
J. Math. Anal. Appl. 322 (2006) 18–27

www.elsevier.com/locate/jmaa

Impulse functions over curves and surfaces
and their applications to diffraction

Levent Onural

Department of Electrical and Electronics Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

Received 23 March 2005

Available online 24 August 2005

Submitted by G. Chen

Abstract

An explicit preferred definition of impulse functions (Dirac delta functions) over lower-
dimensional manifolds in RN is given in such a way to assure uniform concentration per geometric
unit of the manifold. Some related properties are presented. An application related to diffraction is
demonstrated.
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1. Introduction

The Dirac delta function δ(x) is well known (see, for example, [1, pp. 127–136] or
[2, pp. 393–395]); and the mathematical definitions and the associated rigor can be found
in the literature (see, for example, [3,4]). In summary, for x ∈ RN , δ(x) is defined through
an inner product of this function with other “good” functions as∫

δ(x)f (x) dx = f (0). (1)
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Here the integral is a multiple integral whose order is the dimension of the space, N . Being
defined by Eq. (1), the impulse function δ(x − ξ) represents nothing but a concentration of
some quantity over an infinitesimal N -dimensional volume around the point ξ .

It is natural to extend the definition to handle concentration of a quantity not only on
a point, but also on a curve or a surface (hypersurface) defined in an N -dimensional space.
Indeed, curve-impulses have been used in engineering and studied in mathematics, see
[3–6]. Although the understanding is clear that these functions represent a concentration
along the curve in a higher-dimensional space, the distribution of concentration per unit-
length along the curve depends on the definition which is not uniform in the literature.
Therefore, one of the purposes of this paper is to state a preferred definition.

2. Notation and mathematical preliminaries

We adopt the usual definitions of curves, surfaces, line integrals, and surface integrals,
as commonly found in the literature. (See, for example, [7, Chapters 2 and 3].) We consider
a lower-dimensional embedded orientable manifold S in RN . For notational simplicity, es-
pecially when we state the properties in Section 3, we adopt the same symbol S to represent
the path of a curve, the trace of a surface, or the trace of a hypersurface in RN , depending
on the application.

Let us consider the space RN . f (·) represents a function from N -dimensional real vec-
tors to complex numbers, i.e., f : RN → C. We assume that S has all the properties which
allow us to define integrals of f over S, whenever needed. The author prefers the nota-
tion δS(x) to describe a concentration over S in RN , where x ∈ RN . With this notational
preference, the conventional δ(x − ξ) is also denoted as δS(x) where S is now the point
(zero-dimensional subset) x = ξ .

Following a similar approach as the definition given by Eq. (1), we can simply and
immediately define impulse functions over S in RN through an integral equation as

〈
δS(x), f (x)

〉 = ∫
RN

δS(x)f (x) dx =
∫
S

f (x) dS. (2)

Integrals involving δS(x) in RN reduce to line or surface integrals over S. More subtle
than that is the potential benefits of converting a line or a surface integral to a regular
integral over RN via this definition.

A consequence of the definition given by Eq. (2) is that the concentration is uniform
over S, i.e., the concentration has constant density per dS. It is easy to see this uniform
distribution nature as∫

RN

δS(x)1dx =
∫
S

dS (3)

which is equal to the total area AS of S, and valid for any S, including smaller portions of
a given S. AS is finite if S has finite extent; otherwise it is infinite.
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Now we will show that, for a p-dimensional manifold S, where 1 � p < N , and for
integrals over the manifold QP , where QP is a (N −p)-dimensional embedded orientable
manifold which intersects S at an arbitrary intersection point P orthogonally, we have∫

QP

δS(x) dQ = 1; (4)

we assume that QP has the necessary properties to define integrals over it.
Let P be a point on S. Let us define N curvelinear coordinates as N curves all in RN ,

such that the family of coordinate lines are smooth, and intersecting each other orthog-
onally at any P ∈ S. Neither the orthogonality, nor the smoothness is required for other
points in RN that are not in S. Let each coordinate be represented by a length variable li .
Therefore, on S, dl = dl1 dl2 . . . dlN represents the volume element dV which is also equal
to dx. (We assume that the directions of coordinates are chosen so that the possibility of
dl = −dx is eliminated.) Note that, the orthogonality of li ’s and their purely geometric
length specification, and properly designated directions assure that the Jacobian between x
and l is equal to one at any point on S. Let us order these curves so that the first p of them,
l1, l2, . . . , lp , lie in S (describe S) and the rest, lp+1, . . . , lN , do not lie in S. Therefore,
lp+1, . . . , lN define the complement space Q of S in RN . So we can write

∫
δS(x) dx =

∫
δS(x) dV =

∫
S

( ∫
QP

δS(x) dQ

)
dS

=
∫
S

( ∫
QP

δS(x) dlp+1 . . . dlN

)
dl1 . . . dlp, (5)

where P = (l1, l2, . . . , lp) is the point on S. We would like to interpret
∫

δS(x) dQ further.
Firstly, from Eq. (3) and the equation above, we must have,

∫
QP

δS(x) dQ = 1. Since the
manifold QP crosses the manifold S orthogonally at P , above result indicates that the
integral of δS(x) as we cross the surface S orthogonally is uniform (independent of point P )
and equal to 1.

Although the formal definition of the impulse function, δS(x), is given by Eq. (2), it
may be useful to visualize these impulse functions as limits which wrap a “skin” over S,
where the skin gets narrower as the mass in it gets squeezed and concentrated. First, let us
remember that the 1D impulse function may also be reached as a limit

δ0(x) = δ(x) = lim
Δ→0

{
1/Δ if x ∈ [−Δ/2,Δ/2],
0 else,

(6)

which is an unnecessarily restrictive definition compared to Eq. (1), but surely provides an
easier comprehension. Similarly, for the impulse over S, we can write a limit as,

δS(x) = lim
Δ→0

{
1/Δ if x ∈ SΔ,

0 else,
(7)

where SΔ is a volume in RN such that it includes the p-dimensional hypersurface S, and
the “thickness” of this volume along the orthogonal direction to S is uniform, so that its
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(N − p)-dimensional orthogonal cross-sections has a uniform measure Δ. Therefore, the
impulse δ(x) represents a constant finite mass in SΔ whose total volume is AS and pro-
gressively squeezed to exist only on S as Δ → 0; mass per unit S is uniform throughout S

and is equal to 1.
The definition of the impulse functions over manifolds given in [3, vol. I, pp. 209–247]

results in a unique but non-uniform concentration over a surface, and therefore, is different
than the definition given in this paper.

We may now proceed to investigate some properties associated with δS(x).

3. Some properties of δS(x)

1. Shift
Naturally,

δS(x − a) = δSa(x), (8)

where Sa is a new manifold obtained by translating S by adding the vector a to each point
on it.

2. Sifting∫
V

δS(x − a)f (x) dx =
∫
Sa

f (x) dS =
∫
S

f (x + a) dS. (9)

This property simply states that translating the manifold S by a will result in a surface
integral over S of the backward translated function f (x + a).

3. Rotation
Let R be a rotation matrix, and let SR be the manifold obtained by rotating each point

on S; i.e., the coordinates x of a point P on S, is mapped to a point P ′ on SR whose
coordinates is R−1x. Therefore, δS(Rx) = δSR(x). So,

∫
V

δSR(x)f (x) dx =
∫
SR

f (x) dS =
∫
V

δS(Rx)f (x) dx =
∫
V

δS(x)f
(
R−1x

)
dx

=
∫
S

f
(
R−1x

)
dS. (10)

4. Affine transforms
Let SA,b define a manifold which is obtained by mapping the coordinates x of each

point on S, to a corresponding point on SA,b, with coordinates A−1(x − b). Furthermore,
let δS (x) be the impulse on SA,b. Then
A,b
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∫
V

δSA,b(x)f (x) dx =
∫

SA,b

f (x) dS =
∫
V

δS(Ax + b)f (x) dx

=
∫
V

δS(x)f
(
A−1(x − b)

) 1

|A| dx

= 1

|A|
∫
S

f
(
A−1(x − b)

)
dS. (11)

5. Crossings
Let S1 and S2 be two different manifolds. Let us consider a crossing point of these

manifolds, P . Then,∫
V

δS1(x)δS2(x) dx =
∫
S1

δS2(x) dS = 1

sin θ
, (12)

where θ is the angle of crossing; if the crossing is orthogonal, sin θ = 1. For example, for
crossings where both S1 and S2 are 1D, θ is the angle between the tangents to these curves
at P . If one of the manifolds is 1D and the other one is 2D, θ is the angle between the
tangent to the 1D manifold, and its projection onto the 2D manifold; as expected, sin θ = 1
for orthogonal crossings.

6. Change of variables
Often it is desirable to write surface integrals as integrals over Cartesian coordinates.

The associated change of variables can be achieved as usual. Therefore,∫
V

δS(x)f (x) dx =
∫
S

f (x) dS =
∑

i

∫
Bi

f (x)
dS

dxm

dxm, (13)

where the integral is an m-dimensional integral, and xm is the m-dimensional subset of
Cartesian coordinates x; m is also the dimension of S. B is the projection of S onto xm.
The summation in front of the integral takes care of the multiple crossings of S and the
subspace orthogonal to B .

An example, which will be used later in an optical diffraction application, illustrates the
notation.

Example. Let S be the path of the curve described by g1(x) = 0 in R2 where g1(x) =
x2 + y2 − k2, k is a constant. Therefore, S is a circle with radius k whose center is at the
origin. Let δS(x) be the impulse on this circle. Therefore,∫

R2

δS(x)f (x) dx =
∫
S

f (x) dS, (14)

where the integral on the right-hand side is now a line integral over the circle. The evalu-
ation of this integral either on the x-axis, or on the y-axis, as usual, clarifies the adopted
notation, as follows. The projection B , of circle S on x-axis (or y-axis) is a line segment.
Therefore,
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(a) (b)

Fig. 1. (a) Corresponding notation for the impulse over a circle. (b) The non-uniform distribution of mass over

the x-axis for this example; f (x) =
√

1 + x2

k2−x2 .

∫
S

f (x, y) dS =
k∫

−k

f
(
x,

√
k2 − x2

)√
1 +

(
dy

dx

)2

dx

+
k∫

−k

f
(
x,−

√
k2 − x2

)√
1 +

(
dy

dx

)2

dx

=
k∫

−k

f
(√

k2 − y2, y
)√

1 +
(

dx

dy

)2

dy

+
k∫

−k

f
(−√

k2 − y2, y
)√

1 +
(

dx

dy

)2

dy. (15)

Figure 1(a) demonstrates the associated features of the impulse over the circle for this
example: S, SΔ, B and dS are illustrated for this case (using the interpretation associated
with Eq. (7)). The uniform density curve impulse over the circle, converts the integral over
R2 of a function multiplied by this impulse, into a line integral over the circle. If this line
integral is converted to a regular integral over x, the associated correction of concentration
per dx must be taken care of; and this is handled by√

1 +
(

dy

dx

)2

=
√

1 + x2

y2
=

√
1 + x2

k2 − x2
= k/y

for this example. Actually, this is nothing but the projection of uniform concentration over
the circle, onto x-axis. The concentration per dx, as a consequence of the projection of the
uniform distribution over the circle is shown in Fig. 1(b).
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Note that tempting notations like δ(g(x)), which imply a concentration over the curve
g(x) = 0 are ambiguous without supporting explicit definitions, and therefore, potentially
dangerous: note that, for the example above, using this version of notation we get, δ(x2 +
y2 − k2) which can also be written as δ(y ± √

k2 − x2) (or δ(x ± √
k2 − y2)). And this

may erroneously convert Eq. (14) to∫
R2

δS(x)f (x) dx =
∫
x

∫
y

δ
(
y −

√
k2 − x2

)
f (x, y) dy dx

+
∫
x

∫
y

δ
(
y +

√
k2 − x2

)
f (x, y) dy dx

=
∫
x

f
(
x,

√
k2 − x2

) + f
(
x,−

√
k2 − x2

)
dx, (16)

if one interprets δ(y − √
k2 − x2), for constant x, as a 1D unit impulse located at the point

y = √
k2 − x2 on the y-axis. This obscures the differential term,

√
1 + (dy/dx)2, totally,

and could lead to erroneous results if consistent corrections are omitted. The interpretation
given in this paragraph, which results in the right-hand side of Eq. (16), implicitly assumes
a non-uniform concentration over the circle, where this non-uniformity then cancels the
differential term to have Eq. (16).

4. Application to diffraction

We have chosen the classical diffraction problem as an example. Please note that the
purpose is not to provide the solution which has been known for a long time (see, for
example, [2, Chapters 3 and 4]), anyway. Instead, the purpose is to show how the δS(x)

function improves the structure of the problem formulation, provides a better understand-
ing, and thus paves the way for elegant solutions for many associated problems.

The diffraction between two parallel planes can be computed as

ψz0(x, y) � ψ(x)
∣∣
z=z0

= (
4π2)F−1

2D

{
A2D(kx, ky)e

j
(√

k2−k2
x−k2

y

)
z0

}
= ψz0(x, y)

= F−1
2D

{
F2D

{
ψ0(x, y)

}
e
j
(√

k2−k2
x−k2

y

)
z0

}
, (17)

where ψ0(x, y) is the given 2D pattern on the (x, y)-plane located at z = 0 (i.e., the 2D
“object plane”), and ψz0(x, y) is the resultant diffraction pattern on a plane parallel to the
object plane located at z = z0.

Instead of formulating the problem as a transformation between the patterns over the
two planes, as in Eq. (17), we can get a much better insight if the 3D volume diffraction
pattern is considered in its entirety. Such an approach paves the way for efficient computa-
tional algorithms for diffraction between different geometries.
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We will start with a scalar 3D optical plane wave which can be represented as B(k)ejkT x

for all x ∈ R3. Therefore, the total 3D field, ψ(x, y, z), as a consequence of superposition
of all such plane waves is,

ψ(x, y, z) = ψ(x) =
∫
k

B(k)ejkT x dk = F−1
3D

{
8π3B(k)

}
. (18)

Imposing the restriction that the wave is monochromatic, we get, |k| = k = 2π/λ, where λ

is the optical wavelength of the monochromatic signal. Therefore, B(k) = δS(k)A(k) for
the monochromatic wave, where S is the semi-sphere |k| = k, with kz > 0, assuming that
the propagation is along the positive z direction. A(k) is the amplitude of the monochro-
matic wave along the direction indicated by k. So,

ψ(x) =
∫
k

δS(k)A(k)ejkT x dk = F−1
3D

{
8π3δS(k)A(k)

}∫
S

A(k)ejkT x dS. (19)

Therefore, a surface integral over a semi-sphere is converted to a regular 3D integral using
the impulse function over that surface (semi-sphere). What is achieved here is a new pre-
cise representation of the 3D optical field formulation, as given by Eq. (19), involving an
impulse function over a surface (semi-sphere in this case).

Using the property 6 given in the previous section, and noting that

dS

dkxdky

= k

kz

= k√
k2 − k2

x − k2
y

,

we can convert the integrals of Eq. (19) to a regular integral over two variables kx and ky

as

ψ(x) =
∫
B

A(k)ejkT x k√
k2 − k2

x − k2
y

dkx dky, (20)

where B is the projection of S onto (kx, ky)-plane. This projection is the disc k2
x +k2

y < k2.

Furthermore, since k2
x + k2

y + k2
z = k2, where k is the constant wave number, we write,

ψ(x) =
∫
B

∫
A

(
kx, ky,

√
k2 − k2

x − k2
y

)
e
j
[(

kxx+kyy+
√

k2−k2
x−k2

y

)
z
]

× k√
k2 − k2

x − k2
y

dkx dky. (21)

Now we can base the solution of Eq. (17) to this alternate approach by taking the cross-
section of the 3D ψ(x) at z = 0 and at z = z0 planes and prove that the result given by
Eq. (17) is true. Therefore,

ψ0(x, y) � ψ(x)
∣∣
z=0 =

∫ ∫
A2D(kx, ky)e

j (kxx+kyy) dkx dky, (22)
B
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where

A2D(kx, ky) � A
(
kx, ky,

√
k2 − k2

x − k2
y

) k√
k2 − k2

x − k2
y

. (23)

Diffraction pattern over the (x, y)-plane, ψ(x)|z=0, usually represents the “object” in op-
tics. As a consequence of Eq. (22), we see that,(

4π2)A2D(kx, ky) = F2D
{
ψ0(x, y)

}
, (24)

where the 2D Fourier transform is from (x, y)-domain to (kx, ky)-domain.
Similarly, on z = z0 plane, we get,

ψz0(x, y) � ψ(x)
∣∣
z=z0

= (
4π2)F−1

2D

{
A2D(kx, ky)e

j
(√

k2−k2
x−k2

y

)
z0} = ψz0(x, y)

= F−1
2D

{
F2D

{
ψ0(x, y)

}
e
j
(√

k2−k2
x−k2

y

)
z0}

, (25)

where the 2D Fourier transform is between the (x, y)- and (kx, ky)-domains. Thus we reach
the result of Eq. (17).

The approach presented in this paper gives a better understanding of the diffraction for-
mulation compared to the plane computational procedure given by Eq. (17), because now
we know the amplitudes, B(k) of all 3D plane waves (the 3D spectrum) which superpose
to form the object ψ0(x, y) and its diffraction ψz=z0(x, y); therefore, we know the entire
field ψ(x) as given by Eqs. (18), (19), or (20); and furthermore, using the developed δS(x)

concept and the associated definitions, we are able to communicate, with great ease, that
B(k) = δS(k)A(k).

5. Conclusion

Though it is clear that the impulse functions (Dirac delta-functions) over lower-
dimensional manifolds in RN represent concentration (of mass) over a curve or a surface
(including hypersurfaces for higher-dimensional spaces), how that concentration varies
over that curve or surface is an issue. The proposed definition overcomes this problem
by assuring uniform distribution per length (1D manifolds); the variation is uniform per
area for 2D manifolds, and per unit geometric measure for higher-dimensional manifolds.

As a consequence of this definition, inner products of these functions and an arbitrary
function is converted to a line or a surface integral. This observation, in the reverse direc-
tion, gives a tool to convert rather difficult surface integrals arising from the very nature of
the problem to be handled as easier regular integrals involving the defined impulse func-
tions at higher dimensions. This feature is demonstrated by modeling the 3D scalar optical
wave propagation using the defined impulse functions. It is further shown that the well-
known diffraction problem is a special case of the presented model. Therefore, we conclude
that the adoption of these impulse functions, paves the way for solving rather more difficult
diffraction problems.
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