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a b s t r a c t

We introduce the lifted Tornehave morphism tornπ : K → B∗, an inflation Mackey
morphism for finite groups, π being a set of primes, K the kernel of linearization, and B∗
the dual of the Burnside functor. For p-groups, tornp is unique up to scalar multiples. It
induces twomorphisms of biset functors, one with a codomain associated with a subgroup
of the Dade group, the other with a codomain associated with a quotient of the Burnside
unit group.
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1. Introduction

The first paper [2] of a trilogy was concerned with the reduced Tornehave morphism torn π , which can be regarded
as a kind of π-adic analogue of the reduced exponential morphism exp. Here, π is a set of rational primes. For both of
these morphisms, the codomain is the Burnside unit functor B×. The present paper, the second in the trilogy, introduces the
lifted Tornehave morphism tornπ , a kind of π-adic analogue of the lifted exponential morphism exp(). For the two lifted
morphisms, the codomain is the dual B∗ of the Burnside functor B.
The defining formulas for the lifted morphisms exp() and tornπ are much the same as the defining formulas for the

reduced morphisms exp and torn π , except that the codomain B∗ of the lifted morphisms is a biset functor over Z whereas
the codomain B× of the reduced morphisms is a biset functor over the field F2 with order 2. One advantage of working with
coefficients in Z rather than coefficients in F2 is that it enables us to extend to coefficients in Q and then to characterize
exp() and tornπ in terms of their actions on the primitive idempotents of the Burnside ring. That leads to some uniqueness
theoremswhich characterize exp() for arbitrary finite groups and tornπ for finite p-groups. All the uniqueness theorems are
in the form of assertions that, up to scalar multiples, exp() and tornπ are the only morphisms satisfying certain conditions.
The third paper [3] of the trilogy concerns an isomorphism of Bouc [9, 6.5] whereby, for finite 2-groups, a difference

between real and rational representations is related to a difference between rhetorical and rational biset functors. The main
result in [3] asserts that Bouc’s isomorphism is inducedby themorphism torn π (in the case 2 ∈ π ). The difficulty in achieving
that result lies in the fact that two different kinds of morphism are involved. Bouc’s isomorphism is an isomorphism of biset
functors; it commutes with isogation, induction, restriction, inflation and deflation. On the other hand, tornπ and torn π are
merely inflakymorphisms (inflationMackeymorphisms); they commute with isogation, induction, restriction and inflation
but not with deflation. It is easy to see that, granted its existence, then Bouc’s isomorphism is the unique morphism of biset
functors with the specified domain and codomain. It is not hard to see that torn π induces a non-zero inflaky morphism
with that domain and codomain. The trouble is in proving that torn π induces a morphism of biset functors. At the end of
the present paper, we deal with that crucial part of the argument by passing to the lifted morphism tornπ .
Along the way, it transpires that, for finite p-groups, tornπ induces a morphism of biset functors whose codomain DΩ is

associated with the subgroup of the Dade group generated by the relative syzygies. The question as to the interpretation of
that result is left open.
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2. Conclusions

We shall be concerned with the functors and morphisms that appear in the following two commutative diagrams. All of
these functors are biset functors and all of the morphisms in the left-hand diagram are morphisms of biset functors but, as
we noted above, tornπ and torn π commute only with isogation, induction, restriction and inflation, not with deflation, so
the right-hand diagram is only a commutative square of inflaky morphisms.
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The lower andmiddle parts of the two diagrams have already been discussed in [2]. Let us review the notation. For a finite
group G, the Burnside ring of G, denoted B(G), is the coordinate module of the Burnside functor B. The unit group of B(G),
denoted B×(G), is the coordinatemodule of the Burnside unit functor B×. The real representation ring of G, denoted AR(G), is
the coordinate module of the real representation functor AR. The linearization morphism lin() arises from the linearization
map linG : B(G) → AR(G) whereby the isomorphism class [X] of a finite G-set X is sent to the isomorphism class [RX] of
the permutation RG-module RX . The reduced tom Dieck morphism die and the reduced exponential morphism exp arise
from the reduced tom Dieck map dieG : AR(G) → B×(G) and the reduced exponential map expG : B(G) → B×(G). For the
definitions of these two maps, see [2].
To make a study of the Burnside unit functor B×, we can extend to the ghost unit functor β×, whose coordinate

module is the ghost unit group β×(G) = {x ∈ QB(G) : x2 = 1}. We write inc to denote the morphism of biset
functors whose coordinate map is the inclusion incG : B×(G) ↪→ β×(G). A further extension, introduced by Bouc [8,
7.2], is to realize β× as the modulo 2 reduction of the dual B∗ of the Burnside functor. We write mod to denote the
morphism of biset functors whose coordinate map modG : B∗(G) → B×(G) is given by reduction from coefficients in Z to
coefficients in F2. An explicit treatment of the lifted tom Dieck morphism die(), as a morphism of biset functors, appears in
Bouc–Yalçın [11, Section 3]. Its coordinate map dieG : AR(G) → B∗(G) goes back to tom Dieck [12, Section III.5]. (Both
of those sources refer to dieG as the ‘‘dimension function’’, denoted Dim.) Later in this section, we shall define the lifted
exponential morphism exp() by means of a formula but, in Section 4, we shall find that exp = die ◦ lin. Thus, everything in
the left-hand diagram above is already implicit in [11].
The biset functor K = Ker(lin) has seen an application to the study of Dade groups in Bouc [7, Sections 6, 7]. It also played

an important role in the study of rational biset functors in [9, Section 6]. Its coordinate module K(G) = Ker(linG)made an
earlier appearance in connection with the reduced Tornehave map torn πG : K(G) → B×(G) introduced by Tornehave [14].
In [2], it is shown that torn πG gives rise to an inflaky morphism torn

π . Below, in this section, we shall introduce the lifted
Tornehave map tornπG . In Section 4, we shall prove that torn

π
G gives rise to an inflaky morphism torn

π .
Themorphisms exp() and tornπ are lifted from exp and torn π in the sense thatwe have commutative squares inc ◦ exp =

mod ◦ exp and inc ◦ torn π = mod ◦ tornπ as illustrated in the diagrams above. But those commutativity relationships
between the two lifted morphisms and the two reduced morphisms will be examined only at the end of this paper, in
Section 10. The rest of this paper is concerned with other features of exp() and tornπ .
Although exp() and tornπ are defined by means of formulas, we shall be presenting, in Section 5, some uniqueness

theorems which characterize exp() and tornπ in a more structural way. The following result, an immediate consequence of
Theorems 5.1 and 5.4, gives an indication of the kind of uniqueness properties that we shall be considering. In this section,
for simplicity of discussion, we shall tend to confine our attention to p-biset functors, that is to say, biset functors whose
coordinate modules are defined only for finite p-groups.
Theorem 2.1. For finite p-groups, let M be a p-biset subfunctor of pB, and let θ be a non-zero inflaky morphism M → pB∗. Then
either M = pB and θ is a Z-multiple of exp(), or else M = pK and (p− 1) θ is a Z-multiple of tornp.
Some of the notation, here, requires explanation. We sometimes write p-biset functors in the form pL just to emphasize

the understanding that pL is indeed a p-biset functor and not a biset functor for arbitrary groups. When working with finite
p-groups, we write tornp = torn{p} and torn p = torn {p}. Actually, for finite p-groups, tornp = tornπ and torn p = torn π for
all π such that p ∈ π , while tornπ = 0 and torn π = 0 whenever p 6∈ π .
The kinship between exp() and tornp becomes even more apparent upon comparing the next two theorems. The first of

them, holding for arbitrary finite groups, follows immediately from Theorems 5.1 and 5.3.
Theorem 2.2. If θ is an inflaky morphism or a deflaky morphism B→ B∗, then θ is a morphism of biset functors and, in fact, θ
is a Z-multiple of exp().
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To state a closely analogous theorem for tornp, we return to finite p-groups. We let pK ∗ be the quotient p-biset functor
of pB∗ such that the canonical projection π∗ : pB∗ → pK ∗ is the dual of the inclusion pK ↪→ pB. Theorems 5.6 and 5.7 imply
the next result.

Theorem 2.3. For finite p-groups, if θ is an inflaky morphism or a deflaky morphism pK → pK ∗, then θ is a morphism of p-biset
functors and, in fact, (1− p) θ is a Z-multiple of π∗ ◦ tornp.
Already, the above results suggest that themorphisms exp() and tornπ are of some fundamental theoretical interest; the

two morphisms seem to stand out and demand attention simply because of their uniqueness properties.
Putting aside the uniqueness properties now, the latest theorem tells us that tornp induces a morphism of biset functors

from pK to the quotient pK ∗ of pB∗. Now, as we explained in Section 1, the crux of the proof of the main result in [3] is to
show that torn2 induces a morphism of biset functors from 2K to a suitable quotient of 2B∗. Unfortunately, the quotient 2K ∗
of 2B∗ turns out to be too coarse for the intended application. The next result has a stronger conclusion and, moreover, it
holds in the context of functors defined for arbitrary finite groups.

Theorem 2.4. Let π∗Q be the canonical epimorphism of biset functors B
∗
→ B∗/ exp(B). Then the composite π∗Q ◦ torn

p/(1−p) :
K → B∗/ exp(B) is a morphism of biset functors.

In Section 9, we shall prove Theorem 2.4 and we shall use it to deduce that, for finite p-groups, tornp/(1 − p) induces a
morphism of p-biset functors K → DΩ . In Section 10, using Theorem 2.4 again, we shall accomplish the crucial step towards
the proof of the main result in the sequel paper [3].

3. Method

In this section, as well as introducing some notation, we shall make some comments on how we shall be proving the
above theorems. This summarymay be convenient for a casual reader who prefers not to delve into the details of the proofs.
The defining formulas for expG and torn

π
G are in terms of coordinate systems for B(G) and B

∗(G) called the square
coordinate systems. We define the square basis for B(G) to be the Z-basis {dGU : U ≤G G}, where d

G
U = [G/U] and the

notation indicates that U runs over representatives of the conjugacy classes of subgroups of G. We define the square basis
for B∗(G) to be the corresponding dual Z-basis, and we write it as {δGU : U ≤G G}.
We define the lifted exponential map expG : B(G) → B∗(G) to be the Z-linear map such that, given a (finite) G-set X ,

then

expG[X] =
∑
U≤GG

|U\X | δGU

whereU\X denotes the set ofU-orbits in X . We define the lifted Tornehavemap tornπG : K(G)→ B∗(G) to be the restriction
of the Z-linear map t̃ornG : B(G)→ B∗(G) such that

t̃ornπG [X] =
∑

U≤GG,U∈U\X

logπ |U| δ
G
U .

Here, logπ is the function such that, given a positive integer n, and writing n = p1 . . . pr as a product of primes, then
logπ (p1 . . . pr) = |{i : pi ∈ π}|. Thus, the coefficient of δGU in t̃orn

π

G [X] is a sum over the U-orbits in X , and the contribution
from each U-orbit U is the number of prime factors of |U| that belong to π , counted up to multiplicity. To make it clear
that the two defining formulas are matrix equations with respect to square coordinates, let us note that the formulas can be
rewritten as

expG(d
G
U ′) =

∑
U≤GG

|U\G/U ′| δGU , t̃ornπG (d
G
U ′) =

∑
U≤GG,UgU ′⊆G

logπ |UgU
′
| δGU

where the notation indicates that UgU ′ runs over the elements of the set U\G/U ′ of double cosets of U and U ′ in G. In the
next section, we shall show that expG and torn

π
G give rise to a morphism of biset functors exp : B → B∗ and an inflaky

morphism tornπ : K → B∗.
By linear extension, we can regard expG and torn

π
G as Q-linear maps expG : QB(G) → QB∗(G) and tornπG : QK(G) →

QB∗(G). Hence – when we have checked the required commutativity properties in the next section – we shall obtain a
morphism of biset functors exp : QB → QB∗ and an inflaky morphism tornπ : QK → QB∗. In Sections 7 and 8, we shall
give formulas for expG and torn

π
G in terms of coordinate systems forQB(G) andQB∗(G) called the round coordinate systems.

Let us specify the bases associated with the round coordinate systems. For I ≤ G, let εGI be the algebra map QB(G)→ Q
given by [X] 7→ |X I |, where X I denotes the I-fixed subset of X . It is easy to show that, given I ′ ≤ G, then εGI = ε

G
I ′ if and only

if I =G I ′, moreover, {εGI : I ≤G G} is a Q-basis for QB∗(G). So there exists a unique element eGI ∈ QB(G) such that εGI ′ (e
G
I ) is

1 of 0 depending on whether I =G I ′ or I 6=G I ′, respectively. Of course, eGI = e
G
I ′ if and only if I =G I

′. The following easy
remark is well-known.

Remark 3.1. Letting I run over representatives of the conjugacy classes of subgroups of G, then the elements eGI run over the
primitive idempotents of QB(G) without repetitions, furthermore, QB(G) =

⊕
I Qe

G
I as a direct sum of algebras QeGI ∼= Q.

In particular, the set of primitive idempotents is a Q-basis for QB(G).
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We define the round bases forQB(G) to be the set {eGI : I ≤G G} of primitive idempotents ofQB(G). We define the round
basis for QB∗(G) to be the set {εGI : I ≤G G} of algebra maps QB(G)→ Q.
Proposition 6.4 tells us that, allowing G to vary, then a family of maps θG : QB(G) → QB∗(G) gives rise to a Mackey

morphism θ : QB→ QB∗ if and only if there is an isomorphism invariantΘ(G) ∈ Q such that

θG(eGI ) =
Θ(I)
|NG(I) : I|

εGI

for all finite groups I and G with I ≤ G. By first considering the case I = G, we shall evaluate the isomorphism invariant
Θexp(G) associatedwith themorphism exp(). Proposition 7.3 says that expG(eGI ) is non-zero if and only if I is cyclic, in which
case

expG(e
G
I ) =

φ(|I|)
|NG(I)|

εGI

where φ is the Euler function. Let us note another way of expressing that formula in the case where I is a p-group. Given
integers d ≥ c ≥ 0, we define

βp(c, d) =
d−2∏
s=c−1

(1− ps)

with the understanding that β(d, d) = 1. If I is a p-group with rank d, then

expG(e
G
I ) =

βp(0, d)
|NG(I) : I|

εGI .

We shall apply a similar method to the morphism tornp. The domainQK(G) of tornp has aQ-basis consisting of those eGI
such that I is non-cyclic. If I is a p-group with rank d, then I is non-cyclic if and only if d ≥ 2, and in that case, Proposition 8.3
says that

tornpG(e
G
I ) =

1− p
p

.
βp(2, d)
|NG(I) : I|

εGI .

The deflation map is not easy to describe in terms of the round coordinate system. Given N E G and writing G = G/N ,
the deflation number for G and G is defined to be

β(G,G) =
1
|G|

∑
S≤G:SN=G

|S|µ(S,G)

whereµ denotes the Möbius function on the poset of subgroups of G. Bouc [4, page 706] showed that β(G,G) depends only
on the isomorphism classes of G and G. He also showed, in [4, Lemme 16], that the deflation map defG,G : QB(G)→ QB(G)
is given by

defG,G(e
G
I ) =

|NG(I) : I|
|NG(I) : I|

β(I, I) eGI

where I = I/(I ∩ N).
Someof the uniqueness theorems for exp() and tornp, stated in Section 5,will be proved in Sections 6 and 8 by considering

the constraints onΘ imposed by the condition that θ is an inflakymorphismor by the condition that θ is a deflakymorphism.
Those two conditions are both characterized by the equationΘ(G) = Θ(G) β(G,G). Whenwe allow θ to have domainQK or
some other domain strictly contained inQB, the two conditions differ in the range of the pair of variables (G,G) forwhich the
equation is required to hold. Nevertheless, both the inflaky morphisms and the deflaky morphisms are strongly constrained
by the fact that, whenΘ(G) andΘ(G) are defined, they determine each other unless β(G,G) = 0.
In Appendix, we shall present a little application of the lifted Tornehavemorphism. Using the round coordinate formulas

for exp() and tornp, we shall recover a result of Bouc–Thévenaz [10, 4.8, 8.1] which asserts that, if I is a p-subgroup of G, then

defG,G(e
G
I ) =

|NG(I) : I|
|NG(I) : I|

βp(c, d) eGI

where c and d are the ranks of I and I , respectively.
This paper does make much use of formulas and coordinates. No apology should be needed. The attraction of formulas,

of course, is that they often speak back, saying more than one intended to put in; so they are likely to reveal more to some
readers than they do to an author.

4. The lifted morphisms in square coordinates

Throughout, we shall be making use of the following variables. We always understand that H is a subgroup of G, that N
is a normal subgroup of G and that φ : G→ F is a group isomorphism. We write G = G/N and, more generally, H = HN/N .
The groups H , G, F will tend to be used when working with the five elemental maps: induction indG,H , restriction resH,G,
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inflation infG,G, deflation defG,G and isogation iso
φ

F ,G. We always understand that

U ≤ G ≥ I, V ≤ H ≥ J, N ≤ W ≤ G ≥ K ≥ N.

The subgroups U ≤ G and V ≤ H andW ≤ G will tend to be used when working with square coordinates. The subgroups
I ≤ G and J ≤ H and K ≤ Gwill tend to be used when working with round coordinates.
Wehave good reason formaking systematic use of variables and coordinates. Four coordinate systemswill be coming into

play: the square system forQB(G), the round system for QB(G), the square for QB∗(G), the round for QB∗(G). All four of the
associated bases are indexed by the conjugacy classes of subgroups of G. For our purposes, it would no longer be convenient
to continue with the notation in Bouc–Yalçın [11] whereby B∗(G) is identified with the Z-module C(G) consisting of the
Z-valued functions on the set of conjugacy classes of subgroups of G. Indeed, our coordinate systems would yield four
different identifications of QB(G) or QB∗(G)with QC(G).
A scenario similar to ours is that of the canonical pairs of variables (p, q), as used in quantum mechanics, optics and

signal processing. Where Dirac notation employs two bras 〈p| and 〈q| and two kets |p〉 and |q〉, the analogous notation in
our context would be 〈I| and 〈U| and |I〉 and |U〉, respectively. But that formalism would require the reader to recognize
the implied coordinate-system from the name of the variable. Such a device would be unsuitable in our context, so we shall
make a compromise. We shall still make use of variables, but we shall explicitly indicate the coordinate system by using
round or square brackets instead of angular brackets. Our notation is introduced below in a self-contained way, without any
prerequisites concerning Dirac notation. But, for those who are familiar with Dirac notation, let us mention that the above
bras and kets will be rendered as εGI = (I @–), δ

G
U = [U @–], e

G
I = (–@ I), d

G
U = [–@U], respectively.

Passing to coefficients in a commutative unital ring R, we replace the Z-module B∗(G) = HomZ(B(G),Z) with the
R-module RB∗(G) = R ⊗Z B∗(G), which can be identified with HomR(RB(G), R). Let us write the duality between RB∗(G)
and RB(G) as

RB∗(G)× RB(G) 3 (ξ , x) 7→ 〈ξ @ x〉 ∈ R.

The expression 〈ξ @ x〉 may be read as: the value of ξ at x. The square bases {dGU : U ≤G G} and {δ
G
U : U ≤G G} were

introduced, in Section 3, as Z-bases for B(G) and B∗(G), respectively. Of course, they are also R-bases for RB(G) and RB∗(G).
The duality between then is expressed by the condition

〈δGU @ d
G
U ′〉 = bU =G U

′
c

where U =G U ′ means that U is G-conjugate to U ′, and the logical delta symbol bPc is defined to be the integer 1 or 0
depending on whether a given statement P is true or false, respectively. The elements ξ ∈ RB∗(G) and x ∈ RB(G) have
square coordinate decompositions

ξ =
∑
U≤GG

[ξ @U] δGU , x =
∑
U≤GG

[U @ x] dGU

where [ξ @U] = 〈ξ @ dGU 〉 and [U @ x] = 〈δ
G
U @ x〉. The elements [ξ @U] ∈ R 3 [U @ x] are called the square coordinates of

ξ and x.
The isogation maps act on RB by transport of structure

isoφF ,G(d
G
U) = d

F
φ(U), [φ(U)@ isoφF ,G(x)] = [U @ x].

The other four elemental maps act on RB by

resH,G(dGU) =
∑
HgU⊆G

dHH∩gU , indG,H(dHV ) = d
G
V , defG,G(d

G
U) = d

G
U , infG,G(d

G
W ) = d

G
W .

These four equations can be rewritten as

[V @ resH,G(x)] =
∑

U≤GG,HgU⊆G:V=HH∩gU

[U @ x], [U @ indG,H(y)] =
∑

V≤HH:V=GU

[V @ y],

[W @defG,G(x)] =
∑

U≤GG:U=GW

[U @ x], [U @ infG,G(z)] = bN ≤ Uc [U @ z].

where y ∈ RB(H) and z ∈ RB(G). We mention that the deflation map defG,G arises from the deflation functor which sends a
G-set X to the G-set of N-orbits N\X .
The latest ten equations are the square-coordinate equations for the elemental maps on RB. Of course, there are really

only five separate equalities here, each of them having been expressed in two different ways, as an action on basis elements
and as an action on coordinates.We have recorded all of these equations because of the patterns that become apparentwhen
comparing with the ten square-coordinate equations for the elemental maps on RB∗, which we shall record in a moment.
For a reason which will become clear in Section 10, we write the induction and deflation maps on RB∗ as jndG,H and

jefG,G. The action of a biset on a biset functor and the action of the opposite biset on the dual biset functor are related by
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transposition; with respect to dual bases, the two matrices representing the two actions are the transposes of each other.
So, in square coordinates, the matrices representing resH,G, jndG,H , jefG,G, infG,G, iso

φ

G,F on B
∗ are, respectively, the transposes

of the matrices representing indG,H , resH,G, infG,G, defG,G, iso
φ−1

F ,G on B. We hence obtain another five pairs of equations,

isoφF ,G(δ
G
U) = δ

F
φ(U), [isoφF ,G(ξ)@φ(U)] = [ξ @U],

resH,G(δGU) =
∑

V≤HH:V=GU

δGV , [resH,G(ξ)@ V ] = [ξ @ V ],

jndG,H(δ
G
V ) =

∑
U≤GG,HgU⊆G:V=HH∩gU

δGU , [jndG,H(η)@U] =
∑
HgU⊆G

[η@H ∩ gU],

jefG,G(δ
G
U) = bN ≤ Uc δ

G
U , [jefG,G(ξ)@W ] = [ξ @W ],

infG,G(δ
G
W ) =

∑
U≤GG:U=GW

δGU , [infG,G(ζ )@U] = [ζ @U].

Here, ξ ∈ B∗(G) and η ∈ B∗(H) and ζ ∈ B∗(G).
For a characteristic-zero field K, the K-representation functor AK coincides with the K-character functor. Its coordinate

module AK(G) is the K-representation ring of G, which coincides with the K-character ring; we mean to say, the ring of
characters of KG-modules. We shall neglect to distinguish between a KG-character χ and the isomorphism class [M] of a
KG-moduleM affording χ . EveryKG-character is aCG-character, so AK(G) is a subring of AC(G). Wewrite the inner product
on CAC(G) as

〈– | –〉A : CAC(G)× CAC(G)→ C.
By restriction, we can regard 〈– | –〉A as a bilinear form on the real vector space RAR(G) or on the rational vector space
QAQ(G).
The induction, restriction and inflationmaps on AK are familiar to everyone and need no introduction. The isogationmap

comes from transport of structure in the evident way. In module-theoretic terms, deflation is given by defG,G[M] = [M
N
]

where theKG-moduleMN is theN-fixed subspace ofM .Wemention that, asKG-modules,MN is isomorphic to theN-cofixed
quotient space ofM . In character-theoretic terms, defG,G(χ) = χ

N where χN(gN) is the average value of χ(f ) as f runs over
the elements of the coset gN ⊆ G.
We can now start to discuss the morphisms. The linearizationmap linK,G : B(G)→ AK(G) is given by linK,G[X] = [KX],

where X is a G-set. The lifted tom Dieck map dieK,G : AK(G)→ B∗(G) is defined by

[dieK,G[M]@U] = dimK(MU)
for aKG-moduleM . The dimension ofMU is the multiplicity of the trivialKG-module in resU,G(M). So, letting 1U denote the
trivial K-character of U , the defining formula for dieK,G can be rewritten as

[dieK,G(χ)@U] = 〈1U | resU,G(χ)〉A =
1
|U|

∑
g∈U

χ(g)

for a KG-character χ . Since linK,G and dieK,G are just restrictions of linC,G and dieC,G, we can sometimes write linG and dieG
without ambiguity. The exponential map expG : B(G)→ B∗(G), already defined in Section 2, is given by

[expG[X]@U] = |U\X |
where U\X denotes the set of U-orbits in X . Plainly, expG = dieG ◦ linG.
The main content of the following result is the morphism property of dieK, which was established by Bouc–Yalçın

[11, page 828]. Let us give a different proof.
Proposition 4.1 (Bouc–Yalçın). The linearization map linK,G, the lifted tom Dieck map dieK,G and the lifted exponential map
expG give rise to morphisms of biset functors linK : B→ AK and dieK : AK → B∗ and exp : B→ B∗.
Proof. We must show that the three named maps commute with the five elemental maps. For linG, this commutativity
property is easy and very well-known. Since expG = dieG ◦ linG, it suffices to deal with dieK,G. For dieK,G, the commutativity
with restriction, inflation and isogation is obvious. The commutativity with deflation is easy. By Mackey Decomposition,
Frobenius Reciprocity and the square-coordinate equation for induction on B∗, we have

[dieK,G(indG,H(ψ))@U] = 〈1U | resU,G(indG,H(ψ))〉A =
∑
UgH⊆G

〈1U∩gH | resU∩gH,gH(gψ)〉A

=

∑
HgU⊆G

〈1H∩gU | resH∩gU,H(ψ)〉A =
∑
HgU⊆G

[dieK,H(ψ)@H ∩ gU] = [jndG,H(dieK,H(ψ))@U]

for a KH-character ψ . Therefore dieK,G ◦ indG,H = jndG,H ◦ dieK,H . �
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The morphisms linK and dieK and exp() are called the linearization morphism, the lifted tom Dieck morphism, the
exponential morphism. Again, we may sometimes drop the subscript K. Obviously, exp = die ◦ lin.
The biset functor K = Ker(linK) is independent of K. Its coordinate module K(G) consists of those elements of B(G)

that can be written in the form [X] − [X ′] where X and X ′ are G-sets satisfying the condition KX ∼= KX ′, or equivalently,
CX ∼= CX ′. As in Section 2, we define the Tornehave map tornπG : K(G)→ B∗(G) to be the restriction of the Z-linear map
t̃ornπG : B(G)→ B∗(G) such that, given a G-set X , then

[t̃ornπG [X]@U] =
∑

U∈U\X

logπ |U|.

We point out that the defining formulas for the exponential map and the Tornehave map differ only in the weighting
assigned to each U-orbit U. As a formal device, one could understand log0 to have constant value 1, and then one could
write expG = t̃orn

0
G.

Lemma 4.2. The maps t̃ornπG commute with restriction, inflation and isogation.

Proof. Given an G-set X , then the U-orbits of X can be identified with the U-orbits of the G-set inflated from X . So the
square-coordinate equation for inflation on B∗ yields

[t̃ornπG (infG,G[X])@U] =
∑

U∈U\X

logπ |U| = [t̃orn
π

G [X]@U] = [infG,G(t̃orn
π

G [X])@U].

The commutativity with restriction and isogation is even easier. �

Theorem 4.3. The Tornehave map tornπG gives rise to an inflaky morphism torn
π
: K → B∗.

Proof. Consider an element κ ∈ K(H), and write κ = [Y ] − [Y ′] where Y and Y ′ are H-sets satisfying CY ∼= CY ′. Given
g ∈ G, and writing H(g) = H ∩ gU , we have |H(g)\Y | = 〈1H(g) | resH(g),G[CY ]〉A. So the integer

∆(H,U, g, Y ) = |H(g)\Y | logπ |
gU : H(g)|

depends only on H , U , g and [CY ]. That is to say,∆(H,U, g, Y ) = ∆(H,U, g, Y ′). We have

resU,G(indG,H [Y ]) =
∑

UgH⊆G,V∈(U∩gH)\gY

indU,U∩gH [V].

Since the maps t̃ornπG commute with restriction,

[t̃ornπG (indG,H [Y ])@U] = [resU,G(t̃orn
π

G (indG,H [Y ]))@U]

=

∑
UgH,V

logπ (|U : U ∩
gH|.|V|) =

∑
HgU⊆G,U∈H(g)\Y

logπ (|
gU : H(g)|.|U|).

On the other hand, using a square-coordinate equation again,

[jndG,H(t̃orn
π

H [Y ])@U] =
∑
HgU

[t̃ornπH [Y ]@H(g)] =
∑
HgU,U

logπ |U|.

It follows that

[t̃ornπG (indG,H [Y ])− jndG,H(t̃orn
π

H [Y ])@U] =
∑
HgU,U

logπ |
gU : H(g)| =

∑
HgU

∆(H,U, g, Y ).

Regrettably, since the terms∆(H,U, g, Y ) are non-negative and sometimes positive, the maps t̃ornπG do not commute with
induction. However,

[tornπG (indG,H(κ))− jndG,H(torn
π
H(κ))@U] =

∑
HgU

(∆(H,U, g, Y )−∆(H,U, g, Y ′)) = 0

so the maps tornπG do commute with induction. �

We shall end by giving an example to show that tornπ is not a deflaky functor, except in the trivial case π = ∅. First, we
need a preliminary remark.

Remark 4.4. If U is cyclic, then [tornπG (ξ)@U] = 0 for all ξ ∈ K(G).

Proof. We have [tornπG (ξ)@U] = [resU,G(torn
π
G (ξ))@U] = [torn

π
U (resU,G(ξ))@U]. But K(U) = 0, hence resU,G(ξ)

= 0. �

Example 4.5. Suppose that G = C2p , the elementary abelian p-group with rank 2. Let A0, . . . , Ap be the subgroups of Gwith
order p. Let κ2 = dG1 − d

G
A0
− · · · − dGAp + p d

G
G and δ2 = δGG . Then K(G) is the free cyclic Z-module generated by κ2, and

tornpG(κ2) = (1− p)δ2.
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Proof. The equality K(G) = Zκ2 appears in Bouc [7, 6.5], and it can also be obtained very easily by examining the action of
linG on the elements of the square basis of B(G). If U < G, then U is cyclic and, by the latest remark, [torn

p
G(κ2)@U] = 0.

Therefore tornpG(κ2) = [torn
p
G(κ2)@G] d

G
G. The transitive G-sets G/1, G/A0, . . ., G/Ap, G/G have sizes p

2, p, . . ., p, 1,
respectively. So [tornpG(κ2)@G] = logp(p

2)− (p+ 1) logp(p)+ p logp(1) = 1− p. �

Corollary 4.6. If π 6= ∅, then the inflaky morphism tornπG is not a deflaky morphism.

Proof. Choosing p ∈ π and putting G = C2p , we have torn
π
G = torn

p
G and jef1,G(torn

π
G (κ2)) = (1 − p)δ11 6= 0, whereas

def1,G(κ2) = 0 and tornπ1 (def1,G(κ2)) = 0. �

5. The uniqueness theorems

In this section, we state five uniqueness theorems, and we give an entirely structuralistic proof (‘‘conceptual’’, in the
vernacular) for one of them, Theorem 5.1. The other four, Theorems 5.3, 5.4, 5.6, 5.7, will be proved in Sections 6 and 8
using techniques that are more formulaic (we mean, with an emphasis on designing notation that facilitates argument by
manipulation of symbols).

Theorem 5.1 (Uniqueness of exp() as an Inflaky Morphism). Let θ be an inflaky morphism B → B∗. Then θ is a morphism of
biset functors. In fact, θ is a Z-multiple of exp(). Furthermore, exp() is the unique inflaky morphism B → B∗ whose coordinate
map from B(1) = Zd11 to B

∗(1) = Zδ11 is given by d
1
1 7→ δ11 .

Before proving this theorem, let us make some general comments. Recall that, over a field F, the simple biset functors
SL,V are parameterized by the pairs (L, V ) where L is the minimal group such that SL,V (L) 6= 0 and V is the simple FOut(L)-
module, unique up to isomorphism, such that SL,V (L) ∼= V . The simple inflaky functors S infL,V , the simple deflaky functors
SdefL,V and the simple Mackey functors S

mac
L,V are parameterized in the same way. Yaraneri [17, 3.10] has shown that, if F has

characteristic zero, then the simple inflaky functors and the simple deflaky functors restrict to the simple Mackey functors
and, as Mackey functors, S infL,V ∼= S

mac
L,V
∼= SdefL,V .

Directly from the definitions of duality for biset functors and for group algebras (mutually opposite elements act as
mutually transpose maps), it is easy to show that (SL,V )∗ ∼= SL,V∗ . Evaluation at L yields a ring isomorphism End(SL,V ) →
End(V ). (The injectivity follows from the simplicity of SL,V . The surjectivity holds because, by transport of structure, any
FOut(L)-isomorphism V → V ′ extends to an isomorphism SL,V → SL,V ′ .) Similar observations hold for the endomorphism
algebras of the simple inflaky, simple deflaky and simple Mackey morphisms.
One more general comment is needed before we can prove the theorem. The following proposition has been known to

experts for a long time. A proof for RB as a biset functor can be found in [1, 2.6], and a similar argument applies to RB as an
inflaky functor. We mention that the inflaky functor case is also implicit in the proof of Yaraneri [17, 3.9].

Proposition 5.2. As an inflaky functor and also as a biset functor, RB is projective. If R is a field, then the biset functor RB is the
projective cover of S1,R and the inflation functor RB is the projective cover of S inf1,R.

We can now prove Theorem 5.1. Throughout the argument, we regardQB andQB∗ as inflation functors. SinceQB(1) and
QB∗(1) are 1-dimensional, S inf1,Q occurs exactly once as a composition factor ofQB and exactly once as a composition factor of
QB∗. The latest proposition implies that, as hom-sets in the category of inflaky functors overQ, we have Morinf(QB,QB∗) ∼=
Endinf(S inf1,Q) ∼= Q. Hence Morinf(B, B∗) ∼= Z. Finally, θ(d11) = λδ11 for some λ ∈ Z. If θ = exp, then λ = 1. So, in general,
θ = λ exp. The proof of Theorem 5.1 is complete.
The proof of the following theorem, presented at the end of Section 6, will require somework using the round coordinate

systems.

Theorem 5.3 (Uniqueness of exp() as a Deflaky Morphism). Let D be a deflaky subfunctor of B. Then every deflaky morphism
D → B∗ is a Q-multiple of the restriction of exp(). Furthermore, exp() is the unique deflaky morphism B → B∗ such that
d11 7→ δ11 .

The next theorem, an analogue of Theorem 5.1, will be proved in Section 8.

Theorem 5.4 (Uniqueness of tornp as an Inflaky Morphism). For finite p-groups, the inflaky morphisms pK → pB∗ are precisely
the Z-multiples of tornp/(1 − p). Furthermore, tornp is the unique inflaky morphism pK → pB∗ such that, in the notation of
Example 4.5, tornp

C2p
(κ2) = (1− p) δ2.

Since tornp is not a deflaky morphism, there can be no direct analogue of Theorem 5.3 for tornp. However, as we shall
see below, we can obtain a morphism of biset functors from tornp by replacing the codomain pB∗ with a suitable quotient
p-biset functor. To introduce that quotient functor, we first need to review some results of Bouc concerning the structure of
the p-biset functor pB.
When G is a finite p-group, we define the pure Z-sublattice A∗Q(G) ≤ B

∗(G) to be the annihilator of the pure Z-sublattice
K(G) ≤ B(G) under the duality 〈– | –〉 : B∗(G) × B(G) → Z. In this way, we obtain a p-biset subfunctor pA∗Q ≤ pB∗ and
we can form the quotient p-biset functor pK ∗ = pB∗/pA∗Q. The Ritter–Segal Theorem, recall, asserts that lin : pB → pA∗Q is
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an epimorphism. The dual of the inclusion pK ↪→ pB is the canonical epimorphism π∗ : pB∗ → pK ∗. Thus, we have two
mutually dual short exact sequences of p-biset functors

Lin : 0 −→ pK ↪→ pB
lin
−→ pAQ −→ 0, Lin∗ : 0 −→ pA∗Q

lin∗
−→ pB∗

π∗

−→ pK ∗ −→ 0.

We mention that the sequence Lin∗ appears in Bouc [6, 1.8], where K ∗ is identified with DΩ/DΩtors; for the notation, see
Section 9. That paper gives a reference for Bouc’s treatment of the Ritter–Segal Theorem in the context of p-biset functors.
As a special case of Bouc–Thévenaz [10, 8.2, 8.3], we have isomorphisms of p-biset functors pQAQ ∼= pQA∗Q ∼= S1,Q and
pQK ∼= pQK ∗ ∼= SC2p ,Q. So, extending to coefficients in Q, we obtain the short exact sequences

QLin : 0→ SC2p ,Q → pQB→ S1,Q → 0, QLin∗ : 0→ S1,Q → pQB∗ → SC2p ,Q → 0.

Proposition 5.5. The morphisms of biset functors pK → pK ∗ are precisely the Z-multiplies of π∗ ◦ tornp/(1− p). Furthermore,
the element δ2 = π∗C2p

(δ2) is a generator for the cyclicZ-module K ∗(C2p ), andπ
∗
◦ tornp/(1−p) is the uniquemorphism of p-biset

functors pK → pK ∗ such that π∗C2p
(tornp

C2p
(κ2)) = δ2.

Proof. We have Morbis(pQK , pQK ∗) ∼= Endbis(SC2p ,Q, SC2p ,Q)
∼= Q as hom-sets in the category of p-biset functors over Q.

Hence Morbis(pK , pK ∗) ∼= Z. By Theorem 5.4, π∗ ◦ tornp/(1 − p) ∈ Morbis(pK , pK ∗). By Example 4.5, π∗G (torn
p
G(κ2)) =

(1−p)δ2. Plainly, δ2 generates the cyclic Z-module K ∗(C2p ). But, as we saw in Example 4.5, κ2 generates the cyclic Z-module
K(C2p ). So π

∗
◦ tornp/(1− p) generates the cyclic Z-module Morbis(pK , pK ∗). �

The latest proposition is a uniqueness property of π∗ ◦ tornp as amorphism of biset functors. In Section 8, we shall obtain
the following two stronger results.

Theorem 5.6 (Uniqueness of π∗ ◦ tornp as an Inflaky Morphism). Every inflaky morphism pK → pK ∗ is a morphism of p-biset
functors. Perforce, the inflaky morphisms pK → pK ∗ are precisely the Z-multiplies of π∗ ◦ tornp/(1 − p). Moreover,
π∗ ◦ tornp/(1− p) is the unique inflaky morphism pK → pK ∗ such that κ2 7→ δ2.

Theorem 5.7 (Uniqueness of π∗ ◦ tornp as a Deflaky Morphism). Let D be a deflaky subfunctor of pK . Then every deflaky
morphism D→ pK ∗ is the restriction of aQ-multiple of π∗ ◦ tornp. Moreover, π∗ ◦ tornp/(1−p) is the unique deflaky morphism
pK → pK ∗ such that κ2 7→ δ2.

Also in Section 8, we shall prove the following remark, which provides an explanation as to why there does not exist a
non-zero deflaky morphism with the same domain and codomain as tornp.

Remark 5.8. The short exact sequence QLin splits as a sequence of deflaky morphisms but not as a sequence of inflaky
morphisms. Equivalently, the dual sequence QLin∗ splits as inflaky morphisms but not as deflaky morphisms.

6. Round coordinates and diagonal invariants

We shall examine theMackeymorphisms having the form θ : M → QB∗whereM ≤ QB. Corollary 6.5 describes how the
pairs (M, θ) are parameterized by the pairs (L,Θ)whereL is a set of isomorphism classes of finite groups andΘ : L→ Q
is a function. We shall give criteria, in terms ofL, forM to be an inflaky subfunctor and forM to be a deflaky subfunctor. We
shall also give conditions, in terms of (L,Θ), for θ to be an inflaky morphism and for θ to be a deflaky morphism. Towards
the end of this section, we shall prove Theorem 5.3. All the material in this section generalizes easily to the case where Q is
replaced by an arbitrary field with characteristic zero.
The round basis {eGI : I ≤G G} for QB(G) and the round basis {εGI : I ≤ G} for QB∗(G) were introduced in Section 3. The

two bases are mutually dual in the sense that

〈εGI @ e
G
I ′〉 = bI =G I

′
c.

Given ξ ∈ QB∗(G) and x ∈ QB(G), then

ξ =
∑
I≤GG

(ξ @ I) εGI , x =
∑
I≤GG

(I @ x) eGI

where (ξ @ I) = 〈ξ @ eGI 〉 and (I @ x) = 〈ε
G
I @ x〉. We call (ξ @ I) and (I @ x) the round coordinates of ξ and x.

Recall that the transformation matrix from the round to the square coordinates of QB(G) is the table of marks, whose
(I,U)-entry is

mG(I,U) = 〈εGI @ d
G
U 〉 = |{gU ⊆ G : IgU = gU}|.

Gluck’s Idempotent Formula [13] expresses the (U, I)-entry of the inverse matrix as

m−1G (U, I) = 〈δ
G
U @ e

G
I 〉 =

|U|
|NG(I)|

∑
U ′=GU

µ(U ′, I)
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where the sum is over the subgroups U ′ that are G-conjugate to U , and µ denotes the Möbius function for the poset of
subgroups of G. The defining equations formG(I,U) andm−1G (U, I) can be rewritten as

dGU =
∑
I≤GG

mG(I,U) eGI , εGI =
∑
U≤GG

mG(I,U) δGU ,

eGI =
∑
U≤GG

m−1G (U, I) d
G
U , δGU =

∑
U≤GG

m−1G (U, I) ε
G
I .

The round coordinate equations for the elemental maps onQBwere given by Bouc [4, Section 7]. They were reviewed in
Bouc–Thévenaz [10, Section 8], but let us review them again, with a different notation. The deflation numbers β(G,G)were
defined in Section 3. We write βG(G,G) = β(G,G) and, more generally,

βG(I, I) =
|NG(I) : I|
|NG(I) : I|

β(I, I).

The actions of the elemental maps are such that, for x ∈ QB(G) and y ∈ QB(H) and z ∈ QB(G), we have

resH,G(eGI ) =
∑

J≤HH:J=GI

eHJ , (J @ resH,G(x)) = (J @ x),

indG,H(eHJ ) =
|NG(J)|
|NH(J)|

eGJ , (I @ indG,H(y)) =
∑

J≤HH:J=GI

|NG(J)|
|NH(J)|

(J @ y).

defG,G(e
G
I ) = βG(I, I) e

G
I , (K @defG,G(x)) =

∑
I≤GG:I=GK

βG(I, I) (I @ x),

infG,G(e
G
K ) =

∑
I≤GG:I=GK

eGI , (I @ infG,G(z)) = (I @ z),

isoφF ,G(e
G
I ) = e

F
φ(I), (φ(I)@ isoφF ,G(x)) = (I @ x).

Dualizing by transposing the five matrices, we obtain the round-coordinate equations for the actions of the elemental maps
on QB∗. Thus, for ξ ∈ QB∗(G) and η ∈ QB∗(H) and ζ ∈ QB∗(G), we have

resH,G(εGI ) =
∑

J≤H:J=GI

|NG(J)|
|NH(J)|

εHJ , (resH,G(ξ)@ J) =
|NG(J)|
|NH(J)|

(ξ @ J),

jndG,H(ε
H
J ) = ε

G
J , (jndG,H(η)@ I) =

∑
J≤HH:J=GI

(η@ J).

jefG,G(ε
G
I ) = ε

G
I , (jefG,G(ξ)@ K) =

∑
I≤GG:I=GK

(ξ @ I),

infG,G(ε
G
K ) =

∑
I≤GG:I=GK

βG(I, I) εGI , (infG,G(ζ )@ I) = βG(I, I) (ζ @ I),

isoφF ,G(ε
G
I ) = ε

F
φ(I), (isoφF ,G(ξ)@φ(I)) = (ξ @ I).

Using the equality mG(G,U) = bG= Uc together with the square coordinate formula for induction on QB∗, we obtain
the following lemma.

Lemma 6.1. We have εGG = δ
G
G and, more generally, ε

G
I = jndG,I(ε

I
I ) = jndG,I(δ

I
I ).

Let us introduce a set X of isomorphism classes of finite groups such that X is closed under subquotients. Abusing
notation, we write G ∈ X to mean that the isomorphism class of G belongs toX, and we write

⊕
G∈X to indicate a direct

sumwhereG runs over representatives of the isomorphism classes inX. Equallywell, we could understandX to be a class of
finite groups that is closed under isomorphism and subquotients, in which case we would have to understand the notation
L ⊆ X to imply that L is a subclass ofX that is closed under isomorphism. We write QBX and (QB∗)X to denote QB and
QB∗ regarded as functors whose coordinate modules are defined for groups inX.
As in Section 5, we write the simple Mackey functors in the form SmacL,V . The following lemma is clear from the round-

coordinate equations for induction, restriction and isogation.

Lemma 6.2. As Mackey functors, QBX ∼=
⊕
L∈X S

mac
L,Q
∼= (QB∗)X. The copy of SmacL,Q in QB is such that, for each G ∈ X, the

Q-vector space SmacL,Q (G) has aQ-basis consisting of those primitive idempotents eGI which satisfy I ∼= L. The copy of S
mac
L,Q inQB∗ is

characterized similarly, with εGI in place of e
G
I .

The next result follows immediately.
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Proposition 6.3. There is a bijective correspondence M ↔ L between the Mackey subfunctors M of QBX and the subsets
L ⊆ X. The correspondence is characterized by the condition that M ∼=

⊕
L∈L S

mac
L,Q . This is equivalent to the condition that,

for all I ≤ G ∈ X, we have eGI ∈ M(G) if and only if I ∈ L. Similar assertions hold for QB∗.

Proposition 6.4. Let M ↔ L as above. Then there is a bijective correspondence θ ↔ Θ between the Mackey morphisms
θ : M → (QB∗)X and the functionsΘ : L→ Q. The correspondence is characterized by the condition that θI(eII) = Θ(I) ε

I
I for

all I ∈ L. When that condition holds, θ determines Θ via the equality Θ(I) = (θI(eII)@ I) = [θI(e
I
I)@ I] with I ∈ L, while Θ

determines θ via the equality

θG(eGI ) =
Θ(I)
|NG(I) : I|

εGI .

Proof. For I ∈ L, the copy of SmacI,Q inQB is such that SmacI,Q (I) = QeII , while the copy of S
mac
I,Q inQB∗ is such that SmacI,Q (I) = Qε II .

So, given θ , then there exists an elementΘ(I) ∈ Q such that θI(eII) = Θ(I) ε
I
I . ThenΘ(I) = (θI(e

I
I)@ I) and, using Lemma6.1,

Θ(I) = [θI(eII)@ I]. The round coordinate formula for induction now yields the formula for θG(e
G
I ). �

The latest two results together give a classification of the pairs (M, θ).

Corollary 6.5. Consider the pairs (M, θ)where M is a Mackey subfunctor ofQBX and θ : M → (QB∗)X is a Mackey morphism.
Also consider the pairs (L,Θ) where L ⊆ X and Θ is a function L → Q. These two kinds of pairs are in a bijective
correspondence (M, θ)↔ (L,Θ) whereby M ↔ L and θ ↔ Θ as above.

The benefit of the round coordinate system is now clear: under its auspices, the Mackey morphisms in question are
represented by diagonal matrices. To choose a Mackey morphism θ , there is no constraint on the choices of the diagonal
entriesΘ(I) at the I-th coordinates ofQB(I) andQB∗(I). Those diagonal entries then determine all the other diagonal entries.
We callΘ the diagonal invariant of θ .
The next two results characterize the inflaky subfunctorsM ≤ QB and the inflaky morphisms θ : M → QB∗.

Proposition 6.6. Let M ↔ L as above. Then M is an inflaky subfunctor of QB if and only if G ∈ L whenever G ∈ L.

Proof. Suppose that G ∈ L andM is an inflaky functor. Then eG
G
∈ M(G) and infG,G(e

G
G
) ∈ M(G). But infG,G(e

G
G
) = eGG+

∑
I e
G
I

where I runs over representatives of the G-conjugacy classes of strict subgroups I < G such that I = G. By an inductive
argument on |G|, we may assume that each I ∈ L, in other words, each eGI ∈ M(G). We deduce that e

G
G ∈ M(G), in other

words, G ∈ L. The converse is obtained similarly using the formula for infG,G(e
G
K
). �

Theorem 6.7. Let (M, θ) ↔ (L,Θ) as above. Suppose that M is an inflaky subfunctor of QB. Then θ is an inflaky morphism if
and only ifΘ(G) = Θ(G) β(G,G) whenever G ∈ L.

Proof. The assertion makes sense because, by the previous proposition, the condition G ∈ L implies that G ∈ L, hence
Θ(G) is defined. By direct calculation,

infG,G(θ(e
G
K )) =

θ(K)

|NG(K) : K |

∑
I≤GG:I=GK

βG(I, I) εGI ,

θ(infG,G(e
G
K )) =

∑
I≤GG:I=GK

Θ(I)
|NG(I) : I|

εGI .

Again, the previous proposition guarantees that, for each index I in the sums, I ∈ L and Θ(I) is defined. Comparing
coefficients, we find that θ commutes with inflation if and only if

Θ(I)
|NG(I) : I|

=
Θ(I)

|NG(I) : I|
βG(I, I)

whenever I ∈ L (and perforce I ∈ L). From the definition of βG(I, I), the latest equation can be rewritten as Θ(I) =
Θ(I) β(I, I). Replacing I with G, the required conclusion follows. �

The deflaky subfunctors M ≤ QB and the deflaky morphisms θ : M → QB∗ are a little harder to characterize. We first
need to recall some material from Bouc [4, 7.2.3]. Let us call G a base group (in Bouc’s terminology, a b-group) provided
β(G,G) = 0 whenever N 6= 1. The following result is Bouc [4, Proposition 9, Lemme 18].

Theorem 6.8 (Bouc). There exists a base group base(G), unique up to isomorphism, with the universal property that any base
group isomorphic to a quotient of G is also isomorphic to a quotient of base(G). Furthermore, the following three conditions are
equivalent:
(a) G is isomorphic to a quotient of base(G),
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(b) base(G) ∼= base(G),
(c) β(G,G) 6= 0.

The main significance of the notion of a base group lies in the next result, Bouc [4, Propositions 10, 12].

Theorem 6.9 (Bouc). RegardingQBX as a biset functor, its simple composition factors are those having the form SL,Q, where L is
a base group inX. Each simple composition factor occurs only once.

Now we can characterize the deflaky subfunctors of QB.

Proposition 6.10. Let M ↔ L as above. Then M is a deflaky subfunctor of QB if and only if G ∈ L whenever G ∈ L and the
three equivalent conditions in Theorem 6.8 hold.

Proof. The argument is fairly similar to the proof of Proposition 6.6. Supposing thatM is a deflaky subfunctor, thatG ∈ L and
that β(G,G) 6= 0, then defG,G(e

G
G) 6= 0 hence G ∈ L. The converse is obtained by considering the formula for defG,G(e

G
I ). �

Wemention that Propositions 6.6 and 6.10 together recover the following result of Bouc [4, 7.2.4].

Corollary 6.11 (Bouc). Let M ↔ L as above. Then M is a biset subfunctor of QBX if and only if, for all L ∈ L and G ∈ X such
that base(L) is isomorphic to a quotient of base(G), we have G ∈ L.

For deflaky functors, we have the following analogue of Theorem 6.7.

Lemma 6.12. Let (M, θ) ↔ (L,Θ) as above. Suppose that M is a deflaky subfunctor of QB. Then θ is an deflaky morphism if
and only if, for all G ∈ L and N E G, we haveΘ(G) = Θ(G) β(G,G) if G ∈ L, whileΘ(G) = 0 otherwise.

Proof. If I ∈ L, then

jefG,G(θ(e
G
I )) =

Θ(I)
|NG(I) : I|

εGI , θ(def(eGI )) =
Θ(I)

|NG(I) : I|
βG(I, I) εGI .

The second equationmakes sense even though the condition I ∈ L does not imply that I ∈ L. Indeed, the latest proposition
guarantees that, if I 6∈ L, then βG(I, I) = 0 and, in that case, we can understand thatΘ(I) βG(I, I) = 0 even thoughΘ(I) is
undefined. Comparing coefficients, we find that θ commuteswith deflation if and only ifΘ(I) = Θ(I) β(I, I), understanding
thatΘ(I) = 0 when I 6∈ L. �

Comparing Lemma 6.12with Theorem 6.7, we observe that the inflakymorphismsM → QB∗ and the deflakymorphisms
M → QB∗ are characterized by the same formula, the two criteria apparently differing only slightly. The next result reveals,
however, that the criterion expressed in Lemma 6.12 is quite strong.

Theorem 6.13. Let (M, θ) ↔ (L,Θ) as above. Suppose that M is a deflaky subfunctor of QB and θ is a non-zero deflaky
morphism. Then 1 ∈ L and θ is the restriction ofΘ(1) exp to M.

Proof. By the latest lemma, Θ(G) = Θ(1) β(1,G) for all G ∈ L, understanding that Θ(G) = 0 when 1 6∈ L. But θ is non-
zero, so we must have 1 ∈ L. LettingΘexp : X→ Q be the diagonal invariant for exp(), it is easy to see thatΘexp(1) = 1.
SoΘexp(G) = β(1,G) andΘ(G) = Θ(1)Θexp(G). �

We have now proved Theorem 5.3. Indeed, it is clear that Theorems 5.3 and 6.13 are equivalent to each other.
The following recapitulation of Example 4.5 will be of use to us in Section 8.

Example 6.14. Supposing that G = C2p then, in the notation of Example 4.5, κ2 = p eGG and δ2 = δGG = εGG , hence
p.tornpG(e

G
G) = (1− p) δ

G
G = (1− p) ε

G
G .

7. The diagonal invariant for exp()

Having introduced the notion of a diagonal invariant in the previous section, we shall determine the diagonal invariant
Θexp : X→ Q for the lifted exponential morphism exp : QB→ QB∗. That will yield a formula for exp(). We shall also note
some similar formulas for the morphisms lin() and die(). Some of the material in this section will be used in later sections,
but not in a very crucial way. After all, we have already established both of the uniqueness theorems for exp() that were
stated in Section 5. Largely, this section will serve as a warm-up for the treatment of the morphism tornp in Section 8.
We say that elements g, g ′ ∈ G are QG-conjugate, and we write g =QG g ′, provided the cyclic groups that they

generate, 〈g〉 and 〈g ′〉, are G-conjugate. We let eGg denote the element of QAQ(G) such that, regarding eGg as a character,
eGg (g

′) = bg =QG g ′c. We have the following obvious analogue of Remark 3.1.

Remark 7.1. Letting g run over representatives of theQG-conjugacy classes inG, then the elements eGg run over the primitive
idempotents of QAQ(G)without repetitions, furthermore, QAQ(G) =

⊕
g QeGg as a direct sum of algebras QeGg ∼= Q. Given a

QG-character χ , then χ =
∑
g χ(g) e

G
g . In particular, the set of primitive idempotents is a Q-basis for QAQ(G).

Remark 7.2 (Diagonal Formula for the Linearization Map). If I is non-cyclic then linG(eGI ) = 0, while if I is cyclic with
generator g , then linG(eGI ) = e

I
g .
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Proof. The permutation character χ = [QX] associated with a G-set X is given by χ(g) = |X 〈g〉| = εG
〈g〉[X]. �

Recall that, for a positive integer n, the classical Euler function φ(n) is given by
φ(n)/n =

∑
d

µ(d)/d =
∏
p

(1− 1/p)

whereµ is the classical Möbius function and d runs over the divisors of n, while p runs over the prime divisors of n. Defining
φ(G) = |{g ∈ G : 〈g〉 = G}|, then φ(G) 6= 0 if and only if G is cyclic, in which case, φ(G) = φ(|G|).
Proposition 7.3 (Diagonal Formula for the Exponential Map). We have

Θexp(G) = β(1,G) = φ(G)/|G|, exp(eGI ) =
φ(I)
|NG(I)|

εGI .

Proof. The equalityΘexp(G) = β(1,G)was established in the proof of Theorem 6.13. Gluck’s Idempotent Formula and the
defining formula for the deflation numbers have the special cases

eGG =
1
|G|

∑
U≤G

|U|µ(U,G) dGU , β(1,G) =
1
|G|

∑
U≤G

|U|µ(U,G).

Comparing the two formulas, we find that β(1,G) = 〈1G | linG(eGG)〉
A. If G is non-cyclic, then linG(eGG) = 0, hence β(1,G) =

0 = φ(G)/|G|. If G is cyclic, then µ(U,G) = µ(|G : U|), whence the above Möbius inversion formula for φ(n) yields, again,
β(1,G) = φ(G)/|G|. Proposition 6.4 now surrenders the asserted formula for exp(eGI ). �

Proposition 7.4 (Diagonal Formula for the tom Dieck Map). Given an RG-character χ , then dieG(χ) =
1
|G|

∑
g∈G

χ(g) εG
〈g〉. In

particular, dieG(eGg ) =
φ(〈g〉)
|NG(〈g〉)|

εG
〈g〉.

Proof. The first asserted equality holds because

[dieG(χ)@U] =
1
|U|

∑
g∈U

χ(g) =
1
|G|.|U|

∑
g∈G

χ(G) |{x ∈ G : xg ∈ U}|

=
1
|G|

∑
g∈G

χ(g)mG(〈g〉,U) =
1
|G|

∑
g∈G

χ(g) [εG
〈g〉 @U].

The rider holds because the number of QG-conjugates of g is φ(〈g〉) |G : NG(〈g〉)|. Alternatively, since exp = die ◦ lin, the
rider follows from Remark 7.2 and Proposition 7.3. �
Let us end this section with one last comment concerning our coordinate systems. Out of technical need, we introduced

square and round coordinate systems for QB and QB∗. There is no such need as regards AK(G), so we have refrained from
setting up a systematic notation for the evident square bases Irr(KG) and the round basis {eKGg : g ∈KG G}, where g runs
over the KG-conjugacy classes of g in the sense of Berman–Witt Theorem, and eKGg is the unique primitive idempotent of
KAK(G) such that eKGg (g) = 1. Remark 7.2 and Propositions 7.3 and 7.4 tell us that, putting K = Q then, with respect to the
round coordinates, all three maps in the commutative triangle expG = dieG ◦ linG are represented by diagonal matrices. Of
course, with KAK(G) instead of QB(G), the transformation matrix from square to round coordinates is the transpose of the
K-character table instead of the table of marks.WhenK = C and G is cyclic with order n, these round and square coordinate
systems are very closely related to the canonical pairs (p, q) that appear in discrete quantum systems with n sample points;
the character table, as a transformation matrix, is precisely the discrete Fourier transform matrix. The connection with
canonical pairs becomes even more striking when we replace QB(G)with the C-monomial Burnside algebra over C, which
has a C-basis indexed by the G-conjugacy classes of irreducible complex characters of cyclic subquotients of G.

8. The diagonal invariant for tornp

At this point, four of the results stated in Section 5 remain to be established: Theorems 5.4, 5.6, 5.7 and Remark 5.8. We
shall supply their proofs in this section. We shall be needing a formula, in Proposition 8.3, for the diagonal invariantΘπ for
tornp.
The biset subfunctor QK of QB is easy to describe in terms of the round coordinate system. Indeed, Remark 7.2

immediately yields the following well-known observation.
Remark 8.1. Letting I run over representatives of the conjugacy classes of non-cyclic subgroups of G, then the primitive
idempotents eGI run, without repetitions, over the elements of a Q-basis for QK(G).
LetXp denote the set of isomorphism classes of finite p-groups, and letLp denote the set of isomorphism classes of non-

cyclic finite p-groups. The latest remark tells us that, in the sense of Proposition 6.3, Lp is the subset ofXp corresponding
to the p-biset subfunctor pQK of pQB. So, linearly extending tornp to an inflaky morphism pQK → pQB, then the diagonal
invariant of tornp is a function Θp : Lp → Q. Thus, in the sense of Corollary 6.5, (Lp,Θp) is the pair corresponding to
(pQK , tornp). Already, we can prove a large part of Theorem 5.4.
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Lemma 8.2. For finite p-groups, every inflaky morphism pK → pB∗ is a Z-multiple of tornp/(1 − p). Furthermore, tornp is the
unique inflaky morphism pK → pB∗ such that κ2 7→ (1− p) δ2.

Proof. Let θ : pK → pB∗ be a non-zero inflakymorphismwith diagonal invariantΘ : Lp → Q. Suppose thatG is a noncyclic
p-group. Then C2p occurs as quotient group of G and the deflation number β(C

G
p ,G) is well-defined; indeed, as we noted in

Section 3, β(G,G) depends only on the isomorphism classes of G and G. Theorem 6.7 tells us that Θ(G) = Θ(C2p ) β(C
2
p ,G)

and Θp(G) = Θp(C2p ) β(C
2
p ,G). But the morphisms θ and torn

p are non-zero, so Θ(C2p ) and Θ
p(C2p ) are non-zero. Hence

Θ(G)/Θ(C2p ) = Θp(G)/Θp(C2p ). By the definition of diagonal invariants, we deduce that θ and torn
p are Q-multiples of

each other.
By Example 6.14, θC2p (κ2) = pΘ(C

2
p ) δ2 while tornC2p (κ2) = pΘ

p(C2p ) δ2 = (1−p)δ2. Since κ2 is a generator for K(C
2
p ) and

δ2 is an element of aZ-basis for B∗(C2p ), we deduce that pΘ(C
2
p ) ∈ Z. Moreover,Θp(C2p ) = (1−p)/p, so the rational number

Θ(C2p ) is a Z-multiple ofΘp(C2p )/(1− p). Therefore, the functionΘ is a Z-multiple ofΘp. That is to say, θ is a Z-multiple of
tornp/(1− p). �

To complete the proof of Theorem 5.4, we must show that the morphism tornp/(1 − p) : pQK → pQB∗ restricts to
a morphism pK → pB∗. For that, we shall be needing the next result. Given an integer d ≥ 2, we define βp(d) such that
pβp(d) = (1− p) βp(2, d). That is,

βp(d+ 1) = (1− pd−1) βp(d), βp(2) = (1− p)/p.

Proposition 8.3 (Diagonal Formula for the Tornehave Map). Suppose that I is a non-cyclic p-group with rank d. Then

Θp(I) =
1− p
p

βp(2, d) = βp(d), tornpG(e
G
I ) =

βp(d)
|NG(I) : I|

εGI .

We shall prove the proposition using the quantum binomial formula. Recall that, for integers d ≥ 0 and d ≥ r ≥ 0, the
q-binomial coefficients in Z[q] are defined by(

d
r

)
q
=
(qd − 1)(qd − q) . . . (qd − qd−1)
(qr − 1)(qr − q) . . . (qr − qr−1)

=
(qd − 1)(qd−1 − 1) . . . (qd−r+1 − 1)
(qr − 1)(qr−1 − 1) . . . (q− 1)

.

It is easy to check that these polynomials in Z[q] are determined by the q-Pascal Relation(
d
r

)
q
=

(
d− 1
r

)
q
+ qd−r

(
d− 1
r − 1

)
q

for 0 < r < d, with the initial conditions
(
d
0

)
q
=

(
d
d

)
q
= 1. Using the q-Pascal Relation, an inductive argument yields the

q-Binomial Formula

d−1∏
s=0

(1+ qst) =
d∑
r=0

(
d
r

)
q
qr(r−1)/2 t r .

Here and elsewhere, we understand a product over an empty indexing set to have value 1. We mention that the usual
Binomial Formula is recovered by considering the limit q→ 1.

Let Cdp denote the elementary abelian p-group with rank d. The integer
(
d
r

)
p
=

(
d
d− r

)
p
is equal to the number of

subgroups with size pd in C rp , and it is also equal to the number of subgroups with index p
d in Cdp . Recall that the Möbius

function of G is defined to be µ(G) = µ(1,G).

Theorem 8.4 (Weisner’s Theorem). Suppose that G is a p-group. Then µ(G) = 0 unless G ∼= Cdp for some d ≥ 0, in which
case, µ(G) = (−1)dpd(d−1)/2. More generally, µ(U,G) = 0 unless U E G and G/U ∼= C rp for some r ≥ 0, in which case
µ(U,G) = (−1)rpr(r−1)/2.

The theorem is very well-known – and there is a quick and easy proof using the chain-pairing method – but Weisner’s
original proof [15] is worth noting: he substituted q = p and t = −1 into the q-Binomial Formula, then he compared the
resulting equation with the recurrence relation for the Möbius function. We shall be making a similar application of the
q-Binomial Formula. For d ≥ 2, we differentiate with respect to t and then substitute q = p and t = −1/p, arriving at

βp(d) =
1− p
p

d−2∏
s=1

(1− ps) =
d∑
r=1

(
d
r

)
p
(−1)r r pr(r−3)/2.
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Let Φ(G) denote the Frattini subgroup of G. Combining Weisner’s Theorem with the equation for eGG appearing in the proof
of Proposition 7.3, we obtain

eGG =
1
|G|

∑
U

|U| (−1)r pr(r−1)/2 dGU =
∑
U

(−1)r pr(r−3)/2 dGU

where U runs over the intermediate subgroups Φ(G) ≤ U ≤ G and r = logp |G : U|. By the definition of the map
t̃ornpG = t̃orn

{p}
G in Section 4, we also have r = [t̃orn

p
G(d

G
U)@G]. Applying Proposition 6.4,

Θp(G) = [tornpG(e
G
G)@G] =

∑
U

(−1)r pr(r−3)/2 [t̃ornpG(d
G
U)@G] =

∑
U

(−1)r pr(r−3)/2 r.

The sum has precisely
(
d
r

)
p
subgroups U associated with each r . ThereforeΘp(G) = βp(d). Applying Proposition 6.4 again,

the proof of Proposition 8.3 is now complete.
We shall be making use of the following corollary, a generalization of Example 6.14.

Corollary 8.5. Supposing that G is a non-cyclic p-group with rank d, then d ≥ 2 and
tornpG(e

G
G) = βp(d) ε

G
G = βp(d) δ

G
G .

Furthermore, p eGG ∈ K(G) and tornG(p e
G
G) ≡ δ

G
G modulo p B

∗(G).
Proof. The first equality is a special case of Proposition 8.3. The second equality holds by Lemma 6.1. Since r(r−3)/2 ≥ −1
for all integers r ≥ 0, a formula above for eGG implies that p e

G
G ∈ K(G). The congruence holds because pβp(d) ≡ 1

modulo p. �
The next corollary is Bouc [4, page 709]. Let us give an alternative proof of it,making use of the exponential and Tornehave

morphisms. The argument will be developed further in Appendix.
Corollary 8.6 (Bouc). Suppose that G is a p-group. Then β(G,G) = 0 if and only if G is cyclic and G is non-cyclic. That is to say,
G is a base group if and only if G is trivial or G ∼= C2p .

Proof. First suppose that G is non-cyclic. Then G is non-cyclic. By Proposition 8.3,Θp(G) andΘp(G) are non-zero. But tornp
is an inflakymorphism so, by Theorem 6.7, β(G,G) 6= 0. Now suppose that G is cyclic. By Proposition 7.3,Θexp(G) 6= 0while
Θexp(G) 6= 0 if and only if G is cyclic. This time, Theorem 6.7 implies that β(G,G) is non-zero if and only if G is cyclic. The
rider now follows via Theorem 6.8. �
We can now finish the proof of Theorem 5.4. Aswe noted earlier in this section, it remains only to show that tornp/(1−p)

restricts to a morphism pK → pB∗. Actually, since 1 − p is coprime to p, it suffices to show that tornp/(1 − p) restricts to
a morphism pRK → pRB∗ where R = Z[1/p] as a subring of Q. Suppose that G is a p-group. By Theorem 8.4 and Gluck’s
Idempotent Formula (see Section 2),m−1G (U, I) ∈ R for all subgroups U and I of G. Therefore RK(G) has an R-basis consisting
of the elements having the form eGI where I is non-cyclic. By the round-coordinate formula for induction, pRK is generated,
as a Mackey functor – and perforce as an inflaky functor – by the elements having the form eGG where G is now assumed to
be a non-cyclic p-group. So, with that assumption on G, it suffices to show that tornpG(e

G
G)/(1− p) ∈ RB

∗(G). By Lemma 6.1
and Proposition 8.3,

tornpG(e
G
G) = βp(d) ε

G
G = βp(d) δ

G
G

where d is the rank of G. But δGG ∈ RB
∗(G) and βp(d) is divisible by (1 − p) in R. We have now shown that tornp/(1 − p)

restricts to a morphism pRK → pRB∗. The proof of Theorem 5.4 is complete.
The proofs of Theorems 5.6 and 5.7will be fairly similar to the proofs of Theorems 5.3 and 5.4, butwith some considerable

simplifications. However, we shall first have to modify the theory of diagonal invariants, because we shall be working with
pK ∗ and pQK ∗ as the codomains, rather than pB∗ and pQB∗. It will turn out that the modified theory is easier than before,
because all of the relevant deflation numbers are non-zero.
Consider the exact sequence of p-biset functors

0 −→ pQA∗Q
lin∗
−→ pQB∗

π∗

−→ pQK ∗ −→ 0.
For convenience, let us assume that G is a p-group (although some of the following comments generalize easily to arbitrary
finite groups). By Remarks 7.2 and 8.1,QA∗Q(G) has aQ-basis consisting of the elements εGI where I runs over representatives
of the conjugacy classes of cyclic subgroups of G, whileQK ∗(G) has aQ-basis consisting of the elements εGI = π

∗

G (ε
G
I )where

I now runs over representatives of the conjugacy classes of non-cyclic subgroups of G. With one exception, the elemental
maps for pQK ∗ act on the basis elements εGI in just the sameway that the elemental maps for pQB

∗ act on the basis elements
εGI . The exception is the deflation map, which is given by

jefG,G(ε
G
I ) =

{
0 if I is cyclic,
εGI if I is non-cyclic.

Recall thatLp denotes the set of isomorphism classes of non-cyclic finite p-groups.
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Proposition 8.7. Consider the pairs (M, θ) where M is a Mackey subfunctor of pQK and θ is a Mackey morphism M → pQK ∗.
Also consider the pairs (L,Θ) where L ⊆ Lp and Θ is a function L → Q. These two kinds of pairs are in a bijective
correspondence (M, θ) ↔ (L,Θ) characterized by the condition that, whenever G is a p-group and I is non-cyclic, we have
I ∈ L if and only if εGI ∈ M(G), in which case,

θG(eGI ) =
Θ(I)
|NG(I) : I|

εGI .

Proof. The correspondence M ↔ L is a special case of Proposition 6.3. As a direct sum of Mackey functors, pQB∗ =
pQA∗Q⊕ pQK

∗. So, confining our attention to those Mackey morphisms pQK → pQB∗ whose image is contained in pQK ∗, we
see that the correspondence θ ↔ Θ is a special case of Proposition 6.4. �
Theorem 8.8. Let (M, θ)↔ (L,Θ) as in Proposition 8.7. Then:
(1) θ is an inflaky morphism if and only if M is an inflaky subfunctor andΘ(G) = Θ(G) β(G,G) whenever G and G belong toL.
(2) θ is a deflaky morphism if and only if M is a deflaky subfunctor andΘ(G) = Θ(G) β(G,G) whenever G and G belong toL.
Proof. For part (1), the proof of Theorem 6.7 carries over almost verbatim, except that K and I are now assumed to be non-
cyclic and the term εGI is to be replaced by ε

G
I . For part (2), the proof of Lemma 6.12 carries over in a similar way, and it

actually simplifies slightly because, as we noted in Corollary 8.6, βG(I, I) is non-zero whenever I is non-cyclic. �
Putting M = pQK , we deduce that if θ is an inflaky morphism or a deflaky morphism, then θ is a morphism of biset

functors. Proposition 5.5 now completes the proof of Theorem 5.6, and it almost completes the proof of Theorem 5.7.
To finish the proof of Theorem 5.7, consider a deflaky morphism θ : D → pK ∗ where D is a deflaky subfunctor of

pK . It remains only to show that θ is a restriction of a Q-multiple of π∗ ◦ tornp. We may assume that θ is non-zero, hence
D is non-zero and L 6= ∅. Suppose that G ∈ L. Since G is non-cyclic, C2p is isomorphic to a quotient group of G. As we
noted in the proof of Lemma 8.2, the deflation number β(C2p ,G) is well-defined. Corollary 8.6 implies that β(C

2
p ,G) 6= 0.

By considering the round-coordinate formula for deflation, we deduce that C2p ∈ L. Letting Θ be as in Theorem 8.8, then
Θ(G) = Θ(C2p ) β(C

2
p ,G). Thus, θ is determined by Θ(C

2
p ), and we deduce that θ is the restriction to D of some Q-multiple

of π∗ ◦ tornp. The proof of Theorem 5.7 is now finished.
All of the theorems stated in Section 5 have now been established. We must not forget to deal with Remark 5.8. But

Remark 5.8 is clear fromRemarks 7.2 and 8.1, togetherwith the round-coordinate formulas for the elementalmaps onQB(G).

9. Reduction to the functor DΩ

All of results stated in earlier sections have now been established, except for Theorem 2.4. We shall prove that theorem
and then we shall note a corollary concerning the biset functor DΩ .
To prove Theorem 2.4, we must show that jefG,G(torn

π
G (κ)) − torn

π

G
(defG,G(κ)) ∈ expG(B) for all κ ∈ K(G). We shall

show, in fact, that
jefG,G(t̃orn

π

G (x))− t̃orn
π

G (defG,G(x)) ∈ expG(B)

for all x ∈ B(G). We may assume that x = dGU . So Theorem 2.4 follows from the next lemma.

Lemma 9.1. We have jefG,G(t̃orn
π

G (d
G
U))− t̃orn

π

G (defG,G(d
G
U)) = logπ |NU : U| expG(d

G
U
).

Proof. We have defG,G(d
G
U) = [G/NU] where G/NU is regarded as a G-set in the evident way. TheW -orbit of the element

gNU ∈ G/NU consists of the elements having the form wgNU where w ∈ W . Fixing g , then the number of such elements
wgNU is |WgNU|/|NU|. ButW contains the normal subgroup N , soWgNU = WgU . Therefore

[t̃ornπG (defG,G(d
G
U))@W ] =

∑
WgNU⊆G

logπ (|WgNU|/|NU|) =
∑
WgU⊆G

logπ (|WgU|/|NU|).

On the other hand,
[jefG,G(t̃orn

π

G (d
G
U))@W ] = [t̃orn

π

G (d
G
U)@W ] =

∑
WgU⊆G

logπ (|WgU|/|U|).

Since logπ (|WgU|/|U|)− logπ (|WgU|/|NU|) = logπ (|NU : U|), we have

[jefG,G(t̃orn
π

G (d
G
U))@W ] − [t̃orn

π

G (defG,G(d
G
U))@W ] = logπ (|NU : U|) |W\G/U|

= logπ (|NU : U|) |W\G/U| = logπ (|NU : U|)[expG(d
G
U)@W ]. �

For the rest of this section, we shall be discussing the p-biset functor DΩ . Throughout the discussion, G is assumed to be a
p-group, and all the biset functors are understood to be p-biset functors. Let us briefly recall somematerial from Bouc [5–7],
Bouc–Yalçın [11]. Consider a non-empty G-set X and a field Fwith characteristic p. The relative syzygy of Fwith respect to
X , denotedΩX (F), is defined to be the kernel of the augmentation map FX → F. The FG-moduleΩX (F) is a capped endo-
permutation module if and only if |XG| 6= 1. In that case, we letΩX be the image ofΩX (F) in the Dade group DF(G). When
|XG| = 1, we defineΩX = 0 in DF(G). The subgroup of DF(G) generated by the elementsΩX , denoted DΩ(G), is independent
of F. Actually, [5, 3.1.2] says that if |XG| ≥ 2 thenΩX = 0. So DΩ(G) is generated by those elementsΩX such that XG = ∅.
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Bouc [5, Section 6] showed that, letting G vary, the groups DΩ(G) give rise to a p-biset functor DΩ . In [7, 10.2], he showed
that the groups DF(G)/DΩ(G) give rise to a p-biset functor DF/DΩ which is isomorphic to a subfunctor of F2AQ. The groups
DF(G) do not always give rise to a p-biset functor but, in [7, 7.7], he showed that DF(G) = DΩ(G) when p 6= 2. Thus, in a
matter of speaking, most of DF(G) is contained in DΩ(G).
Let ωX be the element of B∗(G) such that
[ωX @U] = bXU 6= ∅c = b[U @ X] 6= 0c.

Note that, letting X run over the transitive G-sets up to isomorphism, then ωX runs over the elements of a Z-basis for B∗(G).
Bouc [6, 1.7] constructed a morphism of p-biset functors Ψ : B∗ → DΩ such that

ΨG(ωX ) = ΩX

for all X . His result [6, 1.8] asserts that Ψ induces an isomorphism of p-biset functors
K ∗ ∼= DΩ/DΩtors

where DΩtors(G) is the torsion subgroup of D
Ω(G). Combining this with Proposition 5.5 and Theorems 5.6 and 5.7, we obtain

the next result.
Proposition 9.2. For p-groups, the inflaky morphisms K → DΩ/DΩtors and the deflaky morphisms K → DΩ/DΩtors are all
morphisms of p-biset functors. Furthermore, the free cyclic Z-module Morbis(K ,DΩ/DΩtors) ∼= Z is generated by the morphism
π ◦ Ψ ◦ tornp/(1− p), where π : DΩ → DΩ/DΩtors is the canonical epimorphism.
Thus far, we have not made use of Theorem 2.4. But we shall be needing it in a moment, in connection with a theorem

of Bouc–Yalçin [11, 1.2] which refines the isomorphism Ψ . Some of the results in [11] are stated in terms of a biset functor
denoted Cbwhich is defined in terms of the Borel–Smith relations. But, [11, 3.3] asserts that Cb = die(AR). By Proposition 7.4,
die(AR) ≤ A∗Q; this inclusion was already observed in [11, 4.3]. Meanwhile, by the Ritter–Segal Theorem, the morphism of
p-biset functors lin : B→ AQ is surjective and die(AQ) = exp(B). Thus,

exp(B) = die(AQ) ≤ die(AR) ≤ A∗Q
as a chain of p-biset functors. The theorem [11, 1.2] asserts that the morphism Ψ : B∗ → DΩ induces an isomorphism of
p-biset functors

B∗/die(AR) ∼= DΩ .
Since exp(B) ≤ die(AR), Theorem 2.4 yields the following result.
Theorem 9.3. The composite Ψ ◦ tornp/(1− p) : K → DΩ is a morphism of p-biset functors.
ThemorphismΨ ◦ tornp/(1−p) seems to merit further study. In particular, we ask as to whether it can be characterized

in a more direct or more structuralistic way, and as to whether there might be a more direct or more structuralistic proof of
the morphism property.

10. Reduction to the unit functor

In Section 2, we sketched some relationships between the lifted morphisms discussed in the present paper and the
reduced morphisms discussed in [2]. In this final section, we explain these relationships in detail, and then we establish
two results that will be needed in [3].
We begin with a review of some material in Yoshida [18], Yalçin [16], Bouc [8] concerning the biset functors B× and

β×. Our notation is taken from [2]. In abstract, the ghost unit functor β× is easy to characterize. Recall that the ghost ring
β(G) is defined to be the subring of QB(G) spanned over Z by the primitive idempotents of QB(G). The unit group of β(G)
is the elementary abelian 2-group β×(G) = {x ∈ B(G) : x2 = 1}. Regarding β×(G) as an F2-vector space, it has a basis
{∂GI : I ≤G G}where ∂I = 1− 2e

I
I . With respect to this basis, we write [x@ I] ∈ F2 for the coordinate of x ∈ β×(G) at I . Thus,

x =
∑
I≤GG

[x@ I] ∂GI .

To make β× become a biset functor, we define the actions of the elemental maps by the equations

isoφF ,G(∂
G
U ) = ∂

F
φ(U), [isoφF ,G(x)@φ(U)] = [x@U],

resH,G(∂GU ) =
∑

V≤HH:V=GU

∂GV , [resH,G(x)@ V ] = [x@ V ],

jndG,H(∂
G
V ) =

∑
U≤GG,HgU⊆G:V=HH∩gU

∂GU , [jndG,H(y)@U] =
∑
HgU⊆G

[y@H ∩ gU],

jefG,G(∂
G
U ) = bN ≤ Uc ∂

G
U , [jefG,G(x)@W ] = [x@W ],

infG,G(∂
G
W ) =

∑
U≤GG:U=GW

∂GU , [infG,G(z)@U] = [z @U]
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where x, y, z are elements of β×(G), β×(H), β×(G), respectively. Comparing with the square-coordinate equations for the
elementalmaps on B∗, we see that the actionswehave defined on the coordinatemodulesβ×(G)do indeedmakeβ× become
a biset functor and, furthermore, there is an epimorphism of biset functors

mod : B∗ → β×

given by δGI 7→ ∂GI . Thus, we have realized β
× as the modulo 2 reduction of B∗.

Yoshida [18, Section 2] introduced two functions jndG,H : QB(H) → QB(G) and jefG,G : QB(G) → QB(G) given by the
round coordinate equations

(I @ jndG,H(y)) =
∏
HgI⊆G

(H ∩ g I @ y), (K @ jefG,G(x)) = (K @ x)

where x ∈ QB(G) and y ∈ QB(H). He explained how the function jndG,H arises from the functorMapG(G, –) : H-set→ G-set
(variously called Japanese induction, tensor induction or multiplicative induction), while the function jefG,G arises from the
functor –N : G-set→ G-set (called Japanese deflation or multiplicative deflation). Yoshida showed that the functions jndG,H
and jefG,G have the following three properties: they preserve products of elements of the Burnside algebras QB(H), QB(G),
QB(G); they restrict to functions between the ghost ringsβ(H),β(G),β(G); they further restrict to functions on the Burnside
rings B(H), B(G), B(G). The third property, by far the most difficult, was established by Yoshida using a theory of polynomial
maps; another proof, given by Yalçın [16], made use of Lefschetz invariants of G-posets. On the other hand, it is easy to
see (without using any theory of polynomial maps or Lefschetz invariants) that the usual isogation, restriction and inflation
maps on the Burnside algebrasQB(–) have the same three properties. It follows that the five kinds of maps iso(), res(), jnd(),
jef(), inf() restrict to maps on the ghost unit groups β× and maps on the Burnside unit groups B×(–). Yoshida’s formulas
[18, Section 3b] coincide with the formulas we gave above for the actions of the elemental maps on β×. We deduce that the
elemental maps on β× preserve the subspaces B×(–) ≤ β×(–), hence B× becomes a biset subfunctor of β×. We write the
inclusion morphism as

inc : B× → β×.

Comparing the definitions of exp(), die(), tornπ given in Section 5 with the definitions of exp, die, torn π given in [2], we
see that the two diagrams depicted in Section 2 are commutative. We can now tie up a loose end from [2], where the proof
that torn π is an inflaky morphism depended on the fact that the zombie morphism zomα is an inflaky morphism. A much
easier argument is simply to observe that torn π is an inflaky morphism because tornπ is an inflaky morphism.
The next two resultswill be needed in [3]. The first of them is due to Tornehave [14], who obtained it by direct calculation.

We point out that it also follows immediately from Corollary 8.5.

Proposition 10.1 (Tornehave). If G is a non-cyclic 2-group, then 2eGG ∈ K(G) and

torn 2G(2e
G
G) = ∂

G
G .

The second of the two results contains much of the content of the main theorem in [3].

Proposition 10.2. Let Q
2B
×
= exp(B) = die(AQ), and let π×Q : 2B

×
→ 2B×/

Q
2B
× be the canonical epimorphism of 2-biset

functors. Then the composite π×Q ◦ torn
2
: 2K → 2B×/

Q
2B
× is non-zero morphism of 2-biset functors.

Proof. Theorem 2.4 implies that π×Q ◦ torn 2 is a morphism of 2-biset functors. Proposition 10.1 implies that π
×

Q ◦ torn
2

6= 0. �

In [3, Section 6], we shall show that, in fact, π×B ◦ torn
2 is an epimorphism of 2-biset functors. The proof of that stronger

conclusion will be based on a reexamination of an argument of Tornehave [14].
Bouc [9, 6.10] remarked that the crucial difficulty in obtaining his theorem [9, 6.5] was in showing that there exists

a non-zero morphism of 2-biset functors 2K/
Q
2K → 2B×/

Q
2 B
×, where Q

2K is the 2-biset subfunctor of 2K generated by the
coordinate module K(D8). But that assertion follows quickly from Proposition 10.2. Indeed, a direct calculation shows
π×Q ◦ torn

2 annihilates K(D8) and hence also annihilates
Q
2K . Therefore, thanks to Proposition 10.2 π

×

Q ◦ torn
2 induces a

non-zero morphism of 2-biset functors 2K/
Q
2K → 2B×/

Q
2B
×.

Appendix. Deflation numbers for p-groups

In this appendix, we give a little application of the lifted Tornehave morphism tornp. Or rather, we make a comment
concerning a connection between the deflation numbers and the diagonal formula for tornp.
Of the five round-coordinate formulas for the elementary maps on QB, the most difficult, the one for deflation, involves

the deflation numbers β(G,G), which are defined in terms of the Möbius function on the poset of subgroups of G. For
arbitrary finite groups, no very explicit formula for the deflation numbers is known (and there seems to be no good reason
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to expect that a very explicit formula exists). For finite p-groups, though, we have the following theorem of Bouc–Thévenaz
[10, 4.8, 8.1]. Observe that

βp(c, d) =
d−2∏
s=c−1

(1− ps) =


1 if c = d,
(p− 1)/p if c = 0 and d = 1,
0 if c ≤ 1 and 2 ≤ d,
βp(d)/βp(c) if 2 ≤ c.

Theorem A.1 (Bouc–Thévenaz). Suppose that G is a p-group. Let d and c be the ranks of G and G, respectively. Then β(G,G) =
βp(c, d).

We give a quick alternative proof of Theorem A.1 using properties of exp() and tornp. (But the original proof of
Theorem A.1 in Bouc–Thévenaz [10] is quite short anyway.) In the notation of Theorem 6.7, β(G,G) = Θ(G)/Θ(G) when
Θ(G) is defined and non-zero. Since exp() is an inflakymorphism,we can putΘ = Θexp, whereupon Proposition 7.3 implies
that, if G is cyclic, then β(G,G) = (φ(G)/|G|)/(φ(G)/|G|). But φ(G)/|G| is 1 or (p−1)/p or 0 depending onwhether d = 0 or
d = 1 or d ≥ 2, respectively. We deduce Theorem A.1 in the case c ≤ 1. Meanwhile, since tornp is an inflaky morphism, we
can put Θ = Θp, whereupon Proposition 8.3 implies that, if G is non-cyclic, then β(G,G) = βp(d)/βp(c). We now proved
Theorem A.1 in general.
The argument can be put in reverse, supplying an alternative proof Proposition 8.3 using Theorem A.1 together with

Theorem 6.7 and the d = 2 case of Corollary 8.5.
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