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a b s t r a c t

Connectivity-Guided Adaptive Wavelet Transform based mesh compression framework is proposed. The
transformation uses the connectivity information of the 3D model to exploit the inter-pixel correlations.
Orthographic projection is used for converting the 3D mesh into a 2D image-like representation. The pro-
posed conversion method does not change the connectivity among the vertices of the 3D model. There is
a correlation between the pixels of the composed image due to the connectivity of the 3D mesh. The pro-
posed wavelet transform uses an adaptive predictor that exploits the connectivity information of the 3D
model. Known image compression tools cannot take advantage of the correlations between the samples.
The wavelet transformed data is then encoded using a zero-tree wavelet based method. Since the encoder
creates a hierarchical bitstream, the proposed technique is a progressive mesh compression technique.
Experimental results show that the proposed method has a better rate distortion performance than
MPEG-3DGC/MPEG-4 mesh coder.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Three-dimensional (3D) models of real life objects have already
been extensively used in computer graphics. 3D models are also
used in many other areas of science, as well (e.g., computational
electromagnetics [1]). There is an increasing demand for more real-
istic and complex scene models as a consequence of increasing
capabilities of related hardware.

Storage and transmission of complex 3D models are difficult.
We should exploit the correlation among the mesh vertices of a
realistic 3D model representation to simplify the storage and trans-
mission of these models. The main goal here in lossy compression
is to find a way of exploiting these redundancies to compress the
3D models to smaller data sizes while creating the least distortion.

There are several methods for the compression of 3D models in
the literature [2–4]. These methods can be classified into two
groups: single-rate compression and progressive mesh compression
[3]. In single-rate compression schemes, the entire 3D mesh is
compressed to a single data stream. The model is decodable if all
of the data stream is received. On the other hand, a multiresolution
representation of 3D meshes [5] is used in progressive mesh com-
pression. In most of the progressive mesh compression techniques,
ll rights reserved.
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the original model is first partitioned into a base mesh and refine-
ment coefficients; e.g., using wavelet-based approaches [5,6]. First,
the base mesh is coded and sent to the receiving party and the
refinement coefficients are sent afterwards. Thus, progressive
mesh representations enable the user to obtain different resolu-
tions of the model corresponding to different sizes of the code
stream. At the decoder side, first the base mesh is decoded, and
then, the base mesh is updated to higher resolutions using the
new-coming refinement coefficients.

Gu et al. [7] propose an entirely different approach, called
Geometry Images (GI). In this approach, the 3D model is converted
to a 2D image-like representation. First, the 3D model is remeshed
to obtain a semi-regular mesh. Then, the images are calculated
using mesh parameterization. The 3D mesh should be cut and
opened homeomorphic to a disc before parameterization. All these
three steps are computationally-intensive tasks. In the last step,
mesh is transformed to an image by solving several linear equa-
tions. This approach makes it possible to use any image processing
algorithm on 3D models. This idea is also extended to dynamic
meshes so that video processing algorithms are applied on 3D
models [8].

In this paper, we present a framework for compressing geome-
try information of 3D models using image processing techniques
like 2D wavelet transform as in Set Partitioning in Hierarchical
Trees (SPIHT) [9,10] or JPEG2000 [11] Edgebreaker [12] is used for
the compression of the connectivity data. Starting from a random
face of the model, Edgebreaker traverses the faces of the model
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and outputs the sequence of movements it performs. This se-
quence of movements is encoded at the last step of the
Edgebreaker.

The proposed algorithm is composed of two main parts: (i) con-
verting the 3D models to a 2D image and (ii) compressing that im-
age using an image coder that uses Connectivity-Guided Adaptive
Wavelet Transform [13]. The proposed static mesh compression
framework is summarized in Fig. 1. MO represents the original
3D model, I1 and WI1 are the 2D representation of the 3D model
and its wavelet transformed version, respectively. StrTrans and
StrReceive are the transmitted and the received SPIHT bitstreams,
respectively. WIRec and IRec are the reconstructed versions of WI1

and I1, respectively. The reconstructed mesh is represented by
MRec.

This paper is organized as follows: the proposed static mesh
compression framework including the projection operation and
the Connectivity-Guided Adaptive Wavelet Transform are ex-
plained in Sections 2 and 3, respectively. The compression method
and decoding are given in Sections 4 and 5, respectively. The sim-
ulation and compression results are given in Section 6.

2. Static mesh compression framework

The proposed mesh coding algorithm uses orthographic projec-
tion to convert the 3D model to an image whose pixel values are
related to the respective coordinates of the vertex point to the pro-
jection plane. Thus 2D signal processing methods become applica-
ble to a given mesh. In this section, the 3D mesh representation is
given and the orthographic projection to obtain the 2D image-like
representation of the 3D mesh is described.

2.1. 3D Mesh representation

A 3D mesh can be considered as an irregularly sampled discrete
signal, this means that the signal is only defined at vertex posi-
tions. In the proposed approach, the mesh is converted into a reg-
ularly sampled 2D signal by orthographic projection onto a chosen
plane whose sampling matrix is known.

The 3D mesh is formed by geometry and connectivity informa-
tion. The geometry of the 3D mesh is constituted by vertices in R3.
It is defined as, V0 ¼ ðV 0x;V

0
y;V

0
zÞ

T 2 R3 [14]. The vertices of the ori-
ginal 3D model are represented by v0i ¼ ðVx0

i
;Vy0

i
;Vz0

i
ÞT ; i ¼ 1; . . . ;v

where v is the number of the vertices in the mesh.
First, the space in which the 3D model was defined is normal-

ized in R3[�0.5,0.5] as,

V ¼ ðVx;Vy;VzÞT ¼ aV0; a ¼ ðax;ay;azÞ 2 R3; ð1Þ

and the normalized mesh vertices are represented as,

vi ¼ ðVxi
;Vyi

;Vzi
ÞT ¼ ðaxVx0

i
;ayVy0

i
;azVz0

i
Þ; i ¼ 1; . . . ;v : ð2Þ

Normalization is a necessary step to make the algorithm inde-
pendent from the size of the 3D model. Connectivity information
is represented as triplets of vertex indices. Each triplet corresponds
to a face of the mesh [14]. Faces of the mesh are,
Fig. 1. The proposed framewo
Fi ¼ ðva;vb;vcÞT ; i ¼ 1; . . . ; f ;

a; b; c 2 f1; . . . ;vg; a – b – c; ð3Þ

where f is the number of the faces. So a mesh in R3 can be repre-
sented as,

M ¼ ðV;FÞ; ð4Þ

where V is the set of vertices of the mesh and F is the set of faces of
the mesh.

2.2. Projection of the 3D model onto 2D

Orthographic projection is used to obtain a 2D representation of
3D models. The vertices of the 3D mesh are projected onto a plane,
defined as P(u,w), where u and w are the orthogonal vectors defin-
ing the projection plane. The decision on the orientation of the pro-
jection plane is made by looking at the histogram distribution of
the vertices on a given plane. The histogram shows the number
of vertices that are projected on each pixel. The plane that has
the highest number of distinct non-zero values in its histogram
has the most projected vertices; thus, it is selected as the projec-
tion plane (see Fig. 2). This check should be done on infinitely
many different orientations of projection planes. This brings a huge
cost to the algorithm; thus, we used the XY, XZ, and YZ planes as the
candidate projection planes for the sake of reducing the computa-
tional cost.

The selected projection plane P is discretized using the quin-
cunx sampling matrix [15]

Squinc ¼
T T=2
0 T=2

� �
: ð5Þ

Experimental results show that using quincunx sampled projection
planes results in small error under the projection of triangular
meshes. After the quincunx sampling the projected mesh vertices
are lined up in a rectangular arrangement to form an image
representation.

The projection of a mesh vertex depends on two parameters:
the 3D coordinate of the vertex and the orientation of the selected
projection plane. In many aspects, the newly formed 2D represen-
tation does not have any difference from a grayscale image.

Mesh vertices vi have orthogonal projections �vi onto the projec-
tion plane P. The perpendicular distance between a mesh vertex vi

and the projection plane P is represented by di in which i repre-
sents the index of the vertex. A projection of an object is illustrated
in Fig. 3. As illustrated in the figure, the respective pixel location of
a mesh vertex is determined by the projection of the vertex onto
the projection plane. The pixel values are the perpendicular dis-
tances of the vertices to the projection plane, di.

The determination of vertex-to-grid point correspondence is the
most crucial task in the projection operation. The vertices that can
be assigned to a grid point n = [n1,n2] form a set of indices J defined
by:

J ¼ i j�vi � S nT j < T=2;
�� 8 n1;n2

� �
; ð6Þ
rk for mesh compression.



Fig. 2. The number of non-zero bins in the histogram of a projection plane gives the number of vertices that can be projected without coinciding each other. The values in the
bins show how many vertices are projected to that bin. If the value is one then we have only one vertex projected to that bin. If the value of the bin is zero then no vertex is
projected to that bin. If the value of the bin is greater than one then we have multiple projected-coincided-vertices in that bin. (a) XY plane is used as the projection plane.
Four thousand and fifty-three bins have non-zero values (b) YZ plane is used as the projection plane. Three thousand eight hundred and thirty-seven vertices have non-zero
values.
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where S is any sampling matrix and n = [n1,n2] represents the indi-
ces of the discrete image, as shown in Fig. 3. The sampling density
can be changed using the detail level parameter. The resolution in-
creases with the detail level parameter. 3D Models with many ver-
tices should be projected onto a plane whose grid resolution is high.

Here is an example of the projection operation: assume that a
vertex i at vi = (1,2,4) in the Cartesian coordinates is projected onto
the XY plane. Then the projection �vi is equal to (1,2) and the corre-
sponding pixel values di is equal to 4. The location of the pixel on
the projection image is found using �vi and the selected sampling
period as given by Eq. (6).

Employing the methods described above, we transform a 3D
mesh to a 2D image. The first image (projection image),

I1½n1;n2� ¼
di; i 2 J;

0; otherwise;

�
ð7Þ

stores the perpendicular distances of the vertices to the respective
grid points on the selected planes. The second image (map image),

I2½n1;n2� ¼
i; di ¼ I1½n1;n2�;
0; otherwise;

�
ð8Þ

stores the indices of the vertices.
The projection image is wavelet transformed using the Connec-

tivity-Guided Adaptive Wavelet Transform [13]. The transformed im-
age is then encoded using SPIHT [9] or JPEG2000 [11]. The map
image is converted to a list of indices. This list is differentially
coded and sent to the decoder side.

Eqs. (7) and (8) define the pixel-vertex correspondence for
each vertex. Sometimes more than one vertex may be projected
to the same pixel in the image-like representation. One of these
vertices is chosen for the calculation of the pixel value and the
others are discarded. We use a priority queue to determine the
projection order for the vertices. The priority of a vertex is de-
fined according to the number of neighbors connected to the
vertex, called valence. The more the valence of a vertex, the more
vertices can be predicted from it. In case of multiple vertex pro-
jections on the same pixel, the vertex with the highest valence is
projected and the others are discarded. Another approach would
be projecting the discarded vertices to the nearest, empty sam-
pling points on the projection plane. Since the projection image
is sparse, it is highly possible that some empty sampling points
around the exact projection location exist. This approach may re-
sult in a minor error, due to imprecise positioning of the projec-
tion of the vertex.

More vertices can be handled either by increasing the number
of the samples (pixels) taken on the projection plane or increasing
the number of the projection planes. In the proposed approach, we
decided to use one densely-sampled projection plane. Even in this
case, some vertices of the mesh may coincide and cannot be



Fig. 3. The illustration of the orthographic projection of a 3D object.
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projected. These lost vertices can be interpolated using connectiv-
ity-guided interpolation (cf. Section 5).
3. Connectivity-Guided Adaptive Wavelet Transform

Since the projection image (Fig. 4(a) and (b)) is a grayscale im-
age, it can be coded using any available grayscale image coder. In
the proposed algorithm, this data on a regular grid, that represents
the mesh data, is transformed into wavelet domain using an adap-
tive wavelet transform. The idea of adaptive wavelets [16] is a well
known and proved to be a successful tool in image coding. Adap-
tive wavelet transform is superior to its non-adaptive counterparts
by exploiting the directional neighborhood information between
pixels. Thus, we define an adaptive scheme. The proposed adaptive
scheme takes the connectivity of the mesh into account to better
exploit the neighborhood information of the mesh vertices.

The neighborhood relation in the projection images is not the
same as in common grayscale images. In ordinary grayscale
images, it is natural to predict one pixel from its spatial neighbors.
In projection images, it is highly possible that the values of the
neighboring pixels are not coming from neighboring vertices.
Hence, their values are less-even not-correlated. Although the 2D
projection image of a 3D mesh seems like a salt and pepper image,
there is a correlation between the non-zero pixels due to the con-
nectivity of the mesh.

There is no general 2D compression algorithm that works on salt
and pepper images. Our aim here is to utilize the correlation
between the non-zero pixel values of the salt and pepper like
projection image. For this purpose, we modified the wavelet trans-
formation stage of the SPIHT encoder and proposed Connectivity-
Guided Adaptive Wavelet Transform that uses the connectivity
information of the mesh and predict the pixel values from their
connected neighbors. In the literature, there is no single 2D
compression algorithm that is applicable to all types of 2D data.
The main motivation to use 2D projection of 3D meshes is to utilize
2D image compression algorithms with minor modifications for the
compression of 3D meshes.
First, I1[n1,n2] image is wavelet transformed in the horizontal
direction. This transformation results in two new images,

I11½n1;n2� ¼ I1½n1;2n2�;
I12½n1;n2� ¼ I1½n1;2n2 þ 1�: ð9Þ

The width of the downsampled images, I11 and I12 are half of the
original image I. One-level lazy wavelet transformed version of I1

is constructed by apposing the downsampled images, I11 and I12 as

cWI1 ½n1; n2� ¼ ½I11jI12�: ð10Þ

The resulting image have the same size as the original image. I11 is
the lower subband image that will be used during the wavelet
transformations at the later stages. The same transformation is ap-
plied to I2[n1,n2] = i, i 2 {1, . . . ,v} that results in sub images, I21 and
I22. Then, a list of neighbors, nlist(j), j = 1, . . . ,v, is constructed from
the connectivity list. Each element j of the list nlist(j) stores the indi-
ces of the connected neighbors of the vertex with index j. The list of
vertices that are in image I21 and I22 are list1 and list2, respectively.

The pixel values of the vertices in list2 are predicted from the
vertices in lower subband image. In other words, for each element
k of list2, a prediction is made from its neighbors in I11 image (list1).
Valid neighbors of k are

nlistvalidk
¼ nlistðkÞ \ list1: ð11Þ

After finding the list of valid neighbors of a vertex, the next step is
finding the pixel location of the neighbors in the lower subband.
The grid location [n1j,n2j] of the jth neighbor of vertex k is found as,

½n1j;n2j� ¼
½n1;n2�; I21½n1;n2� ¼ nlistvalidk

ðjÞ;
0; otherwise:

�
ð12Þ

The prediction of vertex k 2 list2 is defined as

Ik pred ¼
P

jðI11½n1j; n2j�Þ
m

; ð13Þ

where I21½n1k;n2k� 2 nlistvalidk
and m is the number of the elements in

nlistvalidk
. The predicted pixel values become



Fig. 4. The images calculated using the projection operation I1 on (a) XY plane, (b)
XZ plane. (c) After one level of wavelet transform in horizontal and vertical
directions, the projection image becomes an augmented image (WI1 ½n1; n2�).
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Inew12 ½n1; n2� ¼ I12½n1;n2� � Ik pred;

WI1 ½n1;n2� ¼ ½I11jInew12 �; ð14Þ
where I22[n1,n2] = k. If no valid neighbors exist for a vertex, a pre-
diction is not made. However, this situation is rare since we have
a few vertices left to be predicted at the lower subbands (higher lev-
els of transformation). Prediction and estimation are the last parts
of the one level of the transform. Since the proposed transform is
separable, transposing the image and applying the 1D transforma-
tion in horizontal direction is the same as applying the 1D trans-
form in the vertical direction. In the next level, the image is
transposed and the same procedure is applied on the lower subband
of the image. The resulting image after two levels of transforma-
tions is given in Fig. 4(c). Typically six levels of Connectivity-Guided
Adaptive Wavelet Transform (three horizontal and three vertical)
are used. Since few vertices and few neighborhood relations are left
in the lower subbands, using CGAWT for these subbands does not
bring a significant gain. After three levels of CGAWT, ordinary lazy
wavelet transform is used to decompose the image till the lowest
subband. The inverse of the adaptive wavelet transform is also pos-
sible; hence, perfect reconstruction of the images is possible.
4. Connectivity-Guided Adaptive Wavelet Transform based
compression algorithm

By consecutively applying the mesh-to-image transform, and
Connectivity-Guided Adaptive Wavelet Transform, the mesh data
is prepared for SPIHT or JPEG2000 coding. Since the resulting pro-
jection images contain mostly zero-values, these images can be
coded efficiently using a zero tree wavelet coder. Thus, SPIHT is se-
lected for coding these images. Since JPEG2000 is another widely
used wavelet-based coding standard, it is used for comparison.

Before applying SPIHT or JPEG2000 coders, the transformed im-
age is quantized. The histogram of the projection image shows that
most of the pixel values are concentrated around zero in a narrow
band. Thus, an 8-bit non-uniform quantization [17] whose steps
are smaller around center and larger on the sides is used (e.g.,
Lloyd-Max Quantizer).

The quantized signal is then coded using either SPIHT or
JPEG2000 coder. SPIHT coder hierarchically encodes the image.
This means the lower subbands are at the initial parts of the
code-stream and higher subbands follow them. As explained in
Section 3, pixel information of the lower subbands is used for pre-
dicting the pixels in higher subbands. Therefore the values of the
pixels-vertices-in the higher subbands can be estimated even if
the part of the stream corresponding to these subbands are lost.
After reconstructing the model from the leading bits, it is possible
to refine it using the later parts of the stream (progressive
compression).

When the quantized image is fed into JPEG2000 coder, it further
quantizes the subbands of the tiles to the user-specified levels. As
in SPIHT coder, JPEG2000 also has a hierarchical structure. The tiles
that correspond to the lower subbands of the transformed image
can be transmitted first. The reconstruction of the mesh can be
done using these parts plus zero paddings instead of the other tiles.
As the tiles corresponding to the higher subbands received, the
reconstructed mesh can be refined.

After the bitstream is obtained by either of the encoders, it
should be bitstream encoded. gzip software is used as a bitstream
encoder [18]. It is an implementation of the DEFLATE algorithm
[19] which uses a combination of LZ77 algorithm and Huffman
coding. For comparison purposes, both the original vertex list
and the SPIHT bitstream are compressed using gzip software.
4.1. Coding of the map image

The pixel values of the map image are the projected vertex indi-
ces (Eq. (8)). The most important issue in the compression of these
images is that it should be lossless; thus, no quantization can be
done on the map image. The pixel values have a wide range and
they are equiprobable. Thus, a coding structure like Huffman or
Lempel-Ziv is not appropriate for this kind of data.

For the compression of these map images, an algorithm based
on differential coding is proposed. The basic assumption of the
proposed algorithm is that near pixels of the projection image
represent near vertices, so the distance between two consecutive
vertices is small. This assumption is supported by Edgebreaker,
the connectivity coder used in our implementation. It creates strip
of faces and reindexes the mesh vertices in the order of traversal.
Since the vertices forming a face are conquered consecutively,
most of the time they have consecutive indices.

A list of vertex coordinates called LCoor, which stores the vertex
locations on the image-like representation, is created. The ith entry



Table 1
Compression results for the Cow model. The used bitstream parameter shows what
percentage of the encoded bitstream is used in the reconstruction of the original
model. The detail level parameter defines grid resolution of the projection image (the
size of the projection image). As the detail level increases, the grid points of the
projection plane gets closer (the projection image gets larger).

Filters Used
(%)

Detail
level

Size
(KB)

Original to
quantized
Hausdorff
distance

Original to
reconstructed
Hausdorff
distance

Lazy (non-adaptive) 30 3.0 9.51 0.013993 0.014547
Lazy (non-adaptive) 60 3.0 10.4 0.013993 0.014219
Lazy (adaptive) 60 3.0 10.6 0.013993 0.013936
Haar 40 3.0 11.5 0.013993 0.016085
Haar 60 3.0 13.8 0.0139930 0.014102
Daubechies-4 40 3.0 12.0 0.013993 0.018778
Daubechies-10 40 3.0 12.1 0.013993 0.014194
Biorthogonal-4.4 60 4.0 16.0 0.009446 0.014549

Table 2
Compression results for the Lamp model using SPIHT with lazy wavelet filterbank.
The results in each row have the same detail level.

Size non-
adaptive
(KB)

Size
adaptive
(KB)

Original to
reconstructed
Hausdorff distance
(non-adaptive)

Original to
reconstructed
Hausdorff
distance
(adaptive)

9.05 10 0.069620 0.023367
9.64 10.6 0.050859 0.019023

14.7 16.5 0.027902 0.018638
16.4 18.6 0.029870 0.018551
17.8 20.5 0.025991 0.018425
17.9 19.8 0.033990 0.011436
19.1 21.6 0.041133 0.012037
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of the list LCoor(i), which stores the pixel location of vertex i, is de-
fined as

LCoorðiÞ ¼
½n1;n2�; I2½n1; n2� ¼ i;

0; otherwise;

�
ð15Þ

where i = 1, . . . ,v. Then the list of vertex coordinates is differentially
coded. In the perfect case, all K vertices of the mesh are projected.
Since this is not the case in general, the non-zero entries of the coor-
dinate list are found as

qðjÞ ¼ fijLCoorðiÞ– ½0;0� and j ¼ 1; . . . ;Gg; ð16Þ

where G is the number of non-zero entries of the list of vertex coor-
dinates. A zero entry at the LCoor(i) means that, ith vertex of the
model is not projected. The positions of the projected vertices are
updated by a first order linear predictor as

LCoorðqðjþ 1ÞÞ ¼ LCoorðqðjþ 1ÞÞ � LCoorðqðjÞÞ: ð17Þ

In this way, an updated version of the coordinate list is obtained.
The mean of this list is around 0 and variance is concentrated
around the mean. Thus, the predicted version of the coordinate list
can be compressed more efficiently. Then, the list is converted into
a bitstream and sent to the receiver. The receiver does the inverse of
the described encoding procedure for decoding.

5. Decoding

The decoding operation is the reverse of the encoding process.
The received stream is first decoded by the respective coder it
was encoded [9,11]. The wavelet transformed images are obtained
at the end of this operation. Then, the inverse wavelet transform
with connectivity-guided adaptive prediction stage is applied on
those images. In this way, projection images are reconstructed.
The final stage of reconstruction is the back-projection operation.
The projected vertices are back-projected to the 3D space using
their respective grid location and pixel values.

Since more than one vertex may project onto the same grid
location, some of the vertices are discarded during the projection
operation Section 2.2. The values of the discarded vertices are esti-
mated from their projected neighbors as

vi ¼

P
k

vk

k
; ð18Þ

where k is the number of elements of nlist(i). The connectivity list is
used to find the neighbors of the lost vertices, and thus to predict
the values of them (Eq. (18)).

6. Results

We used several different models in our simulations. The origi-
nal Cow model has 2904 vertices and a lossless compressed data
size of 27.2 KB. The Nine-Handle Torus model is composed of
9392 vertices with 165 KB lossless compressed data size. The
Homer Simpson model is composed of 4930 vertices with 98 KB
lossless compressed data size. The Horse model is composed of
48,485 vertices with 937 KB lossless compressed data size. We also
used two large models: Happy Buddha and Hand. Happy Buddha
model is composed of 543,652 vertices with 9.161 MB lossless
compressed data size. Hand model is composed of 327,323 vertices
with 5.484 MB lossless compressed data size.

The distortion level of the reconstructed 3D mesh is checked
using some quantitative tools like METRO [20] and its visual ver-
sion MESH [21]. Mean Square Error (MSE) and Hausdorff distance
[23] between the original and the reconstructed mesh are mostly
used error measures in the literature. The Hausdorff distance be-
tween two given sets of points A = {a1,a2, . . . ,an} and
B = {b1,b2, . . . ,bn} is defined as
dðA; BÞ ¼ maxfmax
a2A

min
b2B
jb� aj;max

b2B
min

a2A
ja� bjg; ð19Þ
where a � b is the Euclidean distance between two points. Thus, the
Hausdorff distance is the maximum distance of a set to the nearest
element of the other set.

Projection image coding results are significantly affected by the
choice of wavelet basis. Therefore, wavelet transform basis, which
can decompose the image-like meshes efficiently, should be inves-
tigated. Among several wavelet bases, such as lazy, Daubechies-4,
and Biorthogonal-4.4 [22], we obtained the best results using lazy
wavelet basis with Connectivity-Guided Adaptive Transform
stages. There are two reasons for this: (i) most of the neighboring
pixels in the image-like representation are not neighbors of each
other in the original mesh representation, and (ii) the image-like
meshes contain isolated points. A wavelet transform basis with a
small support (lazy wavelet basis) gives better compression results
than those with larger support regions.

The comparative results of using the proposed Connectivity-
Guided Adaptive Wavelet Transform and the non-adaptive wavelet
transforms [24] are given in Table 1. Table 2 shows the results of
the SPITH compression of the Lamp model, using non-adaptive
and adaptive wavelet transforms. Table 2 shows that adaptive
wavelet structure produces better results than non-adaptive lazy
filterbanks. Having the same data size, the adaptive structure
causes less distortion in the reconstructed mesh. This means that
better compression can be obtained for the same distortion rate.
However, the computational power needed for the adaptive struc-
ture is higher since multiple searches must be performed in con-



Fig. 5. The qualitative comparison of the meshes reconstructed without adaptive prediction (a and c) and with adaptive prediction (b and d). Lazy wavelet basis is used. The
meshes are reconstructed using 60% of the bitstream with detail level = 5 in the Lamp model and 60% of the bitstream with detail level = 5 in the Dragon model.
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nectivity data. This search operation adds complexity to the algo-
rithm but enables better predictions.

Fig. 5 gives a qualitative comparison between the reconstructed
meshes with and without adaptive prediction. The quality differ-
ence of the reconstructed meshes is especially noticeable at sharp
features, such as the paws in the dragon mesh and the base of the
lamp mesh.

Detail level and the bitstream used are the two other factors
that are affecting the Hausdorff distance between the original
and the reconstructed models (Table 1). Detail level parameter af-
fects the size of the projection image and the closeness of the grid
samples on the projection image. As the detail level parameter in-
creases, the projection image size also increases, and thus, the grid
samples become closer in distance. This increases the quality of the
reconstructed model but, decreases the compression ratio. If the
full size of the SPIHT bitstream is used for reconstruction, the mod-
el can be perfectly reconstructed. The used bitstream parameter
shows what percentage of the SPIHT bitstream is used in the recon-
struction of the original model. The quality of the reconstructed 3D
model is proportional to the bitstream used for reconstruction. A
lower length bitstream, which means more compression, naturally
results in a higher distortion (Table 2).

The issue of how much of the SPIHT stream should be taken and
what should be the quantization levels of JPEG2000 tiles are also
closely related to the detail level parameter used in the orthogonal
projection operation. If the detail level is low, either the percentage
Fig. 6. Distortion measure between the original (the images on left side of the figures) an
at 11 bit per vertex (bpv); (b) JPEG2000 at 10.5 bpv. The grayscale colors on the original im
distortion.
of the used bit-stream must be increased or finer quantization
should be applied to reconstruct the 3D mesh without much
distortion.

The number of the used wavelet decomposition levels is an-
other factor affecting the compression ratio. Increasing the number
of wavelet decomposition levels as much as possible brings in bet-
ter compression in SPIHT. This is because the data contains mostly
insignificant pixels and as we get higher on the scales, the chance
of having larger zero-trees becomes higher. Larger zero-trees leads
to better compression. However, increasing the decomposition le-
vel also increases the computational cost due to the computation
of the adaptive wavelet transform. This situation adversely affects
the performance in terms of computational complexity.

Another drawback of increasing decomposition levels is the de-
graded neighborhood relationship information between the pixels
at lower subbands. As we go to lower subbands, it is less likely to
find connected neighbors for a vertex. Thus, the prediction quality
degrades as we go to lower subbands; i.e., the adaptivity in wavelet
transform is lost.

After the Connectivity-Guided Adaptive Wavelet Transform,
quantization takes place in the framework. Nonuniform quantiza-
tion improves the rate-distortion values of SPIHT and JPEG2000
since the residuals are concentrated around a mean with a low var-
iance. Fig. 6 gives a qualitative comparison between the original
and the reconstructed meshes that are compressed using SPIHT
(a and b) and JPEG2000 (c). The mesh quality compressed with
d the reconstructed Homer Simpson models using MeshTool [21] software. (a) SPIHT
age show the distortion level of the reconstructed model. Darker colors mean more



Table 3
Compression results for the Homer Simpson model using SPIHT and JPEG2000.
Hausdorff distances are measured between the original and reconstructed meshes.

SPIHT size
(KB)

Hausdorff
distance
(SPIHT)

JPEG2000
size (KB)

Hausdorff distance
(JPEG2000)

7.99 0.001529 6.58 0.076215
9.42 0.001256 9.64 0.076488
10.7 0.000627 9.28 0.076374
12.2 0.000419 12.2 0.075699
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SPIHT is superior to JPEG2000 compressed mesh. The same is also
observed in Table 3 that gives rate distortion values for com-
pressed Homer Simpson model.

The reason why JPEG2000 has a lower performance than SPIHT
is the tiling issue. The image is partitioned into tiles at the begin-
ning of the JPEG2000 compression, and then, these tiles are wave-
let transformed. Partitioning projection images into tiles adversely
affects the neighborhood relationship information of the projected
vertices. Connected vertices may fall in different tiles, and thus, the
performance of CGAWT degrades. Another possibility can be taking
the whole image as a single tile. In this way the neighborhood rela-
tionship problem can be solved but the compression performance
of JPEG2000 decreases.
Fig. 7. The Hand model compressed using the proposed method with (a) 12.73 bpv, (b) 18
reconstructed models with respect to the Hausdorff distance metric are (a) 0.037921, (b
7. Discussion

In progressive mesh coders, different resolutions of the 3D mod-
el can be reconstructed from different sizes of received bitstream.
Since the bitstream constructed by SPIHT coding has an hierarchi-
cal structure, different resolutions of the 3D model can also be
reconstructed from SPIHT bitstream. In most progressive mesh
coders, the difference between two resolutions of a 3D model is
the number of vertices used to represent the object. Each new
refinement coefficient causes a new vertex to be added to the mod-
el and refine its position. In this way, a higher resolution of the 3D
model is obtained. In the proposed SPIHT algorithm, the difference
between two resolutions comes from the distortion caused by the
inexact positioning of the vertices. Using any size of the SPIHT bit-
stream, the 3D model with the same number vertices as the origi-
nal model can be reconstructed. The new-coming parts of the
bitstream fine-tune the positions of the vertices.

JPEG2000 algorithm is not implemented as a progressive enco-
der in our work. Different resolutions of the mesh could be recon-
structed by using different quantization levels in JPEG2000. In the
wavelet subband decomposition, high bands are suppressed by
coarse quantization so that the lower resolution meshes are ob-
tained. SPIHT based compression gives lower distortion than
JPEG2000 based compression for nearly the same bit rates (see Ta-
ble 3 and Fig. 6).
.93 bpv, (c) 20.03 bpv. The original Hand model is given at (d). The distortions of the
) 0.03225, (c) 0.02737, respectively.



K. Köse et al. / J. Vis. Commun. Image R. 21 (2010) 17–28 25
Geometry images (GI) [7] approach performs computationally-
costly tasks, such as parameterization, and remeshing, to construct
a 2D image from a 3D model. GI uses the signal-specialized param-
eterization algorithm [31,32]. This scheme first simplifies the input
mesh progressively, creates a base mesh with V0� VN, where V0 to
VN are the number of vertices at each simplification level, and
parameterizes this base mesh. During the parameterization pro-
cess, the Jacobians of the elements of the base mesh are calculated
and a linear system of size V0 � V0 is solved, which is a O(V0

3) oper-
ation. In the second step, the simplification process is reversed by
split operation and the parameterization of the base mesh is re-
fined according to the new vertices. During this refinement, the
geometric-stretch error metric [32] should be calculated at each le-
vel and the parameterization should be updated accordingly.

Models with small number of vertices may be parameterized
without the simplification process; however, the parameterization
process becomes very complex for large models without simplifi-
cation. Dividing the model into groups of faces, called charts, is an-
other solution proposed for the parameterization of large models
[32]. However, dividing the model into charts and parameterizing
them is also a complex issue.

In our method, there is no need for dividing or simplifying the
model. The model itself can be directly projected on a projection
plane. The projection operation is simple and needs 2V multiplica-
tions for the calculation of the grid positions of the vertices. The
complexity of the projection operation is O(VN). The rest of the
compression algorithm is using wavelet transformation based
compression algorithm SPIHT with adaptive prediction stages.
Fig. 8. The Happy Buddha model compressed using the proposed method with (a) 21.3
reconstructed models with respect to the Hausdorff distance metric are (a) 0.000328, (b
The calculation of adaptive prediction stages does not have a com-
plexity more than the ordinary prediction used in other wavelet
based encoders. The complexity of the encoder part of the pro-
posed algorithm is not much higher than ordinary wavelet based
encoders.

Gu et al. [7] use a remeshing stage to map an arbitrary surface
onto a completely regular structure. This remeshing causes a
change in the connectivity of the model, and therefore, the original
model cannot be restored. Besides, the remeshing is a computa-
tionally costly process. Our approach does not perform parameter-
ization and remeshing. It solves only two linear equations for
projection; one for determining the pixel positions of the mesh
vertices on the image and another for finding the values of the pro-
jected pixels. Even large models, e.g., Hand and Happy Buddha (cf.
Figs. 7 and 8), can easily be compressed using the proposed algo-
rithm. On the other hand, to parameterize these models without
any simplification and remeshing, a 543K � 543K matrix for Bud-
dha model and a 327K � 327K matrix for Hand model should be
solved.

The proposed mesh compression framework is lossless in the
sense that it can compress an arbitrary 3D surface (e.g., irregular,
semi-regular, regular) without changing the connectivity. Theoret-
ically, the proposed mesh compression algorithm may obtain a
lossless compression by using a very high-resolution projection
grid, but practically it is lossy. However, the loss in mesh quality
is insignificant. Reconstructed Hand, Happy Buddha and Horse
models using different bitrates can be found in Figs. 7–9, respec-
tively. A high resolution projection plane of 512 � 512, or
9 bpv, (b) 22.4 bpv. The original Hand model is given at (c). The distortions of the
) 0.000228, respectively.



Fig. 9. The Horse model compressed using the proposed method with (a) 14.88 bpv, (b) 15.08 bpv, (c) 16.76 bpv. The original Horse model is given at (d). The distortions of
the reconstructed models with respect to the Hausdorff distance metric are (a) 0.000453, (b) 0.000275, (c) 0.000131, respectively.

Fig. 10. (a) Base mesh of Bunny model constructed by the PGC algorithm (230
faces). The models reconstructed from (b) 5%, (c) 15%, (d) 50%, (e) 75% of the
compressed stream. (f) The original Bunny model. The original model has a size of
6 MB and the compressed full stream has a size of 37.7 KB.
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1024 � 1024, is used while compressing these large models. The
results show that we can achieve a Hausdorff distance of <0.025
at bitrates around 16–21 bpv. As seen from Figs. 7–9, the difference
between the original and reconstructed models cannot be per-
ceived easily at these bitrates.

As opposed to the GI method, some vertices may get lost during
the projection operation. Generally, the 3D meshes are not homeo-
morphic to a disk, and sometimes it may not be possible to find a
correspondence between each vertex in a mesh and an image pixel.
To handle the problem of discarded vertices, a neighborhood-based
interpolation scheme that predicts the values of the lost vertices
from its projected neighbors is defined.

It is observed that if many vertices are lost, the proposed ap-
proach may not work well. This problem can be solved by project-
ing the coinciding vertices to the nearest, empty sampling points of
the projection plane. For complex models, another solution would
be taking many projections. This would increase the bit rates but
may decrease the distortion level of the reconstructed mesh. As a
future work, we will investigate ways to find the best projection,
by which the maximum number of mesh vertices are projected.

PGC (Progressive Geometry Compression) [25], which is an-
other wavelet based mesh compression algorithm, is one of the
most successful mesh coders in the literature. It can be seen from
Fig. 10 that using only the 15% of a stream of 37.7 KB results in
reconstructed model with very high quality. As the percentage of
the used stream increases, the quality of the model increases too
(Fig. 10). However, PGC works only on semi-regular or regular
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meshes. Thus, before using wavelet transform on a mesh, it must
be remeshed, as in [7]. Remeshing is also a computationally-inten-
sive task; especially for large models. Our scheme can be applied to
any mesh regardless of its regularity.

In Fig. 11, visual results produced by MPEG-3DGC/MPEG-4 and
the proposed SPIHT based mesh coder are given. The proposed
algorithm gives comparable results with the MPEG-3DGC/MPEG-
4 (cf. Fig. 12). When the same mean distance between the original
and reconstructed models are taken into account, the data size of
the proposed coder is superior to MPEG-3DGC/MPEG-4.

Table 4 shows the bitrates of other lossless and lossy progres-
sive mesh compression algorithms in the literature [26]. The major
difference between the lossless and lossy compression schemes
comes from remeshing. Lossy compression methods first remesh
the 3D model and obtain a regular or semi-regular version of it;
thus, the original model cannot be obtained [3]. On the other hand,
lossless compression methods do not remesh the model; thus, the
original model can be reconstructed. Table 4 shows that our meth-
Fig. 11. The Dance model compressed using CGAWT at 21.5 bpv (a) and MPEG at 60.5 bp
bit rate of CGAWT to 17 bpv causes a distortion in the face part of the model since the
distortion as seen in (d).

Fig. 12. The comparison between the MPEG and CGAW compression of Nine-Torus, Chi
Edgebreaker is used as the connectivity coder of CGAWT compression.
od gives comparable results with the lossless compression meth-
ods in the literature. The bitrates of the lossy compression
algorithms are better than both our method and the lossless com-
pression algorithms in the literature. Their gain in bitrate can be
attributed to the increased regularity in geometry [26]. Due to
the obtained regular geometry (by remeshing), the prediction
schemes used in lossy compression algorithms work more efficient.

8. Conclusion

In this paper, a mesh compression framework that uses Connec-
tivity-Guided Adaptive Wavelet Transform based image coders is
proposed. Two important components of the coder are the projec-
tion operation and the Connectivity-Guided Adaptive Wavelet
Transform. We showed that a mesh can be compressed using
known wavelet based image compression tools. We also showed
that both single-rate and progressive encoding can be achieved
using these tools.
v (b) has the same distortion with respect to Hausdorff distance. (c) Decreasing the
vertices are dense in this part. Decreasing the bit rate of MPEG to 58 bpv creates a

cken, and Dance models. The bitrates include both the connectivity and geometry.



Table 4
Average bitrates of other lossless and lossy progressive mesh compression algorithms
in the literature.

Algorithm name Bitrate (bpv)

Lossless compression schemes
Progressive simplicial complex [27] Over 35 bpv
Progressive mesh [6] About 35 bpv
Progressive forest split [28] Slightly below 30 bpv
Compresses progressive mesh [29] About 22 bpv
Valence driven compression [30] 14–20 bpv

Lossy compression schemes
Progressive geometry compression [25] About 5.5 bpv
Normal mesh compression [33] 3–4 bpv
Hierarchical 3DMC [4] 4–5.5 bpv
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The results show that the compression of meshes using image
processing techniques does not require any parameterization or
remeshing on the mesh. Both remeshing and parameterization
are computationally complex tasks. On the other hand, the projec-
tion operation defined here is simple to implement and needs less
computation than remeshing and parameterization of the model.

The experimental results also show that the proposed Connec-
tivity-Guided Adaptive Wavelet Transform increases the encoding
efficiency compared to the ordinary wavelet transform. The neigh-
borhood relation between the pixels of the projection image is de-
scribed in the connectivity information of the model. Hence, it is
necessary to take advantage of the connectivity information to pre-
dict a ‘‘pixel” from its connected pixels. Neighboring pixels in the
image may not come from connected vertices of the mesh. Thus
prediction structure proposed in Connectivity-Guided Adaptive
Wavelet Transform performs better than the ordinary wavelet
transform.

The Connectivity-Guided Adaptive Wavelet Transform is based
on the prediction of grid points from its neighbors. It is observed
that, SPIHT and JPEG2000 encoders provide good results when
the values of signal samples are highly correlated with each other.
Hence, a mesh-to-image transform providing high correlation be-
tween the grid values will lead to higher compression ratios.

Some of the best compression algorithms in the literature use
remeshing as the preliminary step, since they are not applicable
to irregular meshes. However, they cannot reconstruct the original
mesh since they remesh the model. Another advantage of the pro-
posed algorithm is that it is applicable to all types of meshes,
including irregular, semi-regular or regular meshes.
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