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ABSTRACT

This paper studies the dynamic implications of the endogenous rate of time preference depending on
the stock of capital, in a one-sector growth model. The planner’s problem is presented and the optimal
paths are characterized. We prove that there exists a critical value of initial stock, in the vicinity of which,
small differences lead to permanent differences in the optimal path. Indeed, we show that a development
trap can arise even under a strictly convex technology. In contrast with the early contributions that
consider recursive preferences, the critical stock is not an unstable steady state so that if an economy
starts at this stock, an indeterminacy will emerge. We also show that even under a convex-concave
technology, the optimal path can exhibit global convergence to a unique stationary point. The multipliers
system associated with an optimal path is proven to be the supporting price system of a competitive
equilibrium under externality and detailed results concerning the properties of optimal (equilibrium)
paths are provided. We show that the model exhibits globally monotone capital sequences yielding a
richer set of potential dynamics than the classic model with exogenous discounting.
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1. Introduction

The optimal capital accumulation models have been at the core
of the theory of economic growth and dynamics. Based on the
dynamic consumption and saving decisions of the economic agents
driven by intertemporal utility trade-offs between current and
future consumption, the key components of these models turn out
to be the rate of time preference and the technology. The classi-
cal optimal growth models and much of the subsequent literature
on growth focus on the convex structures of the technology and
preferences that guarantee the monotonical convergence of the
sequence of optimal stocks towards a unique steady state. Such a
structure, however, imply that the model cannot be used to under-
stand the development patterns that differ considerably among
countries in the long run (see Quah, 1996; Barro, 1997; Barro and
Sala-i-Martin, 1991).
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To account for these non-convergent growth paths, a variety of
one-sector optimal growth models that incorporate some degree
of market imperfections based on technological external effects
and increasing returns have been presented. Within a model of
capital accumulation with convex-concave technology, Dechert
and Nishimura (1983), Mitra and Ray (1984) have characterized
optimal paths and prove the existence of threshold dynamics
that generate development or poverty traps (see Azariadis and
Stachurski, 2005, for a recent survey). In these models, economies
with low initial capital stocks or incomes converge to a steady state
with low per capita income, while economies with high initial cap-
ital stocks converge to a steady state with high per capita income.
Indeed, the introduction of increasing returns also makes it possible
for private returns to the accumulation of capital stock to be com-
plementary with the aggregate stock leading to indeterminacies or
continuum of equilibria (e.g., Benhabib and Perli, 1994; Benhabib
and Farmer, 1996; see Nishimura and Venditti, 2006 for extensive
bibliography).

A general tendency in these studies with multiple steady states,
indeterminacy or continuum of equilibria is that they are mostly
devoted to the analysis of the technology component leaving the
time preference essentially unaltered with an exogenously fixed
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geometric discounting. In this paper, yet the other mechanism, the
endogeneity of time preference will be put forward to explain the-
oretically why the differences in per capita output levels among
countries persist in the long run.

Considering the preferences of the agents to be recursive, the
early contributions on the theory of endogenous time preference
postulate that an agent’s discount rate depends on the level of
present and future consumption (e.g., Uzawa, 1968; Lucas and
Stokey, 1984; Epstein, 1987; Obstfeld, 1990). These models nearly
exclusively assume an increasing marginal impatience so that the
agents get more impatient as they grow richer. Such a specifica-
tion ensures stable optimal capital sequences that converge to a
unique steady state independent of the initial conditions. However,
recent work both theoretically (e.g., Becker and Mulligan, 1997;
Stern, 2006) and empirically (e.g., Lawrance, 1991; Samwick, 1998;
Frederick et al., 2002) propose that the agents get more patient
as they grow richer and impose that the discount rate depends
closely upon the stock of wealth (see Hamada and Takeda, 2009,
for a recent survey). This is in parallel to the idea that the stock of
wealth is a key to reach better health services and better insurance
markets so that the more wealthier the agent gets, the more patient
it becomes. By considering discount factor as a function of con-
sumption, Mantel (1998) studies the impact of decreasing rate of
time preference on optimal growth path of an economy with a pri-
mary focus on the monotonicity properties of optimal consumption
and investment. Das (2003) derives a set of sufficient conditions
for stability and uniqueness in the same context in a continuous
time optimal growth model. Stern (2006), along the lines of Becker
and Mulligan (1997), let individuals spend resources to increase
the appreciation of the future. He provides numerical examples of
multiple steady states and a conditionally sustained growth path.

In this paper we adapt the classic optimal growth model to
include an endogenous rate of time preference depending on the
stock of capital and analyze the implications on the equilibrium
dynamics. To do so, the planner’s problem is first presented and the
optimal paths are characterized. We show that a development trap
can arise even under a strictly convex technology. In other words,
we prove that there exists a critical value of initial stock, in the
vicinity of which, small differences lead to permanent differences
in the optimal path. In contrast with the early contributions by Kurz
(1968), who assumes capital dependent preferences, by Beals and
Koopmans (1969), Iwai (1972), who assume recursive preferences,
and more recently, by Stern (2006), who assumes endogenous time
preference depending on future oriented resources, we noted that
the critical stock is definitely not an unstable steady state so that
if an economy starts at this stock, an indeterminacy will emerge.
On the other hand, under a similar condition to that of Dechert and
Nishimura (1983), we also show that even under a convex-concave
technology, the optimal path can exhibit global convergence to a
unique stationary point. Later, the multipliers system associated
with an optimal path is proven to be the supporting price sys-
tem of a competitive equilibrium under externality and detailed
results concerning the properties of optimal (equilibrium) paths
are provided. We show that the model exhibits globally monotone
capital sequences yielding a richer set of potential dynamics than
the classic model with exogenous discounting.

The key reason of our results is that we consider that the rate of
time preference decreases with the stock of wealth in contrast with
exogenously fixed discount factor assumed in standard models. In
particular, the discount factor attributed to the utility of consump-
tion at period t increases with the level of capital stock available
for production at period t. Accordingly, the lower the stock of cap-
ital, the higher the sacrifice of postponing present consumption in
exchange for future consumption. In line with Becker and Mulligan
(1997), Stern (2006), an immediate implication of this assumption

is that as the agent grows wealthier, the level of investment in capi-
tal that will be appreciated in the future increases and therefore the
agent will become more patient. Indeed, recent empirical studies
using experimental data also support the validity of this hypothesis
of wealth causes patience (e.g., Harrison et al., 2002; Ikeda et al.,
2005).

Incorporating such an hypothesis, an important aspect of our
model is that while allowing variation in the rate of time prefer-
ence, at the same time it maintains time consistency. A remarkable
feature of our analysis is that our results do not rely on particu-
lar parameterization of the exogenous functions involved in the
model, rather, it provides a more flexible framework in regards to
the discounting of time, keeps the model analytically tractable and
uses only general and plausible qualitative properties.

The rest of the paper is organized as follows. Section 2 describes
the model and provides the dynamic properties of optimal paths.
Section 3 presents the existence of a competitive equilibrium with
externality and studies the equilibrium dynamics. Finally, Section
4 concludes.

2. Model

The model differs from the classic optimal growth model by
the assumptions on discounting. Rather than assuming that the
level of discount on future utility is an exogenous parameter, we
assume thatitis endogenous depending on the path of capital stock.
Formally, the model is stated as follows:

oo t
max{ct’xt+l}[zoz HIB(XS) u(ce),
t=0 s=1

subject to

Vt, e+ Xe1 < f(%e),
Vt, ¢t > 0,x >0,
Xo > 0,given,

We make the following assumptions regarding the properties of
the discount, utility and the production functions.

Assumption 1. S:R; — R, is continuous, differentiable, stric-
tly increasing and satisfies sup y-oB(x)=Bm<1, sup x=of
(x)<+oc0.

Assumption 2. u:R, — R, is continuous, twice continuously
differentiable and satisfies u(0)=0. Moreover, it is strictly increas-
ing, strictly concave and u’(0) =+ oo (Inada condition).

Assumption 3. f:R;, — R, is continuous, twice continuously
differentiable and satisfies f{0) = 0. Moreover, it is strictly increasing
and lim x_+0of (X)< 1.

For any initial condition xo > 0, when x=(xq, X1, X2, ... ) is such
that 0 <x.q <f(x;) for all t, we say it is feasible from xq and the class
of all feasible accumulation paths is denoted by I1(x(). It may be
easily verified that if xo < x;, then TI(xo) c TT(x{). A consumption
sequence ¢ = (cg, Cq, .. .) is feasible from xy > 0 when there exists
x e I1(xp) with O < ¢t < flxe) — Xp+1-

Noting that the constraints will be binding at the optimum as
the utility and the discount functions are strictly increasing, we
introduce the function U defined on the set of feasible sequences as

0 t
U =Y | []Bx) | utftxe) = xein). (1)
t=0 s=1

The preliminary results are summarized in the following Lemma
which has a standard proof using Tychonov theorem (see Le Van
and Dana, 2003; Duran and Le Van, 2003; Stokey et al., 1989).
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Lemma 1. Let X be the greatest point x > 0 such that f{x)=x. Then,

(a) For any xeIl(xg), we have x; <A(xg) for all t, where A(xg) =
max {xo, )'(}

(b) T(xg) is compact in the product topology defined on the space of
sequences X.

(c) U is well defined and it is continuous over I1(xg) with respect to

the product topology.
Itis now clear that the initial optimal growth model is equivalent
to:

max{U(x)|x e [1(xg)}.

2.1. Existence of optimal paths

The existence of an optimal path follows from the fact that
IT(xg) is compact for the product topology defined on the space
of sequences x and U is continuous for this product topology. The
positivity of optimal consumption and capital stock paths follow
from the Inada condition.

Proposition 1.

(i) There exists an optimal path x. The associated optimal consump-
tion path, c is given by

Ct :f(Xt) — Xt4+1> vt.

(ii) Ifxo > 0, every solution (X, ) to the optimal growth model satisfies

¢t > 0,x > 0, Vt. (2)

Proof. Itiseasy. O

2.2. Value function, Bellman equation, optimal policy

In order to characterize the behavior of the optimal paths, we
will proceed by defining the value function and analyzing the prop-
erties of the optimal policy correspondence. The value function V
is defined by:

0 t
¥xo = 0, V(X0) = MaXpe, {Z (Hﬂ(xs)> u(f(xe) = Xe11)

t=0 s=1
Vt,0 < xe41 < f(xt), X0 = O,given} . (3)

The bounds on discounting together with the existence of maxi-
mum sustainable capital stock guarantee a finite value function.
Under the Assumption (1) and the Assumption (2), one can imme-
diately show that the value function is non-negative, strictly
increasing and continuous (see Stokey et al., 1989). Given these,
Bellman equation follows.

Proposition 2.

(i) V(0)=0, and V(xg) >0 if xo > 0. If X is an optimal path, then

oo t
Vixo)= <Hﬁ<xs)) u(f(xe) = Xe41).

t=0 s=1

(ii) Vs strictly increasing.
(iii) Vis continuous.

Proposition 3.

(i) V satisfies the following Bellman equation:
Vxo > 0, V(xo) = max { u(f(xo) — x) + B(x)V(x)0 < x < f(x0) } -
(4)
(ii) Asequencex e I'1(xq)is an optimal solution ifand only if it satisfies:

Vt, V(xe) = u(f(Xe) — xe11) + B(Xeq1 )V (Xeg1)- (5)

Proof. SeeLe Vanand Dana (2003). O

The optimal policy correspondence, i : R, — Ry is defined as
follows:

14(x0) = arg max {u(f(xo) — ¥) + BWIVW)ly €10, f(x0)] } -

It is important to note that although the utility function is
strictly concave, the solution may not be unique as the multiplica-
tion of discount function destroys the concave structure needed for
uniqueness. The non-emptiness and the closedness of the optimal
correspondence and its equivalence with the optimal path follow
easily from the continuity of the value function by a standard appli-
cation of the theorem of the maximum.

Proposition 4.

(i) u(0)={0}.

(ii) If xo >0 and x4 € u(xq), then 0 <x1 <f(xg).
(iii) u is closed and hence upper semi-continuous.
(iv) A sequence x € [1(xq) is optimal if and only if Xp+q € (Xt), VL.

(v) The optimal correspondence w is increasing so that if xo < X,

X1 € u(x0) and x| € pu(xg) then x; < X|.

Proof. (ii) Follows easily from (2). (iii) Follows from the Theorem
of Maximum. (iv) Follows from (5). (v) See Dechert and Nishimura
(1983), or Amir et al. (1991). O

The increasingness of u is crucial for the convergence of optimal
paths, hence for the analysis of the long-run dynamics. In Stern
(2006), assuming an endogenous time preference depending on
the future-oriented resources, the increasingness of @ has been
proven by using the strict concavity of §. Such a restriction on the
curvature of the discount function is not necessary in our setup.
Moreover, we have also proven that the optimal correspondence,
A is not only closed but also upper semi-continuous.

With the positivity of the optimal consumption and the stock of
capital, Euler equation easily follows.

Proposition5. Whenxg >0, any solutionx € I1(xq) satisfies the Euler

equation:
VE W (F(xe) = xey1) = BXer ) U F(Xey1) = Xep2 ) (Xe11)
+ B'(xe11 )V (Xe11) (6)

Proof. Recall that 0<x..1 <f(x;), Vt. Take any n, and consider the
path of capital x defined as follows: x{ = x;,Vt #n+ 1andx) ; =
yeY, where Y = (f~1(Xn42), f(xn)). Note that it is a well defined
open interval including x,+; because xq1 <f(x:) and Xpp <fXp41).
By choosing y €Y, we guarantee that y <f{x;) and xq <f(y) so that
xY e I1(xg). From the optimality of x we have U(x)>U(x), VyeY.
Let W(y)=U(x). Then W(y) is maximized at zero in Y, which sug-
gests that W’(0)=0. With some algebra, this ends the proof. O

In a standard optimal growth model with geometric discounting
and the usual concavity assumptions on preferences and technol-
ogy, the optimal policy correspondence, w is single valued and
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the properties of the optimal path is easily found by using the
first order conditions together with envelope theorem by differ-
entiating the value function. However, in our model, the objective
function includes multiplication of a discount function. This gen-
erally destroys the usual concavity argument which is used in the
proof of the differentiability of value function and the uniqueness of
the optimal paths (see Benveniste and Scheinkman, 1979; Araujo,
1991).

To this end, the next proposition shows that the value function
is differentiable almost everywhere and there exists a unique opti-
mal path from almost everywhere without any assumption on the
curvature of S.

Proposition 6.

(i) Left derivative of V exists at every xo>0 and V' (xg) = u'(f(xg) —
60(x0))f'(x0), where 6(xo)=min p(xo).

(ii) Right derivative of V exists at every xo >0 and V/, (xo) = t/(f(xo) —
©O(x0))f'(x0), where ©(xo)=max (i(xo).

Proof. See AskriandLeVan(1998); Le Vanand Dana(2003) for the
proofs based on the Clarke generalized gradients and the standard
optimal growth tools, respectively. O

Now we are able to see the relation between differentiabil-
ity of the value function and the uniqueness of the optimal path.
Notice that, given xg, if optimal x; is unique so that w(xq) is single-
valued and 0(xp)=®(xg)=x;, from the above proposition, we see
that V' (xg) = V/.(x0), hence V is differentiable at xo, and vice versa.
This analysis can be generalized to any period t other than zero.
These allow us to claim that the optimal correspondence p is single
valued and differentiable almost everywhere.

Proposition 7.

(i) If x is an optimal path from xq, then V is differentiable at any x;,
t> 1. Ifxis an optimal path from xq, there exists a unique optimal
path from x; for any t > 1.

(ii) V is differentiable at xo >0 if and only if there exists a unique
optimal path from xg.

(iii) V is differentiable almost everywhere, i.e., the optimal path is
unique for almost every xq > 0.

(iv) w is differentiable almost everywhere.

Proof. See Le Van and Dana (2003). O

We have proved that the optimal correspondence pu is single
valued and differentiable almost everywhere. In addition to this,
we have also shown that there exists a unique optimal path from
almost any initial capital stock. These results will prove to be crucial
in analyzing the dynamic properties of the optimal paths.

2.3. Dynamic properties of the optimal paths

A point x5 is an optimal steady state if x> = p (x5), so that the
stationary sequence x5 = (x5,x5,...,x%,...) solves the problem:
max{U (x%) : x5 e [T (x%)}. If x° is different from zero, then the asso-
ciated optimal steady state consumption must be strictly positive
from Inada condition. Hence, from Euler equation (6), this steady
state will solve:

U(f(x) —x) = BxU'(fF(x) — x)f (x) + B (x)V(x). (7)

By Proposition 3, we know that the stationary plan every period
equal to x° is optimal from x° if and only if it satisfies

V(%) = u(f(x*) = &) + BV (x°) . (8)

Following from (7) and (8), this steady state will satisfy:

[1 - A1 - B (x)]
B(x)

We will now prove that the endogenous rate of time preference
preserves the monotonicity of the optimal paths and provide the
condition under which the convergence to an optimal steady state
is guaranteed.

u(f(x) —x)= u'(f(x) —x). (9)

Proposition 8. The optimal path X from xq is monotonic.

Proof. Since u is increasing, if xo >x;, we have x; >x,. By induc-
tion, X; > X+1, Vt. If X1 > X, using the same argument yields x;+1 > X;,
Vt. Now if X1 =xg, then xg € ((xg). Recall that the optimal path is
unique after t=1. Since xg € (X ), Xt =X, Vt. O

Itisimportant to note that the monotonicity of the optimal paths
has been proved without any assumption on the curvature of nei-
ther the production nor the discount function. It is already well
known that in multi-sector nonclassical optimal growth models,
one can easily refer to lattice programming and Topkis theorem in
order to prove that the optimal paths are monotonic if the planner’s
criterion function is supermodular (see Amir et al., 1991). However,
following this approach in a model with time preference depending
on the future-oriented resources, Stern (2006) assumes a strictly
concave discount function.

As a monotone real valued sequence will either diverge to infin-
ity or converge to some real number, the fact that optimal capital
sequences are monotone proves to be crucial in analyzing the
dynamic properties and the long-run behavior of our model.

Proposition 9. There exists an >0 such that if sup x~of (x) <((1 -
&)/ Bm), any optimal path converges to zero.

Proof. Let the optimal path x converge to x >0. Then, by consid-
ering the Euler equation as t — oo, we obtain

uf(x)—x) _[1-BI1 - B _ 1-PBm
w(f(x)—x) B(x) ~ Bsup

Biup = supe=of/(x).  Note that  (u/u) =((u')* -
u.u”)/(u’)z) > 0,i.e., u/u’ is increasing. Let B=arg max x-o(f(x) —x).
In accordance with these, we have:

uf(B)—B) _ u(fx)—x) _1—Pm
w(f(B)—B) ~ w(f(x)—x) = Biyp

Defining & = (Beup/(1 = Bm))(u(f(B) — B))/('(f(B) — B))),
sup x=of (xX)>(1—¢/Bm) when the optimal path converges to
x>0. Thus, sup x-of (x)<(1 —¢/Bm) implies that the optimal path
converges to zero. [

1-Bm SUPf'(X)] ,

x>0

where

1- ﬂmsupf’(X)] .

x>0

In a classic optimal growth model, if f(0) <1/, then the opti-
mal path converges to zero. As we consider the endogenous nature
of time preference and allow for nonconvexities in the produc-
tion technology, we have slightly deviated from this condition.
However, it must be noted that the interval for sup x-of (x) that
guarantees the convergence to zero will always be a subset of (0,
1/Bm) and this cannot be improved in an essential way.

We will now present the condition under which the conver-
gence to an optimal steady state is guaranteed and analyze the
behavior of the optimal paths when we would have unique or
multiple optimal steady states.

Proposition 10. Assume xo>0. Let infy~o8(x) = B. If f(0) > 1/,
then the optimal path converges to an optimal steady state x> 0.

Proof. Since f(-) is increasing, 8 = B(0). Note that [fB](-) is a
continuous function and f(0) 8(0)> 1. Assume that x is an optimal
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path and it converges to zero. Since [f8](-) is continuous, there
exists N such that n> N implies f(xp) B(xn) > 1.

If x is an optimal path then it satisfies the Euler equation. Hence,
for every t, in particular, for t > N, we have:

= U(f(Xe11) — Xe42)B(Xe 1 ) (X 1)
+B' (Xe+1)V(Xe41)
> W (Xe41) — Xe2)B(Xe1 ) (Xe41)

> U (f(Xe41) — Xeq2)s

u(f(xe) = Xe41)

implying that
Fxe) = xep1 < f(Xe1) — Xeq2-

Then, we obtain that:
0 < f(xn)—xN41 < ;iﬂg Fy»)-yl=0,

leading to a contradiction.

Since the sequence x is monotonic and bounded, it converges to
some x5 >0. Now X — x5, X¢+1 € (W(X¢), X+1 — X°. Hence, by the upper
semi-continuity of the correspondence i, we get xS e u(x*). O

With convex technology and exogenously fixed time prefer-
ence rate in a standard optimal growth model, if f(0)>1/8 then
there exists a unique (non-zero) steady state to which all optimal
paths converge independently of their initial state. In our model,
due to the existence of the maximum sustainable level of capital
stock, when f’(0) > 1/8, the optimal path converges monotoni-
cally towards an optimal steady state. This condition can be recast
as F(0)>r+4 by defining the rate of interest rby 1/(1 +r) = 8 and
the function fby f{k) = F(k)+(1 — 8)k where Fis the production func-
tion and § is the rate of depreciation of capital. Accordingly, in
our model, when the cost of investment is low, the optimal path
converges to an optimal steady state.

We will now consider the optimal path dynamics in the long
run and show that our model can support unique optimal steady
state with global convergence and multiplicity of optimal steady
states with local convergence. Indeed, we will show that our model
exhibits global convergence even under convex-concave technol-
ogy and multiplicity of optimal steady states even under convex
technology.

Case 1 (Global convergence). Assume x> 0. Let inf,- o 8(x) = B and
f'(0) > 1/B. Consider the case where there exists a unique solution
x5 to (9). By Proposition 10, we know that the optimal paths can-
not converge to 0. Then, any optimal path converges to the unique
optimal steady state x5, irrespective of their initial state.

When there exists a unique solution to (9), it is clear from above
that it will be an optimal steady state. However, when there exist
multiple solutions to the steady-state equation (9), the stationary
sequences associated with these steady states may or may not be
optimal. A natural question is then whether these solutions will
constitute a long-run equilibrium in the optimal growth model
and if so, will that enable us to show whether an economy with
wealth dependent endogenous discounting can exhibit threshold
dynamics even under convex technology or not. Devoted to this
end, first, we will consider the case where we have exactly two
optimal steady states, for the sake of simplicity. We shall prove that
this would imply the existence of a critical stock and local conver-
gence. Second, we will show that our model can indeed support
two optimal steady states in an example.

Case 2 (Local convergence). Assume Xo > 0. Let infy-o8(x) = 8 and
f'(0) > 1/pB. Consider the case where we have exactly two optimal
steady states, x; <xy, for the sake of simplicity. Suppose that x, is

unstable from the right. Given the existence of a maximum sustain-
able capital stock, as any optimal path from xg > x;, has to converge
to an optimal steady state, there will be another steady state larger
than xj,, a contradiction. Hence, xy, is stable from the right. It is also
impossible to have x; unstable from the left, since the optimal paths
cannot converge to 0. These already imply the existence of a critical
stock and the emergence of threshold dynamics.

Whenever both of the optimal steady states turn out to be
saddle-point stable, it is clear that there will exist a critical stock
of capital below which the optimal path will converge to x; and
above which the optimal path will converge to x;,. However, x;, can
be stable from the right but unstable from the left, and similarly x;
can be stable from the left but unstable from the right. These cases
can occur only when the optimal policy is tangent to y = x line at x,
and x,, respectively. It is important to note that even under these
cases threshold dynamics emerge. The following proposition pro-
vides the formal analysis of the local convergence when we have
two optimal steady states.

Proposition 11. Assumexp > 0. Let inf,-oB(x) = fand f'(0) > 1/B.
Suppose there are exactly two optimal steady states. Let the high and
the low optimal steady states be, respectively x; and x;. Then there
exists X¢ € [x;, Xp] such that any optimal path X starting from xg, con-
verges to x; if Xo <Xc, and converges to xy, if xo > Xc.

Proof. Take any initial capital levels y<z, and let y, z be any
two corresponding optimal paths. Since the optimal correspon-
dence is increasing, we iteratively obtain y;<z; for all t. Hence
lim -, ooyr <lim ¢ oz:.Thus, if z converges to x;, so does y. If y con-
verges to xp, so does z. Let X; ={x|there exists an optimal path
fromx that converges to x;}, xj = supXy, and X, ={x|there exists
an optimal path from x that converges tox; }, X5 = inf X;. From the
above argument, xj < xj. Suppose otherwise, then there exists
small €1, €; >0 such that xj — €1 €Xq, X5 + €3 €Xp, and xj — €1 >
X5 + €;. However, this contradicts with the above, by setting x5 +
€, =y <z =Xxj — €1. Now we want to show that x] = x3. Suppose
not, then there exists x5 such that x; < xj < x3. But then an opti-
mal path from xj can neither converge to x; nor to x, by the
definitions of x; and x5. Therefore, X; = x;. Define xc = x§ = xj. If
Xo < Xc = Xj, take some small €] > 0 with xg < x§ — €] € X1. By the
above argument, any optimal path from xo converges to x;. Simi-
larly, if xo > X = x3, take some small €, > 0 withxo > x} + €}, € X,
which would show that any optimal path from xy converges to
xp. Notice thatx; € X1 and x; € X,. Therefore, X < supXy =xj = xc =
x5 =inf Xy < xp,ie,xcel[x,xy]. O

Remark 1. As it has become clear by now, if i is not tangent to
y=x line at either x; or x;,, both are locally stable and x. € (x;, x,).
Note that if i is not tangent to y = x line at either x; or x,, it must be
the case that p jumps over y=x line at x.. In this case, x. is not an
unstable optimal steady state but a genuine critical point leading
to the threshold dynamics.

If u is tangent to y =x line at x;, it can only be from above the
y=xline because x; is stable from the left. In this case we get x. = Xx;.
Similarly, if u is tangent to y =x line at x,, it can only be from below
the y=x line and we get x =xp,.

In order to provide a better exposition of our analysis, following
Stern (2006), we will specify functional forms in an example and
show that our model can indeed support two optimal steady states
with local convergence.
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Fig. 1. Optimal policy after 300 iterations on the initial zero value function.
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Fig. 2. Low steady state=0.0012 is optimal.

Example 1. Suppose that

C] -0

u(c) = 1o’

f(x) =AxY4+(1-08),
Bx) =n-—ye &),

where 0 < A, p},0 < {a,0,8} <1,0 <y < e andye? <n <
1. Check that f, u, and B satisfy the assumption sets. We employ
the following set of fairly standard coefficients:

A=05 «=03, §=015 0=05 7n=097, y=25,

p=1, &=0.9.

It turns out that the maximum sustainable capital stock is A (xg) =
max { Xg, )?}, where X is 5.58431, and there exist three solutions to
(9). The precise values are, x;=0.0012, x; =0.5865, and xj, =3.8105.
In order to determine which of these are actually the optimal steady
states, we analyze the optimal policy by making use of Bellman'’s
operator. Fig. 1 shows the optimal policy for iterations of the Bell-
man operator on the zero function and indicates that x; and x;, are
stable optimal steady states. Figs. 2-4 present the detailed pic-
tures of the optimal policy in the neighborhood of the x;, x,, and
Xp, respectively.

At first sight, one might think that the middle steady state x, is
an unstable optimal steady state as it is surrounded by two stable
optimal steady states. In contrast with Stern (2006), even though
Xm is a solution of the stationary Euler equation (9), Fig. 1 strongly
indicates that it is not an optimal steady state. Indeed, if it were, 1

K (x)

0.9

= F
o

1.5 220 2.5 3.0 325

Fig. 4. High steady state (x, =3.81057) is optimal.

would have to cross y =x line at x;. Moreover, we see that there is
genuine critical point at x. =0.6548. It is clearly not an optimal or
nonoptimal steady state because then it would have to satisfy (9).

As Xx. is not an optimal steady state, ;# cannot cross y =x line at
Xc, 1.e., Xc ¢ [L(xc). On the other hand, Fig. 1 shows that the graph of
jumps overy =xline at x.. As u is upper semi continuous, it must be
the case that there exist X) e (0, x¢) N u(xc) and xje (Xc, 00) N u(xc).
Therefore, x. is a critical point which is not an unstable steady state.

For any initial capital stock level lower than x, the system will
face a development trap, enforcing convergence to a very low cap-
ital level x;, even under a strictly concave production function. On
the other hand, for any initial capital level higher than x., the opti-
mal path will converge to x,. However, if an economy starts at xc,
an indeterminacy will emerge: the system can optimally follow x7,
and at the same time it can optimally fall into a development trap
following x].

The existence of critical value is actually recognized since the
papers by Clark (1971); Majumdar and Mitra (1982); Dechert and
Nishimura (1983) in discrete time and Skiba (1978) and Askenazy
and Le Van (1999) in continuous time horizon. These studies
are mostly devoted to the analysis of the technology compo-
nent leaving the time preference essentially unaltered with an
exogenously fixed geometric discounting. They assume a specific
convex—concave technology under which the low steady state
turns out to be unstable and high steady state turns out to be sta-
ble so that an optimal path converges either to zero or to the high
steady state. However, we show that even under strictly concave
production function, the economy can exhibit a “trap” so that a
critical value of the initial stock will exist, in the vicinity of which,
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small differences will lead to permanent differences in the optimal
path.

In this respect, our analysis is in line with the early contri-
butions that emphasize the importance of the subjective utility
function and release the optimal growth theory from the almost
taken for granted Ramsey’s additive utility function (e.g., Beals and
Koopmans, 1969; Iwai, 1972). Based upon the stationary ordinal
utility function that implies a broad class of preference struc-
tures that are recursive and contain the time-additive preference
as a special case, they show the existence of a critical stock so
that the initial conditions can affect the long-run optimal path.
Adopting a strictly concave discount function depending on the
future-oriented resources, Stern (2006) analyzes a series of numer-
ical examples that also exhibit multiplicity of steady states with
mere local convergence. Besides these, Kurz (1968) introduces cap-
ital as an argument in the Ramsey type utility function and shows
also that there may exist multiple turnpikes.

In all of these studies mentioned above, the critical stock of
capital below which the optimal program leads only to forever
diminishing capital and gradually converging to development trap
is an unstable optimal steady state. If it so happens that the ini-
tial level of capital stock equals the critical stock, the optimal path
will remain on that generalized turnpike forever. However, in our
model the critical stock is definitely not an unstable steady state so
that if an economy starts at this stock, an indeterminacy emerges.
Compared to the optimal growth models with exogenous time pref-
erence, this introduces a fundamental difference in the optimal
path dynamics.

3. Competitive equilibrium with externality

From now on, we will assume that the production function fis
strictly concave. We first define the concepts of equilibrium with
externality and competitive equilibrium. Suppose we are given
a sequence of capital ® = (xg, X1, ..., %, ...)€[0,A(x0)]™ and the
associated sequence of discount factors ,B = (,81 e ,Bt, ...)where
Bt = B(X:), ¥t > 1. Given this fixed sequence Be (B, ,Bm]oo, con-
sider the following problem:

oo

t
maxxz HBS u(f(xe) = xe11)

t=0 s=1
subject to

Vt, 0 < xey1 < f(xe),
Xo > 0,given.

Let the solution to the above problem be x=(xg, X1, ..., X,
...). It depends on B, hence %. We write x = ¥(8) = ¥(8(X)), and
hence x = ®(X). An equilibrium with externality associated with
Xo is a sequence of capital stock x* = (xg, Xis oo X, .) such that
x* = @(x*). Alist of sequences (x*, c*, p*, q*) is a competitive equilib-
rium with externality of this economy if the following are satisfied:
(@) ¢ el2, x" €02, pre(£1\(0)), g* e R4y,

(b) c* solves the consumer’s problem:

00 t
maxcz Hﬂ(X§ ) | uler)

t=0 s=1

subject to

[o.¢]
X

§ DCt < q*Xp + TT*
t

t=0

where 7* is the maximum profit of the firm,

(c) x* solves the firm’s problem:

oo
= maxx » Pi(f(x) — Xes1) = 0'Xo
t=0

subject to

Vt>0,0 <Xy < fxe),
Xo > 0,given,

(d) the markets clear at every period:
VEZ 0,6 + 7, =f(x(), x5 = Xo.

The purpose is to prove the existence of a competitive equi-
librium of this intertemporal economy. In order to do so, we will
first prove that there exists a fixed point of @, namely an equi-
librium. Later, under an additional assumption, we will show
that this equilibrium is indeed a competitive equilibrium of the
intertemporal economy with endogenous time preference.

The value function associated with the problem (P£) takes the
following form:

00 t
V(xo, B, B2, Bas ) = maxx» [ A5 | ulFtxe) = xes1)
t=0 \s=1

subject to

0 < Xep1 < f(xe),
Xo > 0,given.

V satisfies the Bellman equation:

VX, Brets Brean) = Maxy o, o) [UFX) = ¥) + Braa VY, Brizs Brason)] -

Proposition 12. The function V is continuous with the topology in
R for xo and the product topology for Be|[B, Bm1>. Moreover, it is
strictly concave in x.

Proof. Let

=) t
Utxo. B.x) =Y | [[Bs | utfxe) —xesn)

t=0 s=1

where x e TT(xg). One can show that U is continuous in (xg, 8, X) for
the topology in R for xg and the product topology for (8, x). It is well
known that I1( - ) is a continuous correspondence from R, into the
space of sequences endowed with the product topology (see, for
instance, Le Van and Dana, 2003). Since

V(X07 ﬂ) = max {U(XOa ﬂ7 X)|XE H(XO)} )

from the maximum theorem, V is continuous. The strict concavity
of V with respect to x follows from the strict concavity of fand u.
O

Lemma 2. The map f is continuous with respect to the product
topology.

Proof. Itisstandard. O

Proposition 13. @ is continuous with respect to the product topol-
ogy.

Proof. From the maximum theorem, the solutionx =(f)is upper
semi-continuous with respect to 8. As the solution to (P€) is unique,
itis a continuous function with respect to 8. Since § = B(X), the map
@ is a continuous function with respect to X by Lemma 2. O
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To attain an equilibrium, the initial sequence of discounting has
to be consistent with the level that is assumed when the agent
makes her single decisions. This suggests that the fixed points of @
are candidates for competitive equilibria.

Proposition 14. @ has a fixed point.

Proof. @ isacontinuous mapping from [0,A(xg)]* into[0,A(xg)]>.
Since the domain is compact for the product topology and also a
convex set, Schauder theorem concludes that there exists x* [0,
A(x0)]>®° which satisfies x* = ®(x*). O

Proposition 15.  If (xq, X}, X5 . ..) is an equilibrium with externality
associated with xq, then (x*, X5, X3 ...) is an equilibrium with exter-
nality associated with x;.

Proof. Let V(x, B+1, Be+2, ..) be the value function at period t+1.
For any t we have

V(xE, Beats Brea) = Maxycio fx)]
[U(F(X) = ¥) + BriaV(Y, Brszs Bris.)]
=u(f(x}) = X7 )+ BeaaV(X{ 4, Brr2s Beasi)

Particularly for t > 2, we see that (x}, x5, ..
with externality associated with x;. O

.) is an equilibrium

Proposition 16. Any equilibrium with externality x* associated with
some initial capital stock satisfies the Euler equation:

W(f(xp) = xf ) = W (X7 ) — %0, ) B ) (XE ) (10)
Proof. Itiseasy. O

For the rest, we assume that the function [Sf]( - ) is decreasing

and [Bf](0) > 1. Note that lim x_, o[ 8f 1(x) <
Proposition 17. The equilibrium with externality associated with xq
is unique.

Proof. Take two equilibria with externality (xo, X;, x5, ...) and
(xg,x’l’, X5, .- .) associated with xg. Suppose that x) > x]. Let the
associated consumption paths be (cg, ¢}, . ..) and (¢, ¢f, .. .).

First, we will prove by induction that x; > x/, for all t>1 and
c; < ¢/ for all t. Trivially, o =f(xo0) - x’] <f(x0) —x’{ =c}- Then
by (10), w(ep)IBf'1(x;) = u'(ch) > u'(cg (e)IBf'I(x]) which
implies v'(c}) > w/(cy) as [,Bf’] isa decreasmg functlon Hence, ¢} <
cj.

1
Now suppose x;>x/ and c¢; <c/ for some ¢t f(x;)—
X%H/:c; </ct =f(x{)—x{ 4, so X, 1 >x 1 /Agam by (10),
wlcy, AP 10, ) = w(c) > w(c) = w(cy, IAFIx;,,)  which
implies u’(cH]) > u'(c/, ;) as [Bf] is a decreasing function. Hence,

X > X qandc, <cfy. ) ) )

Now con51der the maximization problem given the discounting
sequence B(x'). The path x" is feasible from xg, and yields strictly
higher utility than X’ given the discounting sequence B(x’) because
¢; < ¢/ forall t. However, this is a contradiction with X’ bemgaﬁxed
point which would imply that x’ itself is the unique maximizer
g/lven /the discounting sequence B(X'). Therefore x} = x]. Let x; =
xl N X1.‘ ., . . .

Notice that Proposition 15 implies that (xi, X}, x5,...) and
(x1, x4, %}, ...) are two equilibria with externality associated with
x1. Then applying the same arguments, we get x, = x;. Finally, by
inductively applying Proposition 15 and the above arguments, we
getx; =x{ forallt. O

Corollary 1. If[fBf](x0)=1 for some xq, then the unique fixed point
associated with xg is the stationary sequence (Xg, Xg, Xg, - - - )-

Proof. Let = f(xp)and consider the basic neoclassical model with
fixed discount factor B. As the initial capital is already xo which is
steady state capital level in the neoclassical growth model, (xq, o,

Xo, ... ) will solve the social planner problem. This means that (xq,
Xo, X0, - .. ) is the unique maximizer given the discount sequence
(B, B, ...). Thus, it is a fixed point associated with xg, and by the
above proposition it is the unique fixed point associated with Xxg.
O

Proposition 18. Any equilibrium with externality monotonically
converges to a point x° satisfying [ Bf1(x*) = 1. Moreover, if there are
multiple such points, it monotonically converges to the one that is
closest to the initial level of capital.

Proof. One can show that the set of solutions to [8f](x)=1 con-
stitues a compact interval, say X = [x° ., X},.¢]. Note that it is well
possible to have x} . = Xp.x OF X} . < X}ax. Let the initial capital
level be x¢ and the associated equilibrium with externality be x*.

By Corollary 1, if xo € X we have x* =(xp, Xo...) which converges
to the closest solution xg to [Bf ](x)=1.

Consider xo < x7 . . Suppose x* does not — monotonically con-
verge - tox’ . . Thenx* as a sequence either passes from the region
(0,x° .1 to the region (x° . , c0), or strictly decreases in the region
[0, xfmn] at least once at some point in time. Formally, there exists
some ¢ either withxy <x¥ . <x{ , or withx; ; <Xxf <x}

Suppose that for some t, x; < < X i < Xep1- As 1= [ﬂf’ mm) >
[Bf'1(x;, 1), (10) implies u (ct) <u (Ct+l) Then by concavity of u we
get flxf) - xtH _f(le) r+2' which yields x}, ; <x{ , as xf <
Hence, x;, ; <x{,, and x} . <x{ ,. Inductively we obtain

t+1 min t4+2° . ;
XS <Xt < x .. Due to the maximum sustainable capital

min t+1 t+2
stock, X* cannot dlverge, so it converges monotonically to a level x

that is strictly higher than x; ;. Taking the limit of (10) for the fixed
point x* as t goes to infinity, we see that the limit x of x* has to
satisfy [Bf1(x)=1. Thus x3 . < X[ 4 <x= Xhax and hence x; ; €X.
Then Corollary 1 implies that the equilibrium with externality asso-
ciated with x| 1s( 110 X410 - - ) however, Propos'ition 15 implie;s
that it is (le, figs ) Recall that the fixed point from Xp,q1s
unique, so we get a contradlctlon asxf < Xp .

Now suppose that for some ¢, xf , <xf<x’.. As 1=
(B ,) < [B1(x x{,1), (10) implies v'(cf) = w'(cf, ;). Thus we get
Fxg) —x{ 4 7f( £11) — X{,p which yields x; , > x; , as xf > x{ ;.
Hence, Xjo <X{ < xS n.Inductlvely weobtain... < x; <X =

o Takmg the limit of(lO), we see that the only possibility is X*
converges to zero. If X* converges to zero, there exists some large T
such that[Bf’](xf) > 1forall t>T,because [$f](0)>1.Thenu'(c}) >

u'(ct, ) for t>T by (10). Hence, f(x7) > f(xf) — x; 4 =.c;‘ >c;>0
for all t>T. However, f(x;) converges to zero along with x* by the
continuity of f. Contradiction.

Therefore we have shown that the fixed point associated with
Xo < x>, monotonically converges to the closest solution x? . of
the equation [Bf](x)=1.

The case of xp > X, is analogoustoxo <x° .. O

Just to recall, the fixed point x* of @, namely the equilibrium
with externality associated with xg, solves the problem

0 t
maxxy | []Ax0)

t=0 s=1

u(f(xe)

—Xt41)

subject to

0 <Xep1 < flxe),
Xxo > 0,given.

We will now prove that such a fixed point is indeed a competi-
tive equilibrium.
Theorem 1. Assume that f'(0)8> 1. Define q*=1,p;=

HS B (F(x;) =7 1), ¢ =f(xf)—x;,,, Vt. Then, (c¢*, x*,
P*, q*) is a competitive equilibrium with externality.
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Proof. First, we prove that p* is in Q\{o}. Clearly p; >

o0 0 t
0. We need to prove that Zpt* = Z(Hﬁ(x;‘))u/(f(x;‘)—xjﬂ)
t=0 t=0 s=1

is bounded. We have shown that x* converges to some x5eX.
[Bf1(0)>1 suggests x5 . > 0, hence the sequence uw'(f(x{) —x;, ;)

o0
is bounded. Thus, the sum Zp;“ exists in R.
t=0

Since x* €[0, A(xp)]* we get x*e{%. By the constraints of
the problem (P£), f(A(xo)) > f(x;) > X;,1 = 0.Hence, f(A(x0)) = ¢f =
Fxf)—x{ 4 =0,ie,crel.

The proofs that x* is a solution to the problem (PP) and c* solves
the consumer’s problem (CP) are standard (see, e.g., Le Van and
Dana, 2003).

Finally, one can easily note that the market clearing condition,
cf +xfq =f(x})is satisfied. O

By Proposition 18, the optimal paths converge to a point x* with
Fx)Bx) =1 (11)

Clearly, such a point is unique if [ 8f]( - ) is strictly decreasing.

For simplicity, let us assume a Cobb-Douglas production tech-
nology, f(x)=Ax%, where A>0 denotes the total factor productivity.
There may exist unique or continuum of steady states in this model
with endogenous time preference depending on the characteristics
of the discount function.

Example2. Let B(x) =0 — ye-(*+0) where0<p,0<£<1,0 <y <
(1 —a)e”®,and(ye=*" /1 — o) < O < 1.Note that S satisfies all of our
assumptions. We will now show that B(x)f (x) is strictly decreasing.
We have

(Boar ) = [ (9-ve o0 ) Ao |
= Aax®2 [ye*("“’)s (1-o+ex(x+ ,o)gfl) —-(1- a)@} )
Then, for x > 0, (ﬁ(x)f/(x)), < 0if and only if

h(x) := yexp {-(x+ p)°} 1 —oz+8x(x+p)8’1} —(1-a)<0.

It is clear that h is differentiable, hence obtains its maximum at the
boundaries or critical points. At the boundaries,

h(0) = yexp (—p°) [1—al - (1 - )8

=(1-a)[yexp (—p°) —6] = —(1 - 2)B(0) < O,and

limh(x) = lim (1 —a)ye P 4 lim ye=®+2)  ex(x + p)° !

X—00 X—00 X—00
-1-a)f=-(1-a)<0.
So at any critical point x, we have h’(x)=0. Accordingly,

X
X+p

ye 0V g(x 4 p)*1 [— (1—a+exx+p) ") +1-(1-¢)
=0.

Hence, (1 — a+ex(x+ p)f~1)=1—(1—g)(x/x+ p). Then we have

h(x) = ye-x+o) [1 —(1-¢) } —(1-a)

X+p
at any critical point x. It is clear that the expression ye*(y“’)s[l -
(1-¢)y/y +p)] is maximized at y=0. Therefore, we obtain
that h(x) < ye?° — (1 — a)f. Recall that (ye=*" /1 —a) < 6, hence
ye=”* — (1 —a)f < 0, implying that at any critical point x, h(x)<0.

Thus, h is a negative valued function, implying that S(x)f(x) is
strictly decreasing.

Any discount function 8 under which B(x)f (x) turns out to be a
strictly decreasing function implies a unique steady state and global
convergence. The unique steady state is both locally and globally
determinate. Moreover, the model may even possess a continuum
of steady states, and it depends on the initial condition as to which
one is realized in the long run. Hence, the economy exhibits no
tendency toward global convergence; an important departure with
respect to the neoclassical growth model.

Example 3. Consider the following discount function that consists
of three parts:

mx +n, x<a
1 1 1-«
B(x) = W:HX , a<x<b;
_Y
n X’ b<x

where A>0, 1>a>0, (Ax/2—a)'*>b>a>0, m=1-afAaa?,
n=(1/A)a'~%, n=(2 —a/Aa)b’~*, and y = (1 — a/Aa)b>~*. Lets check
the assumptions. § is already differentiable in the regions (0, a), (a,
b), (b, o0 ). Some simple algebra for checking the left and right limits
of B and B’ at the points a and b shows that this specification of m,
n, n and y makes g is differentiable at a and b. Therefore g is differ-
entiable, also implying continuity. 8(0)=n> 0, hence  ranges into
Ry;.Also,asm>0,A>0,a (0, 1),and y >0, B is strictly increasing.
As B is strictly increasing, the supremum of which is 7, is strictly
less than one by (A«/2 —)'/1-% > b, Moreover, the supremum of
the derivative of 8 is also bounded which is easy to see by some
algebra.

Notice that throughout the whole interval [a, b], B(x)f (x)=1,
therefore we have a continuum of steady states [a, b]. As we have
proven that any equilibrium with externality with initial capital
Xo € [a, b] will be constant over time, the initial level of capital stock
lower than a will lead to an increasingly monotonic convergence
towards a whereas the initial the initial level of capital stock higher
than b will result in decreasingly monotonic convergence towards
b.

Remark 2. Existence of the critical value x; and continuum of
equilibria with strictly concave production function are peculiar to
our model of endogenous time preference.

4. Conclusion

In this paper, we present the dynamic implications of endoge-
nous time preference depending on the stock of wealth in a one
sector growth model. We prove without any assumption on the
curvatures of the production and the discount functions that opti-
mal policy is single valued and differentiable almost everywhere
in the planner’s problem and the optimal paths are monotonic.
We consider the optimal path dynamics in the long run and
show that our model can exhibit global convergence even under
a convex-concave technology and multiplicity of optimal steady
states even under a convex technology. Indeed, we show that
there exists a critical stock of capital below which the optimal
program leads only to forever diminishing capital and gradually
converging to development trap and above which the economy
converges to the high steady state. We also show that if it so hap-
pens that the initial level of capital stock equals the critical stock,
which is not an optimal or nonoptimal steady state, an indetermi-
nacy emerges. Moreover, the multipliers system associated with
an optimal path is proven to be the supporting price system of
a competitive equilibrium under externality and detailed results
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concerning the properties of optimal (equilibrium) paths are pro-
vided.

Extensions to our model are obviously possible and include the
considerations of uncertainty, heterogenous agents and strategic
interactions. These are in our research agenda.
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