al

The equality (26) means that the integral in its right-hand side is a Cauchy integral
of measure. By the well-known theoreof brothers Riesz, the measurds absolutely
continuous with respect to the Lebesgue measurglép and its density coincides with
the angular boundary values 42 — 2) f (1), t € intI14. Moreover, the latter function
belongs toH1 in intIT4. Using the arbitrariness of choice df, we get the assertion of
Theorem 5. O

dv(C)={
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