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This paper  studies  the  dynamic  implications  of  the  endogenous  rate  of  time  preference  depending  on
the  stock  of  capital,  in  a one-sector  growth  model.  The  planner’s  problem  is  presented  and  the  optimal
paths  are  characterized.  We  prove  that  there  exists  a  critical  value  of  initial  stock,  in the  vicinity  of  which,
small  differences  lead  to  permanent  differences  in the  optimal  path.  Indeed,  we  show  that  a development
trap  can  arise  even  under  a strictly  convex  technology.  In contrast  with  the  early  contributions  that
consider  recursive  preferences,  the  critical  stock  is  not  an  unstable  steady  state  so  that  if  an  economy
starts  at  this  stock,  an  indeterminacy  will  emerge.  We  also  show  that  even  under  a  convex–concave
technology,  the  optimal  path  can  exhibit  global  convergence  to  a unique  stationary  point.  The  multipliers
system  associated  with  an  optimal  path  is  proven  to  be  the  supporting  price  system  of  a  competitive
41
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equilibrium  under  externality  and  detailed  results  concerning  the  properties  of  optimal  (equilibrium)
paths  are  provided.  We  show  that  the  model  exhibits  globally  monotone  capital  sequences  yielding  a
richer  set  of  potential  dynamics  than  the  classic  model  with  exogenous  discounting.
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. Introduction

The optimal capital accumulation models have been at the core
f the theory of economic growth and dynamics. Based on the
ynamic consumption and saving decisions of the economic agents
riven by intertemporal utility trade-offs between current and
uture consumption, the key components of these models turn out
o be the rate of time preference and the technology. The classi-
al optimal growth models and much of the subsequent literature
n growth focus on the convex structures of the technology and
references that guarantee the monotonical convergence of the
equence of optimal stocks towards a unique steady state. Such a
tructure, however, imply that the model cannot be used to under-
tand the development patterns that differ considerably among

ountries in the long run (see Quah, 1996; Barro, 1997; Barro and
ala-i-Martin, 1991).
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To account for these non-convergent growth paths, a variety of
ne-sector optimal growth models that incorporate some degree
f market imperfections based on technological external effects
nd increasing returns have been presented. Within a model of
apital accumulation with convex–concave technology, Dechert
nd Nishimura (1983), Mitra and Ray (1984) have characterized
ptimal paths and prove the existence of threshold dynamics
hat generate development or poverty traps (see Azariadis and
tachurski, 2005, for a recent survey). In these models, economies
ith low initial capital stocks or incomes converge to a steady state
ith low per capita income, while economies with high initial cap-

tal stocks converge to a steady state with high per capita income.
ndeed, the introduction of increasing returns also makes it possible
or private returns to the accumulation of capital stock to be com-
lementary with the aggregate stock leading to indeterminacies or
ontinuum of equilibria (e.g., Benhabib and Perli, 1994; Benhabib
nd Farmer, 1996; see Nishimura and Venditti, 2006 for extensive
ibliography).
A general tendency in these studies with multiple steady states,
ndeterminacy or continuum of equilibria is that they are mostly
evoted to the analysis of the technology component leaving the
ime preference essentially unaltered with an exogenously fixed
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eometric discounting. In this paper, yet the other mechanism, the
ndogeneity of time preference will be put forward to explain the-
retically why the differences in per capita output levels among
ountries persist in the long run.

Considering the preferences of the agents to be recursive, the
arly contributions on the theory of endogenous time preference
ostulate that an agent’s discount rate depends on the level of
resent and future consumption (e.g., Uzawa, 1968; Lucas and
tokey, 1984; Epstein, 1987; Obstfeld, 1990). These models nearly
xclusively assume an increasing marginal impatience so that the
gents get more impatient as they grow richer. Such a specifica-
ion ensures stable optimal capital sequences that converge to a
nique steady state independent of the initial conditions. However,
ecent work both theoretically (e.g., Becker and Mulligan, 1997;
tern, 2006) and empirically (e.g., Lawrance, 1991; Samwick, 1998;
rederick et al., 2002) propose that the agents get more patient
s they grow richer and impose that the discount rate depends
losely upon the stock of wealth (see Hamada and Takeda, 2009,
or a recent survey). This is in parallel to the idea that the stock of
ealth is a key to reach better health services and better insurance
arkets so that the more wealthier the agent gets, the more patient

t becomes. By considering discount factor as a function of con-
umption, Mantel (1998) studies the impact of decreasing rate of
ime preference on optimal growth path of an economy with a pri-

ary focus on the monotonicity properties of optimal consumption
nd investment. Das (2003) derives a set of sufficient conditions
or stability and uniqueness in the same context in a continuous
ime optimal growth model. Stern (2006),  along the lines of Becker
nd Mulligan (1997),  let individuals spend resources to increase
he appreciation of the future. He provides numerical examples of

ultiple steady states and a conditionally sustained growth path.
In this paper we adapt the classic optimal growth model to

nclude an endogenous rate of time preference depending on the
tock of capital and analyze the implications on the equilibrium
ynamics. To do so, the planner’s problem is first presented and the
ptimal paths are characterized. We  show that a development trap
an arise even under a strictly convex technology. In other words,
e prove that there exists a critical value of initial stock, in the

icinity of which, small differences lead to permanent differences
n the optimal path. In contrast with the early contributions by Kurz
1968), who assumes capital dependent preferences, by Beals and
oopmans (1969),  Iwai (1972),  who assume recursive preferences,
nd more recently, by Stern (2006),  who assumes endogenous time
reference depending on future oriented resources, we noted that
he critical stock is definitely not an unstable steady state so that
f an economy starts at this stock, an indeterminacy will emerge.
n the other hand, under a similar condition to that of Dechert and
ishimura (1983),  we also show that even under a convex–concave

echnology, the optimal path can exhibit global convergence to a
nique stationary point. Later, the multipliers system associated
ith an optimal path is proven to be the supporting price sys-

em of a competitive equilibrium under externality and detailed
esults concerning the properties of optimal (equilibrium) paths
re provided. We  show that the model exhibits globally monotone
apital sequences yielding a richer set of potential dynamics than
he classic model with exogenous discounting.

The key reason of our results is that we consider that the rate of
ime preference decreases with the stock of wealth in contrast with
xogenously fixed discount factor assumed in standard models. In
articular, the discount factor attributed to the utility of consump-
ion at period t increases with the level of capital stock available

or production at period t. Accordingly, the lower the stock of cap-
tal, the higher the sacrifice of postponing present consumption in
xchange for future consumption. In line with Becker and Mulligan
1997), Stern (2006),  an immediate implication of this assumption

T
w
a
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s that as the agent grows wealthier, the level of investment in capi-
al that will be appreciated in the future increases and therefore the
gent will become more patient. Indeed, recent empirical studies
sing experimental data also support the validity of this hypothesis
f wealth causes patience (e.g., Harrison et al., 2002; Ikeda et al.,
005).

Incorporating such an hypothesis, an important aspect of our
odel is that while allowing variation in the rate of time prefer-

nce, at the same time it maintains time consistency. A remarkable
eature of our analysis is that our results do not rely on particu-
ar parameterization of the exogenous functions involved in the

odel, rather, it provides a more flexible framework in regards to
he discounting of time, keeps the model analytically tractable and
ses only general and plausible qualitative properties.

The rest of the paper is organized as follows. Section 2 describes
he model and provides the dynamic properties of optimal paths.
ection 3 presents the existence of a competitive equilibrium with
xternality and studies the equilibrium dynamics. Finally, Section

 concludes.

. Model

The model differs from the classic optimal growth model by
he assumptions on discounting. Rather than assuming that the
evel of discount on future utility is an exogenous parameter, we
ssume that it is endogenous depending on the path of capital stock.
ormally, the model is stated as follows:

ax{ct ,xt+1}∞
t=0

∞∑
t=0

(
t∏
s=1

ˇ(xs)

)
u(ct),

ubject to

∀t, ct + xt+1 ≤ f (xt),
∀t, ct ≥ 0, xt ≥ 0,
x0 ≥ 0,given,

e  make the following assumptions regarding the properties of
he discount, utility and the production functions.

ssumption 1.  ̌ : R+ → R++ is continuous, differentiable, stric-
ly increasing and satisfies sup x>0ˇ(x) = ˇm < 1, sup x>0ˇ′

x) < + ∞.

ssumption 2. u : R+ → R+ is continuous, twice continuously
ifferentiable and satisfies u(0) = 0. Moreover, it is strictly increas-

ng, strictly concave and u′(0) = + ∞ (Inada condition).

ssumption 3. f : R+ → R+ is continuous, twice continuously
ifferentiable and satisfies f(0) = 0. Moreover, it is strictly increasing
nd lim x→+∞f′(x) < 1.

For any initial condition x0 ≥ 0, when x = (x0, x1, x2, . . . ) is such
hat 0 ≤ xt+1 ≤ f(xt) for all t, we say it is feasible from x0 and the class
f all feasible accumulation paths is denoted by �(x0). It may  be
asily verified that if x0 < x′

0, then �(x0) ⊂ �(x′
0). A consumption

equence c = (c0, c1, . . .) is feasible from x0 ≥ 0 when there exists
 ∈ �(x0) with 0 ≤ ct ≤ f(xt) − xt+1.

Noting that the constraints will be binding at the optimum as
he utility and the discount functions are strictly increasing, we
ntroduce the function U defined on the set of feasible sequences as

(x) =
∞∑(

t∏
ˇ(xs)

)
u(f (xt) − xt+1). (1)
t=0 s=1

he preliminary results are summarized in the following Lemma
hich has a standard proof using Tychonov theorem (see Le Van

nd Dana, 2003; Duran and Le Van, 2003; Stokey et al., 1989).
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emma  1. Let x̄ be the greatest point x ≥ 0 such that f(x) = x. Then,

a) For any x ∈ �(x0), we have xt ≤ A(x0) for all t, where A(x0) =
max

{
x0, x̄

}
.

b) �(x0) is compact in the product topology defined on the space of
sequences x.

c) U is well defined and it is continuous over �(x0) with respect to
the product topology.

It is now clear that the initial optimal growth model is equivalent
o:

ax{U(x)|x ∈ �(x0)}.

.1. Existence of optimal paths

The existence of an optimal path follows from the fact that
(x0) is compact for the product topology defined on the space

f sequences x and U is continuous for this product topology. The
ositivity of optimal consumption and capital stock paths follow
rom the Inada condition.

roposition 1.

(i) There exists an optimal path x. The associated optimal consump-
tion path, c is given by

ct = f (xt) − xt+1, ∀t.

ii) If x0 > 0, every solution (x, c) to the optimal growth model satisfies

ct > 0, xt > 0, ∀t. (2)

roof. It is easy. �

.2. Value function, Bellman equation, optimal policy

In order to characterize the behavior of the optimal paths, we
ill proceed by defining the value function and analyzing the prop-

rties of the optimal policy correspondence. The value function V
s defined by:

x0 ≥ 0, V(x0) = max{xt+1}∞
t=0

{ ∞∑
t=0

(
t∏
s=1

ˇ(xs)

)
u(f (xt) − xt+1)|

∀t, 0 ≤ xt+1 ≤ f (xt), x0 ≥ 0,given
}
. (3)

he bounds on discounting together with the existence of maxi-
um sustainable capital stock guarantee a finite value function.
nder the Assumption (1) and the Assumption (2),  one can imme-
iately show that the value function is non-negative, strictly

ncreasing and continuous (see Stokey et al., 1989). Given these,
ellman equation follows.

roposition 2.

(i) V(0) = 0, and V(x0) > 0 if x0 > 0. If x is an optimal path, then

V(x0) =
∞∑(

t∏
ˇ(xs)

)
u(f (xt) − xt+1).
t=0 s=1

(ii) V is strictly increasing.
iii) V is continuous.

g

a
o
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roposition 3.

(i) V satisfies the following Bellman equation:

∀x0 ≥ 0, V(x0) = max
{
u(f (x0) − x) + ˇ(x)V(x)|0 ≤ x ≤ f (x0)

}
.

(4)

ii) A sequence x ∈ �(x0) is an optimal solution if and only if it satisfies:

∀t, V(xt) = u(f (xt) − xt+1) + ˇ(xt+1)V(xt+1). (5)

roof. See Le Van and Dana (2003).  �

The optimal policy correspondence, � : R+ → R+ is defined as
ollows:

(x0) = arg max
{
u(f (x0) − y) + ˇ(y)V(y)|y ∈ [0,  f (x0)]

}
.

It is important to note that although the utility function is
trictly concave, the solution may  not be unique as the multiplica-
ion of discount function destroys the concave structure needed for
niqueness. The non-emptiness and the closedness of the optimal
orrespondence and its equivalence with the optimal path follow
asily from the continuity of the value function by a standard appli-
ation of the theorem of the maximum.

roposition 4.

(i) �(0) = {0}.
ii) If x0 > 0 and x1 ∈ �(x0), then 0 < x1 < f(x0).
ii) � is closed and hence upper semi-continuous.
iv) A sequence x ∈ �(x0) is optimal if and only if xt+1 ∈ �(xt), ∀ t.
v) The optimal correspondence � is increasing so that if x0 < x′

0,
x1 ∈ �(x0) and x′

1 ∈ �(x′
0) then x1 < x′

1.

roof. (ii) Follows easily from (2).  (iii) Follows from the Theorem
f Maximum. (iv) Follows from (5).  (v) See Dechert and Nishimura
1983), or Amir et al. (1991).  �

The increasingness of � is crucial for the convergence of optimal
aths, hence for the analysis of the long-run dynamics. In Stern
2006), assuming an endogenous time preference depending on
he future-oriented resources, the increasingness of � has been
roven by using the strict concavity of ˇ. Such a restriction on the
urvature of the discount function is not necessary in our setup.
oreover, we  have also proven that the optimal correspondence,

 is not only closed but also upper semi-continuous.
With the positivity of the optimal consumption and the stock of

apital, Euler equation easily follows.

roposition 5. When x0 > 0, any solution x ∈ �(x0) satisfies the Euler
quation:

t, u′(f (xt) − xt+1) = ˇ(xt+1)u′(f (xt+1) − xt+2)f ′(xt+1)

+ ˇ′(xt+1)V(xt+1) (6)

roof. Recall that 0 < xt+1 < f(xt), ∀ t. Take any n, and consider the
ath of capital xy defined as follows: xyt = xt, ∀t /= n + 1 and xyn+1 =

 ∈ Y , where Y =
(
f −1(xn+2), f (xn)

)
. Note that it is a well defined

pen interval including xn+1 because xt+1 < f(xt) and xt+2 < f(xt+1).
y choosing y ∈Y, we guarantee that y < f(xt) and xt+2 < f(y) so that
y ∈ �(x0). From the optimality of x we  have U(x) ≥ U(xy), ∀  y ∈ Y.
et �(y) = U(xy). Then �(y) is maximized at zero in Y, which sug-

′
ests that � (0) = 0. With some algebra, this ends the proof. �

In a standard optimal growth model with geometric discounting
nd the usual concavity assumptions on preferences and technol-
gy, the optimal policy correspondence, � is single valued and
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he properties of the optimal path is easily found by using the
rst order conditions together with envelope theorem by differ-
ntiating the value function. However, in our model, the objective
unction includes multiplication of a discount function. This gen-
rally destroys the usual concavity argument which is used in the
roof of the differentiability of value function and the uniqueness of
he optimal paths (see Benveniste and Scheinkman, 1979; Araujo,
991).

To this end, the next proposition shows that the value function
s differentiable almost everywhere and there exists a unique opti-

al  path from almost everywhere without any assumption on the
urvature of ˇ.

roposition 6.

(i) Left derivative of V exists at every x0 > 0 and V ′−(x0) = u′(f (x0) −
�(x0))f ′(x0), where �(x0) = min  �(x0).

ii) Right derivative of V exists at every x0 > 0 and V ′+(x0) = u′(f (x0) −
�(x0))f ′(x0), where �(x0) = max  �(x0).

roof. See Askri and Le Van (1998); Le Van and Dana (2003) for the
roofs based on the Clarke generalized gradients and the standard
ptimal growth tools, respectively. �

Now we are able to see the relation between differentiabil-
ty of the value function and the uniqueness of the optimal path.
otice that, given x0, if optimal x1 is unique so that �(x0) is single-
alued and �(x0) = �(x0) = x1, from the above proposition, we  see
hat V ′−(x0) = V ′+(x0), hence V is differentiable at x0, and vice versa.
his analysis can be generalized to any period t other than zero.
hese allow us to claim that the optimal correspondence � is single
alued and differentiable almost everywhere.

roposition 7.

(i) If x is an optimal path from x0, then V is differentiable at any xt,
t ≥ 1. If x is an optimal path from x0, there exists a unique optimal
path from xt for any t ≥ 1.

(ii) V is differentiable at x0 > 0 if and only if there exists a unique
optimal path from x0.

iii) V is differentiable almost everywhere, i.e., the optimal path is
unique for almost every x0 > 0.

iv) � is differentiable almost everywhere.

roof. See Le Van and Dana (2003).  �

We have proved that the optimal correspondence � is single
alued and differentiable almost everywhere. In addition to this,
e have also shown that there exists a unique optimal path from

lmost any initial capital stock. These results will prove to be crucial
n analyzing the dynamic properties of the optimal paths.

.3. Dynamic properties of the optimal paths

A point xs is an optimal steady state if xs = � (xs),  so that the
tationary sequence xs = (xs, xs, . . . , xs, . . .) solves the problem:
ax{U (xs) : xs ∈ � (xs)}. If xs is different from zero, then the asso-

iated optimal steady state consumption must be strictly positive
rom Inada condition. Hence, from Euler equation (6),  this steady
tate will solve:

′(f (x) − x) = ˇ(x)u′(f (x) − x)f ′(x) + ˇ′(x)V(x). (7)
y Proposition 3, we know that the stationary plan every period
qual to xs is optimal from xs if and only if it satisfies(
xs
)

= u(f (xs) − xs) + ˇ(xs)V
(
xs
)
. (8)

P
t

P
c
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ollowing from (7) and (8), this steady state will satisfy:

(f (x) − x) = [1 − ˇ(x)][1 − ˇ(x)f ′(x)]
ˇ′(x)

u′(f (x) − x). (9)

We will now prove that the endogenous rate of time preference
reserves the monotonicity of the optimal paths and provide the
ondition under which the convergence to an optimal steady state
s guaranteed.

roposition 8. The optimal path x from x0 is monotonic.

roof. Since � is increasing, if x0 > x1, we  have x1 > x2. By induc-
ion, xt > xt+1, ∀ t. If x1 > x0, using the same argument yields xt+1 > xt,
t. Now if x1 = x0, then x0 ∈ �(x0). Recall that the optimal path is
nique after t = 1. Since x0 ∈ �(x0), xt = x0, ∀ t. �

It is important to note that the monotonicity of the optimal paths
as been proved without any assumption on the curvature of nei-
her the production nor the discount function. It is already well
nown that in multi-sector nonclassical optimal growth models,
ne can easily refer to lattice programming and Topkis theorem in
rder to prove that the optimal paths are monotonic if the planner’s
riterion function is supermodular (see Amir et al., 1991). However,
ollowing this approach in a model with time preference depending
n the future-oriented resources, Stern (2006) assumes a strictly
oncave discount function.

As a monotone real valued sequence will either diverge to infin-
ty or converge to some real number, the fact that optimal capital
equences are monotone proves to be crucial in analyzing the
ynamic properties and the long-run behavior of our model.

roposition 9. There exists an ε > 0 such that if sup x>0f′(x) < ((1 −
)/ˇm), any optimal path converges to zero.

roof. Let the optimal path x converge to x > 0. Then, by consid-
ring the Euler equation as t → ∞,  we obtain

u(f (x) − x)
u′(f (x) − x)

= [1 − ˇ(x)][1 − ˇ(x)f ′(x)]
ˇ′(x)

≥ 1 −ˇm
ˇ′

sup

[
1 − ˇm sup

x>0
f ′(x)

]
,

here ˇ′
sup ≡ supx>0ˇ

′(x). Note that (u/u′)′ = (((u′)2 −
.u′′)/(u′)2) > 0, i.e., u/u′ is increasing. Let B = arg max x>0(f(x) − x).
n accordance with these, we  have:

u(f (B) − B)
u′(f (B) − B)

≥ u(f (x) − x)
u′(f (x) − x)

≥ 1 − ˇm
ˇ′

sup

[
1 − ˇmsup

x>0
f ′(x)

]
.

efining ε = (ˇ′
sup/(1 − ˇm))((u(f (B) − B))/(u′(f (B) − B))),

up x>0f′(x) ≥ (1 − ε/ˇm) when the optimal path converges to
 > 0. Thus, sup x>0f′(x) < (1 − ε/ˇm) implies that the optimal path
onverges to zero. �

In a classic optimal growth model, if f′(0) ≤ 1/ˇ, then the opti-
al  path converges to zero. As we  consider the endogenous nature

f time preference and allow for nonconvexities in the produc-
ion technology, we  have slightly deviated from this condition.
owever, it must be noted that the interval for sup x>0f′(x) that
uarantees the convergence to zero will always be a subset of (0,
/ˇm) and this cannot be improved in an essential way.

We  will now present the condition under which the conver-
ence to an optimal steady state is guaranteed and analyze the
ehavior of the optimal paths when we would have unique or
ultiple optimal steady states.

′
roposition 10. Assume x0 > 0. Let infx>0ˇ(x) = ˇ. If f (0) > 1/ˇ,
hen the optimal path converges to an optimal steady state xs > 0.

roof. Since ˇ( · ) is increasing,  ̌ = ˇ(0). Note that [f′ˇ]( · ) is a
ontinuous function and f′(0) ˇ(0) > 1. Assume that x is an optimal
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ath and it converges to zero. Since [f′ˇ]( · ) is continuous, there
xists N such that n > N implies f′(xn) ˇ(xn) > 1.

If x is an optimal path then it satisfies the Euler equation. Hence,
or every t, in particular, for t ≥ N, we have:

u′(f (xt) − xt+1) = u′(f (xt+1) − xt+2)ˇ(xt+1)f ′(xt+1)

+ˇ′(xt+1)V(xt+1)

> u′(f (xt+1) − xt+2)ˇ(xt+1)f ′(xt+1)

> u′(f (xt+1) − xt+2),

mplying that

 (xt) − xt+1 < f (xt+1) − xt+2.

hen, we obtain that:

 < f (xN) − xN+1 < lim
y→0

[f (y) − y] = 0,

eading to a contradiction.
Since the sequence x is monotonic and bounded, it converges to

ome xs > 0. Now xt → xs, xt+1 ∈ �(xt), xt+1 → xs. Hence, by the upper
emi-continuity of the correspondence �, we get xs ∈ �(xs). �

With convex technology and exogenously fixed time prefer-
nce rate in a standard optimal growth model, if f′(0) > 1/ˇ  then
here exists a unique (non-zero) steady state to which all optimal
aths converge independently of their initial state. In our model,
ue to the existence of the maximum sustainable level of capital
tock, when f ′(0) > 1/ˇ, the optimal path converges monotoni-
ally towards an optimal steady state. This condition can be recast
s F′(0) > r + ı by defining the rate of interest r by 1/(1 + r) =  ̌ and
he function f by f(k) = F(k) + (1 − ı)k where F is the production func-
ion and ı is the rate of depreciation of capital. Accordingly, in
ur model, when the cost of investment is low, the optimal path
onverges to an optimal steady state.

We will now consider the optimal path dynamics in the long
un and show that our model can support unique optimal steady
tate with global convergence and multiplicity of optimal steady
tates with local convergence. Indeed, we will show that our model
xhibits global convergence even under convex–concave technol-
gy and multiplicity of optimal steady states even under convex
echnology.

ase 1 (Global convergence). Assume x0 > 0. Let infx>0ˇ(x) =  ̌ and
′(0) > 1/ˇ. Consider the case where there exists a unique solution
s to (9).  By Proposition 10,  we know that the optimal paths can-
ot converge to 0. Then, any optimal path converges to the unique
ptimal steady state xs, irrespective of their initial state.

When there exists a unique solution to (9),  it is clear from above
hat it will be an optimal steady state. However, when there exist

ultiple solutions to the steady-state equation (9),  the stationary
equences associated with these steady states may  or may not be
ptimal. A natural question is then whether these solutions will
onstitute a long-run equilibrium in the optimal growth model
nd if so, will that enable us to show whether an economy with
ealth dependent endogenous discounting can exhibit threshold
ynamics even under convex technology or not. Devoted to this
nd, first, we will consider the case where we have exactly two
ptimal steady states, for the sake of simplicity. We  shall prove that
his would imply the existence of a critical stock and local conver-
ence. Second, we will show that our model can indeed support

wo optimal steady states in an example.

ase 2 (Local convergence). Assume x0 > 0. Let infx>0ˇ(x) =  ̌ and
′(0) > 1/ˇ. Consider the case where we have exactly two optimal
teady states, xl < xh, for the sake of simplicity. Suppose that xh is

S
s
w
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nstable from the right. Given the existence of a maximum sustain-
ble capital stock, as any optimal path from x0 > xh has to converge
o an optimal steady state, there will be another steady state larger
han xh, a contradiction. Hence, xh is stable from the right. It is also
mpossible to have xl unstable from the left, since the optimal paths
annot converge to 0. These already imply the existence of a critical
tock and the emergence of threshold dynamics.

Whenever both of the optimal steady states turn out to be
addle-point stable, it is clear that there will exist a critical stock
f capital below which the optimal path will converge to xl and
bove which the optimal path will converge to xh. However, xh can
e stable from the right but unstable from the left, and similarly xl
an be stable from the left but unstable from the right. These cases
an occur only when the optimal policy is tangent to y = x line at xh,
nd xl, respectively. It is important to note that even under these
ases threshold dynamics emerge. The following proposition pro-
ides the formal analysis of the local convergence when we have
wo optimal steady states.

roposition 11. Assume x0 > 0. Let infx>0ˇ(x) =  ̌ and f ′(0) > 1/ˇ.
uppose there are exactly two optimal steady states. Let the high and
he low optimal steady states be, respectively xh and xl. Then there
xists xc ∈ [xl, xh] such that any optimal path x starting from x0, con-
erges to xl if x0 < xc, and converges to xh if x0 > xc.

roof. Take any initial capital levels y < z, and let y, z be any
wo corresponding optimal paths. Since the optimal correspon-
ence is increasing, we  iteratively obtain yt < zt for all t. Hence

im t→∞yt ≤ lim t→∞zt.Thus, if z converges to xl, so does y. If y con-
erges to xh, so does z. Let X1 ={x|there exists an optimal path
romx that converges to xl}, x∗

1 = sup X1, and X2 ={x|there exists
n optimal path from x that converges to xh}, x∗

2 = inf X2. From the
bove argument, x∗

1 ≤ x∗
2. Suppose otherwise, then there exists

mall �1, �2 ≥ 0 such that x∗
1 − �1 ∈ X1, x∗

2 + �2 ∈ X2, and x∗
1 − �1 >

∗
2 + �2. However, this contradicts with the above, by setting x∗

2 +
2 = y < z = x∗

1 − �1. Now we want to show that x∗
1 = x∗

2. Suppose
ot, then there exists x∗

3 such that x∗
1 < x∗

3 < x∗
2. But then an opti-

al  path from x∗
3 can neither converge to xl nor to xh by the

efinitions of x∗
1 and x∗

2. Therefore, x∗
1 = x∗

2. Define xc = x∗
1 = x∗

2. If
0 < xc = x∗

1, take some small �′
1 ≥ 0 with x0 < x∗

1 − �′
1 ∈ X1. By the

bove argument, any optimal path from x0 converges to xl. Simi-
arly, if x0 > xc = x∗

2, take some small �′
2 ≥ 0 with x0 > x∗

2 + �′
2 ∈ X2,

hich would show that any optimal path from x0 converges to
h. Notice that xl ∈ X1 and xh ∈ X2. Therefore, xl ≤ sup X1 = x∗

1 = xc =
∗
2 = inf X2 ≤ xh, i.e., xc ∈ [xl, xh]. �

emark 1. As it has become clear by now, if � is not tangent to
 = x line at either xl or xh, both are locally stable and xc ∈ (xl, xh).
ote that if � is not tangent to y = x line at either xl or xh, it must be

he case that � jumps over y = x line at xc. In this case, xc is not an
nstable optimal steady state but a genuine critical point leading
o the threshold dynamics.

If � is tangent to y = x line at xl, it can only be from above the
 = x line because xl is stable from the left. In this case we get xc = xl.
imilarly, if � is tangent to y = x line at xh, it can only be from below
he y = x line and we get xc = xh.
In order to provide a better exposition of our analysis, following
tern (2006),  we  will specify functional forms in an example and
how that our model can indeed support two optimal steady states
ith local convergence.
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Fig. 1. Optimal policy after 300 iterations on the initial zero value function.
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Fig. 3. Middle steady state (xm = 0.586505) is not optimal!
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Fig. 2. Low steady state = 0.0012 is optimal.

xample 1. Suppose that

u(c) = c1−	

1 − 	
,

f (x) = Ax˛ + (1 − ı)x,

ˇ(x) = 
 − �e−(x+�)ε ,

here 0 < {A, �}, 0 < {˛, 	, ε} < 1, 0 < � < e�
ε
,and�e−�ε < 
 <

. Check that f, u, and  ̌ satisfy the assumption sets. We  employ
he following set of fairly standard coefficients:

 = 0.5,  ̨ = 0.3, ı = 0.15, 	 = 0.5, 
 = 0.97, � = 2.5,

� = 1, ε = 0.9.

t turns out that the maximum sustainable capital stock is A (x0) =
ax
{
x0, x̄

}
, where x̄ is 5.58431, and there exist three solutions to

9). The precise values are, xl = 0.0012, xm = 0.5865, and xh = 3.8105.
n order to determine which of these are actually the optimal steady
tates, we analyze the optimal policy by making use of Bellman’s
perator. Fig. 1 shows the optimal policy for iterations of the Bell-
an  operator on the zero function and indicates that xl and xh are

table optimal steady states. Figs. 2–4 present the detailed pic-
ures of the optimal policy in the neighborhood of the xl, xm and
h, respectively.

At first sight, one might think that the middle steady state xm is

n unstable optimal steady state as it is surrounded by two stable
ptimal steady states. In contrast with Stern (2006),  even though
m is a solution of the stationary Euler equation (9),  Fig. 1 strongly
ndicates that it is not an optimal steady state. Indeed, if it were, �

b
s
p
c

Fig. 4. High steady state (xh = 3.81057) is optimal.

ould have to cross y = x line at xm. Moreover, we see that there is
enuine critical point at xc = 0.6548. It is clearly not an optimal or
onoptimal steady state because then it would have to satisfy (9).

As xc is not an optimal steady state, � cannot cross y = x line at
c, i.e., xc /∈ �(xc). On the other hand, Fig. 1 shows that the graph of �
umps over y = x line at xc. As � is upper semi continuous, it must be
he case that there exist x′

1 ∈ (0,  xc) ∩ �(xc) and x′′
1 ∈ (xc, ∞) ∩ �(xc).

herefore, xc is a critical point which is not an unstable steady state.
For any initial capital stock level lower than xc, the system will

ace a development trap, enforcing convergence to a very low cap-
tal level xl, even under a strictly concave production function. On
he other hand, for any initial capital level higher than xc, the opti-

al  path will converge to xh. However, if an economy starts at xc,
n indeterminacy will emerge: the system can optimally follow x′′

1,
nd at the same time it can optimally fall into a development trap
ollowing x′

1.

The existence of critical value is actually recognized since the
apers by Clark (1971); Majumdar and Mitra (1982); Dechert and
ishimura (1983) in discrete time and Skiba (1978) and Askenazy
nd Le Van (1999) in continuous time horizon. These studies
re mostly devoted to the analysis of the technology compo-
ent leaving the time preference essentially unaltered with an
xogenously fixed geometric discounting. They assume a specific
onvex–concave technology under which the low steady state
urns out to be unstable and high steady state turns out to be sta-

le so that an optimal path converges either to zero or to the high
teady state. However, we show that even under strictly concave
roduction function, the economy can exhibit a “trap” so that a
ritical value of the initial stock will exist, in the vicinity of which,
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mall differences will lead to permanent differences in the optimal
ath.

In this respect, our analysis is in line with the early contri-
utions that emphasize the importance of the subjective utility
unction and release the optimal growth theory from the almost
aken for granted Ramsey’s additive utility function (e.g., Beals and
oopmans, 1969; Iwai, 1972). Based upon the stationary ordinal
tility function that implies a broad class of preference struc-
ures that are recursive and contain the time-additive preference
s a special case, they show the existence of a critical stock so
hat the initial conditions can affect the long-run optimal path.
dopting a strictly concave discount function depending on the

uture-oriented resources, Stern (2006) analyzes a series of numer-
cal examples that also exhibit multiplicity of steady states with

ere local convergence. Besides these, Kurz (1968) introduces cap-
tal as an argument in the Ramsey type utility function and shows
lso that there may  exist multiple turnpikes.

In all of these studies mentioned above, the critical stock of
apital below which the optimal program leads only to forever
iminishing capital and gradually converging to development trap

s an unstable optimal steady state. If it so happens that the ini-
ial level of capital stock equals the critical stock, the optimal path
ill remain on that generalized turnpike forever. However, in our
odel the critical stock is definitely not an unstable steady state so

hat if an economy starts at this stock, an indeterminacy emerges.
ompared to the optimal growth models with exogenous time pref-
rence, this introduces a fundamental difference in the optimal
ath dynamics.

. Competitive equilibrium with externality

From now on, we will assume that the production function f is
trictly concave. We  first define the concepts of equilibrium with
xternality and competitive equilibrium. Suppose we  are given

 sequence of capital x̃ = (x0, x̃1, . . . , x̃t, . . .)  ∈ [0, A(x0)]∞ and the
ssociated sequence of discount factors ˜̌

 = ( ˜̌ 1, . . . , ˜̌ t , . . .)  where
˜ t = ˇ (x̃t) , ∀t ≥ 1. Given this fixed sequence ˜̌

 ∈
[
ˇ, ˇm

]∞
, con-

ider the following problem:

axx

∞∑
t=0

(
t∏
s=1

˜̌ s

)
u (f  (xt) − xt+1)

ubject to

∀t, 0 ≤ xt+1 ≤ f (xt),
x0 > 0,given.

Let the solution to the above problem be x = (x0, x1, . . .,  xt,
 . . ). It depends on ˜̌ ,  hence x̃.  We  write x =  ( ˜̌ ) =  (ˇ(x̃)), and
ence x = �(x̃). An equilibrium with externality associated with
0 is a sequence of capital stock x∗ = (x0, x∗

1, . . . , x∗
t , . . .)  such that

∗ = ˚(x∗). A list of sequences (x∗, c∗, p∗, q∗) is a competitive equilib-
ium with externality of this economy if the following are satisfied:

(a) c∗ ∈ ∞+ , x∗ ∈ ∞+ , p∗ ∈ (1+ \ {0}), q∗ ∈ R++,
b) c∗ solves the consumer’s problem:

maxc

∞∑
t=0

(
t∏
s=1

ˇ(x∗
s )

)
u(ct)

subject to

∞
∑
t=0

∗
p
t
ct ≤ q∗x0 + �∗

where �∗ is the maximum profit of the firm,

P
s
i
˚
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(c) x∗ solves the firm’s problem:

�∗ = maxx

∞∑
t=0

p∗
t (f (xt) − xt+1) − q∗x0

subject to

∀t ≥ 0, 0 ≤ xt+1 ≤ f (xt),
x0 > 0,given,

d) the markets clear at every period:

∀t ≥ 0, c∗t + x∗
t+1 = f (x∗

t ), x∗
0 = x0.

The purpose is to prove the existence of a competitive equi-
librium of this intertemporal economy. In order to do so, we  will
first prove that there exists a fixed point of ˚, namely an equi-
librium. Later, under an additional assumption, we will show
that this equilibrium is indeed a competitive equilibrium of the
intertemporal economy with endogenous time preference.

The value function associated with the problem (PE) takes the
ollowing form:

(x0, ˇ1, ˇ2, ˇ3, . . .)  = maxx

∞∑
t=0

(
t∏
s=1

ˇs

)
u(f (xt) − xt+1)

ubject to

0 ≤ xt+1 ≤ f (xt),
x0 > 0,given.

 satisfies the Bellman equation:

(x, ˇt+1, ˇt+2,..) = maxy ∈ [0, f (x)]

[
u(f (x) − y) + ˇt+1V(y, ˇt+2, ˇt+3

roposition 12. The function V is continuous with the topology in
 for x0 and the product topology for  ̌ ∈ [ˇ, ˇm]∞. Moreover, it is

trictly concave in x0.

roof. Let

(x0, ˇ, x) =
∞∑
t=0

(
t∏
s=1

ˇs

)
u (f  (xt) − xt+1)

here x ∈ �(x0). One can show that U is continuous in (x0, ˇ, x) for
he topology in R  for x0 and the product topology for (ˇ, x). It is well
nown that �(  · ) is a continuous correspondence from R+ into the
pace of sequences endowed with the product topology (see, for
nstance, Le Van and Dana, 2003). Since

(x0, ˇ) = max
{
U(x0, ˇ, x)|x ∈ �(x0)

}
,

rom the maximum theorem, V is continuous. The strict concavity
f V with respect to x0 follows from the strict concavity of f and u.

emma  2. The map  ̌ is continuous with respect to the product
opology.

roof. It is standard. �

roposition 13.  ̊ is continuous with respect to the product topol-
gy.
roof. From the maximum theorem, the solution x =  (ˇ) is upper
emi-continuous with respect to ˇ. As the solution to (PE) is unique,
t is a continuous function with respect to ˇ. Since ˜̌

 = ˇ(x̃), the map
 is a continuous function with respect to x̃ by Lemma  2. �
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To attain an equilibrium, the initial sequence of discounting has
o be consistent with the level that is assumed when the agent

akes her single decisions. This suggests that the fixed points of ˚
re candidates for competitive equilibria.

roposition 14.  ̊ has a fixed point.

roof.  ̊ is a continuous mapping from [0, A(x0)]∞ into [0, A(x0)]∞.
ince the domain is compact for the product topology and also a
onvex set, Schauder theorem concludes that there exists x∗ ∈ [0,
(x0)]∞ which satisfies x∗ = �(x∗). �

roposition 15. If (x0, x∗
1, x∗

2 . . .)  is an equilibrium with externality
ssociated with x0, then (x∗

1, x∗
2, x∗

3 . . .)  is an equilibrium with exter-
ality associated with x∗

1.

roof. Let V(x, ˇt+1, ˇt+2, ..) be the value function at period t + 1.
or any t we have

V(x∗
t , ˇt+1, ˇt+2,..) = maxy ∈ [0,f (x)][

u(f (x) − y) + ˇt+1V(y, ˇt+2, ˇt+3,..)
]

= u(f (x∗
t ) − x∗

t+1) + ˇt+1V(x∗
t+1, ˇt+2, ˇt+3,..)

Particularly for t ≥ 2, we see that (x∗
1, x∗

2, . . .)  is an equilibrium
ith externality associated with x∗

1. �

roposition 16. Any equilibrium with externality x∗ associated with
ome initial capital stock satisfies the Euler equation:

′(f (x∗
t ) − x∗

t+1) = u′(f (x∗
t+1) − x∗

t+2)ˇ(x∗
t+1)f ′(x∗

t+1). (10)

roof. It is easy. �

For the rest, we assume that the function [ˇf′]( · ) is decreasing
nd [ˇf′](0) > 1. Note that lim x→∞[ˇf′](x) < 1.

roposition 17. The equilibrium with externality associated with x0
s unique.

roof. Take two equilibria with externality (x0, x′
1, x′

2, . . .)  and
x0, x′′

1, x′′
2, . . .)  associated with x0. Suppose that x′

1 > x′′
1. Let the

ssociated consumption paths be (c′0, c′1, . . .)  and (c′′0, c′′1, . . .).
First, we will prove by induction that x′

t > x′′
t , for all t ≥ 1 and

′
t < c′′t for all t. Trivially, c′0 = f (x0) − x′

1 < f (x0) − x′′
1 = c′′0. Then

y (10), u′(c′1)[ˇf ′](x′
1) = u′(c′0) > u′(c′′0) = u′(c′′1)[ˇf ′](x′′

1) which
mplies u′(c′1) > u′(c′′1) as [ˇf′] is a decreasing function. Hence, c′1 <′′
1.

Now suppose x′
t > x′′

t and c′t < c′′t for some t. f (x′
t) −

′
t+1 = c′t < c′′t = f (x′′

t ) − x′′
t+1, so x′

t+1 > x′′
t+1. Again, by (10),

′(c′t+1)[ˇf ′](x′
t+1) = u′(c′t) > u′(c′′t ) = u′(c′′t+1)[ˇf ′](x′′

t+1) which
mplies u′(c′t+1) > u′(c′′t+1) as [ˇf′] is a decreasing function. Hence,
′
t+1 > x′′

t+1 and c′t+1 < c′′t+1.
Now consider the maximization problem given the discounting

equence ˇ(x′). The path x
′ ′

is feasible from x0, and yields strictly
igher utility than x′ given the discounting sequence ˇ(x′) because
′
t < c′′t for all t. However, this is a contradiction with x′ being a fixed
oint which would imply that x′ itself is the unique maximizer
iven the discounting sequence ˇ(x′). Therefore x′

1 = x′′
1. Let x1 =

′
1 = x′′

1.
Notice that Proposition 15 implies that (x1, x′

2, x′
3, . . .)  and

x1, x′′
2, x′′

3, . . .)  are two equilibria with externality associated with
1. Then applying the same arguments, we get x′

2 = x′′
2. Finally, by

nductively applying Proposition 15 and the above arguments, we
et x′

t = x′′
t for all t. �

orollary 1. If [ˇf′](x0) = 1 for some x0, then the unique fixed point

ssociated with x0 is the stationary sequence (x0, x0, x0, . . . ).

roof. Let  ̌ = ˇ(x0) and consider the basic neoclassical model with
xed discount factor ˇ. As the initial capital is already x0 which is
teady state capital level in the neoclassical growth model, (x0, x0,

T

(
p
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0, . . . ) will solve the social planner problem. This means that (x0,
0, x0, . . . ) is the unique maximizer given the discount sequence
ˇ, ˇ, . . . ). Thus, it is a fixed point associated with x0, and by the
bove proposition it is the unique fixed point associated with x0.

roposition 18. Any equilibrium with externality monotonically
onverges to a point xs satisfying [ˇf′](xs) = 1. Moreover, if there are
ultiple such points, it monotonically converges to the one that is

losest to the initial level of capital.

roof. One can show that the set of solutions to [ˇf′](x) = 1 con-
titues a compact interval, say X = [xsmin, xsmax]. Note that it is well
ossible to have xsmin = xsmax or xsmin < xsmax. Let the initial capital

evel be x0 and the associated equilibrium with externality be x∗.
By Corollary 1, if x0 ∈ X we have x∗ = (x0, x0,. . .) which converges

o the closest solution x0 to [ˇf′](x) = 1.
Consider x0 < xsmin. Suppose x∗ does not – monotonically con-

erge – to xsmin. Then x∗ as a sequence either passes from the region
0, xsmin] to the region (xsmin, ∞),  or strictly decreases in the region
0, xsmin], at least once at some point in time. Formally, there exists
ome t either with x∗

t ≤ xsmin < x∗
t+1 or with x∗

t+1 < x∗
t ≤ xsmin.

Suppose that for some t, xt ≤ xsmin < xt+1. As 1 = [ˇf ′](xsmin) ≥
ˇf ′](x∗

t+1), (10) implies u′(c∗t ) ≤ u′(c∗t+1). Then by concavity of u we
et f (x∗

t ) − x∗
t+1 ≥ f (x∗

t+1) − x∗
t+2, which yields x∗

t+1 < x∗
t+2 as x∗

t <∗
t+1. Hence, x∗

t+1 < x∗
t+2 and xsmin < x∗

t+2. Inductively we obtain
s
min < x∗

t+1 < x∗
t+2 < . . ..  Due to the maximum sustainable capital

tock, x∗ cannot diverge, so it converges monotonically to a level x
hat is strictly higher than x∗

t+1. Taking the limit of (10) for the fixed
oint x∗ as t goes to infinity, we  see that the limit x of x∗ has to
atisfy [ˇf′](x) = 1. Thus xsmin < x∗

t+1 < x ≤ xsmax and hence x∗
t+1 ∈ X .

hen Corollary 1 implies that the equilibrium with externality asso-
iated with x∗

t+1 is (x∗
t+1, x∗

t+1, . . .), however, Proposition 15 implies
hat it is (x∗

t+1, x∗
t+2, . . .). Recall that the fixed point from x∗

t+1 is
nique, so we get a contradiction as x∗

t+1 < x∗
t+2.

Now suppose that for some t, x∗
t+1 < x∗

t ≤ xsmin. As 1 =
ˇf ′](xsmin) ≤ [ˇf ′](x∗

t+1), (10) implies u′(c∗t ) ≥ u′(c∗t+1). Thus we  get
 (x∗
t ) − x∗

t+1 ≤ f (x∗
t+1) − x∗

t+2, which yields x∗
t+1 > x∗

t+2 as x∗
t > x∗

t+1.
ence, x∗

t+2 < x∗
t+1 < xsmin. Inductively we obtain . . . < x∗

t+1 < x∗
t ≤

s
min. Taking the limit of (10), we  see that the only possibility is x∗

onverges to zero. If x∗ converges to zero, there exists some large T
uch that [ˇf ′](x∗

t ) > 1 for all t > T, because [ˇf′](0) > 1. Then u′(c∗t ) >
′(c∗t+1) for t > T by (10). Hence, f (x∗

t ) > f (x∗
t ) − x∗

t+1 = c∗t > c∗T > 0
or all t > T. However, f (x∗

t ) converges to zero along with x∗ by the
ontinuity of f. Contradiction.

Therefore we  have shown that the fixed point associated with
0 < xsmin monotonically converges to the closest solution xsmin of
he equation [ˇf′](x) = 1.

The case of x0 > xsmax is analogous to x0 < xsmin. �

Just to recall, the fixed point x∗ of ˚, namely the equilibrium
ith externality associated with x0, solves the problem

axx

∞∑
t=0

(
t∏
s=1

ˇ(x∗
s )

)
u(f (xt) − xt+1)

ubject to

0 ≤ xt+1 ≤ f (xt),
x0 > 0,given.

We  will now prove that such a fixed point is indeed a competi-
ive equilibrium.
heorem 1. Assume that f ′(0)  ̌ > 1. Define q∗ = 1, p∗
t =∏t

s=1ˇ(x∗
s ))u

′(f (x∗
t ) − x∗

t+1), c∗t = f (x∗
t ) − x∗

t+1, ∀t. Then, (c∗, x∗,
∗, q∗) is a competitive equilibrium with externality.
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roof. First, we prove that p∗ is in 1+ \
{

0
}

. Clearly p∗
t >

. We  need to prove that
∞∑
t=0

p∗
t =

∞∑
t=0

(
t∏
s=1

ˇ(x∗
s ))u

′(f (x∗
t ) − x∗

t+1)

s bounded. We  have shown that x∗ converges to some xs ∈ X.
ˇf′](0) > 1 suggests xsmin > 0, hence the sequence u′(f (x∗

t ) − x∗
t+1)

s bounded. Thus, the sum
∞∑
t=0

p∗
t exists in R+.

Since x∗ ∈[0, A(x0)]∞ we get x∗ ∈∞+ . By the constraints of
he problem (PE), f (A(x0)) ≥ f (x∗

t ) ≥ x∗
t+1 ≥ 0. Hence, f (A(x0)) ≥ c∗t =

 (x∗
t ) − x∗

t+1 ≥ 0, i.e., c∗ ∈∞+ .
The proofs that x∗ is a solution to the problem (PP) and c∗ solves

he consumer’s problem (CP) are standard (see, e.g., Le Van and
ana, 2003).

Finally, one can easily note that the market clearing condition,
∗
t + x∗

t+1 = f (x∗
t ) is satisfied. �

By Proposition 18,  the optimal paths converge to a point x∗ with

′(x∗)ˇ(x∗) = 1. (11)

learly, such a point is unique if [ˇf′]( · ) is strictly decreasing.
For simplicity, let us assume a Cobb–Douglas production tech-

ology, f(x) = Ax˛, where A > 0 denotes the total factor productivity.
here may  exist unique or continuum of steady states in this model
ith endogenous time preference depending on the characteristics

f the discount function.

xample 2. Let ˇ(x) = � − �e−(x+�)ε , where 0 < �, 0 < ε < 1, 0 < � <
1 − ˛)e�

ε
, and (�e−�ε/1 − ˛) < � < 1. Note that  ̌ satisfies all of our

ssumptions. We  will now show that ˇ(x)f′(x) is strictly decreasing.
e have(
ˇ(x)f ′(x)

)′ =
[(
� − �e−(x+�)ε

)
A˛x˛−1

]′

= A˛x˛−2
[
�e−(x+�)ε

(
1 −  ̨ + εx(x + �)ε−1)− (1 − ˛)�

]
.

hen, for x > 0,
(
ˇ(x)f ′(x)

)′
< 0 if and only if

(x) := � exp
{

−(x + �)ε
}  [

1 −  ̨ + εx(x + �)ε−1]− (1 − ˛)� < 0.

t is clear that h is differentiable, hence obtains its maximum at the
oundaries or critical points. At the boundaries,

(0) = � exp
(
−�ε
)

[1 − ˛] − (1 − ˛)�

= (1 − ˛)
[
� exp

(
−�ε
)

− �
]

= −(1 − ˛)ˇ(0) < 0,and

lim
→∞
h(x) = lim

x→∞
(1 − ˛)�e−(x+�)ε + lim

x→∞
�e−(x+�)εεx(x + �)ε−1

− (1 − ˛)� = −(1 − ˛)� < 0.

o at any critical point x, we have h′(x) = 0. Accordingly,

�e−(x+�)εε(x + �)ε−1
[
−
(

1 −  ̨ + εx(x + �)ε−1)+ 1 − (1 − ε)
x

x + �

]
= 0.

ence, (1 −  ̨ + εx(x + �)ε−1) = 1 − (1 − ε)(x/x + �). Then we  have

(x) = �e−(x+�)ε
[

1 − (1 − ε)
x

x + �

]
− (1 − ˛)�
t any critical point x. It is clear that the expression �e−(y+�)ε [1 −
1 − ε)(y/y + �)] is maximized at y = 0. Therefore, we obtain
hat h(x) ≤ �e−�ε − (1 − ˛)�. Recall that (�e−�ε/1 − ˛) < �, hence
e−�ε − (1 − ˛)� < 0, implying that at any critical point x, h(x) < 0.

w
n
a
a

 Economics 47 (2011) 170– 179

hus, h is a negative valued function, implying that ˇ(x)f′(x) is
trictly decreasing.

Any discount function  ̌ under which ˇ(x)f′(x) turns out to be a
trictly decreasing function implies a unique steady state and global
onvergence. The unique steady state is both locally and globally
eterminate. Moreover, the model may  even possess a continuum
f steady states, and it depends on the initial condition as to which
ne is realized in the long run. Hence, the economy exhibits no
endency toward global convergence; an important departure with
espect to the neoclassical growth model.

xample 3. Consider the following discount function that consists
f three parts:

(x) =

⎧⎪⎪⎨
⎪⎪⎩
mx + n, x < a;

1
f ′(x)

= 1
A˛
x1−˛, a ≤ x ≤ b;


 − �

x
, b < x.

here A > 0, 1 >  ̨ > 0, (A˛/2 − ˛)1/1−˛ > b > a > 0, m = 1 − ˛/A˛a−˛,
 = (1/A)a1−˛, 
 = (2 − ˛/A˛)b1−˛, and � = (1 − ˛/A˛)b2−˛. Lets check
he assumptions.  ̌ is already differentiable in the regions (0, a), (a,
), (b, ∞ ). Some simple algebra for checking the left and right limits
f ˇ and ˇ′ at the points a and b shows that this specification of m,
, 
 and � makes  ̌ is differentiable at a and b. Therefore  ̌ is differ-
ntiable, also implying continuity. ˇ(0) = n > 0, hence  ̌ ranges into
++. Also, as m > 0, A > 0,  ̨ ∈ (0, 1), and � > 0,  ̌ is strictly increasing.
s  ̌ is strictly increasing, the supremum of which is 
, is strictly

ess than one by (A˛/2 − ˛)1/1−˛ > b. Moreover, the supremum of
he derivative of  ̌ is also bounded which is easy to see by some
lgebra.

Notice that throughout the whole interval [a, b], ˇ(x)f′(x) = 1,
herefore we have a continuum of steady states [a, b]. As we have
roven that any equilibrium with externality with initial capital
0 ∈ [a, b] will be constant over time, the initial level of capital stock
ower than a will lead to an increasingly monotonic convergence
owards a whereas the initial the initial level of capital stock higher
han b will result in decreasingly monotonic convergence towards
.

emark 2. Existence of the critical value xc and continuum of
quilibria with strictly concave production function are peculiar to
ur model of endogenous time preference.

. Conclusion

In this paper, we  present the dynamic implications of endoge-
ous time preference depending on the stock of wealth in a one
ector growth model. We prove without any assumption on the
urvatures of the production and the discount functions that opti-
al  policy is single valued and differentiable almost everywhere

n the planner’s problem and the optimal paths are monotonic.
e consider the optimal path dynamics in the long run and

how that our model can exhibit global convergence even under
 convex–concave technology and multiplicity of optimal steady
tates even under a convex technology. Indeed, we  show that
here exists a critical stock of capital below which the optimal
rogram leads only to forever diminishing capital and gradually
onverging to development trap and above which the economy
onverges to the high steady state. We  also show that if it so hap-
ens that the initial level of capital stock equals the critical stock,

hich is not an optimal or nonoptimal steady state, an indetermi-
acy emerges. Moreover, the multipliers system associated with
n optimal path is proven to be the supporting price system of

 competitive equilibrium under externality and detailed results
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oncerning the properties of optimal (equilibrium) paths are pro-
ided.

Extensions to our model are obviously possible and include the
onsiderations of uncertainty, heterogenous agents and strategic
nteractions. These are in our research agenda.
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