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Abstract

We introduce the notion of induced Hilbert spaces for positive unbounded operators and show
that the energy spaces associated to several classical boundary value problems for partial differential
operators are relevant examples of this type. The main result is a generalization of the Krein—Reid
lifting theorem to this unbounded case and we indicate how it provides estimates of the spectra of
operators with respect to energy spaces.
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1. Introduction

One of the central problem in spectral theory refers to the estimation of the spectra
of linear operators associated to different partial differential equations. Depending on the
specific problem that is considered, we have to choose a certain space of functions, among
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which until now the most tractable have been proved to be the Banach spaces and the
Hilbert spaces. The construction of the underlying Banach/Hilbert spaces associated to
these linear operators is usually made by introduction of a norm, respectively an inner
product. In this circle of ideas, the most general construction requires a factorization and
a completion that introduces some ideal elements that are difficult to control. We mention
here the pioneering work of K. Friedrichs [3].

On the other hand, since operators can be considered on different spaces, one of the
problems of interest is to provide fairly general assumptions under which information on
the spectrum of operators with respect to the spaces on which they are considered can be
obtained from the preliminary information on the original spaces. Among the results on
the invariance of the spectrum we recall, for instance, the Wiener’s theorem stating that the
convolution operator generated by a summable function has the same spectrum on each
spaces of the typg, for (1< p < 00).

In addition, we mention that there are many other successful methods of investigation
of this problem, among which we note those based on the theory of embedding spaces,
interpolation theorems for operators [1], and on the maximum modulus principle for ana-
lytic functions, cf. N. Levinson [8]. There is a large number of articles on this topic, e.g.,
[4,12-17], to cite only a few.

In this paper we pursue a way opened by the works of M.G. Krein [6], W.T. Reid [11],

P. Lax [7], and J. Dieudonné [2], where a general theory with applications to spectral
properties of operators on different spaces is obtained. The core of this theory is a lifting
theorem stating that under a certain intertwining relation, the operator can be lifted, with
control on the norm. To our knowledge, the known results and applications of this theory
have been considered only with respect to bounded operators. It is our aim to show how
this can be extended to unbounded positive selfadjoint operators and to which extent the
preservation of the spectra can be obtained in this case. We employed a rather general
abstract scheme for induced spaces, having the advantage that it contains as special cases
the energy spaces of K. Friedrichs (see also the further investigations of W.V. Petryshyn
[10] and S.G. Mikhlin [9]).

The paper is organized as follows: in Section 2 we present the abstract definition and
make some simple remarks, after which some motivation for this construction are pre-
sented, namely we show that this can be applied to some classical boundary value problems
on fairly general domains. Section 3 is devoted to the main result of this paper, Theorem 3.1
on lifting of bounded operators, and we conclude this paper by taking into account a few
consequences on the preservation of the spectra.

2. Hilbert spacesinduced by positive operators
Let H be a Hilbert space and a densely defined positive operatorfifi(in this paper,
the positivity of an operatar means(Ax, x)4; = 0 for all x € Dom(A)). A pair (IC, IT) is

called aHilbert space induced by A if:

(i) K is aHilbert space;
(i) IT7 is a linear operator with domain Dai#T) > Dom(A) and range iriC;
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(iiiy 1 Dom(A) is dense inc;
(iv) (I1x, y)x = (Ax, y)y forall x, y e Dom(A).

We first note that such an object always exists by showing actually that the soawdigg

space introduced by K.O. Friedrichs [3] is an example of a Hilbert space induced by a
positive operator. In addition, they are essentially unique in the following sense: two Hilbert
spacesK;, IT;), i = 1, 2, induced by the same operatbyare calledunitary equivalent if

there exists a unitary operatbre B(K1, K2) such thaty ITy = IT,.

Proposition 2.1. Given a densely defined positive operator A inthe Hilbert space H, there
exists a Hilbert space induced by A and it is unique, modulo unitary equivalence.

Proof. We consider the inner product spa@om(A), (-,-)4) where(x, y)a = (Ax, y)n
for all x,y e Dom(A) and letK4 be its quotient completion to a Hilbert space, that
is, we factor out KetA) and complete the pre-Hilbert spad@om(A)/Ker(A); (-,-)4)
to a Hilbert space. Then lettingl, be the composition of the quotient mapping
Dom(A) — Dom(A)/ Ker(A) with the embedding of Do)/ Ker(A) into 4, we note
that(KC4, IT4) is a Hilbert space induced by.

On the other hand, ifKC;, IT;), i = 1, 2, are two Hilbert spaces induced By then

(Myx, My, = (Ax, y)r = ([T2x, 2y)k,, x,y € Dom(A),

and hence the operator is correctly defined by/ IT1x = ITox, for all x e Dom(A), and
it is isometric. Due to the minimality assumptiafll; Dom(A) is dense inC; fori =1, 2,
it follows thatU can be uniquely extended to a unitary operdfos B(K1, £2). O

In this paper we will be interested mainly in the case when the opefatunbounded.
For this reason it is necessary to make clear the connection between the boundedness of
and that of the inducing operator.

Proposition 2.2. Let (KC, IT) be a Hilbert space induced by the positive and densely defined
operator A inH. Then A isbounded if and only if IT is bounded.

Proof. Indeed, the axiom (iv) can be interpreted/@$I7T O A. Note that the axiom (iii)
implies that/T* is densely defined, and henfkis closable. Without restricting the gen-
erality, we thus can assume thatis closed. Thus, ifA is bounded it follows thafT*IT is
bounded and hend@ is bounded: this follows, e.g., by the polar decomposition.

Conversely, ifIT is bounded, then fromd C I7*I7 it follows that A has a bounded
extension and hence it is bounded:

Remark 2.3. (a) In the proof of the existence of a Hilbert spagg I7) induced by a pos-
itive densely defined operatar as in Proposition 2.1, the strong topology on the Hilbert
spacekC is not explicit. This is remedied ifl is selfadjoint. Thus, ifA is a positive self-
adjoint operator in the Hilbert spad¢, then AY/? exists as a positive selfadjoint operator
in H, Dom(AY2) > Dom(A) and Don{A) is a core ofA/2. In particular, we have

(Ax, y)p = (AY2x, AY?y),,. x,y € Dom(A),



P. Cojuhari, A. Gheondea / J. Math. Anal. Appl. 304 (2005) 584-598 587

which shows that we can consider the semingtd/2 - | on Dom(A) and make the quo-

tient completion with respect to this seminorm in order to get a Hilbert sfiaceWe
denote bylT4 the corresponding canonical operator. It is easy to see(khatll,) is a
Hilbert space induced by. Since, as observed in Proposition 2.1, all the Hilbert spaces
induced byA are unitary equivalent, in this case we have a concrete representation of the
strong topology of any Hilbert space induced dyWe call (K 4, I14) the Hilbert space
induced byA in the energy space representation.

(b) The construction in (a) can be made a bit more generalTLetC(H, H1), that
is, T is a closed linear operator with domain D@ dense in the Hilbert spack and
range in the Hilbert spack;. ThenA = T*T is a positive selfadjoint operator iH and
Dom(T) is a core ofA. We consider the linear manifold Ddffi) and the quadratic semi-
norm DomT) > x — || Tx| and letXC denote its quotient-completion to a Hilbert space.
If 1T denotes the composition of the canonical projection DBm— Dom(T)/Ker(T)
with the canonical embedding of D)/ Ker(T) into I, then(KC, IT) is a Hilbert space
induced byA. The construction in item (a) correspondsite= |T| = (T*T)Y/? = A1/2,

(c) In the constructions made above, the Hilbert spacemduced by the positive
operatorA have strong topologies different from the original Hilbert spatdn the fol-
lowing, we show another related construction for which the strong topologis arid
‘H coincide, but the cost is a more involved operafbr Let T € C(H) and denote by
K the closure of RafT’) in H. Thus, K is a subspace, that is, a closed linear submani-
fold, of H. Then(/C, T') is a Hilbert space induced by = T*T. A special case is when
T =|T|=(T*T)Y2 = AV/2,

(d) Finally, we illustrate a mixed situation: the completion is made within the underlying
Hilbert spaceH but the strong topologies are yet different. To see thisT'letC(+) and
on the linear manifoldC = Dom(T") consider the quadratic norm D@#) > x — |x|7 =
x|l + [ITx||, that is, the so-calledraph norm. Then(K; | - |7) is a Hilbert space. We let
IT:'H — K be the canonical identification of Daifi) = Dom(IT) with I as sets. Note
that the operatoA = I 4+ T*T is positive selfadjoint iri{ and, in addition, it is boundedly
invertible, equivalently, bounded away from 0. Theg, IT) is a Hilbert space induced
by A.

We now show how the energy spaces associated to several classical boundary value
problems for partial differential equations can be put into the framework of Hilbert spaces
induced by positive (selfadjoint) operators. We first fix some notation and recall some
terminology and facts about some function Hilbert spaces, especially Sobolev spaces.

Let x = (x1,...,x,) denote the position vector iR”. We denote the differentiation
operatorD = (D, ..., D,), whereD; = 1% j=1,...,n, andi? = —1. For a multi-
indexa = (a1, ...,a,) € Z', denote its length byo| = a1 + --- + ay, its factorial by
al=all---a,!,and letD* = DI* - .- D",

Let £2 be an open set iiR”. Here and in the following we assume that its boundary
082 is sufficiently smooth to allow surface measure and unit normal. The Cfa$L) of
indefinitely differentiable complex valued functions with compact suppaf2 is dense in
L2(£2), the Hilbert space of square integrable complex valued function@ adentified
modulo Lebesgue negligible sets. Letv € L1 10c(£2) denote the space of locally inte-
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grable functions o2, that is, for any compact sé&t C £2 we have(y |u|dx < 4oo and
[x vldx < +o0. If

/MD‘)‘(de=fv¢7dx, 9 eCF(R2), a e,
2 2

thenitis said that is differentiable in the sense of distributions@randv = D*u. Recall
that the case = 1 is special: if$2 = (a, b), thenv = D%u in the sense of distributions if
and only ifu is (@ — 1)-times differentiable on the intervéd, b), w = u @~V is absolutely
continuous on any compact interval(m, »), andw’ = i*v a.e. on(a, b).

More generally, lep € C[X1, ..., X,] be a complex valued polynomial inindetermi-
nates. Byp(D) we denote a partial differential expression angptetD) denote the formal
conjugate expression. if, v € L1 joc(§2) are such that

/up*(D)(pdx:/vg_odx, @ € C3°(£2),
2 2

then it is said that = p(D)u in the sense of distributions.
With the notation as above and N, we denote

Wh(2) = {u € Lo(2) | D*u € La(82), |a| =1}, (2.1)
I! 2
lul?o =" D7) ue Wi(£2), 2.2)
le|=l "
Iy ) = 10y + Nl 0 € W(82). (2.3)

Then(Wé(_Q); Il - ||W§(:2>) is a Hilbert space, usually calledsabolev space. In general,
—_— ! Q
Cr @D =Wh@)

is a subspace (that is, a closed linear submanifold) of the Hilbert s]z}é(:@), but
Wh($2) # Wh(82). However, if 2 = R" we haveW,(2) = W(£2), that is,C°(R") is
dense inWh(R").

On the other hand, if the open subsetis bounded inR”, then the norm| - ||; o on
VV’Z(Q) is equivalent with the nornj - ||w§(9)- In addition, the clas€>(£2), of complex
valued functions o2 that admit an indefinitely differentiable prolongatiorik®, is dense
in Wh(£2). Also, if u € W,(£2), thenu|ye = 0 a.e. with respect to the surface measife
on the boundang = 452.

Again, the casé=1 is special. Letting

w2 = lul? o + / wPds, ueWhs),
082
we have
Wh(2) = {u e Wy(82) | lul2 = llullre}
={u e W3(2) |ulyp =0, dS—a.e}. (2.4)
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2.1. The Neumann boundary value problem

Let £2 be an open subset &" such that its boundar§s2 is sufficiently smooth. We
consider the selfadjoint operatdrin L2(£2) associated to the Neumann problem:
{ u—Au=jf ons,
du _
5 =0 onoas,
whered/dv denotes the derivation with respect to the exterior normal.
More precisely, consider the Sobolev sp&k‘%(f?) and note that, by its definition (2.1),

we havewzl(fz) — Ly(£2), that is, it is continuously embeddedirn(£2). The hermitian
form

(2.5)

a[u,v]:/uﬁdx+/(Vu,Vv)dx, u,v € Dla] = W3(£2),
2 2
where D[a] denotes the form domain, is positive, bounded from below by 1, closed,
and determines the positive selfadjoint operatoBy the Friedrichs theory we have that
Dom(AY/2) = D[a], and henced = A* andA > 0, in particular KetA) = 0.
We let H = Ly(£2), K = Wzl(_Q), as well as the linear operatd¥ : H — K with
Dom(IT) = Wa(£2), IT : u + u (u € W3(£2)). We show that(C, IT) is a Hilbert space
induced byA:

(i) K= W%(Q) is a Hilbert space with inner product
(, V) = (U, V) ,2) + (U, V)10

=/u17dx+/(Vu,Vv)dx, u, v e Wa(s).
2 2

(i) Dom(IT) > Dom(A). To see this, note that DaiT) = W3(£2) = Dom(AY/?) >
Dom(A).

(i) IT(Dom(A)) is dense inkC. Sincell acts like identity this means that Da@r) is
dense iNW3(£2).

(iv) (ITu, ITv)x = (Au, v)y, u, v € Dom(A). To see this, lets, v € Dom(A). Note that,
by (ii), we haveu, v e Dom(IT). By definition,

(Hu,Hv);c=(u,v)W21(m=/ut_)dx+/(Vu,Vv)dx.
2 2

Integrating by parts into the latter integral and taking into accountdakais suffi-
ciently smooth and that, v e Dom(A) implies thatu andv are two times differen-
tiable, it follows that

_ v _
(Hu,Hv)Kz/uf)dx—/uAvdx—i—/ua—vdSz/uﬁdx—/uAvdx
v

Q Q 982 2 2
= (Au, V) 1,(2)
where we took into account th%g =0o0noas2.
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This example is in the energy space representation of type I74) as in Re-
mark 2.3(a). Equivalently, it can be treated in the representatiea I + T*T as in
Remark 2.3(d), wher& =iV is the operator ir.2(£2) with the domain

9
_uzo},
v

2.2. The Neumann boundary value problem for the Poisson equation

Dom(T) = {u € Wi ()

Let 2 be an open and bounded subseRihsuch thab §2 is sufficiently smooth. Since
£2 is bounded it follows that & L,(£2). Let

L3(2)={f €L1ioc(2) | Dju € La(2), j=1,...,n}.

On L%(Q) it is defined the nonnegative inner product

_ 1
(u, v)L%(_Q) = /(Vu, Vv)dx, u,veL($2).
2
This inner product is degenerate, in general, and hence it only yields a seminorm

||u||L%(Q)=/|Vu|2dx, ueLi(2).
2

In the following we assume tha® is chosen in such a way that the Poincaré inequality
holds,

1
/|u|2dx<‘@/udx
Q 2

wherec > 0 is a fixed constant, good for all L%(Q). For example, this is true if2
is convex, star-shaped, etc. Under this assumption we have the continuous embedding
L1(£2) = La(£2). OnL1(£2) we introduce a new norm

[k ‘l/d
Ul =|— | uadx
e

2

Then(L1(£2), || - 1) is unitarily equivalent with the Sobolev spaBg(£2).
Let A be the positive selfadjoint operator generated by the Neumann problem for the
Poisson equation:

—Au=f, ong2,
du —, onag.

v

2
+c/|Vu|2dx, ue L), (2.6)
2

2
+c/|Vu|2dx, ueLi(R).
2

2.7)
More precisely, let

wy©= {u € W (R) ‘ /udx:O}.
2
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Due to the continuity of the integral inl(Q), the linear manifoIdWZL0 is actually a
subspace irW%(.Q). On this subspace we consider the Dirichlet norm

2 _ 2 1,0
el z00) = / \Vul2dx, ueWy°(2).
2
Then
W,y 2(2) € L9(2) = {u € La(2) | (4, 1) 1,(0) = O}.

Due to the Poincaré inequality it follows thale'o(sz) is continuously embedded and
dense inLg(Q). The hermitian form

a[u,v]:/(Vu,Vv)dx, u,veD[a]:Wzl’o(.Q),
Q

is closed and densely definedzi§(s2) and

— _ 2 -1
alu,u]l = /(Vu, Vu)dx = / |Vul“dx > ¢ ||u||Lg(_Q). (2.8)
2 2
By the Friedrichs extension theory, it follows that there exists uniquely a positive selfad-
joint operatorA in LY 5(£2) associated to the hermitian fomthat is,

alu,v]=(Au, U)Lg(ﬂ)’ u,v e Dom(A). (2.9)

In addition, by (2.8) A > 0, more precisely, the lower boung(A) > ¢~* > 0, where
m(A) = inf{(Au,u)Lg(Q) | ||“||Lg<m =1, u € Dom(A)}.

Let H = LS(Q), K= Wzl’o(fz) and the linear operatofT defined on DorT) =

w2(2) c LY(2) and valued inW)°(2), IMu = u for all u € Wy °(£2). We verify that
(K, IT) is a Hilbert space induced by:

i) €= Wzl’o([z) is a Hilbert space, as mentioned above.
(i) Dom(I) > Dom(A). Indeed, by (2.9) and Friedrichs construction, we have
Dom(4) € Dom(A%2) = D[a] = W5 °(£2) = Dom(IT).
(i) I1(Dom(A)) is dense irfC. Again, sincelT acts like identity, this means that D@
is dense inC.
(iv) (Iu, ITv)x = (Au, v)p forall u, v e Dom(A). Indeed, let, v € Wzl’O(Q). Then

(Mu, M) = {u, U)WZ:LO(Q) = f(Vu, Vu)dx,
2
and then, integrating by parts, we get

— v —
(Hu,Hv)Kz—quvdx+/adS:—/uAvdx:(Au,v)Lg(m.
Q 382 Q
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Alternatively, we might také{ = L2(£2) and letA be the positive selfadjoint operator
on L2(£2) generated by the Dirichlet problem. In this cas@as a nontrivial kerneV, of
dimension 1,

N ={u e L3(2) | lull Ly, =0},
and the operataff should be defined through the factorization
La(2) — W R2)/N = W °(£2).

Moreover, we haved = T*T, whereT =iV is the operator inL>(£2) with the dense
domain

a
Dom(T) = {u e W) ’ a—” -0 onaﬂ},
Vv
and the boundary value condition should be understood in the sense of distributions.
2.3. The mixed boundary value problem of Zaremba for the Poisson equation

Again, let£2 be a bounded and open subseff¥df with 352 sufficiently smooth, and
I' C 052 measurable with respect to the (hyper)surface measiirand such that’"| > 0.
Denotel” = 352 \ I'. We consider the spad&} .(£2)

W3 - (2) = {u e Wy(8) |ulr =0},
where the boundary condition should be understood in the sense of the restriction operator
u — ulye. We consider the restriction operaior> u|yg; with domainW%(_Q) and range
in L»(3£2); note that this operator is correctly defined on the dens€ $&#?) in Wzl(sz)
and then it can be extended by continuity onto the whole sp@t(e?). Clearly,ulye =0
a.e.onl" forall u e W} ().
On the spacéV’} ,-(£2) we consider the Dirichlet norm

||u||‘i,ér(9)=/|Vu|2dx, ueWs ().
2
Due to the assumptio™| > 0, it follows that the normj| -
norm|| - ||W21(_Q).
Recall that we have assum@d2 sufficiently smooth to admit surface measure and
unit normal. LetA be the positive selfadjoint operator associated to the mixed (Zaremba)
boundary value problem:

||v‘i/21 (2) 1S equivalent with the
T

—Au=f, ong2,
u =0, onrl, (2.10)
u =0, onr’.

To describe the operatof, we proceed analogously as in the previous subsection. We
consider, in the spacdkx(£2), the hermitian form

alu, vl =/(w, Vu)dx, u,veDlal=W3(£2).
2
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The forma is closed and densely defined/in(£2) and again, using the Friedrichs exten-
sion theory, we get a positive selfadjoint operatoin L2 ($2) for which

(Au, v)y02) = /(Vu, Vuv)dx, u,veDom(A).
2
Now, letH = L(£2), K = W3 (£2) with the inner product

(u,v);czf(Vu,Vv)dx, u,vek,
Q2

and the linear operatdf with domain Doni/7) = W%VF(SZ) C L2(£2) and valued incC,
IMu = u for all u e Dom(IT). We verify that(C, IT) is a Hilbert space induced by:

(i) K is a Hilbert space. This is true becad&’é (£2) is a subspace (JW%(Q) and the
equivalence of the normis: ||W1 ~(2) and| - ”Wl(.Q) on W ().

(i) Dom{T) > Dom(A) Indeed, th|s follows as in the prewous examples, by observing
that Dom(A) c W1 3 ().

(i) I71(Dom(A)) is dense inC. This is equivalent with saying that Dam) is dense in
W3 1 (92).

(iv) Hu Iv) i = (Au, v)y for all u, v e Dom(A). Indeed, foru, v € Dom(A) we inte-
grate by parts, as in the previous examples, and use the boundary conditions to obtain

_ v
(Hu,Hv)K:/(Vu,Vv)dx:—/uAvdx+/ua—vdS
V
2 052

_ v v
—/uAvdx—l—/ —dS+/u—dS
d v

I’

Q
/u dx = (Au, v) 1,(2).
Q

3. Lifting of bounded operators

The main result of this paper is the following lifting theorem for bounded operators with
respect to Hilbert spaces induced by positive selfadjoint unbounded operators.

Theorem 3.1. Let A and B be positive selfadjoint operatorsin the Hilbert spaces 1 and
respectively Ho, and let (4, I14) and (Kp, ITg) be the Hilbert spacesinduced by A and
respectively B. For any operators T € B(H1, H2) and S € B(H2, H1) such that

(Bx, Ty)pn, ={(Sx, Ay)n,, xeDom(B), y e Dom(A), (3.2)

there exist uniquely determined operators 7 € B(K4, Kp) and S € B(Kp, Ka) such that
TIHsx =IIgTx for all x e Dom(A), SIIgy = I14 Sy for all y € Dom(B), and

(Sh, k), = (h, Tk)ic,, heKp, keKa. (3.2)
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We divide the proof of Theorem 3.1 in three lemmas. The main technical ingredient is
the inequality that makes the subject of the following Lemma 3.4. Basically, we employ
the sameidea asin [6,11], (see also [2,7]), to iterate the Schwarz inequality, but technically
much more precautions should be taken: these are illustrated in the next two lemmas.
Lemma 3.2. Under the notation and assumptions of Theorem 3.1 we have

BTx=S*Ax, xeDom(A), (3.3)

in the sense that for any x € Dom(A) we have Tx € Dom(B) and (3.3) holds.

Proof. Indeed, ifx e Dom(A), then by (3.1) we have

(Tx, By)u, = (S*Ax, y) y € Dom(B),

Hq’
and hencd' x e Dom(B*) =Dom(B) andBTx = S*Ax. O
Lemma 3.3. Under the notation and assumptions of Theorem 3.1, for any integer n > O we
have

A(ST)'h = (T*S*)"Ah, heDom(A), (3.4)
in the sense that for any 27 € Dom(A) we have (ST)"h € Dom(A) and (3.4) holds.
Proof. To prove this, we use induction. The case= 0 is trivial, so letn = 1, andh €

Dom(A) be arbitrary. By (3.3) we havEéh € Dom(B) and using (3.1) it follows that for
anyx € Dom(A) we have

(Ax, STh)y, = (Tx, BTh)y, = (x, T*S*Ah)Hl,

and henceSTh € Dom(A*) = Dom(A) and A(ST)h = (T*S*)Ah. To check the general
induction step, let us assume that for an arbitrary, but fixed,0 and anyz € Dom(A)
we have(ST)"h € Dom(A) andA(ST)"h = (T*S*)Ah. Fix h e Dom(A). Then(ST)"h €
Dom(A) and, by (3.1) we hav& (ST)"h € Dom(B) and

BT (ST)'h = S*A(ST)"h = S*(T*5*)" Ah.

Therefore, for arbitrarg € Dom(A) we have
1
{Ax, (ST)""*h),, = (Ax, ST(ST)"h)y, =(Tx, BT(ST)"h),,,
+1
= (x, (T*5*)" Ah)Hz,

and hence(ST)"t1h € Dom(A*) = Dom(A) and (T*S*)"*1Ah = A(ST)"*1h. Thus,
(3.4) is completely proved. O
Lemma 3.4. Under the notation and assumptions of Theorem 3.1, we have

(BTx,Tx)3, <r(ST){Ax.x)7,. xeDom(A), (3.5)

in the sense that for any x € Dom(A) we have Tx € Dom(B) and the inequality (3.5)
holds. Here, r(ST) denotes the spectral radius of the bounded operator ST.
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Proof. To this end, we repeatedly use (3.4) and the Schwarz inequality for the positive
inner product(A - ,-)4,, to get

HBl/ZTx” (BTx, Tx)p, = (S*Ax, Tx) = (Ax, STx)3,
1
(Ax, x ﬁl(A(ST)x (ST)x)
1 1
(Ax,x)7, ((T*S)Ax, (ST)x)f_[l
1
(Ax,x)7, (Ax, (ST) x)
1,1 1
< (Ax, )2 HAST)?x, (ST)?x)f,,
R a1 -1\
< (Ax, x)Z, Z(ASTY? x,(ST)2 xX)z
2+ ot * -1 \ar
< (Ax,x (T*s*)*" " Ax, (ST) Xy,
— (A.X 2+ + +2n< (ST)an>7271
< <Ax,x>$;7‘+"'+7" (ST)? x
1+ + + n— )‘l
<1 x|Z (Ax.x)y, 0 2 1||A 1%,
and hence
1+l+-~+,+_ £ X
(BTx,Tx)2, <|(ST)? 7 (Ax, T IAxIE X2 (3.6)

Further, let us note that, ilx = 0 then by (3.3) the inequality (3.5) is trivial. Thus,
assumingAx # 0, hencex # 0, we can pass to the limit in (3.6) and, taking into account
that

L . 1
lim 7 = r(ST), lim ||Ax||2 lim_ bz, =1,
n—o00 n—oo

we get the inequality (3.5). O
We are now in a position to finish off the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 2.1 and Remark 2.3, it is sufficient to prove the
result for the energy space representatioNg, I74) and (Kp, I1g), when the strong
topologies are explicitly defined in terms of the seminoims/2 - I+, and, respectively,

| BY2. ll+,. Let us note that the inequality (3.5) can be reformulated as

| BY2T x|, </r(ST)| AM2x],,, x € Dom(A). 3.7

On the ground of (3.7) it follows that the operat@r factors to a linear operator
Dom(A)/Ker(A) — Dom(B)/ Ker(B) and is continuous with respect to the strong topolo-
gies of the induced Hilbert spadé, and Ky, and hence it is uniquely extended to
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a bounded operatdf : K4 — Kjp. Clearly, we then havéFHAx = [IgTx for all x €
Dom(A). In a similar way, S can be lifted to an operatof € B(Kp, Ka) such that
S = I Sx, for all y € Dom(B). Finally, once the existence @f and S is established,
(3.2) is a simple consequence of (3.1) and a continuity argument.

We finally present some properties of preservation for spectra of operators lifted to
induced Hilbert spaces. The conclusions will be obtained as applications of Theorem 3.1
and will generalize most of the known properties previously obtained in case the selfadjoint
operatorA is bounded.

Let A be a positive self-adjoint operator in the Hilbert sp&teand let us consider a
linear bounded operatdtr onH. In the sequel, it is assumed that the oper@t@ommutes
with A in the sense that the following relation

(Ax, Ty) =(Tx, Ay), x eDom(A), (3.8)

holds. This means that all conditions with= S in Theorem 3.1 are satisfied. Therefore,

by virtue of the mentioned theorem applied to the operator T, there corresponds a uniquely
determined operatof on the spaceC, induced byA. ThusT € B(K4) and T ITyx =

I, Tx for eachx € Dom(A). In the following we indicate how some spectral properties

of the operatofl’ remain valid for the corresponding lifted operator We start with the
following result which turns out to be an easy consequence of Theorem 3.1.

Theorem 3.5. The spectrumof 7, asa linear operator on the Hilbert space K 4, isa subset
of the spectrum of T', asa linear operator on the Hilbert space H.

Proof. Letz be a complex number which is a regular point of the operatare., T — zI
has a bounded inverse . Denote it byR(z; T) = (T — zI)~1. We remark that con-
dition (3.7) means that the operat®r commutes withA, in the sense that for each
u € Dom(A) it follows Tu € Dom(A) andT Au = ATu, i.e.,TA C AT. This is equiv-
alent with the fact that the operat@r commutes with the spectral measwreof A4, i.e.,
E(x)T = TE(a), wherea denotes any Borel set of the real liffe But then, the same
is true for the resolvent operat@(z; T). Consequently, the resolvent operafoiz; T)
commutes with4, and hence we can apply Theorem 3.1 to obtain the corresponding lifted
operatorR which becomes bounded with respect to the norrit gf

Further, we note that the transformatifn— T, which by Theorem 5.1 is well-defined,
is an algebraic homomorphism, from the set of all bounded operatcksthat commute
with A, into B(X4). Then, we can conclude that the operakois the inverse operator of
T —zI40nK4 (14 means the identity operator éty). O

Theorem 3.5 can be extended for some classes of unbounded operators. As an example,
let T be a selfadjoint (not necessarily bounded) operatdi irBuppose that the operator
T commutates with4 in the sense of commutativity of their spectral measures. Then the
resolvent operatoR(z; T) = (T — zI)~1 (3z # 0) satisfies all the assumptions that makes
it a resolvent for some densely defined operdtan K 4 (see, for instance, [5]). Therefore
we have
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Corollary 3.6. If T isa self-adjoint operator in A such that it commuteswith A, then there
exists a uniquely determined operator T on the space K4, T issdf-adjoint on K4, and its
spectrumis a subset of the spectrum of 7' on H.

Again, letT be a bounded operator it and lets be a point in the discrete spectrum
of T. This means that is an isolated point in the spectrum 6fand the null-space of
T — )1 is finite-dimensional. The poirt is an eigenvalue of the operat®rwith finite
multiplicity. In other words, consider the projection

1

P =—-= / R(z; T)dz,
21

[

Y
wherey is a circumference centered Inof sufficiently small radius such that the disk
|z — A] < r does not contain other singularities except A. Then P, is a finite-rank
operator inH. The subspace, H is the root subspace of which corresponds to the
eigenvaluer. Let 7 be the corresponding lifted operator Bf In view of the previous
remarks, it follows that the projection

- 1

P=——
* 2

i / R(z,T)dz

14
is the lifted operator of’;, respectively. Since Do) is dense irff and dimP, H < oo,
it follows that P, K4 = P,’H. Therefore, we obtain the following result.

Theorem 3.7. Under the assumptions from above, if A belongs to the discrete spectrum
of T, then A belongs to the discrete spectrum of T and their corresponding root subspaces
are the same.

Finally, an immediate consequence of Theorems 3.5 and 3.7 is the following result often
useful for concrete applications.

Corollary 3.8. Let A and T be as in Theorem 3.5 and suppose that the operator 7' has
only discrete spectrum, i.e., each point of the spectrum o (T") except A = 0 is an isolated
eigenval ue of finite multiplicity. Then the spectrum of T is discrete aswell, o (T) = o (T),
and the root subspaces corresponding to the same nonzero eigenvalues of 7 and 7 coin-
cide, respectively. In particular, if 7 is completely continuous on , then 7 is completely
continuouson 4.
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