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1. Introduction This paper presents a strategic growth model with endogenous
time preference. Each agent, receiving a share of income which
is increasing in her own capital stock and decreasing in her

To account for development patterns that differ considerably
rival’s, invests over an infinite horizon to build her stocks. The

among economies in the long run (Quah, 1996; Barro, 1997; Barro

and Sala-i-Martin, 1991), a variety of one-sector optimal growth
models that incorporate some degree of market imperfections
have been presented. These are based on technological external
effects and increasing returns (Dechert and Nishimura, 1983; Mitra
and Ray, 1984) or the endogeneity of time preference (Becker
and Mulligan, 1997; Stern, 2006; Erol et al., 2011). They have
characterized the optimal paths and proven the emergence of
threshold dynamics according to which the economies with low
initial capital stocks or incomes converge to a steady state with
low per capita income, while economies with high initial capital
stocks converge to a steady state with high per capita income (see
Azariadis and Stachurski, 2005 for a survey). However, to what
extent these analyses are robust to the considerations of strategic
interactions among agents in the economy still remains a concern.
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heterogeneity among agents arises from differences in their initial
endowment, their share of aggregate income, and therefore in their
subjective discount rates. We adopt the non-cooperative open-
loop Nash equilibrium concept, in which players choose their
strategies as simple time functions and they are able to commit
themselves to time paths as equilibrium strategies. In this setup,
agents choose their strategies simultaneously and each agent is
faced with a single criterion optimization problem constrained
by the strategies of the rival taken as given. We focus on the
qualitative properties of the open-loop Nash equilibria and the
dynamic implications of the strategic interaction.

In line with the empirical studies concluding that the rich are
more patient than the poor (see Lawrence, 1991, Samwick, 1998)
and in parallel to the idea that the stock of wealth is a key to reach-
ing better health services and better insurance markets, we con-
sider that the discount factor is increasing in the stock of wealth.
However, this implies that the objective function of each agent’s
single criterion optimization problem includes a multiplication of
the discount function. This generally destroys the usual concavity
argument which is used in the proof of the differentiability of value
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function and the uniqueness of the optimal paths (see Benveniste
and Scheinkman, 1979, Araujo, 1991).

Due to this potential lack of concavity and the differentiability
of the value functions associated with each agent’s problem,
we employ the theory of monotone comparative statics and the
supermodular games based on order and monotonicity properties
on lattices (see Topkis, 1998). The analyses on the properties of
supermodular games have been extensively concentrated in static
games and to some extent in dynamic games with stationary
Markov strategies (see Cooper, 1999, Amir, 2005, Vives, 2005 for
a general review). This may stem from the fact that the use of
open-loop strategies has been noted for being static in nature, not
allowing for genuine strategic interaction between players during
the playing of the game. There are, however, many situations in
which players lack any other information than their own actions
and time so that the open-loop strategies can turn out to be
unavoidable. The players may be unable to observe the state vector,
let alone the actions of their rivals. In this respect, showing how the
supermodular game structure can be utilized in the analysis of the
dynamic games under open-loop strategies is inevitable.

In this paper, we first provide the sufficient conditions of su-
permodularity for dynamic games with open-loop strategies based
on two fundamental elements: the ability to order elements in
the strategy space of the agents and the strategic complementar-
ity which implies upward sloping best responses. In our dynamic
game the open-loop strategies are vectors instead of simple scalars.
Hence, the game requires an additional restriction to guarantee
that all components of an agent’s best response vector move to-
gether. This explains the role of the restriction that the payoff func-
tion of each agent has to be supermodular in his own strategy
given the strategy of his rival. The supermodular game structure
of our model lets us provide the existence and the monotonicity
results on the greatest and the least equilibria. We sharpen these
results by showing the differentiability of the value function and
the uniqueness of the best response correspondences almost ev-
erywhere. These allow us to derive conclusions on the nature of
best responses, the set of equilibria and the long-run dynamics.

In particular, we analyze to what extent the strategic com-
plementarity inherent in agents’ strategies can alter the conver-
gence results that could have emerged under a single agent optimal
growth model and try to answer the following questions: Can an
agent with a larger initial stock credibly maintain this advantage to
preempt the rival’s investment and reach a better long-run stock
of capital? Put differently, is the initial dominance reinforced by
the actions of the agents? Can small initial differences be magni-
fied and then propagated through time? Can this kind of initial ad-
vantages vanish in the non-cooperative equilibrium of this class of
games with strategic complementarity? Can the agent with a low
initial capital stock pull the rich to her lower steady state that she
would never face while acting by herself? Under what conditions
do we have a unique equilibrium with strategic complementarity
under open-loop strategies?

The key feature of our analysis is that the stationary state Nash
equilibria tend to be symmetric under open-loop strategies. We
show that the initially rich can pull the poor out of the poverty trap
even when sustaining a higher level of steady state capital stock for
itself. Aremarkable feature of our analysis is that it does not rely on
particular parameterization of the exogenous functions involved in
the model, rather, it provides a more flexible framework in regard
to the discounting of time, keeps the model analytically tractable
and uses only general and plausible qualitative properties.

The article is organized as follows. The next section introduces
the model. Tools needed while utilizing the supermodularity of
the game, equilibrium dynamics and the steady state analysis have
been discussed in Section 3.

2. Model

We consider an intertemporal one sector model of a private
ownership economy a la Arrow-Debreu with a single good x;, and
two infinitely lived agents, i = 1, 2. The single commodity is used
as capital, along with labor, to produce output. Labor is presumed
to be supplied in fixed amounts, and the capital and consumption
are interpreted in per capita terms. The production function is
given by f (x;). We assume that each agent receives a share of
income 0'(xl, x}) = xﬁx{, which is increasing in her own capital
stock xi, and decreasing in her rival’s, x,. The amount of current
resources not consumed is saved individually as capital until the
next period. The amount of current resources not consumed is
saved individually as capital until the next period. For a given
strategy of the rival, each agent chooses a path of consumption ¢! =

{c;}t>0 so as to maximize the discounted sum of instantaneous

utilities, >0 (I Ti—; B(xD)) u(c!) where the functions u and B
denote the instantaneous utility from consumption and the level
of discount on future utility, respectively.

In accordance with these, the problem of agent i can be
formalized as follows:

[ee] t
max_ )~ (]_[ ﬂ(xi)) u'(ch, (P)

i
{C[’Xfﬂ}t:o t=0 \s=1

subject to

a0 K+ + (1 -0, VL
>0 x>0, vt

&, x) >0,  x={x}2, >0, given,

wherej # i € {1,2},and § € (0, 1) is the depreciation rate of the
capital stock. Agents may only differ in their initial endowment,
their share of output, and therefore in their subjective discount
rates.

We make the following assumptions regarding the properties
of the discount, utility and production functions.

Assumption 1. 8 : R, — Ry, is continuous, differentiable,
strictly increasing and satisfies sup,. o 8 (X) = B < 1, sup,of8’
(x) < +o0.

Assumption 2. u : Ry — R, is continuous, twice continuously
differentiable and satisfies either u(0) = 0 or u(0) = —oo. More-
over, u is strictly increasing, strictly concave and u/(0) = +o¢ (In-
ada condition).

Assumption 3. f : R, — R, is continuous, twice continuously
differentiable and satisfies f (0) = 0. Moreover, f is strictly increas-
ing and limy_, ;o f'(x) < 6.

We say that a path for capital ¥ = (¥, x), ...) is feasible from
(xg, x’o) > ‘0, if for a11 t qnd givenx; > 0,if forany t > 0, x; satisfies
that 0 < xi_; < g(xi, x;) where
g0, x) = 0, XDf (6 + X)) + (1= 8.

S' (x;) denotes the set of feasible accumulation paths from (x}, x)).
A consumption sequence ¢; = (c}, ci,...) is feasible from (x},
Xy) > 0, when there exists a path for capital, x; € S'(x;) with

0<c <gix, x)— XL, . As the utility and the discount functions
are strictly increasing, we introduce a function U defined on the set
of feasible sequences as

o0 t . .
U ix) =3 (]‘[ ﬂ(xi)) u (g ) =)
t s=1

=0



C. Camacho et al. / Journal of Mathematical Economics 49 (2013) 291-301 293

The preliminary results are summarized in the following lemma
which has a standard proof using the Tychonoff theorem (see Le
Van and Dana, 2003; Stokey et al., 1989).

Lemma 1. Let x be the largest point x > 0 such that f (x) +
(1 — 8)x = x. Then, for any x; in the set of feasible accumulation

paths we have x. < A(x, + x}) for all t, where A (xéJ + x’6> =

max{(xg -l—%) ,)'(}. Moreover, the set of feasible accumulation

paths is compact in the product topology defined on the space of
sequences x; and U is well defined and upper semicontinuous over this
set.

In a recent paper, Erol et al. (2011) study the dynamic implica-
tions of the endogenous rate of time preference depending on the
stock of capital in a single consumer one-sector optimal growth
model. They prove that even under a convex technology there ex-
ists a critical value of initial stock, in the vicinity of which, small
differences lead to permanent differences in the optimal path:
economies with low initial capital stocks converge to a steady state
with low per capita income. On the other hand, economies with
high initial capital stocks converge to a steady state with high per
capita income. Indeed, it is shown that the critical stock is not an
unstable steady state so that if an economy starts at this stock, an
indeterminacy will emerge.

In this paper, we propose a capital accumulation game where
heterogeneous agents consume strategically. Heterogeneity arises
from differences in their initial endowment, their share of
aggregate income, and therefore in their subjective discount rates.
Our interest focuses on the qualitative properties of the open-
loop Nash equilibria and the dynamic implications of the strategic
interaction.

2.1. Non-cooperative difference game and open-loop Nash equilib-
rium

The non-cooperative game in consideration is a triplet (N ,S,
{U:ieN})where N = {1, 2} is the set of players, § = ITicyS' is
the set of joint admissible strategies under open-loop information
structure and U’ is the payoff function defined on S for each player
ieNie, U =U/(x|x).

Any admissible strategy for agent i is an infinite sequence
compatible with the information structure of the game which
is constant through time and restricted with the initial pair of
capital stock in the economy. Accordingly, the set of admissible
strategies for agent i can be written as S = [1°,S!, where

Si= [O,g”@q,?’;ﬂ)],with?{’;f] =supS’_,,and¥_, = supS/_,.
Indeed, any strategy & € S'is such that x. € Si, Vt where
St = [O, gf(x{),x’é))] ,Sh = [O,gi (gi(xf), x’b),gj(xg,x’é))] ,..., etc

A few important remarks on the way the set of joint admissible

strategies is constructed are in order. Denoting the set of joint
feasible strategies by A, for any (x;, X;) € A, we have

A (%) = [ (Uyer S (%)) % (Uyex S @) | N 4,
where X/ = {x; : §' (x;) # @}.Itis important to recall from Topkis

(1998) that A = <ijexf si (x,-)) x (Uyexi S () if and only if

A (x;,%) = A for each (x;, %) in A. However, note that under
the open-loop information structure of our game, the action spaces
of the agents turn out to be dependent on each other converting
the game into a “generalized game” in the sense of Debreu (1952).
More precisely, A # (ijexj S (xj)) X (Uyexi S (%)) as the set of

feasible accumulation paths from (xg, x’g)) of agent i is constrained

by the choices of agent j. This simply prohibits us to order
elements in the joint feasible strategy space and calls for additional
restrictions on the plan of the game in proving the existence of
an equilibrium and analyzing the long-run dynamics via order
theoretical reasoning. The admissibility condition' imposed on the
set of feasible strategies of the agents allows us to write the set of
joint admissible strategies as a simple cross product of each agent’s
set of admissible strategies that constitute a complete lattice.?

We adopt the non-cooperative open-loop Nash equilibrium
concept, in which players choose their strategies as simple time
functions and they are able to commit themselves to time paths as
equilibrium strategies. In this setup, agents choose their strategies
simultaneously and each agent is faced with a single criterion
optimization problem constrained by the strategies of the rival
taken as given. )

For each vector x; € §, the best response correspondence for
agentiis the set of all strategies that are optimal for agent i given ;:

Br' (x;) = argmax U (x; | x;) .
x;eS!

1

Afeasible joint strategy (x;, x;‘) isan open-loop Nash equilibrium if

U(xf &) =U(x|x) foreachx; e S*and eachi e N. (1)

Given an equilibrium path, there is no feasible way for any agent to
strictly improve its lifetime discounted utility as the strategies of
the other agent remain unchanged. The set of all equilibrium paths
for this non-cooperative game (N, S, {U' : i € N}) is then identical
to the set of pairs of sequences, (X}, xj?‘) such that

x; €Br'(x) and x" B (x). (2)

We will concentrate on the existence of such an equilibrium. To
do so, we will first prove that the best response correspondence of
each agent is nonempty so that there exists an optimal solution
to problem (). The dynamic properties of the best response
correspondence then follows from the standard analysis in optimal
growth models (see Stokey et al., 1989, Le Van and Dana, 2003, Erol
etal,, 2011).

2.2. Dynamic properties of the best response correspondence

The existence of an optimal path associated with () follows
from the set of feasible accumulation paths being compact in the
product topology defined on the space of sequences x; and U' being
upper semicontinuous for this product topology. Let x; € Br' (xj)
so that x; solves () given X;. We can prove that the associated
optimal consumption and capital paths are positive at equilibrium.

Proposition 1. Let x; € Br' (x7).
(i) The associated optimal consumption path, ¢; (i,j € N,i # j), is
given by

=g, —x,,, vt

1 Whenever there exists a positive externality, i.e., > 0, Vt, the

agi(xd )
o
admissibility imposed on the set of joint feasible strategies is far from a restriction.

Aol (yl
Evenin case of negative externality, i.e., %};’J‘) < 0, Vt,the long-run implications
;

of our analysis will not rely on such a restrriction. Indeed, an admissible strategy
of agent i is an infinite sequence of capital stock feasible from (x{,, x,) constituted
under consideration of the highest feasible strategy of the rival.

2 In order to be able to work on a joint strategy space which constitutes a
complete lattice, one may also introduce an ad hoc rule that exhausts the available
stock of capital at the period where the joint strategies of the agents turn out to be
infeasible (see Sundaram, 1989). However, in such a case, showing that the payoff
function of each agent exhibits “increasing first differences” on the joint strategies
turns out to be unnecessarily complicated.



294 C. Camacho et al. / Journal of Mathematical Economics 49 (2013) 291-301

(ii) Given {x’(‘), X'}, if xg > 0, every solution (x;, ¢;) to (&) satisfies

>0, x>0, Vt (3)

Proof. It can be easily checked from the first order conditions and
the Inada condition. O
In accordance with these, let the value function V associated
with (#) be defined by
vx, >0, V (xg | {xj,x;‘}) =maxU (x; | x7). (4)
x;eS!

The bounds on discounting together with the existence of a
maximum sustainable capital stock guarantee a finite value
function. Under Assumptions 1 and 2, one can immediately show
that the value function is non-negative and strictly increasing. If
u(0) = 0 then the continuity of the value function immediately
follows as well. If u(0) = —oo then the value function turns out to
be continuous in the generalized sense so that it is continuous at
any strictly positive point and it converges to —oo when the stock
of capital converges to zero (see Le Van and Dana, 2003). Given
these, the Bellman equation associated with () follows.

Proposition 2. (i) V satisfies the following Bellman equation:
Vx>0, V (x}) | {x’,x}‘})
= max [u (gi(xé, X)) — x’)
+BEOV (¢ ) 0K sgwhd]. )

(ii) Asequencex; € S'(x¥) is an optimal solution so that x; € Br' (x)
if and only if it satisfies:

Ve, V(1) = u (g ) — )
+ BV (xg+1 | {#6,xf}>. 6)

Proof. See Le Van and Dana (2003) or Erol et al. (2011). O

The optimal policy correspondence associated with (2), u' :
R, — R, is defined as follows:

i (51 %))
= arg max {u (gi(xg, X)) — xi)
+BEV (¥ | 1 %)) 1% € [0.8'x0, )}
It is important to note that although the utility function is
strictly concave, the solution to (#) may not be unique as the mul-
tiplication of a discount function destroys the concave structure

needed for uniqueness. We can prove the following properties for
the optimal policy correspondence associated with ().

Proposition 3. (i) /! (o | {%,xf}) — (o).

(i) If x) > 0 and x|, € (xg | {(x, x;‘}), then 0 < x\ < gi(x, x)).

w' is upper semicontinuous.

x; € Bri(x) ifand only if x{, ; € ' (x’t [ %), xf}) , Vt.

(v) The optimal correspondence u' is increasing so that if xg <
Xxoe pf (x{J | {x ,x;‘}) and X, € W (}?{) | {x’,x}“}) then

i
X < X

(iii

(iv

)
)
)
)

Proof. (ii) Follows easily from (3). (iii) See Le Van and Dana (2003).
(iv) Follows from (6). (v) See Dechert and Nishimura (1983) or Amir
etal. (1991). O

The increasingness of u' is crucial for the convergence of
optimal paths associated with ($) and hence for the analysis
of the long-run dynamics. Moreover, we have also proven that
the optimal correspondence, w, is not only closed but also upper
semicontinuous.

With the positivity of the optimal consumption and the stock of
capital, the Euler equation associated with () easily follows.

Proposition 4. When xf) > 0, any solution x; € Bri(x;‘) satisfies the
Euler equation associated with (#) for all t:

u (gi(xi, xlt*) - Xi+1)
Bgi(xiﬂ, "1:;1)

i
0%, 44

+8 (X)) V (xi+1 | ), x}‘}) . 7)

=p (Xi+1) u' (gi(xiﬂ’ xi+1) - Xi+2)

Recall that in a standard optimal growth model with geometric
discounting and the usual concavity assumptions on preferences
and technology, the optimal policy correspondence is single
valued. Furthermore, the properties of the optimal path are easily
found using the first order conditions together with the envelope
theorem, differentiating the value function. However, in the i'th
agent’s problem (£), although the utility function is strictly
concave, the solution, namely Bri(x;‘), may not be unique as
the objective function includes the multiplication of a discount
function. This generally destroys the usual concavity argument
in the proof of the differentiability of value function and the
uniqueness of the optimal paths (see Benveniste and Scheinkman,
1979, Araujo, 1991). To this end, we show that the value function
associated with the i'th agent’s problem (4) is differentiable
almost everywhere so that there exists a unique path from almost
everywhere.

Proposition 5. (i) If x; € Bri(xf), then V is differentiable at any
x’[ t > 1.If ; € Bri(x}), there exists a unique optimal path from
xi forany t > 1.

(ii) V is differentiable almost everywhere, i.e. the optimal path is
unique for almost every xo > O.

Proof. See Le Van and Dana (2003). O

We prove in the next proposition that the optimal paths
associated with (£) are monotonic. As a monotone real valued
sequence will either diverge to infinity or converge to some real
number, the monotonicity of the optimal capital sequences x; €
Bri(x}*) will be crucial in the analysis of the dynamic properties and
the long-run behavior of the best response correspondences.

Proposition 6. For any initial condition (xi, x}), the optimal path
X; € Br'(x;") is monotonic.

Proof. Since ' is increasing, if x > x|, we have x; > x). Then,

by induction, it is true that x. > x,,, Vt.Ifx; > xj, using the

same argument yields x| > xi, Vt. Now if x; = x{, thenx) €
! (x{) | (%), x;‘}). Recall that there exists a unique equilibrium
path from xi for any ¢ > 1. Since x, € ! (xg | (X, xj’-*}) A=
X, vt. O
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We will now present the condition under which the conver-
gence to a steady state is guaranteed and concentrate on the be-
havior of the optimal paths x; € Br‘(x;‘) associated with (£).
Proposition 7. (i) Thereexistsan& > Osuch thatif sup,.of'(x) <
%, then any optimal path x; € Br"(x;‘) converges to zero.

(ii) Assume x{y > 0. Let infy-o B(X) = B. If =———2= % (OAJ )

%, then the
optimal path x} € Bri(xf) converges to a steady state x' > 0.
Proof. See Erol et al. (2011). O

We will now concentrate on the existence of an open-loop
Nash equilibrium to the non-cooperative game (N, S, {U' : i € N}).
To achieve our goal, we will show that the non-cooperative
game (N, S, {U' (i€ N}) is a supermodular game under open-
loop strategies. Besides, we will prove that under some regularity
conditions, the set of equilibria is a nonempty complete lattice.

3. Supermodular games and the existence of Nash equilibrium

Let us first outline the fundamental properties of the supermod-
ular games:

Definition 1 (Topkis, 1998). A non-cooperative game (N, S, {U'

i € N}) is a supermodular game if the set S of admissible joint
strategies is a sublattice of R™ (or of HleN R™), and if for each
i,j € N, i # j, the payoff function U' is supermodular in ¥; on
Si for each x; in S/ and U' has increasing differences in (x;, X;) on
Six S,

These hypotheses on the payoff function for each agent i imply
that any two components of agent i’s strategy are complements
and each component of i’s strategy is complementary with any
component of j's strategy. The following theorem provides the
existence of extremal equilibria in supermodular games with
modest regularity conditions.

Theorem 1 (Topkis, 1998). Consider a supermodular non-cooper-
ative game (N, S, {U' : i € N}) for which the set S of admissible
joint strategies is nonempty, compact and for eachi,j € N, i # j, the
payoff function U' is upper semicontinuous in x; on S’ (xj) for each x;

in §, then the set of equilibria is a nonempty complete lattice and a
greatest and a least equilibrium exist.

There are two fundamental elements in supermodular games:
the ability to order elements in the strategy space of the agents
and the strategic complementarity, which implies upward sloping
best responses. These properties of supermodular games have been
extensively used in static games and to some extent in dynamic
games with Markov perfect strategies (see Cooper, 1999, Amir,
2005, Vives, 2005 for a general review). We already stated in the
introduction that open-loop strategies do not allow for genuine
interaction between the players during the game. However, they
are most appropriate in situations where the information about the
other players is reduced to their initial condition or games with a
very large number of players. We can add games in which agents
decide whether to enter or not a coalition. Suppose a number of
players who evaluate the benefits of entering a coalition for a
given period of time. They would set the rules of the coalition at
the time the decision is taken. To evaluate the coalition, players
would play open-loop strategies. For all these reasons, we believe
it is important to show how the supermodular game structure
can be utilized in the analysis of dynamic games under open-loop
strategies.

Here we consider a dynamic game with open-loop strategies
and place related restrictions on strategy spaces and payoff func-
tions which lead to ordered strategy sets and monotone best

responses: as the other player selects higher strategies, the remain-
ing player will as well. This will allow us to derive conclusions on
the nature of best responses and the set of equilibria. To this end,
the next proposition is crucial as it establishes the conditions under
which our capital accumulation game turns out to be supermodu-
lar.

Proposition 8. The non-cooperative game (N, S, {U':i€ N}) isa
supermodular game if for eachi,j € N, i # j, and for all t,

aﬂﬂ@u@WL@—ﬁﬂﬂ>

XL 0XL 4 =0 ®
7 [poin(ge s —xa)] o
- > 0.
dxiax, -

The set of equilibria for this supermodular game is a nonempty
complete lattice and there exist a greatest and a least equilibrium.

Proof. See the Appendix. O

In this dynamic game with open-loop information structure
strategies are vectors instead of simple scalars. Hence, the game
requires an additional restriction to guarantee that all components
of an agent’s best response vector move together. This explains the
role of the restriction (8) that the payoff function of each agent has
to be supermodular in his own strategy given the strategy of his
rival. Put differently, given the choice of the rival, the agent is better
off combining high activity in one component of choice with high
activity in another (see Cooper, 1999). The restriction (9) ensures
that the gains to a higher strategy by one player increase with the
strategy taken by the other so that the best responses turn out
to be monotone. The key characteristic of a supermodular game,
namely the presence of strategic complementarities is ensured
by the restriction (9) which essentially implies the monotonicity
property of the best responses.

Though the conditions (8) and (9) can be interpreted along gen-
eral lines regarding the supermodularity of the non-cooperative
dynamic games under open-loop information structure, a further
refinement of the conditions will be useful in providing their limi-
tations and economic interpretations to the full extent. Indeed, un-
der Assumptions (1)-(3), the conditions (8) and (9) can be recast for
eachi,j € N,i##j,and for all t as

poy | wla) dg'o %) (8)
B&H  w(c)  ax
o) v () g | 08 )
B w(d) o ox,
250000 o)
AT N )

AXLax,
respectively. Accordingly, the supermodularity of the non-cooper-
ative game (N, S, {U' : i € N}) crucially depends on the sensitivity
of the agents’ time preferences with respect to their stock of wealth
and the sensitivity of the gains to a higher strategy by one player
with respect to the rival’s stock of capital. Note that for sufficiently
low values of the marginal rate of patience, if the aggregate income
of each player decreases with the rival’s stock of capital, a sufficient
condition for the supermodularity of the non-cooperative game
turns out to be the supermodularity of the aggregate income of
each agent, i.e. %{;Xf‘g) > 0, Vi,j € N, i # j,and Vt. However,
if the aggregate mc[or;le of each player increases with the rival’s
stock of capital then the supermodularity of each agent’s aggregate
income becomes necessary for the game to be supermodular.
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Proposition 8 ensures the existence of an open-loop Nash equi-
librium path in a supermodular game. The following proposition
provides monotone comparative statics results.

Proposition 9. Let T be a partially ordered set of parameters and
(I (r),t €T) with I' (r) = (N,S", {U™:ieN}) be a param-
eterized family of supermodular games. S° and U™ denote the de-
pendence of S and U’ on parameter t. The set ST of admissible joint
strategies is nonempty and compact for each T in T and is increasing
intonT.Ifforeachi,j € N,i# j, and for all t,

92 [,B(X{, u (gi(xi, X, 1) — X1 r)]
XiaT

then the greatest and the least equilibrium of game I" () are increas-
ingintonT.

>0, (10)

Proof. See the Appendix. O

On a parameterized collection of supermodular games, the
condition (10) ensures that the best response correspondence of
the agents, hence the extremal equilibrium, will be increasing in
a parameter that may be endogenous or exogenous due to the
strategic complementarity inherent in the agents’ strategies. As
an example, consider that B(x) = 1 — ye ®*° where 0 <
ye*pg <n < 1,0 < & < 1,and p > O (see Stern, 2006).
Proposition 9 asserts that an increase in 7, a measure of patience,
leads to an increase in the extremal open-loop Nash equilibria of
the supermodular game (N, 8", {U : i € N}). That is, the more
patient agents are, the larger the individual’s capital stock at every
period in the greatest and the least equilibrium trajectories.

In what follows we will concentrate on the dynamic properties
of the open-loop Nash equilibria of the supermodular game
(N,s,{U':ieN}). Since the open-loop Nash equilibrium is
weakly time consistent, instead of referring to the discrete time
Hamiltonian, we will focus on the closed-loop representation of
the equilibrium strategies and utilize (5), (6), and Proposition 7 in
determining the dynamic properties of the equilibrium paths.

3.1. Dynamic properties of open-loop Nash equilibrium and steady
state

Let (x], x;‘) be an open-loop Nash gquilibrium from (xg,x’(‘))
of the non-cooperative game (N, S, {U':i € N}). We denote by
{xf),x;“} the i'th agent’s trajectory of capital stock at such an
equilibrium path, i.e., {xi, 2} = (xi, %, ... %, ...). It is then
clear that (x, x;‘) satisfies (2). Hence ;" solves () given x;‘ so that
Xy €ut (x't | {x! ,x;‘}), vt.

i

Letinf,.of(x) = § and £

25 7 _

The optimal paths & € Br(x?) and 87 € Br/ (x) converge to the

steady state values x; > 0 and x; > 0, respectively. These steady
state values solve the following stationary state Euler equations:

u(g'(x', ¥) — xi)

> %,foreachi,j €N,i#].

o (gi(xi’ X) — xi) _ ﬁ/(xi)

1B
+BCeHY (' (X', ¥) — X')
i XX Vi,jeN, i#j. (11)

ax!

However, it is important to note that the stationary sequences
associated with each solution of (11) may not induce a steady
state open-loop Nash equilibrium (see Dockner and Nishimura,
2001) unless they constitute a best reply to each other. A steady

state open-loop Nash equilibrium (x;, ¥;) is defined as the stationary
sequences associated with a solution (Xf,Xj) to (11) such that
{xb. %} = (x,x,....x',...) € Bri(x;) and {x’o,xj] = (¥, ¥, ...,
X, ...) €Brix).

If the game was symmetric, we could have already concluded
that the two agents will end up with the same amount of
physical capital in the long run. Indeed, if a supermodular game
is symmetric, then a greatest and a least equilibrium exist and
they are symmetric. Amir et al. (2008) show that monotonicity
induces the greatest and the least equilibrium converge to the
highest and the lowest symmetric steady states, respectively. A
game is symmetric supermodular if on top of the usual conditions
for supermodularity, the agents’ strategy spaces are identical and

Ux|%)=U(x1x), Y&,x)c€S.

Neither of these latter conditions are met in our game. Strategy
spaces coincide only when the initial conditions are identical
for both of the agents. Furthermore, the second condition also

fails at the first period since we have u (gi(xg,x’;)) —x"l) #

u (gj(x’;],xg) —xil) for each i,j € N,i # j. Despite the lack
of symmetry in the game, we prove that our game always leads

to symmetric steady states so that the initial wealth differences
vanish in the long run.

Proposition 10. All steady state open-loop Nash equilibria of the
supermodular game (N, S, {U' : i € N}) are symmetric.

Proof. See the Appendix. O

In the following proposition, we show that the individual
level of capital stock at the lowest and the highest steady state
open-loop Nash equilibrium is greater than the lowest and the
highest steady states of the associated single agent optimal growth
problem, respectively.

Proposition 11. Let x; and xy denote the lowest and the highest
steady states of the optimal growth problem and x] and x, denote
the lowest and the highest steady state open-loop Nash equilibrium
of the non-cooperative game (N,S, {U':i € N}). If the game is
supermodular then we have x; < x{ and xy < xJ,.

Proof. See the Appendix. O

Next we exploit the supermodular structure of our game in
identifying the most preferred steady state depending on the game
elements.

Corollary 1. Let (X %) and (X, X) denote the highest and the
lowest symmetric stationary open-loop Nash equilibrium of the game
(N.s. {u':ieN}).If

d (u(g(x,X)—X)>
—|—] >0,
ox 1—B8(X)

then (& ?c) is the most preferred steady state open-loop Nash
equilibrium. Otherwise, (X, &) will be the most preferred.

Proof. See the Appendix. O

Recall that the stationary sequences associated with each
solution of (11) may not constitute a steady state open-loop Nash
equilibrium. This moves the concern on the number of solutions
to the stationary Euler equations and among those that will be
induced by a steady state open-loop Nash equilibrium. Since one
cannot provide an analytical answer to this question, we will move
on to the numerical analysis of our problem. The next section is
devoted to this end. For given functional forms, we analyze the
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solutions to (11). In order to determine which of these indeed
constitute a steady state open-loop Nash equilibrium, we employ
the iterations of the Bellman operator (5) for the given stationary
strategy of the rival. We compute the dynamics of the equilibrium
paths from an initial condition, using the supermodular structure
of the game on top of the iterations of the Bellman operator.

4. Characterization of the long-run equilibria: numerical anal-
ysis

The analysis of the solutions to the stationary Euler equations
and the determination of solutions induced by a stationary open-
loop Nash equilibrium cannot be carried out without specifying
the forms of the utility, discount and production functions. In
what follows, our analysis will be based on the functional forms
specified in accordance with Stern (2006). The utility, production
and discount functions are specified as

6170'
u(c) = 1—o’
f(x) = Ax* + (1 — 8)x,
Bx) =1 — ye “H",

where 0 < {A, p},0 < a,0,6 < 1,and 0 < ye“’g <n <
1. Under these functional forms, in reference to Proposition 8, a
sufficient condition for our strategic growth model to become a
supermodular game is:

oy @1 (x{ + axi) +x
Bd) ~ % (% + )
Condition (12) is trivially checked for & > 1 when p is sufficiently
large, since % is a decreasing function and its supremum equals
:]’f‘; e:i . In accordance with these, we utilize the following set of
fairly standard coefficients as our benchmark parameterization:
A=0.75, a =04, 8§ =0.03, o = 1.5,
n =0.95, y =2.5, p =4.5, e =0.99,
under which the maximum sustainable level of capital stock turns
out to be A (xg + )(’6) = max { (xg + )(’6) : )'(} where x is 213.747.3
We prove in the first subsection of the following that strategic
interaction removes indeterminacy, in case indeterminacy existed
in the single agent optimal growth problem. Then, we continue our

numerical analysis with the case in which multiplicity of equilibria
persists in the long run.

. VE>1. (12)

4.1. Strategic interaction removes indeterminacy

Under our benchmark parameterization, we can prove numer-
ically that strategic growth removes indeterminacy and implies
global convergence towards a unique symmetric steady state. In
order to provide a better exposition of this point, and to provide a
basis of comparison for our strategic growth model, we first recall
the analysis of Erol et al. (2011) and we concentrate on the dynamic
implications of endogenous discounting in the single agent frame-
work.

3 our analysis utilizes a felicity function constrained to a negative domain.
Schumacher (2011) shows that if the discount rate is endogeneized via a state
variable, the domain of the felicity function should be constrained to a positive
domain. In a negative domain, a higher stock of capital would have a negative
impact on overall welfare. However, under our parameterization, even with a
negative felicity function constrained to a negative domain, a higher stock of capital
will have a positive impact on welfare. Indeed, our discount factor attributed to the
utility of consumption at period t increases with the level of capital stock, as in
Becker and Mulligan (1997) and Stern (2006).
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Fig. 1. Optimal policy after 300 iterations on the initial zero value function.

Case 1. Optimal growth framework.

Consider problem (&) in which only agent i starts with a pos-

itive stock, X, = 0 and x}, > 0, i.e. agent i acts alone. There
exist three solutions to (11): x;, = 0.5953,x,, = 2.9155, and
xp = 8.4913. In order to determine which of these are actually
the optimal steady states, we analyze the optimal policy using the
Bellman operator. Fig. 1 indicates that x; and x;, are stable optimal
steady states, but in contrast with Stern (2006), Fig. 1 strongly in-
dicates that x,, is not an optimal steady state. Indeed, if it were, the
optimal policy would have crossed the y = x line at x,,. The Bell-
man operator also reveals the existence of a genuine critical point
at x. ~ 5.5846: for any initial capital stock level lower than x., the
economy will face a development trap, enforcing convergence to a
very low capital level x;. On the other hand, for any initial capital
level higher than x, the optimal path will converge to x,. However,
if an economy starts at x., an indeterminacy will emerge.

Case 2. Strategic growth.

Consider now the case where (x, X)) > 0. Let infy.o f(x) =
08104 )

B. Note that i %
P o B
values, there exists a unique symmetric solution of the stationary
state Euler equations (11): (x, xj‘) = (10.8906, 10.8906). Indeed,
consider a two-region economy, one with a large initial stock of

capital and the other with almost none, take for example xg =0.1

and x’O = 10. Whenever they act independently of each other, the
poor region ends up in a development trap, x;, = 0.5953, whereas
the rich region reaches a steady state level of capital stock x;, =
8.4913. However, if there exists a strategic interaction between
the two regions, they both reach an identical steady state level
of capital (x}, x]*) = (10.8906, 10.8906). Thanks to the strategic
interaction between regions, the rich region pulls the poor one out
of the poverty trap while sustaining a higher level of steady state
capital stock in the rich region.

> Under the benchmark parameter

4.2. Multiplicity of equilibria

As we have already underlined, in a single agent optimal growth
framework, the capital dependent time preference rate generates a



298 C. Camacho et al. / Journal of Mathematical Economics 49 (2013) 291-301

2.0

1.5

0.5}

[ A ——

0.0 L=
0.0

1 0.5 1.0 1.5 2.0
Fig. 2. Low steady state (x; = 0.59) is optimal.

critical point. In the vicinity of this critical point, small differences
lead to permanent differences in the optimal path. Since this result
heavily depends on the value of p, we would like to deviate from
the benchmark to explore how strategic interaction modifies the
single agent result. Hence, we assign a lower value to p,p =
4. The supermodular game (N,S, {U':i e N}) studied in this
section exhibits multiple long-run equilibria although a single
agent optimal growth model exhibits global convergence. Indeed,
there exist three solutions to the stationary Euler equation (11)
of the single agent optimal growth problem: x; = 0.3708, x,, =
4.0061, and x, = 8.4315. Among these three solutions, x; turns
out to be the only optimal steady state (see Fig. 2). The natural
question is then to what extent strategic growth dynamics are
affected from such a change? When we consider the dynamic
implications of strategic growth we note that there are multiple
solutions of the stationary state Euler equations as listed below.
The stationary sequences associated with only those in bold are
indeed constituting a steady state open-loop Nash equilibrium as
we show later:

(xi, ) = {(0.864, 0.864), (2.2404, 2.2404),
(10.8863, 10.8863), (2.7941, 1.1354),
(2.3869, 10.4927), (1.1353, 2.7941),
(10.4927, 2.3869)}.

The stationary sequences associated with the asymmetrical so-
lutions above do not constitute a steady state open-loop equilib-
rium of our game as announced in Proposition 10. Among the three
symmetric solutions to the stationary Euler equations (11), the sta-
tionary sequences associated with the lowest and the highest pairs
constitute a steady state open-loop equilibrium, shown in Figs. 3
and 4 respectively. In other words, when the initial condition is
(x),x)) = (10.8863, 10.8863), then the stationary strategies of
the agents sticking to the initial condition constitute a best reply
to each other so that (10.8863, 10.8863) turns out to be a steady
state open-loop equilibrium. The same is true for (0.864, 0.864).
As we show in Proposition 11, both of them are higher than the
unique steady state of the single agent optimal growth problem.

We can easily show that threshold dynamics emerge. There
exist critical values of initial capital (x., x.), below which an

uix)
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Fig. 3. Stationary sequence associated with (x; = 0.863991) is an open-loop Nash
equilibrium.
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Fig. 4. Stationary sequence associated with (x; = 10.8863) is an open-loop Nash
equilibrium.

open-loop Nash equilibrium of our supermodular game will
converge to the lowest steady state (0.864, 0.864). There exists
a second critical point, (x°, x°) above which a sequence of an
open-loop Nash equilibrium will converge to the highest steady
state (10.8863, 10.8863). Noteworthy, these critical values are
not a solution of the stationary state Euler equations so that the
stationary sequences associated with these cannot constitute a
stationary state open-loop equilibrium of the game. As the optimal
policy of agent i is upper semicontinuous, given the strategy of
the rival * — 10.8863, the graph of u'(x' | {x;,x/}) jumps
over the 45° line at x* so that xX° ¢ w'(x | {xp, x7}). With an
analogous reasoning, given the strategy of the rival is xf — 0.864,
the graph of 11/(x' | {x;, x7}) jumps over the 45° line at x, so that
X & w(xc | {x,x7}). This implies even further that as soon as
Xx“ = x. an indeterminacy arises so that for a game emanating from
such a critical stock of capital, the best responses of the two agents

that converge either to the low or to the high steady state may both
constitute an open-loop Nash equilibrium.
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Appendix

A.1. Proof of Proposition 8

The non-cooperative game (N = {1,2},S, {U": i € {1,2}}) is
supermodular if S is a sublattice of (] T,y R™) , U'is supermodular
in x;, for any x; and U’ has increasing differences in (x;, x;).

(i) The lattice S is a subset of R* and it is a sublattice of it.

(ii) Let us start proving that each individual payoff function is
supermodular in its own strategy. By definition, a function f is
supermodular if and only if

fxVy +fExAy) = f&) +f).

Consider two different strategies for agent i, x; and x; who
differ from each other at time ¢t and t + 1 so that ({1X =1 X} =
(Xi42» X 43, - - -)- Recall that

U lx) = 3 ( I mxp) W(g' ) — ).

T=t+1 \s=t+2

We need to show that:
B (806" X = X1y, ) + BEDBKLDU (1% | %)
+ B (810X — Xy ) + BRDBCEL U (12 | %)

< B0 (800" x) = ¥y ) + BB DU (e | %)

+ B0 (810 X = Ky ) + BERDBE DU (1% | ).
Since
(B = BeH) B U (141%, 1 )

> (B = BD) B DU (13 | ).
it is sufficient to show that
B (') = x ) + Bl (g X — oy )

< B (810" ) = x4 ) + B (g0 x) =)
This is equivalent to showing that B(x)u (gf (2 = X
is supermodular in (¢}, x, ). As BGhu (g0, x) —xi,,) is
differentiable, it holds if
3 B(x)u [g‘(xl;,%) - X';H] L

iy
0x;0X, 1

(iii) Let us now prove the increasing differences. A function f
has increasing differences if and only if

f(xa t//) _f(xa t/)v

is increasing in x.

Let x; € Bri(x) so thatxi,, € u'(xl|x;), Vt. As open-loop
strategies are only dependent on the initial conditions, one can
easily write that

t" >t

xo=p (1 (1 () %) = (%1 %),
t-times

Vi=1,2,....

Now we fix X; > x; (that is & > x| forall t), and consider a best
response of agent i, %; = {8}~ sothat&, , e 4’ (% |%), vt
Accordingly,

Rp= 2 (0 (A (- A00)) 18) = g (% 1 &)

t-times

Vi=1,2,....

We have to check whether
Ui, x) — U(x;, %) > U(x;, &) — U(x;, X)) (13)
for i' (x | &) > pu' (x | %;), Vx. We can substitute U:

00 t
> (1‘[ ﬂ(ﬂi(xg))) [(g" (1 (). &) — it 41 (%))

t=0 s=1
—u(g' (A (), 6) — il (xh))]

e} t
>y ( ﬁ(ui%))) [u(g' (1 (x0), &) — Bis1 (%))
t=0 \s=1

—u(g (W (), K1) — i (K]

Since fi(x}) > pul (x}) for all s, we have that the above inequality
is equivalent to checking whether:

Bl (xp))u(g' (1 (). &) — f1g1(%))

— B(Ai (xp)u(g! (R (%) X)) — it 1 (xp)

= B (6))u(g' (g (xp). &) — 11 (%)

— Bt (xo)u(E' (1 (x), Xp) — 141 (Xp))-
We shall proceed by dividing both sides by (fc’t — x’[) and taking
the limit when ()?’t — x’t) — 0. We get that (13) holds if and only
if
0 [ Bt (gai0h). ) — ik, o) ) |

%
0 [ Bk (g (i), ) — i ()]
ox;

Note that when (Z2/(x)) — p'(x)) — 0, then (l(x}) — ! (x)))

— 0, Vs. Dividing both sides by (/l(xy) — ui(xp)) and taking the
limit when (/i (xf) — ! (x§)) — 0, we obtain that

> 0.

9 [Bastoiu (g0 ). ) — ks ()]
0 (1 (%)) 00
Put differently, in terms of period utilities,

9 [BxHu (g'x', %)) — xi,4)]

> 0.

— >0,
OXLOX,
together with
9 [ﬂ(x[i)u (gi(xti, xJ) — Xi+1)] =0
0Xp0X; 4 -

ensures the supermodularity of the game. Since S is compact under
product topology and U' is upper semicontinuous in x; on S (xj),
the result follows from Theorem 1.
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A.2. Proof of Proposition 9

By the same reasoning that we use in the proof of Proposition 8-
(iii), condition (10) assures that for each player, U™ has increasing
differences in (x;, t). All the rest follows from Topkis (1998,
Theorem 4.2.2).

A.3. Proof of Proposition 10

We proceed in three steps. First, we show that the game
(N,s,{U":ieN}) only admits symmetric and antisymmetric
steady states. Then, we prove that antisymmetric steady states are
linearly ordered with the highest and the lowest symmetric steady
states. Finally, we prove that our game only admits symmetric
steady state open-loop Nash equilibria.

Lemma 2. If (x,,X") is a steady state open-loop Nash equilibrium
of the game (N, S, {U" : i € N}), then (x*, x,) is also a steady state
open-loop Nash equilibrium.

Proof. If (x,, x*) is a steady state open-loop Nash equilibrium of
the game (N, S, {U' : i € N}), then (x,, x*) satisfies (11) for both
agents. (x*, x,) is also a steady state since for eachi,j € N,i #
9gl

i g, ¥y =g/, x)and ol = %. O

Lemma 2 shows that the set of steady states only contains
symmetric and antisymmetric steady states. As the next lemma
shows, the antisymmetric steady states are linearly ordered with
the highest and the lowest symmetric steady states.

Lemma 3. Let (%, &) and (X, X) denote the highest and the lowest
symmetric steady state open-loop Nash equilibrium of the supermod-
ular game (N, S, {U" : i € N}). If there exists an asymmetric steady
state open- loop Nash equilibrium, say (X, X*) with x* # x,, then
(% %) < (., %) < (&, ).

Proof. Let x, < x*, without loss of generality. Let xo be such that
g' (x0.x0) = min {g' (x*, x,) ., & (x*,x,)} fori € {1,2}.

Assume now on the contrary that x, < X*. We have, by
construction,

g' (xox0) < g (x.x) < g (X", %").

Let T = (g' (x0.X0) .8 (x0,%0)) and ¥ = (g' (", x,) . & (x*,x,)),
where T < 7. Consider the corresponding supermodular games
I' (tr) and I' (T). By Proposition 9, the greatest and the least
equilibrium of the game are increasing in 7 on T, i.e. steady state
levels that the greatest and the least open-loop Nash equilibrium
of the game converge to will be higher for 7. Since I" (7) is a
symmetric supermodular game, the least equilibrium converges to
a symmetric steady state, i.e. X* < x,, leading to a contradiction.
The case of x* < X* can be shown similarly. O

Let us prove now that any steady state open-loop Nash
equilibrium of our game is indeed symmetric:

Let (% %) and (fc X) denote the highest and the lowest
symmetric steady state open-loop equilibrium of the game,
respectively. First and as a corollary to Lemma 3, if the hlghest
and the lowest symmetric steady states coincide, i.e, ¥ = &,
there does not exist any asymmetric stationary state open-loop
equilibrium of the game. Now consider the case where ¥ # X
and assume that (x,, ¥*) is an asymmetric stationary state open-
loop Nash equilibrium with x, < &* without loss of generality.
Then, by Lemma 2, (x*, x,) constitutes an asymmetric steady
state open-loop Nash equilibrium as well. Consider now the game
(N,S, {U": i € N}) under the following three initial endowments:

(%, %), (x*, x.) and (" B, "*er"*). Recall that the game with

a symmetric initial endowment turns out to be symmetric
supermodular so that due to the monotonicity of the best replies,
the greatest and the least equilibrium converge to the highest
and the lowest symmetric steady state, respectively. Accordingly,
assume that the equilibrium of the symmetric supermodular
game that starts with the initial endowment of ("*% "*%)
converges to the highest symmetric steady state (&, fc) in the
long run, without loss of generality. In comparison with the
asymmetric stationary state open-loop equilibrium (x,, ¥*), the
open-loop Nash equilibrium of the game that emanates from
("*% ﬂ%) and converging to (&, &) in the long run reveals
that an increase in the agent’s own initial capital stock and a
decrease in the rival’s implies the convergence of the agent’s
stock towards a higher steady state. This then implies that the
equilibrium of the supermodular game that emanates from (x*, x..)
has to monotonically converge to the highest steady state (& &) as
well. However, this contradicts the fact that (x*, x,) has to be a
steady state open-loop Nash equilibrium.

A.4. Proof of Proposition 11

Let xo be such that

f(2%)
2

and consider the corresponding symmetric supermodular game.

Let {x’&,)g} = (x0,0,0...,0,...). Note that Br' (x;) coincides

with the single agent optimal growth problem for the given initial
capital stock, f~1 (g' (xo,%0)). As x; is stable from the left, 3x; €

Bri (xj) such thatx; — x;.Since x; is the lowest steady state and the
optimal policy correspondence of a single agent optimal growth
problem is ordered (see Erol et al., 2011), we can conclude that x; is
the least element of the best response correspondence. Let (x*, x*)
constitute the least open-loop Nash equilibrium of the game, i.e.
x* € Br'(x*) and x* € Br/ (x*). Note that the supermodular
game structure implies that the least and the greatest elements of
the best response correspondence are increasing in the opponent’s
strategy. Having x; < x* by construction, we conclude that x* > x;
and x{ > x;.
For the second case, let xg be such that

f(2x)
2

g (x0,X0) = min lf(xL), } ie{1,2},

gi(xoqxo)zmax{ ,f(xH)}, ie{l,2},

and consider the corresponding symmetric supermodular game.
Let [x’o,xj} = (%,0,0. ..). Bri(x;) coincides with the
smgle agent optimal growth problem for given initial capital stock,
(g (xo, xo)g As xy is stable from the right, 3x; € Br' (x;) such
that x; — xy. By the same reasoning as above, x; is the highest

element of the Br' (x;). Having x; < x* by construction, we get
x* > x;and x] > xp.

A.5. Proof of Corollary 1

As proven in Proposition 10, there only exist symmetric steady
state open-loop Nash equilibria. At any steady state open-loop
Nash equilibrium (x, x), agents’ payoff can be recast as

1
UX|x)=u(gkx,Xx) —x)m.
Note that if

Kl (u(g(x,x) —X)> -0
ax 1-B®x) ’

then U (% | X) > U (x| x) > U (¥ | %) holds where at least one of
the inequalities will be strict.
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