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Abstract

We introduce the notion of induced Hilbert spaces for positive unbounded operators and
that the energy spaces associated to several classical boundary value problems for partial dif
operators are relevant examples of this type. The main result is a generalization of the Krei
lifting theorem to this unbounded case and we indicate how it provides estimates of the spe
operators with respect to energy spaces.
 2004 Elsevier Inc. All rights reserved.

Keywords: Energy space; Induced Hilbert space; Lifting of operators; Boundary value problems; Spectrum

1. Introduction

One of the central problem in spectral theory refers to the estimation of the sp
of linear operators associated to different partial differential equations. Depending
specific problem that is considered, we have to choose a certain space of functions,
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which until now the most tractable have been proved to be the Banach spaces a
Hilbert spaces. The construction of the underlying Banach/Hilbert spaces associa
these linear operators is usually made by introduction of a norm, respectively an
product. In this circle of ideas, the most general construction requires a factorizatio
a completion that introduces some ideal elements that are difficult to control. We m
here the pioneering work of K. Friedrichs [3].

On the other hand, since operators can be considered on different spaces, on
problems of interest is to provide fairly general assumptions under which informatio
the spectrum of operators with respect to the spaces on which they are considered
obtained from the preliminary information on the original spaces. Among the resu
the invariance of the spectrum we recall, for instance, the Wiener’s theorem stating t
convolution operator generated by a summable function has the same spectrum o
spaces of the typeLp for (1 � p � ∞).

In addition, we mention that there are many other successful methods of investi
of this problem, among which we note those based on the theory of embedding s
interpolation theorems for operators [1], and on the maximum modulus principle for
lytic functions, cf. N. Levinson [8]. There is a large number of articles on this topic,
[4,12–17], to cite only a few.

In this paper we pursue a way opened by the works of M.G. Krein [6], W.T. Reid
P. Lax [7], and J. Dieudonné [2], where a general theory with applications to sp
properties of operators on different spaces is obtained. The core of this theory is a
theorem stating that under a certain intertwining relation, the operator can be lifted
control on the norm. To our knowledge, the known results and applications of this t
have been considered only with respect to bounded operators. It is our aim to sho
this can be extended to unbounded positive selfadjoint operators and to which ext
preservation of the spectra can be obtained in this case. We employed a rather
abstract scheme for induced spaces, having the advantage that it contains as spec
the energy spaces of K. Friedrichs (see also the further investigations of W.V. Petr
[10] and S.G. Mikhlin [9]).

The paper is organized as follows: in Section 2 we present the abstract definitio
make some simple remarks, after which some motivation for this construction ar
sented, namely we show that this can be applied to some classical boundary value pr
on fairly general domains. Section 3 is devoted to the main result of this paper, Theor
on lifting of bounded operators, and we conclude this paper by taking into account
consequences on the preservation of the spectra.

2. Hilbert spaces induced by positive operators

Let H be a Hilbert space andA a densely defined positive operator inH (in this paper,
the positivity of an operatorA means〈Ax,x〉H � 0 for all x ∈ Dom(A)). A pair (K,Π) is
called aHilbert space induced by A if:

(i) K is a Hilbert space;

(ii) Π is a linear operator with domain Dom(Π) ⊇ Dom(A) and range inK;
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(iii) Π Dom(A) is dense inK;
(iv) 〈Πx,Πy〉K = 〈Ax,y〉H for all x, y ∈ Dom(A).

We first note that such an object always exists by showing actually that the so-calledenergy
space introduced by K.O. Friedrichs [3] is an example of a Hilbert space induced
positive operator. In addition, they are essentially unique in the following sense: two H
spaces(Ki ,Πi), i = 1,2, induced by the same operatorA, are calledunitary equivalent if
there exists a unitary operatorU ∈ B(K1,K2) such thatUΠ1 = Π2.

Proposition 2.1. Given a densely defined positive operator A in the Hilbert space H, there
exists a Hilbert space induced by A and it is unique, modulo unitary equivalence.

Proof. We consider the inner product space(Dom(A), 〈·,·〉A) where〈x, y〉A = 〈Ax,y〉H
for all x, y ∈ Dom(A) and letKA be its quotient completion to a Hilbert space, t
is, we factor out Ker(A) and complete the pre-Hilbert space(Dom(A)/Ker(A); 〈·,·〉A)

to a Hilbert space. Then lettingΠA be the composition of the quotient mappi
Dom(A) → Dom(A)/Ker(A) with the embedding of Dom(A)/Ker(A) into KA, we note
that(KA,ΠA) is a Hilbert space induced byA.

On the other hand, if(Ki ,Πi), i = 1,2, are two Hilbert spaces induced byA, then

〈Π1x,Π1y〉K1 = 〈Ax,y〉H = 〈Π2x,Π2y〉K2, x, y ∈ Dom(A),

and hence the operatorU is correctly defined byUΠ1x = Π2x, for all x ∈ Dom(A), and
it is isometric. Due to the minimality assumption,Πi Dom(A) is dense inKi for i = 1,2,
it follows thatU can be uniquely extended to a unitary operatorU ∈ B(K1,K2). �

In this paper we will be interested mainly in the case when the operatorA is unbounded
For this reason it is necessary to make clear the connection between the boundednA

and that of the inducing operatorΠ .

Proposition 2.2. Let (K,Π) be a Hilbert space induced by the positive and densely defined
operator A in H. Then A is bounded if and only if Π is bounded.

Proof. Indeed, the axiom (iv) can be interpreted asΠ∗Π ⊇ A. Note that the axiom (iii)
implies thatΠ∗ is densely defined, and henceΠ is closable. Without restricting the ge
erality, we thus can assume thatΠ is closed. Thus, ifA is bounded it follows thatΠ∗Π is
bounded and henceΠ is bounded: this follows, e.g., by the polar decomposition.

Conversely, ifΠ is bounded, then fromA ⊆ Π∗Π it follows that A has a bounded
extension and hence it is bounded.�
Remark 2.3. (a) In the proof of the existence of a Hilbert space(K,Π) induced by a pos
itive densely defined operatorA as in Proposition 2.1, the strong topology on the Hilb
spaceK is not explicit. This is remedied ifA is selfadjoint. Thus, ifA is a positive self-
adjoint operator in the Hilbert spaceH, thenA1/2 exists as a positive selfadjoint opera
in H, Dom(A1/2) ⊇ Dom(A) and Dom(A) is a core ofA1/2. In particular, we have〈 〉
〈Ax,y〉H = A1/2x,A1/2y H, x, y ∈ Dom(A),
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which shows that we can consider the seminorm‖A1/2 · ‖ on Dom(A) and make the quo
tient completion with respect to this seminorm in order to get a Hilbert spaceKA. We
denote byΠA the corresponding canonical operator. It is easy to see that(KA,ΠA) is a
Hilbert space induced byA. Since, as observed in Proposition 2.1, all the Hilbert spa
induced byA are unitary equivalent, in this case we have a concrete representation
strong topology of any Hilbert space induced byA. We call (KA,ΠA) the Hilbert space
induced byA in theenergy space representation.

(b) The construction in (a) can be made a bit more general. LetT ∈ C(H,H1), that
is, T is a closed linear operator with domain Dom(T ) dense in the Hilbert spaceH and
range in the Hilbert spaceH1. ThenA = T ∗T is a positive selfadjoint operator inH and
Dom(T ) is a core ofA. We consider the linear manifold Dom(T ) and the quadratic sem
norm Dom(T ) 
 x �→ ‖T x‖ and letK denote its quotient-completion to a Hilbert spa
If Π denotes the composition of the canonical projection Dom(T ) → Dom(T )/Ker(T )

with the canonical embedding of Dom(T )/Ker(T ) into K, then(K,Π) is a Hilbert space
induced byA. The construction in item (a) corresponds toT = |T | = (T ∗T )1/2 = A1/2.

(c) In the constructions made above, the Hilbert spacesK induced by the positive
operatorA have strong topologies different from the original Hilbert spaceH. In the fol-
lowing, we show another related construction for which the strong topologies ofK and
H coincide, but the cost is a more involved operatorΠ . Let T ∈ C(H) and denote by
K the closure of Ran(T ) in H. Thus,K is a subspace, that is, a closed linear subm
fold, of H. Then(K, T ) is a Hilbert space induced byA = T ∗T . A special case is whe
T = |T | = (T ∗T )1/2 = A1/2.

(d) Finally, we illustrate a mixed situation: the completion is made within the under
Hilbert spaceH but the strong topologies are yet different. To see this, letT ∈ C(H) and
on the linear manifoldK = Dom(T ) consider the quadratic norm Dom(T ) 
 x �→ |x|T =
‖x‖ + ‖T x‖, that is, the so-calledgraph norm. Then(K; | · |T ) is a Hilbert space. We le
Π :H → K be the canonical identification of Dom(T ) = Dom(Π) with K as sets. Note
that the operatorA = I + T ∗T is positive selfadjoint inH and, in addition, it is boundedl
invertible, equivalently, bounded away from 0. Then(K,Π) is a Hilbert space induce
by A.

We now show how the energy spaces associated to several classical boundar
problems for partial differential equations can be put into the framework of Hilbert sp
induced by positive (selfadjoint) operators. We first fix some notation and recall
terminology and facts about some function Hilbert spaces, especially Sobolev spac

Let x = (x1, . . . , xn) denote the position vector inRn. We denote the differentiatio
operatorD = (D1, . . . ,Dn), whereDj = i ∂

∂xj
, j = 1, . . . , n, and i2 = −1. For a multi-

index α = (α1, . . . , αn) ∈ Z
n+ denote its length by|α| = α1 + · · · + αn, its factorial by

α! = α1! · · ·αn!, and letDα = D
α1
1 · · ·Dαn

n .
Let Ω be an open set inRn. Here and in the following we assume that its bound

∂Ω is sufficiently smooth to allow surface measure and unit normal. The classC∞
0 (Ω) of

indefinitely differentiable complex valued functions with compact support inΩ is dense in
L2(Ω), the Hilbert space of square integrable complex valued functions onΩ , identified

modulo Lebesgue negligible sets. Letu,v ∈ L1,loc(Ω) denote the space of locally inte-
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grable functions onΩ , that is, for any compact setK ⊂ Ω we have
∫
K

|u|dx < +∞ and∫
K

|v|dx < +∞. If∫
Ω

uDαϕ dx =
∫
Ω

vϕ̄ dx, ϕ ∈ C∞
0 (Ω), α ∈ Z

n+,

then it is said thatu is differentiable in the sense of distributions onΩ andv = Dαu. Recall
that the casen = 1 is special: ifΩ = (a, b), thenv = Dαu in the sense of distributions
and only ifu is (α −1)-times differentiable on the interval(a, b), w = u(α−1) is absolutely
continuous on any compact interval in(a, b), andw′ = iαv a.e. on(a, b).

More generally, letp ∈ C[X1, . . . ,Xn] be a complex valued polynomial inn indetermi-
nates. Byp(D) we denote a partial differential expression and letp∗(D) denote the forma
conjugate expression. Ifu,v ∈ L1,loc(Ω) are such that∫

Ω

up∗(D)ϕ dx =
∫
Ω

vϕ dx, ϕ ∈ C∞
0 (Ω),

then it is said thatv = p(D)u in the sense of distributions.
With the notation as above andl ∈ N, we denote

Wl
2(Ω) = {

u ∈ L2(Ω) | Dαu ∈ L2(Ω), |α| = l
}
, (2.1)

‖u‖2
l,Ω =

∑
|α|=l

l!
α!

∥∥Dαu
∥∥2

L2(Ω)
, u ∈ Wl

2(Ω), (2.2)

‖u‖2
Wl

2(Ω)
= ‖u‖2

L2(Ω) + ‖u‖2
l,Ω, u ∈ Wl

2(Ω). (2.3)

Then(W l
2(Ω); ‖ · ‖Wl

2(Ω)) is a Hilbert space, usually called aSobolev space. In general,

C∞
0 (Ω)W

l
2(Ω) = ◦

Wl
2(Ω)

is a subspace (that is, a closed linear submanifold) of the Hilbert spaceWl
2(Ω), but

◦
Wl

2(Ω) �= Wl
2(Ω). However, ifΩ = Rn we have

◦
Wl

2(Ω) = Wl
2(Ω), that is,C∞

0 (Rn) is
dense inWl

2(R
n).

On the other hand, if the open subsetΩ is bounded inRn, then the norm‖ · ‖l,Ω on◦
Wl

2(Ω) is equivalent with the norm‖ · ‖Wl
2(Ω). In addition, the classC∞(Ω), of complex

valued functions onΩ that admit an indefinitely differentiable prolongation toR
n, is dense

in Wl
2(Ω). Also, if u ∈ ◦

Wl
2(Ω), thenu|∂Ω = 0 a.e. with respect to the surface measuredS

on the boundaryS = ∂Ω .
Again, the casel = 1 is special. Letting

|u|22 = ‖u‖2
1,Ω +

∫
∂Ω

|u|2 ds, u ∈ W1
2 (Ω),

we have
◦

Wl
2(Ω) = {

u ∈ W1
2 (Ω)

∣∣ |u|2 = ‖u‖1,Ω

}
{ 1

∣∣ }
= u ∈ W2 (Ω) u|∂Ω = 0, dS—a.e. . (2.4)
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2.1. The Neumann boundary value problem

Let Ω be an open subset ofR
n such that its boundary∂Ω is sufficiently smooth. We

consider the selfadjoint operatorA in L2(Ω) associated to the Neumann problem:{
u − ∆u = f onΩ,
∂u
∂ν

= 0 on∂Ω,
(2.5)

where∂/∂ν denotes the derivation with respect to the exterior normal.
More precisely, consider the Sobolev spaceW1

2 (Ω) and note that, by its definition (2.1
we haveW1

2 (Ω) ↪→ L2(Ω), that is, it is continuously embedded inL2(Ω). The hermitian
form

a[u,v] =
∫
Ω

uv̄ dx +
∫
Ω

〈∇u,∇v〉dx, u, v ∈ D[a] = W1
2 (Ω),

where D[a] denotes the form domain, is positive, bounded from below by 1, clo
and determines the positive selfadjoint operatorA. By the Friedrichs theory we have th
Dom(A1/2) = D[a], and henceA = A∗ andA � 0, in particular Ker(A) = 0.

We let H = L2(Ω), K = W1
2 (Ω), as well as the linear operatorΠ : H → K with

Dom(Π) = W1
2 (Ω), Π : u �→ u (u ∈ W1

2 (Ω)). We show that(K,Π) is a Hilbert space
induced byA:

(i) K = W1
2 (Ω) is a Hilbert space with inner product

〈u,v〉K = 〈u,v〉L2(Ω) + 〈u,v〉1,Ω

=
∫
Ω

uv̄ dx +
∫
Ω

〈∇u,∇v〉dx, u, v ∈ W1
2 (Ω).

(ii) Dom(Π) ⊃ Dom(A). To see this, note that Dom(Π) = W1
2 (Ω) = Dom(A1/2) ⊃

Dom(A).
(iii) Π(Dom(A)) is dense inK. SinceΠ acts like identity this means that Dom(A) is

dense inW1
2 (Ω).

(iv) 〈Πu,Πv〉K = 〈Au,v〉H, u,v ∈ Dom(A). To see this, letu,v ∈ Dom(A). Note that,
by (ii), we haveu,v ∈ Dom(Π). By definition,

〈Πu,Πv〉K = 〈u,v〉W1
2 (Ω) =

∫
Ω

uv̄ dx +
∫
Ω

〈∇u,∇v〉dx.

Integrating by parts into the latter integral and taking into account that∂Ω is suffi-
ciently smooth and thatu,v ∈ Dom(A) implies thatu andv are two times differen
tiable, it follows that

〈Πu,Πv〉K =
∫
Ω

uv̄ dx −
∫
Ω

u∆v dx +
∫

∂Ω

u
∂v

∂ν
dS =

∫
Ω

uv̄ dx −
∫
Ω

u∆v dx

= 〈Au,v〉L2(Ω),
where we took into account that∂v
∂ν

= 0 on∂Ω .
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This example is in the energy space representation of type(KA,ΠA) as in Re-
mark 2.3(a). Equivalently, it can be treated in the representationA = I + T ∗T as in
Remark 2.3(d), whereT = i∇ is the operator inL2(Ω) with the domain

Dom(T ) =
{
u ∈ W1

2 (Ω)

∣∣∣∣ ∂u

∂ν
= 0

}
.

2.2. The Neumann boundary value problem for the Poisson equation

Let Ω be an open and bounded subset inR
n such that∂Ω is sufficiently smooth. Sinc

Ω is bounded it follows that 1∈ L2(Ω). Let

L1
2(Ω) = {

f ∈ L1,loc(Ω)
∣∣ Dju ∈ L2(Ω), j = 1, . . . , n

}
.

OnL1
2(Ω) it is defined the nonnegative inner product

〈u,v〉L1
2(Ω) =

∫
Ω

〈∇u,∇v〉dx, u, v ∈ L1
2(Ω).

This inner product is degenerate, in general, and hence it only yields a seminorm

‖u‖L1
2(Ω) =

∫
Ω

|∇u|2 dx, u ∈ L1
2(Ω).

In the following we assume thatΩ is chosen in such a way that the Poincaré inequa
holds,

∫
Ω

|u|2 dx �
∣∣∣∣ 1

|Ω|
∫
Ω

udx

∣∣∣∣
2

+ c

∫
Ω

|∇u|2 dx, u ∈ L1
2(Ω), (2.6)

wherec > 0 is a fixed constant, good for allu ∈ L1
2(Ω). For example, this is true ifΩ

is convex, star-shaped, etc. Under this assumption we have the continuous emb
L1

2(Ω) ↪→ L2(Ω). OnL1
2(Ω) we introduce a new norm

‖u‖2
1 =

∣∣∣∣ 1

|Ω|
∫
Ω

udx

∣∣∣∣
2

+ c

∫
Ω

|∇u|2 dx, u ∈ L1
2(Ω).

Then(L1
2(Ω),‖ · ‖1) is unitarily equivalent with the Sobolev spaceW1

2 (Ω).
Let A be the positive selfadjoint operator generated by the Neumann problem f

Poisson equation:{ −∆u = f, onΩ,
∂u
∂ν

= 0, on ∂Ω.
(2.7)

More precisely, let

W
1,0
2 =

{
u ∈ W1

2 (Ω)

∣∣∣∣
∫

udx = 0

}
.

Ω
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Due to the continuity of the integral inW1
2 (Ω), the linear manifoldW1,0

2 is actually a
subspace inW1

2 (Ω). On this subspace we consider the Dirichlet norm

‖u‖2
W

1,0
2 (Ω)

=
∫
Ω

|∇u|2 dx, u ∈ W
1,0
2 (Ω).

Then

W
1,0
2 (Ω) ⊂ L0

2(Ω) = {
u ∈ L2(Ω)

∣∣ 〈u,1〉L2(Ω) = 0
}
.

Due to the Poincaré inequality it follows thatW
1,0
2 (Ω) is continuously embedded an

dense inL0
2(Ω). The hermitian form

a[u,v] =
∫
Ω

〈∇u,∇v〉dx, u, v ∈ D[a] = W
1,0
2 (Ω),

is closed and densely defined inL0
2(Ω) and

a[u,u] =
∫
Ω

〈∇u,∇u〉dx =
∫
Ω

|∇u|2 dx � c−1‖u‖L0
2(Ω). (2.8)

By the Friedrichs extension theory, it follows that there exists uniquely a positive se
joint operatorA in L0

2(Ω) associated to the hermitian forma, that is,

a[u,v] = 〈Au,v〉L0
2(Ω), u, v ∈ Dom(A). (2.9)

In addition, by (2.8),A � 0, more precisely, the lower boundm(A) � c−1 > 0, where

m(A) = inf
{〈Au,u〉L0

2(Ω)

∣∣ ‖u‖L0
2(Ω) = 1, u ∈ Dom(A)

}
.

Let H = L0
2(Ω), K = W

1,0
2 (Ω) and the linear operatorΠ defined on Dom(Π) =

W
1,0
2 (Ω) ⊂ L0

2(Ω) and valued inW1,0
2 (Ω), Πu = u for all u ∈ W

1,0
2 (Ω). We verify that

(K,Π) is a Hilbert space induced byA:

(i) K = W
1,0
2 (Ω) is a Hilbert space, as mentioned above.

(ii) Dom(Π) ⊃ Dom(A). Indeed, by (2.9) and Friedrichs construction, we h
Dom(A) ⊆ Dom(A1/2) = D[a] = W

1,0
2 (Ω) = Dom(Π).

(iii) Π(Dom(A)) is dense inK. Again, sinceΠ acts like identity, this means that Dom(A)

is dense inK.
(iv) 〈Πu,Πv〉K = 〈Au,v〉H for all u,v ∈ Dom(A). Indeed, letu,v ∈ W

1,0
2 (Ω). Then

〈Πu,Πv〉K = 〈u,v〉
W

1,0
2 (Ω)

=
∫
Ω

〈∇u,∇v〉dx,

and then, integrating by parts, we get

〈Πu,Πv〉K = −
∫

u∆v dx +
∫

∂v

∂ν
dS = −

∫
u∆v dx = 〈Au,v〉L0

2(Ω).
Ω ∂Ω Ω
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Alternatively, we might takeH = L2(Ω) and letA be the positive selfadjoint operat
onL2(Ω) generated by the Dirichlet problem. In this caseA has a nontrivial kernelN , of
dimension 1,

N = {
u ∈ L1

2(Ω)
∣∣ ‖u‖L1

2(Ω) = 0
}
,

and the operatorΠ should be defined through the factorization

L2(Ω) −→ W1
2 (Ω)/N � W

1,0
2 (Ω).

Moreover, we haveA = T ∗T , whereT = i∇ is the operator inL2(Ω) with the dense
domain

Dom(T ) =
{
u ∈ W1

2 (Ω)

∣∣∣∣ ∂u

∂ν
= 0 on∂Ω

}
,

and the boundary value condition should be understood in the sense of distributions

2.3. The mixed boundary value problem of Zaremba for the Poisson equation

Again, letΩ be a bounded and open subset ofRn, with ∂Ω sufficiently smooth, and
Γ ⊆ ∂Ω measurable with respect to the (hyper)surface measuredS, and such that|Γ | > 0.
DenoteΓ ′ = ∂Ω \ Γ . We consider the space

◦
W1

2,Γ (Ω)

◦
W1

2,Γ (Ω) = {
u ∈ W1

2 (Ω)
∣∣ u|Γ = 0

}
,

where the boundary condition should be understood in the sense of the restriction o
u �→ u|∂Ω . We consider the restriction operatoru → u|∂Ω with domainW1

2 (Ω) and range
in L2(∂Ω); note that this operator is correctly defined on the dense setC∞(Ω̄) in W1

2 (Ω)

and then it can be extended by continuity onto the whole spaceW1
2 (Ω). Clearly,u|∂Ω = 0

a.e. onΓ for all u ∈ ◦
W1

2,Γ (Ω).

On the space
◦

W1
2,Γ (Ω) we consider the Dirichlet norm

‖u‖
W̊1

2,Γ (Ω)
=

∫
Ω

|∇u|2 dx, u ∈ ◦
W1

2,Γ (Ω).

Due to the assumption|Γ | > 0, it follows that the norm‖ · ‖
W̊1

2,Γ (Ω)
is equivalent with the

norm‖ · ‖W1
2 (Ω).

Recall that we have assumed∂Ω sufficiently smooth to admit surface measure a
unit normal. LetA be the positive selfadjoint operator associated to the mixed (Zare
boundary value problem:


−∆u = f, onΩ,

u = 0, onΓ,
∂u
∂ν

= 0, onΓ ′.
(2.10)

To describe the operatorA, we proceed analogously as in the previous subsection
consider, in the spaceL2(Ω), the hermitian form

a[u,v] =
∫

〈∇u,∇v〉dx, u, v ∈ D[a] = ◦
W1

2,Γ (Ω).
Ω
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The forma is closed and densely defined inL2(Ω) and again, using the Friedrichs exte
sion theory, we get a positive selfadjoint operatorA in L2(Ω) for which

〈Au,v〉L2(Ω) =
∫
Ω

〈∇u,∇v〉dx, u, v ∈ Dom(A).

Now, letH = L2(Ω), K = ◦
W1

2,Γ (Ω) with the inner product

〈u,v〉K =
∫
Ω

〈∇u,∇v〉dx, u, v ∈K,

and the linear operatorΠ with domain Dom(Π) = ◦
W1

2,Γ (Ω) ⊂ L2(Ω) and valued inK,
Πu = u for all u ∈ Dom(Π). We verify that(K,Π) is a Hilbert space induced byA:

(i) K is a Hilbert space. This is true because
◦

W1
2,Γ (Ω) is a subspace ofW1

2 (Ω) and the

equivalence of the norms‖ · ‖
W̊1

2,Γ (Ω)
and‖ · ‖W1

2 (Ω) on
◦

W1
2,Γ (Ω).

(ii) Dom(Π) ⊃ Dom(A). Indeed, this follows as in the previous examples, by obser
that Dom(A) ⊂ ◦

W1
2,Γ (Ω).

(iii) Π(Dom(A)) is dense inK. This is equivalent with saying that Dom(A) is dense in◦
W1

2,Γ (Ω).
(iv) 〈Πu,Πv〉K = 〈Au,v〉H for all u,v ∈ Dom(A). Indeed, foru,v ∈ Dom(A) we inte-

grate by parts, as in the previous examples, and use the boundary conditions to

〈Πu,Πv〉K =
∫
Ω

〈∇u,∇v〉dx = −
∫
Ω

u∆v dx +
∫

∂Ω

u
∂v

∂ν
dS

= −
∫
Ω

u∆v dx +
∫
Γ

u
∂v

∂ν
dS +

∫
Γ ′

u
∂v

∂ν
dS

= −
∫
Ω

u∆v dx = 〈Au,v〉L2(Ω).

3. Lifting of bounded operators

The main result of this paper is the following lifting theorem for bounded operators
respect to Hilbert spaces induced by positive selfadjoint unbounded operators.

Theorem 3.1. Let A and B be positive selfadjoint operators in the Hilbert spaces H1 and
respectively H2, and let (KA,ΠA) and (KB,ΠB) be the Hilbert spaces induced by A and
respectively B . For any operators T ∈ B(H1,H2) and S ∈ B(H2,H1) such that

〈Bx,T y〉H2 = 〈Sx,Ay〉H1, x ∈ Dom(B), y ∈ Dom(A), (3.1)

there exist uniquely determined operators T̃ ∈ B(KA,KB) and S̃ ∈ B(KB,KA) such that
T̃ ΠAx = ΠBT x for all x ∈ Dom(A), S̃ΠBy = ΠASy for all y ∈ Dom(B), and
〈S̃h, k〉KA
= 〈h, T̃ k〉KB

, h ∈KB, k ∈KA. (3.2)
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We divide the proof of Theorem 3.1 in three lemmas. The main technical ingredi
the inequality that makes the subject of the following Lemma 3.4. Basically, we em
the same idea as in [6,11], (see also [2,7]), to iterate the Schwarz inequality, but tech
much more precautions should be taken: these are illustrated in the next two lemma

Lemma 3.2. Under the notation and assumptions of Theorem 3.1we have

BT x = S∗Ax, x ∈ Dom(A), (3.3)

in the sense that for any x ∈ Dom(A) we have T x ∈ Dom(B) and (3.3)holds.

Proof. Indeed, ifx ∈ Dom(A), then by (3.1) we have

〈T x,By〉H2 = 〈
S∗Ax,y

〉
H1

, y ∈ Dom(B),

and henceT x ∈ Dom(B∗) = Dom(B) andBT x = S∗Ax. �
Lemma 3.3. Under the notation and assumptions of Theorem 3.1, for any integer n � 0 we
have

A(ST )nh = (
T ∗S∗)n

Ah, h ∈ Dom(A), (3.4)

in the sense that for any h ∈ Dom(A) we have (ST )nh ∈ Dom(A) and (3.4)holds.

Proof. To prove this, we use induction. The casen = 0 is trivial, so letn = 1, andh ∈
Dom(A) be arbitrary. By (3.3) we haveT h ∈ Dom(B) and using (3.1) it follows that fo
anyx ∈ Dom(A) we have

〈Ax,ST h〉H1 = 〈T x,BT h〉H2 = 〈
x,T ∗S∗Ah

〉
H1

,

and henceST h ∈ Dom(A∗) = Dom(A) andA(ST )h = (T ∗S∗)Ah. To check the genera
induction step, let us assume that for an arbitrary, but fixed,n � 0 and anyh ∈ Dom(A)

we have(ST )nh ∈ Dom(A) andA(ST )nh = (T ∗S∗)Ah. Fix h ∈ Dom(A). Then(ST )nh ∈
Dom(A) and, by (3.1) we haveT (ST )nh ∈ Dom(B) and

BT (ST )nh = S∗A(ST )nh = S∗(T ∗S∗)n
Ah.

Therefore, for arbitraryx ∈ Dom(A) we have〈
Ax, (ST )n+1h

〉
H1

= 〈
Ax,ST (ST )nh

〉
H1

= 〈
T x,BT (ST )nh

〉
H2

= 〈
x,

(
T ∗S∗)n+1

Ah
〉
H2

,

and hence(ST )n+1h ∈ Dom(A∗) = Dom(A) and (T ∗S∗)n+1Ah = A(ST )n+1h. Thus,
(3.4) is completely proved. �
Lemma 3.4. Under the notation and assumptions of Theorem 3.1, we have

〈BT x,T x〉2
H2

� r(ST )〈Ax,x〉2
H1

, x ∈ Dom(A), (3.5)

in the sense that for any x ∈ Dom(A) we have T x ∈ Dom(B) and the inequality (3.5)

holds. Here, r(ST ) denotes the spectral radius of the bounded operator ST .
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Proof. To this end, we repeatedly use (3.4) and the Schwarz inequality for the po
inner product〈A · ,·〉H1, to get

∥∥B1/2T x
∥∥2
H2

= 〈BT x,T x〉H2 = 〈
S∗Ax,T x

〉
H2

= 〈Ax,ST x〉H1

� 〈Ax,x〉
1
2
H1

〈
A(ST )x, (ST )x

〉 1
2
H1

= 〈Ax,x〉
1
2
H1

〈(
T ∗S∗)Ax, (ST )x

〉 1
2
H1

= 〈Ax,x〉
1
2
H1

〈
Ax, (ST )2x

〉 1
2
H1

� 〈Ax,x〉
1
2+ 1

4
H1

〈
A(ST )2x, (ST )2x

〉 1
4
H1

...

� 〈Ax,x〉
1
2+ 1

4+···+ 1
2n

H1

〈
A(ST )2n−1

x, (ST )2n−1
x
〉 1

2n

H1

� 〈Ax,x〉
1
2+ 1

4+···+ 1
2n

H1

〈(
T ∗S∗)2n−1

Ax, (ST )2n−1
x
〉 1

2n

H1

= 〈Ax,x〉
1
2+ 1

4+···+ 1
2n

H1

〈
Ax, (ST )2n

x
〉 1

2n

H1

� 〈Ax,x〉
1
2+ 1

4+···+ 1
2n

H1

∥∥(ST )2n

x
∥∥ 1

2n

H1

�
∥∥(ST )2n

x
∥∥ 1

2n

H1
〈Ax,x〉1+ 1

2+···+ 1
2n−1

H1
‖Ax‖

1
2n

H1
,

and hence

〈BT x,T x〉2
H2

�
∥∥(ST )2n∥∥ 1

2n+1 〈Ax,x〉1+ 1
2+···+ 1

2n−1

H1
‖Ax‖

1
2n

H1
‖x‖

1
2n

H1
. (3.6)

Further, let us note that, ifAx = 0 then by (3.3) the inequality (3.5) is trivial. Thu
assumingAx �= 0, hencex �= 0, we can pass to the limit in (3.6) and, taking into acco
that

lim
n→∞

∥∥(ST )2n∥∥ 1
2n = r(ST ), lim

n→∞‖Ax‖
1

2n

H1
= lim

n→∞‖x‖
1

2n

H1
= 1,

we get the inequality (3.5). �
We are now in a position to finish off the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 2.1 and Remark 2.3, it is sufficient to prove
result for the energy space representations(KA,ΠA) and (KB,ΠB), when the strong
topologies are explicitly defined in terms of the seminorms‖A1/2 · ‖H1 and, respectively
‖B1/2 · ‖H2. Let us note that the inequality (3.5) can be reformulated as∥∥B1/2T x

∥∥
H2

�
√

r(ST )
∥∥A1/2x

∥∥
H1

, x ∈ Dom(A). (3.7)

On the ground of (3.7) it follows that the operatorT factors to a linear operato
Dom(A)/Ker(A) → Dom(B)/Ker(B) and is continuous with respect to the strong topo

gies of the induced Hilbert spaceKA and KB , and hence it is uniquely extended to
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a bounded operator̃T :KA → KB . Clearly, we then havẽT ΠAx = ΠBT x for all x ∈
Dom(A). In a similar way,S can be lifted to an operator̃S ∈ B(KB,KA) such that
S̃ΠB = ΠASx, for all y ∈ Dom(B). Finally, once the existence of̃T andS̃ is established
(3.2) is a simple consequence of (3.1) and a continuity argument.�

We finally present some properties of preservation for spectra of operators lift
induced Hilbert spaces. The conclusions will be obtained as applications of Theore
and will generalize most of the known properties previously obtained in case the selfa
operatorA is bounded.

Let A be a positive self-adjoint operator in the Hilbert spaceH and let us consider
linear bounded operatorT onH. In the sequel, it is assumed that the operatorT commutes
with A in the sense that the following relation

〈Ax,Ty〉 = 〈T x,Ay〉, x ∈ Dom(A), (3.8)

holds. This means that all conditions withT = S in Theorem 3.1 are satisfied. Therefo
by virtue of the mentioned theorem applied to the operator T, there corresponds a un
determined operator̃T on the spaceKA induced byA. Thus T̃ ∈ B(KA) and T̃ ΠAx =
ΠAT x for eachx ∈ Dom(A). In the following we indicate how some spectral proper
of the operatorT remain valid for the corresponding lifted operatorT̃ . We start with the
following result which turns out to be an easy consequence of Theorem 3.1.

Theorem 3.5. The spectrum of T̃ , as a linear operator on the Hilbert space KA, is a subset
of the spectrum of T , as a linear operator on the Hilbert space H.

Proof. Let z be a complex number which is a regular point of the operatorT , i.e.,T − zI

has a bounded inverse inH. Denote it byR(z;T ) = (T − zI)−1. We remark that con
dition (3.7) means that the operatorT commutes withA, in the sense that for eac
u ∈ Dom(A) it follows T u ∈ Dom(A) andT Au = AT u, i.e., T A ⊆ AT . This is equiv-
alent with the fact that the operatorT commutes with the spectral measureE of A, i.e.,
E(α)T = T E(α), whereα denotes any Borel set of the real lineR. But then, the sam
is true for the resolvent operatorR(z;T ). Consequently, the resolvent operatorR(z;T )

commutes withA, and hence we can apply Theorem 3.1 to obtain the corresponding
operatorR̃ which becomes bounded with respect to the norm ofKA.

Further, we note that the transformationT → T̃ , which by Theorem 5.1 is well-define
is an algebraic homomorphism, from the set of all bounded operators onH that commute
with A, into B(KA). Then, we can conclude that the operatorR̃ is the inverse operator o
T̃ − zIA onKA (IA means the identity operator onKA). �

Theorem 3.5 can be extended for some classes of unbounded operators. As an e
let T be a selfadjoint (not necessarily bounded) operator inH. Suppose that the operat
T commutates withA in the sense of commutativity of their spectral measures. The
resolvent operatorR(z;T ) = (T − zI)−1 (�z �= 0) satisfies all the assumptions that mak
it a resolvent for some densely defined operatorT̃ in KA (see, for instance, [5]). Therefo

we have
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Corollary 3.6. If T is a self-adjoint operator in H such that it commutes with A, then there
exists a uniquely determined operator T̃ on the space KA, T̃ is self-adjoint on KA, and its
spectrum is a subset of the spectrum of T on H.

Again, letT be a bounded operator onH and letλ be a point in the discrete spectru
of T . This means thatλ is an isolated point in the spectrum ofT and the null-space o
T − λI is finite-dimensional. The pointλ is an eigenvalue of the operatorT with finite
multiplicity. In other words, consider the projection

Pλ = − 1

2π i

∫
γ

R(z;T )dz,

whereγ is a circumference centered inλ of sufficiently small radius such that the di
|z − λ| � r does not contain other singularities exceptz = λ. ThenPλ is a finite-rank
operator inH. The subspacePλH is the root subspace ofA which corresponds to th
eigenvalueλ. Let T̃ be the corresponding lifted operator ofT . In view of the previous
remarks, it follows that the projection

P̃λ = − 1

2π i

∫
γ

R(z, T̃ ) dz

is the lifted operator ofPλ, respectively. Since Dom(A) is dense inH and dimPλH < ∞,
it follows thatP̃λKA = PλH. Therefore, we obtain the following result.

Theorem 3.7. Under the assumptions from above, if λ belongs to the discrete spectrum
of T , then λ belongs to the discrete spectrum of T̃ and their corresponding root subspaces
are the same.

Finally, an immediate consequence of Theorems 3.5 and 3.7 is the following resul
useful for concrete applications.

Corollary 3.8. Let A and T be as in Theorem 3.5 and suppose that the operator T has
only discrete spectrum, i.e., each point of the spectrum σ(T ) except λ = 0 is an isolated
eigenvalue of finite multiplicity. Then the spectrum of T̃ is discrete as well, σ(T ) = σ(T̃ ),
and the root subspaces corresponding to the same nonzero eigenvalues of T and T̃ coin-
cide, respectively. In particular, if T is completely continuous on H, then T̃ is completely
continuous on KA.
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