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a b s t r a c t

We consider estate division problems and show that for any claim game based on a (estate division)
rule satisfying efficiency, equal treatment of equals, and order preservation of awards, all (pure strategy)
Nash equilibria induce equal division. Next, we consider (estate division) rules satisfying efficiency, equal
treatment of equals, and claims monotonicity. Then, for claim games with at most three agents, again all
Nash equilibria induce equal division. Surprisingly, this result does not extend to claim games with more
than three agents. However, if nonbossiness is added, then equal division is restored.

© 2012 Published by Elsevier B.V.
1. Introduction

We consider estate division problems, a generalization of
bankruptcy problems, in which a positive-valued estate has to be
divided among a set of agents. Clearly, if the agents’ claims add up
to less than the estate, no conflict occurs and each agent can receive
his claimed amount. However, if the sum of the agents’ claims ex-
ceeds the estate, then bankruptcy occurs. The class of bankruptcy
problems has been extensively studied using various approaches
such as the normative (axiomatic) or the game-theoretical ap-
proach (cooperative or noncooperative). For extensive surveys of
the literature, we refer to Moulin (2002) and Thomson (2003).

In bankruptcy problems the agents’ claims are normally
considered as fixed inputs to the problem. However, in many real
life situations it is impossible or difficult to check the validity of
claims, e.g., if the profit of a joint project should be split among
the project participants, but inputs are not perfectly observable or
difficult to compare. Other examples are claims based on moral
property rights, entitlements (see Gächter and Riedl, 2005) or
subjective needs (see Pulido et al., 2002). If the authority in charge
of the estate lacks the ability to verify claims or verification is too
costly, agents are likely to behave strategically to ensure larger
shares of the estate for themselves.

We model this type of situation with a simple noncooperative
game that resembles Nash’s classical demand game (Nash, 1953).
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Given the estate to divide and based on a (estate division) rule,
agents simply submit claims which are restricted to not exceed a
common upper bound. We analyze the (pure strategy) Nash equi-
libria of the resulting claim game. We do not fix any specific rule,
but only require the rule to satisfy basic and appealing properties.

First, we require the rule to satisfy efficiency, equal treatment of
equals, and order preservation of awards.1 Then, all agents claiming
the largest possible amount is a Nash equilibrium and all Nash
equilibria lead to equal division (Theorem 1). Second, we replace
order preservation of awards with claims monotonicity.2 Again, all
agents claiming the largest possible amount is a Nash equilibrium.
However, in contrast to the previous result, we show that equal
division is guaranteed for all Nash equilibria only for claim games
with at most three agents (Theorem 2). Surprisingly, this result
does not extend to claim games with more than three agents
(Example 1). Nevertheless, if nonbossiness is added, then equal
division in all Nash equilibria is restored (Theorem 3).3

All our results point towards the same intuitive message: if
it is impossible or difficult to test the legitimacy of claims, the
conflict will escalate to the highest possible level at which claims
are no longer informative. As a result, equal division is the ‘‘non-
discriminating’’ outcome in Nash equilibrium. In other words,
equal division is not only a normatively appealing division method,

1 Efficiency: the estate is allocated if the sum of claims is larger than (or equal to)
the estate. Equal treatment of equals: any two agents with identical claims receive
the same awards. Order preservation of awards: if an agent has a higher claim than
another agent, then he does not receive less than that agent.
2 Claims monotonicity: other things equal, an agent does not receive less after an

increase in his claim.
3 Nonbossiness: no agent can change other agents’ awards by changing his claim

unless his award changes as well.
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but it is also the result of a natural noncooperative game.4 These
findings might explain why in certain instances equal division is
applied right away even without asking for agents’ claims. For
instance, pre-1975 US Admiralty law divides liabilities equally
among parties if they are both found negligent (see Feldman and
Kim, 2005). British Shipping Law, until the act of 1911, applied
equal division of costs in case of a collision between two ships,
however much the degree of their faults or negligence may differ.
This practice has originated from a medieval rule, which was
originally intended to be applied only in cases where negligence
cannot be perfectly proven (see Porges and Thomas, 1963). Finally,
in Arizona, California, Idaho, Louisiana, Nevada, New Mexico,
Texas, Washington, and Wisconsin, ‘‘community property law’’
implements equal split of assets and wealth accumulated during
marriage in case of a divorce.

A number of articles also consider strategic aspects of claim
problems (see Thomson, 2003, Section 7). The articles closely
related to ours are Chun (1989), Moreno-Ternero (2002), Herrero
(2003), and Bochet et al. (2010) in that the games they consider do
not focus on a specific rule, but a class of rules that is determined
by basic properties. Chun (1989) considers a noncooperative
game where agents propose rules and a sequential revision
procedure then converges to equal division. Moreno-Ternero
(2002) constructs a noncooperative game, the equilibrium of
which converges to the proportional rule. A noncooperative game
similar (in a sense dual) to the one in Chun (1989) is constructed
by Herrero (2003) who shows convergence to the constrained
equal losses rule. Bochet et al. (2010) consider the problem of
allocating an estate when agents have single-peaked preferences
and study direct revelation games associated with (allocation)
rules. They prove that uniform division is the only Nash equilibrium
outcome for rules satisfying certain properties (Bochet et al.,
2010, Theorem 2).5 Note that uniform division (for single-peaked
preferences) is similar in spirit to equal division (for monotone
preferences) in that a uniform allocation divides the estate as
equally as possible by either taking agents’s peaks as upper bounds
(in case of bankruptcy) or as lower bounds (in case of an excess
supply). Hence, in this paper aswell as in Bochet et al. (2010), based
on agents preferences, we implement the appropriate notion of
equality in allocation.6

The paper is organized as follows. In Section 2, we introduce
claim games as well as various properties for underlying rules and
three well-known rules (the proportional, the constrained equal
awards, and the constrained equal losses rule). In Section 3, we
establish our equal division Nash equilibria results (Theorems 1–
3, and Example 1) and discuss the independence of assumptions
needed to establish our results (Remarks 1–3), the relation
between claim games and divide-the-dollar games (Remark 4), and
the Nash equilibria obtained for the proportional, the constrained
equal awards, and the constrained equal losses rule (Remark 5).We
conclude in Section 4.

2. The claim game

In a claim game, an estate E > 0 has to be divided among a
set of agents N = {1, . . . , n}. We assume that agents’ preferences

4 A game-theoretical interpretation of our result is that if a rule satisfies
certain natural and appealing properties (see our results above), it can be used to
implement equal division.
5 The properties they consider – peak-only, efficiency, symmetry, others-oriented

peak monotonicity, peak continuity, and strict own-peak monotonicity – are similar in
spirit to the ones we consider for estate division problems.
6 Intuitively speaking, Bochet et al. (2010) requiremore properties to obtain their

result to accommodate the role agents’ peaks play as upper or lower bounds when
allocating the estate as equally as possible.
are strictly monotone over the amounts of the estate they receive.
Then, the estate E and the set of agents N determine an estate
division problem.

A strategy for an agent i ∈ N is a claim ci ≥ 0 belonging to her
non-empty strategy set Ci = [0, k] (k > 0). For example, we could
assume for all i ∈ N, Ci = [0, E]. The set of strategy profiles (claims
vectors) is denoted by C = C1 × · · · × Cn. Hence, for all i ∈ N ,
the maximal claim c̄i ≡ max Ci = k and the maximal claims vector
c̄ ≡ (c̄i)i∈N . We assume that the estate E, the set of agents N , and
the set of strategy profiles C are fixed.

We use the following notations in the sequel. For each c ∈ C
and each S ⊆ N, S ≠ ∅, let cS =


i∈S ci. For each c ∈ C , each

i ∈ N , and each c ′

i ∈ Ci, (c ′

i , c−i) ∈ C denotes the claims vector
obtained from c by replacing ci with c ′

i .
A claim game’s outcome function is a (estate division) rule R :

C → RN
+
that associates with each strategy profile c ∈ C an awards

vector R(c) ∈ RN
+

such that


Ri(c) ≤ E and R(c) ≤ c;7 Ri(c)
denotes the amount of estate E that agent i obtains under strategy
profile c . We do not fix the rule that determines the outcomes of a
claim game and therefore denote a claim game by Γ (R).

Note that the rules that determine the outcomes of our
claim games can be thought of as extended bankruptcy rules
(see Thomson, 2003, for a comprehensive survey on the axiomatic
and game-theoretic analysis of bankruptcy problems). We now
introduce some properties of rules. All properties are stated for a
generic rule R.
Efficiency: the largest possible amount of E is assigned taking claims
as upper bounds, i.e., for all c ∈ C , [if cN ≥ E, then


R(c)i = E]

and [if cN ≤ E, then R(c) = c].
Note that we do not require that E has to be completely

allocated among the agents if no bankruptcy occurs (E < cN ).8
The following property requires that the awards to agents

whose claims are equal should be equal.
Equal treatment of equals: for all c ∈ C and all i, j ∈ N such that
ci = cj, Ri(c) = Rj(c).

By the next requirement, the ordering of awards should
conform to the ordering of claims, i.e., if agent i’s claim is larger
than agent j’s claim, i should receive at least as much as agent j
does.
Order preservation of awards: for all c ∈ C and all i, j ∈ N such that
ci > cj, Ri(c) ≥ Rj(c).

Order preservation of awards is a weakening of the standard
order preservation property introduced by Aumann and Maschler
(1985) (which additionally also requires order preservation of
losses).9

The followingmonotonicity property requires that, other things
equal, if an agent’s claim increases, he should receive at least as
much as he did initially.
Claims monotonicity: for all c ∈ C , all i ∈ N , and all c ′

i ∈ Ci such
that ci < c ′

i , Ri(c) ≤ Ri(c ′

i , c−i).
Most well-known bankruptcy rules satisfy all the properties

mentioned above; e.g., the constrained equal awards, the con-
strained equal losses, and the proportional rule. We introduce
efficient extensions of these well-known bankruptcy rules to the

7 Note that R(c) ≤ c if and only if for all i ∈ N, Ri(c) ≤ ci .
8 InAppendix Bwedescribewhat happens ifwe require that the estate E is always

completely allocated among the agents. Then, efficiency is already incorporated in
the definition of a rule and results essentially do not change.
9 Order preservation. A rule R satisfies order preservation if for all c ∈ C and

all i, j ∈ N such that ci ≥ cj, Ri(c) ≥ Rj(c) (order preservation of awards) and
ci − Ri(c) ≥ cj − Rj(c) (order preservation of losses).
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(estate division) rules that serve as outcome functions for our claim
games.

The constrained equal awards rule allocates the estate as
equally as possible taking claims as upper bounds.
Constrained equal awards rule, CEA. For each c ∈ C ,
(i) if cN ≤ E, then CEA(c) = c and
(ii) if cN ≥ E, then for all j ∈ N, CEAj(c) = min{cj, λcea}, where

λcea is such that


min{ci, λcea} = E.

The constrained equal losses rule allocates the shortage of the
estate in an equal way, keeping awards bounded below by zero.
Constrained equal losses rule, CEL. For each c ∈ C ,
(i) if cN ≤ E, then CEL(c) = c and
(ii) if cN ≥ E, then for all j ∈ N, CELj(c) = max{0, cj − λcel},where

λcel is such that


max{0, ci − λcel} = E.

The proportional rule allocates the estate proportionally with
respect to claims.
Proportional rule, P . For each c ∈ C ,
(i) if cN ≤ E, then P(c) = c and
(ii) if cN ≥ E, then P(c) = λpc , where λp =

E
cN
.

3. Nash equilibria and equal division

First, we are interested in (pure strategy) Nash equilibria of
the claim game. A claims vector c ∈ C is a Nash equilibrium (in
pure strategies) of claim game Γ (R) if for all i ∈ N and all c ′

i ∈

Ci, Ri(c) ≥ Ri(c ′

i , c−i); we call R(c) the Nash equilibrium outcome.
Since agents’ preferences are strictly monotone over the amounts
of the estate they receive, any Nash equilibrium of a claim game
that is based on an efficient rule has to distribute the whole estate
if that is possible given upper bounds c̄ on reported claims vectors.
This implies that at any Nash equilibrium c at which agents do not
claim theirmaximal possible amounts (c ≠ c̄), the sum of reported
claims must add up to at least the estate (cN ≥ E).

Lemma 1. If rule R is efficient, then for any Nash equilibrium c of the
claim game Γ (R), c ≠ c̄ implies cN ≥ E.

Proof. Let rule R be efficient and assume that c ≠ c̄ is a Nash
equilibrium of the claim game Γ (R) such that cN < E. Let α ≡ E
− cN > 0 and define for some j ∈ N such that cj < c̄j, c ′

j ≡ min
{c̄j, cj + α} > cj. Then, by efficiency, R(c) = c and R(c ′

j , c−j) =

(c ′

j , c−j). Hence, Rj(c) = cj < c ′

j = Rj(c ′

i , c−i); contradicting that c
is a Nash equilibrium of Γ (R). �

We denote by 1 = (1, . . . , 1) ∈ RN
++

the one-vector.

Equal division. Given an estate E > 0, E
n1 ∈ RN

++
denotes the

corresponding equal division vector.
Next, we show that for claim games where agents have equal

maximal strategies and the underlying rule satisfies efficiency,
equal treatment of equals, and order preservation of awards,
(a) claiming themaximal amount is always a Nash equilibrium and
(b) all Nash equilibria induce equal division.

Theorem 1. Let rule R satisfy efficiency, equal treatment of equals,
and order preservation of awards. Then,
(a) the maximal claims vector c̄ is a Nash equilibrium of the claim

game Γ (R) and
(b) the outcome in all Nash equilibria of the claim game Γ (R) is

min{k, E
n }1.

Proof.
(a) We prove that c̄ = k1 is a Nash equilibrium of the claim

game Γ (R). By efficiency and equal treatment of equals, R(c̄) =

min{k, E
n }1. If R(c̄) = k1, then each agent already gets the largest

possible amount and c̄ is a Nash equilibrium.
Thus, assume that R(c̄) =
E
n1 <k1. Let i ∈ N and c ′

i ≠ c̄i. Thus,
for all j ≠ i, c ′

i < k = c̄j. Hence, by order preservation of awards,
for all j ≠ i, Rj(c ′

i , c̄−i) ≥ Ri(c ′

i , c̄−i). Suppose that Ri(c ′

i , c̄−i) > E
n .

Then, for all l ∈ N , Rl(c ′

i , c̄−i) > E
n and


Rl(c ′

i , c̄−i) > E; a contra-
diction. Thus, Ri(c ′

i , c̄−i) ≤
E
n = Ri(c̄) and c̄ is a Nash equilibrium

of the claim game Γ (R).
(b) Suppose that c is a Nash equilibrium of the claim gameΓ (R)

and R(c) ≠ min{k, E
n }1. Then, for some i ∈ N, Ri(c) < min{k, E

n }.
Let c ′

i = k (possibly c ′

i = ci). Since c is a Nash equilibrium,
Ri(c ′

i , c−i) ≤ Ri(c) < min{k, E
n }. In particular, (i) Ri(c ′

i , c−i) < E
n .

Since by (a), c̄ is a Nash equilibrium such that R(c̄) =

min{k, E
n }1, we know that c ≠ c̄. Thus, by Lemma 1, cN ≥ E. Re-

call that c ′

i = k ≥ ci. Hence, c ′

i +


l≠i cl ≥ E and by efficiency,
(ii)


Rl(c ′

i , c−i) = E. For all j ≠ i such that cj < k = c ′

i , by order
preservation of awards and (i), Rj(c ′

i , c−i) ≤ Ri(c ′

i , c−i) < E
n . For all

j ≠ i such that cj = k = c ′

i , by equal treatment of equals and (i),
Rj(c ′

i , c−i) = Ri(c ′

i , c−i) < E
n . Hence,


Rl(c ′

i , c−i) < E; a contra-
diction to (ii). �

Remark 1 (Independence of Assumptions in Theorem 1).

(i) Suppose that not all agents have equal maximal claims,
i.e., there exist i, j ∈ N such that c̄i ≠ c̄j. Then, an ‘‘unequal’’
Nash equilibrium is possible even if the rule satisfies efficiency,
equal treatment of equals, and order preservation of awards;
e.g., for the proportional rule c̄ is a Nash equilibrium, but for
all i, j such that c̄i ≠ c̄j, Pi(c̄) ≠ Pj(c̄).

(ii) The following rule R satisfies equal treatment of equals, order
preservation of awards, but not efficiency. If c ≠ c̄ , then R(c) =

P(c) and R(c̄) = 01. Clearly, c̄ is not a Nash equilibrium of the
claim game Γ (R) and the equal division vector min{k, E

n }1 is
never an equilibrium outcome.

(iii) A serial dictatorship rule that first serves agents with the
highest claims lexicographically (i.e., if several agents have the
highest claim, then first serve the agent with the lowest index
and so on) satisfies efficiency and order preservation of awards,
but not equal treatment of equals. There are Nash equilibria,
e.g., c = k1 when nk > E, at which agent 1 receives more
than agent n.

(iv) The following rule R satisfies efficiency and equal treatment of
equals, but not order preservation of awards. Rule R first assigns
the estate E proportionally (and efficiently) among all agents
who have a claim different from that of agent 1. Then, if some
part of the estate is left, R allocates it equally (and efficiently)
among the remaining agents. For c̄ ≠ E1, c̄ is not a Nash
equilibrium of the claim game Γ (R) and the equal division
vector min{k, E

n }1 is not an equilibrium outcome. �

In Ashlagi et al. (2008, Corollaries 1 and 2) two corresponding
results are obtained using order preservation (see Footnote 9)
(instead of equal treatment of equals and order preservation of
awards) or others oriented claims monotonicity10(instead of order
preservation of awards).

Next, we show that for claim games where agents have equal
maximal strategies and the underlying rule satisfies efficiency,
equal treatment of equals, and claims monotonicity, (a) claiming the
maximal amount is always a Nash equilibrium and (b) for n ≤ 3,
all Nash equilibria induce equal division.

Theorem 2. Let rule R satisfy efficiency, equal treatment of equals,
and claims monotonicity. Then,

10 Others oriented claims monotonicity: for all c ∈ C and all i ∈ N such that
ci < c ′

i , Rj(c) ≥ Rj(c ′

i , c−i) for all j ≠ i.
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(a) the maximal claims vector c̄ is a Nash equilibrium of the claim
game Γ (R) and

(b) for n ≤ 3, the outcome in all Nash equilibria of the claim game
Γ (R) is min{k, E

n }1.

Proof.
(a) By claims monotonicity, for each agent i it is a weakly

dominant strategy to claim c̄i. Hence, c̄ is a Nash equilibrium of
Γ (R).

(b) For n = 1, the proof is obvious and therefore omitted.
For n = 2, Ashlagi et al. (2008, Lemma 3) prove that efficiency,

equal treatment of equals, and claims monotonicity imply order
preservation of awards. By Theorem 1 (b), efficiency, equal treatment
of equals, and order preservation of awards imply the result.

Let n = 3. Suppose that c is a Nash equilibrium of the claim
game Γ (R) and R(c) ≠ min{k, E

3 }1. Without loss of generality, we
assume that c1 ≤ c2 ≤ c3.
Case 1. i ∈ {1, 2} ≡ {i, j} and Ri(c) < min{k, E

3 }.
Let c ′

i = c3 (possibly c ′

i = c1). Since c is a Nash equilibrium,
Ri(c ′

i , c−i) ≤ Ri(c) < min{k, E
3 }. In particular, (i) Ri(c ′

i , c−i) < E
3 .

Since by (a), c̄ is a Nash equilibrium such that R(c̄) =

min{k, E
n }1, we know that c ≠ c̄. Thus, by Lemma 1, cN ≥ E. Hence,

c ′

i +


l≠i cl ≥ E and by efficiency, (ii)


Rl(c ′

i , c−i) = E. By equal
treatment of equals and (i), R3(c ′

i , c−i) = Ri(c ′

i , c−i) < E
3 . Hence, (ii)

implies (iii) Rj(c ′

i , c−i) > E
3 .

Recall that j ∈ {1, 2} and therefore, cj ≤ c3. Let c ′

j = c3
and consider (c ′

i , c
′

j , c3) = (c31). By equal treatment of equals,
(i) and (iii) imply cj < c3. Hence, c ′

i + c ′

j + c3 > E and by efficiency,
(iv)


Rl(c ′

i , c
′

j , c3) = E. By claims monotonicity, Rj(c ′

i , c
′

j , c3) ≥

Rj(c ′

i , c−i) > E
3 and by equal treatment of equals, Rj(c ′

i , c
′

j , c3) =

Ri(c ′

i , c
′

j , c3) = R3(c ′

i , c
′

j , c3) > E
3 . Hence,


Rl(c ′

i , c
′

j , c3) > E; a
contradiction to (iv).
Case 2. R3(c) < min{k, E

3 }.
First, R3(c) < min{k, E

3 } implies (v) R3(c) < E
3 . Furthermore,

if c2 = c3, then by equal treatment of equals, R2(c) = R3(ĉ) <
min{k, E

3 }, and we are done by Case 1. Hence, assume that c2 < c3.
Let c ′

3 = c2 and consider (c ′

3, c−3).
Since by (a), c̄ is a Nash equilibrium such that R(c̄) =

min{k, E
n }1, we know that c ≠ c̄. Thus, by Lemma 1, cN ≥ E. Hence,

by efficiency, (vi)


Rl(c) = E. Then, (v) and (vi) imply R1(c) > E
3

or R2(c) > E
3 . Note that R1(c) ≤ c1 ≤ c2 and R2(c) ≤ c2. Thus,

c ′

3 > R3(c) and c1 +c2 +c ′

3 ≥


Rl(c) = E, where the last equality
follows from (vi). By efficiency, (vii)


Rl(c ′

3, c−3) = E. By claims
monotonicity, (viii) R3(c ′

3, c−3) ≤ R3(c) < E
3 . By equal treatment

of equals, R2(c ′

3, c−3) = R3(c ′

3, c−3) < E
3 . Hence, (vii) implies (ix)

R1(c ′

3, c−3) > E
3 .

Let c ′

1 = c2 and consider (c ′

1, c
′

3, c2) = (c21). By equal treatment
of equals, (viii) and (ix) imply c1 < c ′

3 = c2. Hence, c ′

1 + c ′

3 + c2 > E
and by efficiency, (x)


Rl(c ′

1, c
′

3, c2) = E. By claims monotonicity,
R1(c ′

1, c
′

3, c2) ≥ R1(c ′

3, c−3) > E
3 and by equal treatment of

equals, R1(c ′

1, c
′

3, c2) = R2(c ′

1, c
′

3, c2) = R3(c ′

1, c
′

3, c2) > E
3 . Hence,

Rl(c ′

1, c
′

3, c2) > E; a contradiction to (x). �

Remark 2 (Independence of Assumptions in Theorem 2). Note that
claims monotonicity alone implies Theorem 2 (a). Hence, we show
independence only for Theorem 2 (b).

(i) The proof that it is essential that all agents have equalmaximal
claims is the same as in Remark 1 (i).

(ii) The following rule R satisfies claims monotonicity and equal
treatment of equals, but not efficiency. If at c exactly one agent
i claims ci = c̄i, then he receives Ri(c) = min{k, E
n } and for all

j ≠ i, Ri(c) = 0. Furthermore, R(c̄) = min{k, E
n }1 and for all

other claims vectors c, R(c) = 01. Then, Nash equilibriawhich
do not induce equal division exist, e.g., for N = {1, 2, 3} and
E = k = 1, c̃ = (1, 0, 0) resulting in the equilibrium outcome
R(c) = (1/3, 0, 0).

(iii) To prove that equal treatment of equals is needed one can use
the serial dictatorship rule as described in Remark 1 (iii) –
it satisfies efficiency and claims monotonicity, but not equal
treatment of equals.

(iv) To prove that claims monotonicity is needed one can use the
rule as described in Remark 1 (iv) – it satisfies efficiency and
equal treatment of equals, but not claims monotonicity. �

In the following example, we show that when n > 3, efficiency,
equal treatment of equals, and claims monotonicity are not sufficient
to guarantee equal division in all Nash equilibria of the claim game
Γ (R). This example represents a claim game with an asymmetric
equilibrium despite the fact that players enter the game in a
symmetric way. Note that all players have the same maximal
claims, the rule used satisfies equal treatment of equals, and yet
there is an equilibrium at which players receive unequal payoffs.

Example 1. Let N = {1, 2, 3, 4}, E = 1, and for all i ∈ N, Ci =

[0, 1]. Before we define rule R of claim game Γ (R), we introduce
some notation.

Let H = 1/2 and L = 1/3 be two points, which we will use
to partition the set of claim profiles. For all profiles c ∈ C , let
LH(c) = {i ∈ N : L ≤ ci ≤ H}, L(c) = {i ∈ N : ci < L}, and
H(c) = {i ∈ N : ci > H}. For all j = 0, 1, . . . , 4, denote by C j the
set of claim profiles in which j agents claim between L and H and
n − j agents claim more than H . That is, C j

= {c ∈ C : |LH(c)| =

j and |H(c)| = n − j}. Let P = C \ ∪
4
j=0 C

j. Note that for all claim
profiles c ∈ P , there exists some agent i ∈ N for which ci < L.
Furthermore, note that the collection of sets C j (j = 1, . . . , 4) and
P partition the set of claim profiles C .

For all c ∈ P , define B(c) to be the maximal set of agents such
that
(i) cB(c) ≤ 1, i.e., the sum of claims of agents in B(c) does not

exceed the estate, and
(ii) for all i, l ∈ N , if ci ≥ cl and l ∈ B(c), then i ∈ B(c), i.e., if agent

l is a member of B(c), then all agents with claims larger than or
equal to cl are also members of B(c).

Let D(c) = {i ∈ N \ B(c) : for all l ∈ N \ B(c), ci ≥ cl}, i.e., if
B(c) ≠ N , then D(c) ≠ ∅ contains the set of agents that have the
highest claim among the agents in N \ B(c). Note that D(c) = ∅ if
and only if cN ≤ 1. Finally, let A(c) = B(c) ∪ D(c).

Roughly speaking, rule R works as follows. For claim profiles
in ∪

4
j=0 C

j, we specify awards to agents according to their claims
being larger than H or not. For claim profiles in P , rule R does
the following: it first ranks agents from highest claim to lowest
claim. Then, to all agents in the set B(c), R gives their full claim, and
allocates the residual amount equally to agents in D(c). All other
agents receive 0.

Ri(c, 1) =



1/4, c ∈ C4
∪ C0,

1/6, ci ≤ H and c ∈ C3,

1/2, ci > H and c ∈ C3,

1/3, ci ≤ H and c ∈ C2,

1/6, ci > H and c ∈ C2,

0, ci ≤ H and c ∈ C1,

1/3, ci > H and c ∈ C1,
ci, c ∈ P and i ∈ B(c),
1 − cB(c)
|D(c)|

, c ∈ P and i ∈ D(c),

0, c ∈ P and i ∉ A(c).
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We prove in Appendix A (Claim 1) that rule R satisfies efficiency,
equal treatment of equals, and claims monotonicity. Next, we show
that the profile of claims c = (1, 1/3, 1/3, 1/3) is an equilibrium
for Γ (R) and since R(c) = (1/2, 1/6, 1/6, 1/6), we have a viola-
tion of equal division in equilibrium.

Note that c ∈ C3. Then, a unilateral deviation by agent 1 can
only result in a claim profile that belongs to one of the sets C3, C4,
or P , which induces the amounts (for agent 1) 1/2, 1/4, or 0, re-
spectively. Since at c agent 1 obtains 1/2, no unilateral deviation
from c is beneficial for agent 1. Next, a unilateral deviation by agent
k ∈ {2, 3, 4} can only result in a claim profile that belongs to one of
the sets C2, C3, or P , which induces the amounts (for agent k) 1/6,
1/6, or 0, respectively. Since at c agent k obtains 1/6, no unilateral
deviation from c is beneficial for agent k. �

Note that the rule described in Example 1 violates order
preservation of awards (see Footnote 9) and others oriented
claims monotonicity (see Footnote 10). Furthermore, this rule is
discontinuous and it is an open problem if a continuous example
can be constructed.

Finally, we show that equal division is restored in the equilib-
rium result of Theorem 2 for more than three agents by adding
a non-manipulation (or robustness) property: nonbossiness (Sat-
terthwaite and Sonnenschein, 1981) requires that no agent can
change other agents’ awards by changing his claimwithout chang-
ing his own award.
Nonbossiness: for all c ∈ C and all i ∈ N such that Ri(c) =

Ri(c ′

i , c−i), Rj(c) = Rj(c ′

i , c−i) for all j ≠ i.

Theorem 3. Let rule R satisfy efficiency, equal treatment of equals,
claims monotonicity, and nonbossiness. Then,

(a) the maximal claims vector c̄ is a Nash equilibrium of the claim
game Γ (R) and

(b) the outcome in all Nash equilibria of the claim game Γ (R) is
min{k, E

n }1.

Proof.
(a) By claims monotonicity, for each agent i it is a weakly

dominant strategy to claim c̄i. Hence, c̄ is a Nash equilibrium of
Γ (R).

(b) We first prove that equal treatment of equals, claims
monotonicity, and nonbossiness imply equal division for all Nash
equilibria. Suppose that c is a Nash equilibrium of the claim
game Γ (R) and for some i, j ∈ N , (i) Ri(c) ≠ Rj(c). Hence, by
equal treatment of equals ci ≠ cj. Without loss of generality as-
sume that ci < cj. Let c ′

i = cj and consider (c ′

i , c−i). Since c
is a Nash equilibrium, Ri(c ′

i , c−i) ≤ Ri(c). By claims monotonicity,
Ri(c ′

i , c−i) ≥ Ri(c). Hence, (ii) Ri(c ′

i , c−i) = Ri(c). Thus, by non-
bossiness, (iii) Rj(c ′

i , c−i) = Rj(c). Then, (i)–(iii) imply Ri(c ′

i , c−i) ≠

Rj(c ′

i , c−i); a contradiction to equal treatment of equals. Therefore,
for all i, j ∈ N, Ri(c) = Rj(c), which proves an equal division vec-
tor is inducedby all Nash equilibria. By efficiency, this equal division
vector equals min{k, E

n }1. �

From the proof of Theorem 3 it becomes clear that even
without efficiencyNash equilibria outcomes respect equal division.
However, without efficiency, some part of the estate might be
wasted.

Note that the rule described in Example 1 violates nonbossiness.

Remark 3 (Independence of Assumptions in Theorem 3). Note that
claims monotonicity alone implies Theorem 2 (a). Hence, we show
independence only for Theorem 2 (b).

(i) The proof that it is essential that all agents have equalmaximal
claims is the same as in Remark 1 (i).
(ii) As explained after the proof of Theorem 3, efficiency is
only needed to obtain the efficient equal division vector as
equilibrium outcome. The following inefficient proportional
rule satisfies equal treatment of equals, claims monotonicity,
and nonbossiness, but not efficiency: for all c ∈ C, P ′(c) =

P(c; E/2), where P(c; E/2) denotes the outcome of the
proportional rule where only half the estate E

2 is allocated.
(iii) To prove that equal treatment of equals is needed one can use

the serial dictatorship rule as described in Remark 1 (iii)—it
satisfies efficiency, claims monotonicity, and nonbossiness but
not equal treatment of equals.

(iv) To prove that claims monotonicity is needed one can use
rule R as described in Remark 1 (iv)—it satisfies efficiency,
equal treatment of equals, and nonbossiness, but not claims
monotonicity.

(v) To prove that nonbossiness is needed one can use the same
rule as in Example 1—it satisfies equal treatment of equals, and
claims monotonicity, but not nonbossiness. �

Remark 4 (Divide-the-Dollar Games versus Claim Games). In the
divide-the-dollar game (a simple version of Nash’s, 1953, demand
game), two agents simultaneously submit their claims over a
dollar. If the sum of claims does not exceed a dollar, each agent
receives his claim. Otherwise, both agents receive nothing. This
simple version of the game has infinitely many (pure strategy)
Nash equilibrium outcomes, namely any division of the dollar.
Brams and Taylor (1994) and Anbarcı (2001) consider adaptations
of the divide-the-dollar game that exhibit equal division in Nash
equilibrium.

Claim games can be considered as modified versions of the
divide-the-dollar game (or Nash’s, 1953, demand game), the main
difference being that agents are not punished as severely as they
are in divide-the-dollar games (i.e., receiving nothing) whenever
the sum of claims exceeds the estate. In a claim game, if the sum
of claims does not exceed the value of the estate, all agents receive
their claims (as in a divide-the-dollar game). If, on the other hand,
the sum of claims exceeds the value of the estate, instead of not
allocating the estate at all, a division rule with certain properties
solves the dispute over the estate and (in contrast to the divide-
the-dollar game) an efficient outcome is obtained. We consider
entire classes of rules (determined by normative properties they
share),whereasmost divide-the-dollar games use a fixed reference
allocation (e.g., the zero share vector). Similar to Brams and Taylor
(1994) and Anbarcı (2001), ourmodifications induce equal division
in Nash equilibrium.

It is worthwhile mentioning that the rules we use for claim
games satisfy most properties that Brams and Taylor (1994)
require for reasonable payoff schemes: (i) equal claims are treated
equally, (ii) no agent receivesmore thanwhat he claimed, (iii) if the
sumof claims does not exceed the estate, then every agent receives
his claim, (iv) if the sum of claims exceed the estate, nevertheless,
the whole estate is allocated, and (v) if all claims are higher than E

n ,
then the highest claimant does no better than the lowest claimant
(our rules onlymight fail to satisfy property (v)). Hence, our results
provide an alternative answer to the question ‘‘Can one alter the
payoff structure of the divide-the-dollar game in a reasonable way
so that the egalitarian outcome is a noncooperative solution of the
corresponding game?’’ raised by Brams and Taylor (1994). �

Remark 5 ((Strong) Nash Equilibria for Γ (P), Γ (CEA) and Γ (CEL)).
The proportional rule, the constrained equal awards rule, and the
constrained equal losses rule satisfy all properties introduced in
this article. Hence, for these rules, claiming the largest possible
amount is always an equal-division Nash equilibrium. For the
proportional rule and the constrained equal losses rule, this is the
unique Nash equilibrium of the associated claim game. However,
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if agents are allowed to claim more than an equal share of the
estate, the constrained equal awards rule admits multiple (in fact
infinitely many) equal-division Nash equilibria. This difference
stems from the fact that under the proportional rule and the
constrained equal losses rule, claiming thewhole estate is a strictly
dominant strategy for all agents whereas under the constrained
equal awards rule, it is a weakly dominant strategy.

Note that all Nash equilibria for the proportional rule, the
constrained equal awards rule, and the constrained equal losses
rule are also strong (i.e., there exist no coalition that can make
each of its members strictly better off using a joint deviation).
However, this is not a general result: there exist rules satisfying
equal treatment of equals, efficiency, order preservation of awards,
and claims monotonicity such that the corresponding claim game
has Nash equilibria that are not strong (an example is available
from the authors upon request). �

4. Concluding remarks

We analyze situations where an estate should be distributed
among a set of agents, but claims to the estate are impossible or
difficult to verify. We model a simple and intuitive claim game
where, given the estate and a (estate division) rule satisfying
some basic properties, agents simply announce their claims. Our
game can be thought of as a modified Nash demand game (or
divide-the-dollar game) where players are punished less severely
than in the standard version of the game. Our results show that
first of all, claiming the largest possible amount is always a Nash
equilibrium. Of course, this is an intuitive and not very surprising
result. However, in addition, we show that even though we do
not focus on any specific outcome function to be used in our
claim game, equal division is the uniqueNash equilibriumoutcome.
Since most well-known rules satisfy all the properties we require
(e.g., the proportional rule, the constrained equal awards rule, and
the constrained equal losses rule), our results can be interpreted
as a non-cooperative support for equal division in estate division
conflicts. The advantage of this implementation result is that equal
division is the outcome that is based on the (strategic) choices of
the agents rather than a fixed outcome that is externally imposed;
given the desirable properties of the underlying rule this process
might therefore be considered fair and its outcome thus acceptable.
Finally, future research on this topic might analyze situations in
which partial verification is possible and agents spend resources
to support their claims (e.g., hiring a lawyer in a court case).

Appendix A

Claim 1. Rule R as defined in Example 1 satisfies equal treatment of
equals, efficiency, and claims monotonicity.

Proof. Equal treatment of equals follows immediately from the
definition of rule R.
Efficiency: Note that for all c ∈ ∪

4
j=0 C

j, cN ≥ 1 and


Rl(c) = 1.
Assume that c ∈ P . If cN ≤ 1, then R(c) = c. Finally, if cN > 1,
then


Rl(c) =


i∈B(c) Ri(c) +


i∈D(c) Ri(c) +


i∈N\A(c) Ri(c) =

cB(c) +


i∈D(c)
1−cB(c)
|D(c)| + 0 = 1.

Claims Monotonicity: Let i ∈ N, c = (ci, c−i), and c ′
= (c ′

i , c−i)
such that ci < c ′

i . We show that Ri(c) ≤ Ri(c ′) for the following
(exhaustive) cases.
Case 1: c, c ′

∈ P .
If i ∉ A(c), then Ri(c) = 0 ≤ Ri(c ′). If i ∈ A(c), then i ∈ A(c ′),

i.e., i ∈ B(c ′) or i ∈ D(c ′). If i ∈ B(c ′), then Ri(c) ≤ ci ≤ c ′

i = Ri(c ′)
and we are done. Assume that i ∈ D(c ′). Since ci < c ′

i , for all
j ∈ N \ B(c), cj < c ′

i . Hence, A(c ′) \ {i} ⊆ B(c). Therefore, for all
j ∈ B(c ′), Rj(c ′) = Rj(c), and for all j ∈ D(c ′) \ {i}, Rj(c ′) ≤ Rj(c).
Thus, we showed that for all j ∈ A(c ′) \ {i}, Rj(c ′) ≤ Rj(c). Since
for all j ∈ N \ A(c ′), Rj(c ′) = 0 and R is efficient it follows that
Ri(c) ≤ Ri(c ′).
Case 2: c ∈ P and for some j ∈ {0, 1, 2, 3, 4}, c ′

∈ C j.
Note that L(c) = {i} and LH(c) ∪ H(c) = N \ {i}. Since L ≥

1/3, cN\{i} ≥ 1 and


l≠i Rl(c) = 1. Thus, Ri(c) = 1−


l≠i Rl(c) =

0 ≤ Ri(c ′).
Case 3: for some j ∈ {0, 1, 2, 3, 4}, c ∈ C j and c ′

∈ C j.
Note that either [i ∈ LH(c) and i ∈ LH(c ′)] or [i ∈ H(c) and

i ∈ H(c ′)]. Thus, Ri(c) = Ri(c ′).
Case 4: for some j ∈ {1, 2, 3, 4}, c ∈ C j and c ′

∈ C j−1.
Note that i ∈ LH(c) and i ∈ H(c ′). Then, by the definition of R,

for j = 1, 4, Ri(c) < Ri(c ′) and for j = 2, 3, Ri(c) = Ri(c ′). �

Appendix B

In this appendix we describe what happens if we require that
the estate E is always completely allocated among the agents.
Formally, a (full division) rule is a function R : C → RN

+
that

associates with each claims vector c ∈ C an awards vector x ∈ RN
+

such that


xi = E.
Note that Lemma 1 does not hold anymore, i.e., it is not always

the case that in every Nash equilibrium c of the claim game
Γ (R), cN ≥ E; e.g., for the constant rule that always assigns E/n
to each agent, every claims vector is a Nash equilibrium. Although
this lemma is used in some of our proofs, it is used only in order to
show that in equilibrium the entire estate is allocated. Hence, the
fact that the whole estate is always allocated can be used instead
of Lemma 1. Furthermore, all results that state that the division
vector in a Nash equilibrium is min{k, E

n }1 are changed to have
the E

n1 division vector. To summarize, Theorems 1–3 hold with
minimal changes in the statements and proofs. Finally, the only
adjustment of Example 1 needed to fit the model described here is
to change rule R in Example 1 to rule R̃ as follows: for every c ∉ P
let R̃(c) = R(c) and for every c ∈ P let R̃(c) =

E
4 .
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