
Mathematical and Computer Modelling 49 (2009) 745–759

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Economic design of EWMA control charts based on loss function
Doğan A. Serel ∗
Faculty of Business Administration, Bilkent University, 06800 Bilkent, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 3 December 2007
Received in revised form 5 June 2008
Accepted 19 June 2008

Keywords:
Statistical process control
Economic design
EWMA control chart
Average run length
Markov chain

a b s t r a c t

For monitoring the stability of a process, various control charts based on exponentially
weighted moving average (EWMA) statistics have been proposed in the literature. We
study the economic design of EWMA-based mean and dispersion charts when a linear,
quadratic, or exponential loss function is used for computing the costs arising from
poor quality. The chart parameters (sample size, sampling interval, control limits and
smoothing constant) minimizing the overall cost of the control scheme are determined
via computational methods. Using numerical examples, we compare the performances of
the EWMA charts with Shewhart X and S charts, and investigate the sensitivity of the chart
parameters to changes in process parameters and loss functions. Numerical results imply
that rather than sample size or control limits, the users need to adjust the sampling interval
in response to changes in the cost of poor quality.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control charts are commonly used for monitoring production processes where standardized products
are produced in a repetitive manner. From time to time, the assignable causes such as worker errors, machine wear,
or changes in raw material quality cause a negative effect on the process, and consequently, the process output quality
deteriorates. The primary goal of using control charts is to detect assignable (special) causes as quickly as possible when
they occur. Control charts function as a filter to separate the variation due to an assignable cause from the natural variation
inherent in a process. The variation attributed to an assignable cause is temporary, and eliminated by proper corrective
action. The search for an assignable cause is conducted only when there is a high likelihood that the process has gone out
of control. In a typical implementation, the sample statistics computed based on random samples taken periodically from
the process are compared against predetermined control limits, and a decision is made regarding whether the process is
currently in control or out of control. False alarms occurwhen an in-control process is erroneously classified as out of control
(type 1 error) and an assignable cause is searched. There also exists the risk of concluding that the process is in control based
on the sample test statistic although the process is actually out of control (type 2 error).
Various types of control charts have been suggested tomonitor the two important process characteristics: processmean,

and process variability (range or standard deviation). The Shewhart X chart is the most common chart used in practice
for monitoring the process mean. However, the previous research has shown that exponentially weighted moving average
(EWMA) charts can performbetter than X charts in detecting the shifts in processmeanwhen the size of the shift is small [1].
The main difference between an X chart and an EWMA chart is that, as opposed to an X chart, an EWMA chart takes into
account the information from not only the current sample, but also from the samples taken previously.
Economic design of process control charts has been investigated bymany researchers in the literature [2,3]. In order to use

control charts for monitoring the process, the control limits, sample size, and time between samples must be specified. The
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economic design approach to control charts involves the determination of these parameters based on a cost-minimization
model that takes into account costs due to sampling, investigation, repair, and producing defective products (e.g. [4]). Thus,
the main idea is to select the chart parameters to optimally balance the cost due to defective products and the cost of
controlling efforts. In the economic design approach, the distribution characteristics (mean and variance) for the process
variable in two different states of the process (in-control and out-of-control) should be estimated.
The economic design of EWMA-based mean charts has been investigated by several authors (Ho and Case [5];

Montgomery et al. [6]). Recently, Tolley and English [7] studied the economic design of a control scheme combining both
EWMA and X charts. Park et al. [8] looked into the economic design of an adaptive EWMA chart in which the user changes
the sampling interval and/or sample size dynamically based on the current chart statistic. When the assignable causes lead
to changes in both process mean and variance, simultaneous use of mean and dispersion charts is important for detecting
the changes quickly. Joint economic design of EWMA charts for process mean and dispersion has been explored in Serel and
Moskowitz [9]. In this paper we consider the case where the assignable cause changes only the process mean or dispersion,
and correspondingly, we explore the economic design of the single control chart used for monitoring the process parameter
(mean or variance) influenced by the assignable cause.
We extend the economic design of EWMA mean charts to the case where quality related costs are computed based on

a loss function. In the loss function approach, it is considered that a quality related cost is incurred when a product is not
produced on-target. The target is the most desirable (ideal) value for the quality characteristic associated with the product,
as specified by the designers. The larger the deviation from the target, the higher is the quality cost. The loss function is a
practical approach to estimate the quality costs, and has been previously used in a variety of economic models developed
in the context of quality management. We consider linear, quadratic, and exponential loss functions which are commonly
used in the literature (e.g. [10–12]). For a given deviation from target, the implied quality cost depends on the loss function
used. Using numerical examples, we explore the impact of the form of the loss function on the chart parameters minimizing
the overall cost.
Since it is also important to monitor the dispersion of a process, we separately study the economic design of an EWMA-

based variance chart. For purposes of comparison, we also present models for determining the economically optimal
parameters for the Shewhart X and S charts using the quality loss function approach. Due to the complexity of the resulting
total cost functions, all optimization models in the paper are solved using a numerical search algorithm.
The remainder of the paper is organized as follows. In Section 2, we describe the Shewhart X and EWMA mean charts,

and present the total cost function in terms of decision variables. In Section 3, we show how to incorporate the quality
loss function into the economic design model. In Section 4, we study the economic design of EWMA variance and S charts.
Following illustrative numerical examples in Section 5, concluding remarks are given in Section 6.

2. Economic design of charts for mean

2.1. X chart

The observations for the process variable X are assumed to be independent and normally distributed. When the process
is in control, the mean and variance of X is µ0 and σ 20 , respectively. The lower and upper control limits associated with the
Shewhart X chart are

LCLX = µ0 − Lσ0/n
0.5, (1)

and

UCLX = µ0 + Lσ0/n
0.5, (2)

where L is the control limit parameter and n is the sample size. At any sampling instant t , the sample average Xt is compared
against these limits, and if it is outside the limits a search for an assignable cause is started. The rough guidelines for setting
the X chart limits in practice are n = 4 or 5, and L = 3.

2.2. EWMA mean chart

The chart statistic for the EWMAmean chart at sampling instant t is computed iteratively from:

Zt = λmXt + (1− λm)Zt−1, (3)

where λm is the smoothing constant associated with the EWMA chart for mean, 0 < λm ≤ 1, Z0 = µ0. The smoothing
parameter λm determines the extent to which past samples affect the current value of the chart statistic. A smaller λm helps
to smooth random fluctuations, but it also reduces the responsiveness of the control scheme to shifts in the process mean.
For the EWMA mean chart, the lower and upper control limits (LCLewma and UCLewma) are computed based on the

asymptotic in-control standard deviation of the EWMA chart statistic Z such that

LCLewma = µ0 − Lmσz, (4)
UCLewma = µ0 + Lmσz, (5)
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where σz = σ0(λm/(2 − λm)n)0.5, and Lm is the control limit parameter (see, e.g. [1,13]). Thus, whenever Zt is outside the
interval (LCLewma, UCLewma), the process is considered to be out of control and a search for assignable cause is conducted.

2.3. Total cost function

The cost model used for determining the optimal values of chart parameters is built upon the general cost function of
Lorenzen and Vance [14]. It is assumed that the in-control time for the process is distributed exponentially with mean 1/θ .
When the process is out of control, the mean of X becomesµ0+ δσ0. Eq. (10) in Lorenzen and Vance [14] gives the expected
cost per unit time (hour), C , associated with a control chart as:

C = {C0/θ + C1(−τ + nE + h(ARL1)+ γ1T1 + γ2T2)+ sF/ARL0 +W } ÷ {1/θ + (1− γ1)sT0/ARL0 − τ
+ nE + h(ARL1)+ T1 + T2} + {[(a+ bn)/h][1/θ − τ + nE + h(ARL1)+ γ1T1 + γ2T2]}

÷{1/θ + (1− γ1)sT0/ARL0 − τ + nE + h(ARL1)+ T1 + T2}, (6)

where,
h= sampling interval (time between two consecutive samples),
C0 = cost per hour due to nonconformities produced while the process is in control,
C1 = cost per hour due to nonconformities produced while the process is out of control,
τ = expected time between the occurrence of the assignable cause and the time of the last sample taken before the

assignable cause= [1− (1+ θh) exp(−θh)]/[θ(1− exp(−θh))],
E = time to sample and chart one item,
ARL0 = average run length while in control,
ARL1 = average run length while out of control,
T0 = expected search time when the signal is a false alarm,
T1 = expected time to discover the assignable cause,
T2 = expected time to repair the process,
γ1 = 1 if production continues during searches
= 0 if production ceases during searches,

γ2 = 1 if production continues during repair
= 0 if production ceases during repair,

s= expected number of samples taken while in control= exp(−θh)/[1− exp(−θh)],
F = cost per false alarm,
W = cost to locate and repair the assignable cause,
a= fixed cost per sample,
b= cost per unit sampled.
The cost function (6) is generic, and can be used with different types of control charts. The expected cost per hour in

(6) is derived from dividing the expected cost per cycle by the expected cycle length. The cycle consists of an in-control
phase followed by the out-of-control phase. The corrective action taken against the assignable cause restores the process
to the in-control state, and the cycle starts anew. The total cost in a cycle includes sampling inspection, search, and repair
costs in addition to the cost due to nonconformities produced. To estimate the quality costs, we use the quality loss function
approach, as described in Section 3.
The average run length (ARL) is ameasure of the expected number of consecutive samples taken until the sample statistic

falls outside the control limits, and it is a function of the current process characteristics. To reduce the total cost, the ARL
should be large when the process is in control, and it should be small when the process is out of control. The in-control
ARL can be increased by widening the interval between the upper and lower control limits, but this would also cause the
out-of-control ARL to increase, unless the sample size is increased as a counter-measure.
It can be shown that the in-control ARL for the Shewhart X chart is

ARL0 = 1/[2Φ(−L)], (7)

and the out-of-control ARL is

ARL1 = 1/[1− Φ(L− δn0.5)+ Φ(−L− δn0.5)], (8)

whereΦ(.) is the cumulative probability distribution function (cdf) for a standard normal variable [14].
The computation of the average run length for the EWMA mean control chart is more complicated. We use the Markov

chain approach which has also been used, among others, by Saccucci and Lucas [15], and Morais and Pacheco [16]. More
information regarding the computation of ARL0 and ARL1 by the Markov chain method can be found in Appendix A. The
ARL of the EWMAmean chart depends on the control limits which, in turn, depend on the chosen sample size, control limit
parameter, and smoothing constant.
Thus, the design parameters are n, h and L for the Shewhart X chart, and n, h, Lm, and λm for the EWMA mean chart.

Since analytical solution is difficult, for both types of charts, we use the Nelder–Mead computational optimization method
(see, e.g. [17]) to determine the optimal design for a given set of input data. A similar approach has been used by various
researchers in the literature for solving the economic models developed for designing the control charts (e.g. [5]).
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3. Use of quality loss function in the optimization model

In the traditional formulation of economic designmodels, the costs due to nonconformitieswhen the process is in-control
(C0) and out-of-control (C1) have been treated as constants in (6). In recent years, influenced in part by the popularity
of Taguchi methods in product design, the quality loss function concept has been incorporated into various statistical
decision models where the cost due to poor quality needs to be estimated. In the traditional approach, the upper and lower
specification limits are used to classify the quality of the process output as either acceptable or non-acceptable, and products
falling outside the specification limits are considered to result in quality costs. In the loss function approach, the probability
distribution describing the observations for the quality characteristic is explicitly taken into account in computing the
costs resulting from variation of the quality characteristic around its target. It is considered that cost of poor quality is
incurred whenever the quality characteristic is not on its target; hence, products that are not produced on-target incur cost
even though they may conform to specification limits. Several researchers have applied the loss function approach in the
economic design of X control charts [10,11]. In this paper, we propose the economic design of EWMA charts based on linear,
quadratic, and exponential loss functions.
We note that the appropriate type of the loss function to be used depends on the particular industrial application. It

is also possible that the relevant loss function may be different for negative and positive deviations from the target. Cain
and Janssen [18] discuss a problem arising in the production of construction panels made of glued and pressed wood chips.
The moisture level can be reduced by drying the panels longer in the gas dryers. The longer drying time requires more
fuel to be consumed; hence, there is a linear increase in cost as the moisture content decreases. On the other hand, higher
moisture increases the press time which increases the total plant operating cost. Thus, the resulting cost function is partly
linear and partly quadratic. The cost increases quadratically when the moisture content is higher than planned; however,
the cost increases linearly when the moisture content is lower than planned. Although, as in this example, the form of the
loss function for the quality characteristic may be region-dependent, in this paper we will focus on the simpler and more
common case where the loss function is single-type and symmetric around the target value. But, if needed, these more
generalized (mixed type and asymmetric) loss functions can be easily incorporated to our model. We remark that different
types of loss functions can also be regarded as reflections of varying risk preferences of the users of control charts. In this
case, the quality loss function is related to the user’s utility function.

3.1. Linear loss function

We first consider the linear loss function in which quality loss is a linear function of the deviation of the quality
characteristic from its target. Let T be the target value for the quality characteristic monitored; we allow the possibility
that T can be different from µ0. Let the probability density function (pdf) of the quality characteristic X be f (x). The quality
loss is zero only when the quality characteristic X equals the target T , and the loss increases as the deviation from the
target increases. If the loss function L(x) is asymmetric around the target, two different loss coefficients K1 and K2 should be
estimated such that the loss is calculated as

L(x) = K1(T − x) if x ≤ T ,
= K2(x− T ) if x > T .

The expected quality cost per unit of product when the process is in control, J0, is

J0 =
∫
∞

−∞

L(x)f (x)dx =
∫ T

−∞

K1(T − x)f (x)dx+
∫
∞

T
K2(x− T )f (x)dx. (9)

For a normal random variable with mean µ0, standard deviation σ0, and pdf f (x), we have∫ T

−∞

xf (x)dx = µ0Φ(z0)− σ0φ(z0), (10)

and ∫
∞

T
xf (x)dx = σ0φ(z0)+ µ0[1− Φ(z0)], (11)

where z0 = (T − µ0)/σ0, f (x) = (2πσ 20 )
−0.5 exp[−(x − µ0)

2/2σ 20 ], and φ(.) is the standard normal pdf, φ(u) =
(2π)−0.5 exp(−u2/2). In this paper we consider the symmetric loss functions so we assume that the loss coefficient used
for estimating the cost due to nonconformities K = K1 = K2. Thus, using (10) and (11), we can rewrite (9) as

J0 =
∫
∞

−∞

K |x− T |f (x)dx = 2K [σ0φ(z0)− (µ0 − T )Φ(z0)] + K(µ0 − T ). (12)
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Let the out-of-control process mean be µ1 = µ0 + δσ0. Defining z1 = (T − µ1)/σ0, the expected quality cost per unit
when the process is out of control, J1, is

J1 = 2K [σ0φ(z1)− (µ1 − T )Φ(z1)] + K(µ1 − T ). (13)
If p units are produced per hour, we can compute C0 and C1 in (6) as: C0 = J0p, and C1 = J1p. Note that the shift in mean δσ0
explicitly enters the cost function (6) through the term C1 when a loss function is used for computing the quality costs.

3.2. Quadratic loss function

The most common loss function used in practice is the symmetric quadratic loss function advocated by Taguchi. The
quadratic loss function penalizes the deviations from the targetmore severely than the linear loss function. Kim and Liao [19]
suggest the liquid products in containers such as juice, soda and medicine as potential applications of symmetric quadratic
loss function. Product delivery time promised to customers is an example of an asymmetric quadratic loss function [19].
The actual delivery occurring earlier than the promised time incurs a small loss, which is considerably less than the loss
associatedwith a late delivery resulting in customer dissatisfaction. Another example for the asymmetric loss is the contents
of a manufactured drug. The low amount of a particular ingredient may make the drug ineffective, but the high level of the
same ingredientmay have a serious negative effect on users, implying that positive deviation from the target incurs a higher
loss than the same amount of deviation below the target [19]. To design control charts based on a symmetric quadratic loss
function, we calculate J0 as

J0 =
∫
∞

−∞

K(x− T )2f (x)dx =
∫
∞

−∞

K(x− µ0 + µ0 − T )2f (x)dx

= K [σ 20 + (µ0 − T )
2
]. (14)

The expected cost per unit under quadratic loss function when the process is out of control is

J1 =
∫
∞

−∞

K(x− µ0 − δσ0 + µ0 + δσ0 − T )2f (x)dx

= K [σ 20 + (µ0 − T )
2
+ δ2σ 20 − 2δσ0(µ0 − T )]. (15)

As in the case of linear loss function, the optimal design under quadratic loss function can be found by first finding C0
and C1 using (14) and (15), and then substituting them in (6).

3.3. Exponential loss function

Finally we consider the exponential loss function which corresponds to the case of constant risk aversion if we assume
that the utility of the decision maker is measured by the negative of the quality loss [11]. The linear loss function is suited
to a risk-neutral decision maker whereas the quadratic and exponential loss functions allow incorporation of risk aversion
explicitly into the model. The choice of a quadratic loss function implies that the decision maker becomes less risk averse
as the deviation of the quality characteristic from the target increases [11]. The exponential loss function implies that the
utility of the decision maker decreases exponentially as deviation from the target increases. The expected quality cost per
unit when the process is in control, J0, based on the exponential loss function is

J0 =
∫ T

−∞

K [er(T−x) − 1]f (x)dx+
∫
∞

T
K [er(x−T ) − 1]f (x)dx, (16)

where r is a parameter describing the risk aversion of the user. Let d = |x− T |. If the utility function is U(d) = −K(erd− 1),
then the risk aversion defined by U ′′(d)/U ′(d) is equal to r . A higher value of r implies a higher cost penalty for deviations
from the target, and correspondingly, a higher level of risk aversion.
To evaluate J0, note that, using change of variables u = (x− µ)/σ ,∫ T

−∞

er(T−x)f (x)dx = er(T−µ)
∫ z

−∞

e−rσuφ(u)du, (17)∫
∞

T
er(x−T )f (x)dx = er(µ−T )

∫
∞

z
erσuφ(u)du, (18)

where z = (T − µ)/σ , µ and σ are the mean and standard deviation of a normal random variable with pdf f (x). For the
standard normal probability distribution, we have∫ z

−∞

e−rσuφ(u)du = e(rσ)
2/2Φ(z + rσ), (19)∫

∞

z
erσuφ(u)du = e(rσ)

2/2
[1− Φ(z − rσ)]. (20)
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Then, substituting (19) and (20) into (17) and (18), J0 equals

J0 = Ke(rσ0)
2/2
[er(T−µ0)Φ(z0 + rσ0)+ er(µ0−T ) − er(µ0−T )Φ(z0 − rσ0)] − K . (21)

Using µ = µ1, the expected quality cost per unit when the process is out of control is given by

J1 = Ke(rσ0)
2/2
[er(T−µ1)Φ(z1 + rσ0)+ er(µ1−T ) − er(µ1−T )Φ(z1 − rσ0)] − K . (22)

4. Economic design of charts for variance

4.1. EWMA variance chart

In this section, we consider the economic design of an EWMA-based chart to be used for monitoring the dispersion of a
process. We adopt the approach of several authors including Crowder and Hamilton [20], Gan [13], Acosta-Mejia et al. [21],
and Morais and Pacheco [16] who have studied control charts based on EWMA of ln S2 (sample variance). The chart has the
lower and upper control limits

LCLewmavar = ln(σ 20 ), (23)

UCLewmavar = ln(σ 20 )+ Lvσy, (24)

where σ 2y = λvψ
′
[(n − 1)/2]/(2 − λv), ψ ′(.) is the trigamma function, which is the variance of ln(S2t ) [20], and Lv is the

control limit parameter. The associated chart statistic is

Yt = max{ln(σ 20 ), λv ln(S
2
t )+ (1− λv)Yt−1}, (25)

where λv is the smoothing constant, 0 < λv ≤ 1, and S2t is the sample variance at sampling instant t defined as

S2t =
n∑
i=1

(Xit − Xt)2/(n− 1). (26)

The sample size n ≥ 2, and Y0 = ln(σ 20 ). The EWMA variance chart triggers an out-of-control signal when Yt exceeds
UCLewmavar . We remark that some researchers have proposed a single EWMA chart for simultaneously monitoring the
process mean and the process variance [22,23].
We can utilize (6) to economically design the EWMA variance chart based on the assumption that the assignable cause

now leads to an increase in process variance. We assume only the variance changes when the process goes out of control,
and the process mean does not change. The in-control and out-of-control ARLs can be calculated by using the Markov chain
method. More details are given in Appendix B. The expected quality cost per unit when the process is in control is same as
that for the mean chart, i.e., for linear loss, J0 is obtained from (12), for quadratic loss J0 is determined from (14), and for the
case of exponential loss function, J0 is same as (21). Let σ1 = ρσ0 denote the standard deviation of the process when it is
out of control, ρ ≥ 1. J1 for the EWMA variance chart under a linear loss function is given by (cf. (13))

J1 = 2K [σ1φ(z2)− (µ0 − T )Φ(z2)] + K(µ0 − T ), (27)

where z2 = (T − µ0)/σ1. When a quadratic loss function is used, J1 is computed from (cf. (14))

J1 = K [σ 21 + (µ0 − T )
2
]. (28)

If an exponential loss function is used, J1 is obtained from (cf. (21))

J1 = Ke(rσ1)
2/2
[er(T−µ0)Φ(z2 + rσ1)+ er(µ0−T ) − er(µ0−T )Φ(z2 − rσ1)] − K . (29)

4.2. S chart

An alternative to the EWMA variance chart is the Shewhart S chart used for detecting changes in the process standard
deviation. The lower control limit of the S chart is zero, and the upper control limit is

UCLS = LSσ0, (30)

where LS is determined from

LS = [χ2n−1;1−α/(n− 1)]
0.5. (31)
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Table 1
Optimal EWMAmean chart parameters for the foundry example

n h λm Lm C

1 0.28 0.12 3.23 388.78
2 0.88 0.23 2.62 388.91
3 1.09 0.31 2.78 388.25
4 1.27 0.37 2.84 388.29
5 1.57 0.44 2.61 388.19
6 1.94 0.45 2.69 388.18
7 2.36 0.61 2.51 387.80
8 2.56 0.53 2.48 388.02
9 3.24 0.55 2.34 387.89
10 4.22 0.77 2.32 387.39
11 4.04 0.77 2.45 387.38
12 4.72 0.76 2.23 387.65
13 5.38 0.88 2.34 387.70
14 5.54 0.83 2.23 388.01
15 6.11 0.64 2.40 388.95
16 6.07 0.85 2.39 388.51
17 5.38 0.75 2.50 389.12
18 6.87 0.72 2.52 389.97
19 6.43 0.62 2.46 390.42
20 6.40 0.57 2.46 391.16

χ2n−1;1−α is the 100(1 − α)th percentile point of the chi-squared probability distribution with n − 1 degrees of freedom.
Thus, the probability of false alarm for the S chart isα. The out-of-control signal is givenwhen the sample standard deviation
exceeds UCLS . The in-control and out-of-control ARLs for the S chart are [24]

ARL0 = 1/[1− G((n− 1)L2S)], (32)

and

ARL1 = 1/[1− G((n− 1)L2Sσ
2
0 /σ

2
1 )], (33)

where G(.) is the cdf of the chi-squared probability distribution with n-1 degrees of freedom. For determining the cost-
efficient parameters associated with the S chart, weminimize (6) by using J0 and J1 given by (12) and (27), (14) and (28) and
(21) and (29) in linear loss, quadratic loss, and exponential loss cases, respectively.

5. Numerical examples

As noted previously, if both the mean and dispersion charts are used, in order to minimize the total expected cost, the
parameters of the two charts should be determined jointly. Consider the following numerical example: γ1 = 1, γ2 = 0,
δ = 2.5, F = $300, W = $150, E = 0.5, θ = 0.01, T0 = 2, T1 = 2, T2 = 0, a = $5, b = $1, K = 1, p = 300 per hour,
σ 20 = 1, and µ0 = T . Hence, there is an assignable cause that causes a 2.5 standard deviation increase in the process mean.
Assuming quadratic loss function and simultaneous use of EWMA mean and variance charts, we determine the best chart
parameters as n = 2, h = 0.76, λm = 0.81, Lm = 2.76, λv = 0.33, and Lv = 4.00. The resulting hourly cost is $377.72. Note
that simultaneous design of mean and variance charts requires the computation of joint ARL (see [9,13,16]). If we use only
the EWMA mean chart in this situation, the parameters would be selected as n = 1, h = 0.53, λm = 0.65, Lm = 2.70, with
an associated cost of C = $376.59 per hour.
We now present a detailed example to illustrate the design of an EWMA mean chart based on an economic criterion.

Lorenzen and Vance [14] describe a foundry operation with an hourly production rate of 84 castings. The cooling curve
observed from the molten iron samples is recorded periodically. The cooling curve is related to the carbon-silicate content
which influences the tensile strength of the castings, an important product attribute. This example is also used by Prabhu
et al. [25]. The cost and process parameters are θ = 0.02, a = 0, b = $4.22, F = $977.4,W = $1086, E = T0 = T1 = 5/60 h,
T2 = 0.75 h. Thus, on average the process stays in control for 50 h. The production continues during the search for an
assignable cause, but it ceases during repair, i.e., γ1 = 1, γ2 = 0. The mean of the process increases by 0.86 standard
deviation when the process goes out of control. We assume a quadratic loss function with K = 4, σ 20 = 1, and µ0 = T .
From (14) and (15), the expected quality cost per casting is $4 and $6.96 while producing in control and out of control,
respectively.
For a given sample size n, the optimal chart parameters minimizing the expected hourly cost are listed in Table 1. We

determine the best design as n changes from 1 to 30 (only the first 20 designs are displayed in Table 1). We observe that the
economic design is defined by n = 11, h = 4.04 h, λm = 0.77, Lm = 2.45. Hence, a sample of size 11 should be taken every
4.04 h. Using (4) and (5), the lower and upper control limits are LCLewma = µ0 − 0.584 and UCLewma = µ0 + 0.584. The
minimum expected cost is $387.38 per hour. At these settings, the in-control ARL is 71.5, and the out-of-control ARL is 1.5.
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Table 2
Economically designed EWMAmean charts under linear loss

E F W δ C n h λm Lm ARL0 ARL1

0.05 300 150 0.5 247.70 28 16.66 0.59 1.86 18.1 1.3
1.5 254.63 8 3.53 0.98 2.82 208.3 1.1
2.5 261.76 3 1.73 0.81 2.96 327.1 1.1

900 0.5 254.04 26 19.65 0.57 1.91 20.4 1.4
1.5 261.86 7 3.33 0.79 2.86 238.3 1.2
2.5 269.00 3 1.84 0.97 2.91 276.7 1.1

900 150 0.5 248.42 30 14.52 0.71 2.48 78.8 1.6
1.5 255.15 8 3.51 0.85 3.10 518.2 1.1
2.5 262.06 4 1.91 0.87 3.35 1238.7 1.1

900 0.5 254.65 28 18.68 0.75 2.28 45.6 1.5
1.5 262.33 9 3.57 0.82 3.11 536.6 1.1
2.5 269.33 4 1.75 0.99 3.43 1656.8 1.1

0.5 300 150 0.5 249.19 12 9.92 0.52 1.91 21.3 2.2
1.5 259.22 4 2.45 0.75 2.64 123.0 1.5
2.5 267.01 2 1.59 0.92 2.69 140.2 1.2

900 0.5 255.13 13 13.11 0.52 1.84 18.3 2.0
1.5 266.27 4 2.37 0.75 2.67 134.3 1.5
2.5 274.21 2 1.59 0.92 2.69 140.2 1.2

900 150 0.5 250.21 12 7.59 0.35 2.50 104.8 3.3
1.5 260.51 4 2.06 0.73 3.07 472.4 1.9
2.5 268.19 2 1.38 0.81 3.16 636.4 1.5

900 0.5 255.96 13 9.53 0.39 2.52 105.4 3.1
1.5 267.55 4 2.03 0.73 2.91 280.9 1.7
2.5 275.38 2 1.31 0.77 3.13 575.9 1.5

In the following examples we explore the sensitivity of the chart parameters to variations in process parameters and loss
functions. The following values of parameters are used: γ1 = 1, γ2 = 0, F ∈ {300, 900},W ∈ {150, 900}, E ∈ {0.05, 0.5},
θ = 0.01, T0 = 2, T1 = 2, T2 = 0, a = 5, b = 1, r = K = 1, p = 300 per hour, σ 20 = 1, and µ0 = T .
As in Torng et al. [26], we first fix the sample size n and optimize (6) with respect to the other decision variables. After

finding best designs by varying n from 1 to 30 for the mean charts, and from 2 to 30 for the variance charts, we identify
the design that yields the minimum cost for each chart. The ARLs of EWMA charts are computed using the Markov chain
method (with k = 51) as described in Appendices A and B. We also impose the following upper limits on the variables:
h ≤ 40, λm, λv ≤ 0.99, L, Lm, Lv , LS ≤ 4. The minimum allowable values for λm and λv are specified as 0.05.

5.1. Optimal EWMA mean and X charts

We explore the economic design of EWMA mean and X charts under different shift sizes; the chart parameters and the
in-control and out-of-control average run lengths resulting from the numerical search for the EWMAmean chart and X chart
are given in Tables 2–7, respectively.
For a given shift size, the costs show little variation between the EWMA mean and X charts. This result is in agreement

with Arnold and Collani [27] who stated that the performance of the Shewhart X chart cannot be improved significantly
by other types of charts when the quality characteristic is normally distributed, and the in-control time is exponentially
distributed. Ho and Case [5] have compared the costs associated with economically designed EWMA and X charts using 14
examples, and in 12 of these 14 examples the costs were very close (the difference is less than 1%). In the remaining two
examples, the difference in costs was approximately 1.4% and 2.1%, respectively.
Most of the time the sample size and sampling interval do not change significantly between the EWMAmean andX charts.

The differences in sample size and sampling interval of X and EWMAmean charts aremore notable when the sampling time
E and the false alarm cost F are at their high levels. The EWMA mean chart prescribed by the economic design model has
characteristics fairly similar to the X chart. The value of the smoothing constant λm is quite high for all shift sizes, indicating
that smoothing of sample means over a large number of past samples is not very useful in our numerical example. A similar
pattern has been observed in the examples considered in Ho and Case [5].

5.2. Optimal EWMA variance and S charts

The application of the Nelder–Mead downhill simplex method with various values of ρ yields the chart parameters for
the EWMA variance and S chart listed in Tables 8–13, respectively.
Similar to the case of EWMA mean–X pair, the performances of the EWMA variance and S charts are also very close to

each other. The smoothing constant λv in many cases attains its upper bound 0.99, essentially turning the EWMA variance
chart into an S chart. Both sample size and sampling interval decrease as the shift parameter ρ increases. Although it can
be expected that EWMA-based charts should perform better than Shewhart charts when the shift in mean or variance is
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Table 3
Economically designed EWMAmean charts under quadratic loss

E F W δ C n h λm Lm ARL0 ARL1

0.05 300 150 0.5 313.74 29 10.98 0.79 1.94 19.7 1.3
1.5 331.79 7 1.99 0.85 2.79 190.7 1.1
2.5 360.53 3 0.94 0.77 3.01 386.1 1.1

900 0.5 320.42 29 10.37 0.78 2.00 22.7 1.3
1.5 339.02 7 1.99 0.85 2.79 190.7 1.1
2.5 367.83 3 0.94 0.77 3.01 386.1 1.1

900 150 0.5 315.11 30 9.81 0.78 2.40 62.3 1.5
1.5 332.79 8 1.86 0.99 3.11 534.5 1.2
2.5 361.46 4 1.08 0.94 3.34 1193.9 1.1

900 0.5 321.80 30 10.01 0.63 2.34 55.6 1.5
1.5 340.02 8 1.97 0.88 3.12 553.8 1.2
2.5 368.76 4 1.08 0.94 3.34 1193.9 1.1

0.5 300 150 0.5 317.25 8 3.62 0.39 2.11 38.2 3.4
1.5 342.77 2 0.83 0.51 2.62 126.1 2.5
2.5 376.59 1 0.53 0.65 2.70 150.0 2.0

900 0.5 323.76 7 3.20 0.26 2.04 41.0 3.8
1.5 349.97 2 0.95 0.51 2.60 119.2 2.5
2.5 383.85 1 0.53 0.65 2.70 150.0 2.0

900 150 0.5 319.03 8 2.63 0.25 2.70 210.1 5.1
1.5 345.38 3 0.90 0.58 3.04 439.3 2.3
2.5 380.09 2 0.71 0.85 3.04 424.0 1.4

900 0.5 325.36 8 2.77 0.27 2.66 181.4 4.9
1.5 352.57 3 0.88 0.60 3.08 498.5 2.4
2.5 387.25 2 0.71 0.79 3.16 637.1 1.5

Table 4
Economically designed EWMAmean charts under exponential loss

E F W δ C n h λm Lm ARL0 ARL1

0.05 300 150 0.5 551.63 28 6.98 0.78 2.00 22.7 1.3
1.5 587.43 6 1.40 0.93 2.64 120.8 1.2
2.5 675.53 3 0.53 0.88 2.94 305.4 1.1

900 0.5 558.21 25 6.18 0.74 2.04 25.2 1.5
1.5 594.70 6 1.40 0.93 2.64 120.8 1.2
2.5 682.85 3 0.53 0.88 2.94 305.4 1.1

900 150 0.5 553.70 30 7.00 0.78 2.26 43.0 1.4
1.5 589.02 7 1.32 0.86 3.00 371.5 1.2
2.5 677.56 3 0.53 0.84 3.15 614.2 1.1

900 0.5 560.51 29 5.70 0.79 2.54 91.6 1.7
1.5 596.29 7 1.32 0.86 3.00 371.5 1.2
2.5 684.88 3 0.53 0.84 3.15 614.2 1.1

0.5 300 150 0.5 557.14 6 2.02 0.29 2.15 49.1 4.4
1.5 606.09 2 0.65 0.51 2.51 93.0 2.4
2.5 709.51 1 0.31 0.61 2.70 151.8 2.0

900 0.5 563.89 7 2.30 0.36 2.10 38.9 3.7
1.5 613.30 2 0.58 0.46 2.59 119.8 2.5
2.5 716.79 1 0.31 0.61 2.70 151.8 2.0

900 150 0.5 559.79 7 1.78 0.20 2.71 243.1 5.8
1.5 610.06 2 0.45 0.38 3.24 932.1 3.5
2.5 715.81 1 0.25 0.40 3.22 860.0 2.7

900 0.5 566.32 7 1.78 0.20 2.71 243.1 5.8
1.5 617.16 2 0.55 0.37 3.03 472.8 3.2
2.5 723.09 1 0.25 0.40 3.22 860.0 2.7

small, we have not always observed such a pattern in our numerical experiment. A possible reason for this result is that the
optimal sample size is relatively large when the shift is small. In the previously published research, for a given in-control
ARL, the difference between the out-of-control ARLs of EWMA and Shewhart charts appears to get smaller as the sample
size increases; for example, in Castagliola [28], a comparison of the ARLs for the S chart and an EWMA chart based on ln
S2 indicates that the difference between the ARLs decreases as the sample size increases (regardless of the value of the
smoothing constant used in the EWMA chart). In a similar manner, the large sample sizes associated with small shifts in our
experiment seem to narrow the gap between the performances of EWMA and Shewhart charts. Another factor to consider is
that due to the possibility ofmultiple local optima on the objective function surface, the search algorithmmay not terminate
at the global optimal point.
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Table 5
Economically designed X charts under linear loss

E F W δ C n h L ARL0 ARL1

0.05 300 150 0.5 247.70 28 15.79 1.89 17.0 1.3
1.5 254.64 7 3.33 2.66 128.0 1.1
2.5 261.75 4 1.87 3.15 612.5 1.0

900 0.5 254.01 28 21.49 1.81 14.2 1.3
1.5 261.83 7 3.57 2.77 178.4 1.1
2.5 269.00 3 1.71 2.99 358.5 1.1

900 150 0.5 248.56 30 18.34 2.21 36.9 1.4
1.5 255.18 9 3.17 3.12 552.9 1.1
2.5 262.07 4 1.93 3.30 1034.3 1.1

900 0.5 254.72 30 21.95 2.25 40.9 1.5
1.5 262.35 9 3.38 3.28 963.3 1.1
2.5 269.33 4 1.93 3.30 1034.3 1.1

0.5 300 150 0.5 249.49 15 12.70 1.75 12.5 1.7
1.5 259.44 4 2.77 2.48 76.1 1.4
2.5 267.10 2 1.49 2.70 144.2 1.3

900 0.5 255.29 18 19.17 1.73 12.0 1.5
1.5 266.48 4 2.77 2.48 76.1 1.4
2.5 274.31 2 1.49 2.70 144.2 1.3

900 150 0.5 250.65 24 16.02 2.20 36.0 1.7
1.5 260.86 5 2.64 2.84 221.7 1.4
2.5 268.50 2 1.44 3.05 437.0 1.5

900 0.5 256.20 26 21.98 2.17 33.3 1.5
1.5 267.91 5 2.06 2.92 285.7 1.5
2.5 275.69 2 1.44 3.05 437.0 1.5

Table 6
Economically designed X charts under quadratic loss

E F W δ C n h L ARL0 ARL1

0.05 300 150 0.5 313.83 30 9.61 2.09 27.3 1.4
1.5 331.79 7 1.89 2.83 214.8 1.2
2.5 360.39 3 0.88 2.94 304.7 1.1

900 0.5 320.57 30 9.38 2.11 28.7 1.4
1.5 339.03 7 1.89 2.83 214.8 1.2
2.5 367.70 3 0.88 2.94 304.7 1.1

900 150 0.5 315.46 30 9.06 2.23 38.8 1.4
1.5 332.81 8 1.95 3.02 395.6 1.1
2.5 361.39 4 0.97 3.37 1330.4 1.1

900 0.5 322.10 30 12.39 2.16 32.5 1.4
1.5 340.05 8 1.95 3.02 395.6 1.1
2.5 368.69 4 0.97 3.37 1330.4 1.1

0.5 300 150 0.5 318.31 13 6.55 1.85 15.6 2.1
1.5 343.93 3 1.36 2.42 64.4 1.8
2.5 377.87 2 0.81 2.74 162.8 1.3

900 0.5 324.62 12 6.55 1.85 15.6 2.2
1.5 351.14 3 1.12 2.46 72.0 1.8
2.5 385.11 2 0.81 2.74 162.8 1.3

900 150 0.5 321.07 18 6.94 2.28 44.2 2.3
1.5 347.43 4 1.29 2.83 214.8 1.8
2.5 380.65 2 0.70 3.04 422.7 1.5

900 0.5 327.12 20 8.76 2.20 36.0 1.9
1.5 354.53 4 1.29 2.83 214.8 1.8
2.5 387.89 2 0.70 3.04 422.7 1.5

5.3. Effect of shift size and loss function

According to the results displayed in Tables 2–13, for all charts, as the out-of-control mean or variance increases, both
sample size and sampling interval decrease. When the shift in mean or variance is small, a large sample size is needed to
decide about the state of the process. As the shift size increases, the sample size decreases more rapidly in the EWMAmean
and X charts compared to the EWMA variance and S charts. For the X chart, the observed direction of change in sample size
with respect to shift size is consistent with the earlier findings in the literature, as discussed in Montgomery [3]. A similar
relationship between sample size and shift size is observed in the numerical examples in Park et al. [8] who studied the
economic design of an EWMAmean chart.
For all charts, the sampling interval is shorter in the quadratic loss case compared to the linear loss case. This result

can be attributed to the higher cost of defective products under quadratic loss measure. A shorter sampling interval leads
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Table 7
Economically designed X charts under exponential loss

E F W δ C n h L ARL0 ARL1

0.05 300 150 0.5 551.82 27 6.52 1.93 18.7 1.3
1.5 587.33 6 1.15 2.72 153.2 1.2
2.5 675.63 3 0.53 2.88 251.5 1.1

900 0.5 558.67 27 7.79 1.92 18.2 1.3
1.5 594.61 6 1.15 2.72 153.2 1.2
2.5 682.95 3 0.53 2.88 251.5 1.1

900 150 0.5 554.00 30 6.94 2.28 44.2 1.5
1.5 589.12 7 1.20 3.00 370.4 1.2
2.5 677.61 3 0.49 3.22 780.1 1.2

900 0.5 560.79 30 6.94 2.28 44.2 1.5
1.5 596.38 8 1.34 3.04 422.7 1.1
2.5 684.93 3 0.49 3.22 780.1 1.2

0.5 300 150 0.5 559.42 10 4.06 1.77 13.0 2.4
1.5 609.73 3 0.90 2.46 72.0 1.8
2.5 714.05 1 0.43 2.40 61.0 1.9

900 0.5 565.95 10 4.26 1.89 17.0 2.6
1.5 616.90 3 0.90 2.46 72.0 1.8
2.5 721.33 1 0.43 2.40 61.0 1.9

900 150 0.5 563.96 16 4.36 2.27 43.1 2.5
1.5 616.12 3 0.64 2.83 214.8 2.5
2.5 726.05 2 0.45 2.99 358.5 1.4

900 0.5 570.23 16 5.06 2.20 36.0 2.4
1.5 623.28 3 0.64 2.83 214.8 2.5
2.5 733.31 2 0.45 2.99 358.5 1.4

Table 8
Economically designed EWMA variance charts under linear loss

E F W ρ C n h λv Lv ARL0 ARL1

0.05 300 150 1.5 254.98 19 6.42 0.99 1.54 30.4 1.3
2 257.62 10 3.56 0.99 1.77 102.3 1.3
2.5 260.60 8 2.32 0.99 1.90 248.4 1.2

900 1.5 261.91 18 6.42 0.99 1.54 31.1 1.4
2 264.78 11 3.39 0.86 1.92 148.3 1.2
2.5 267.81 7 2.45 0.93 1.76 158.2 1.2

900 150 1.5 256.23 25 6.28 0.95 1.99 99.8 1.3
2 258.37 12 3.67 0.91 2.14 346.2 1.3
2.5 261.15 8 2.29 0.99 2.16 947.6 1.3

900 1.5 263.11 24 6.28 0.95 1.99 102.4 1.4
2 265.49 12 3.67 0.91 2.14 346.2 1.3
2.5 268.34 9 2.53 0.99 2.20 877.2 1.2

0.5 300 150 1.5 259.48 6 2.41 0.58 1.45 55.9 3.1
2 263.70 4 1.99 0.63 1.36 84.7 2.3
2.5 267.74 4 1.50 0.89 1.50 177.7 1.7

900 1.5 266.21 7 3.06 0.50 1.38 38.6 2.6
2 270.64 5 1.98 0.81 1.57 126.6 2.0
2.5 274.76 4 1.63 0.84 1.51 182.9 1.8

900 150 1.5 261.57 8 2.68 0.65 1.84 160.4 3.3
2 265.13 5 1.71 0.76 1.82 471.1 2.5
2.5 268.85 4 1.49 0.72 1.69 523.7 2.0

900 1.5 268.19 8 2.76 0.64 1.79 130.6 3.1
2 272.09 5 1.70 0.64 1.84 508.0 2.5
2.5 275.92 4 1.49 0.72 1.69 523.7 2.0

to a decrease in the number of products produced during the out-of-control phase. On the other hand, we do not observe
significant differences in sample size and control limits between the quadratic, linear and exponential loss scenarios. Thus,
keeping the shift size fixed, the sampling interval is the only design parameter requiring a major adjustment when the cost
of poor quality changes.
Notice that in the exponential loss case we assume that the coefficient of risk aversion r = 1. The optimal chart

parameters depend on the value of r as the cost penalty for deviations from the target increases with r . Thus, in light of the
numerical results for linear and quadratic loss cases, it can be expected that higher values of r will lead to shorter sampling
intervals.
The in-control ARL values associatedwith economically optimal designs generally increasewith the shift sizes δ andρ. On

the other hand, most of the time the out-of-control ARL decreases as the shift in mean or variance increases. This suggests
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Table 9
Economically designed EWMA variance charts under quadratic loss

E F W ρ C n h λv Lv ARL0 ARL1

0.05 300 150 1.5 331.43 16 2.77 0.99 1.64 44.2 1.5
2 344.72 9 1.43 0.99 1.51 44.9 1.2
2.5 361.80 6 0.97 0.99 1.74 211.5 1.3

900 1.5 338.53 16 2.77 0.99 1.64 44.2 1.5
2 351.96 9 1.43 0.99 1.78 121.6 1.4
2.5 369.08 6 0.97 0.99 1.74 211.5 1.3

900 150 1.5 334.06 20 2.85 0.92 2.01 121.2 1.6
2 346.52 11 1.62 0.99 2.10 359.9 1.3
2.5 363.52 8 1.17 0.84 2.10 583.9 1.2

900 1.5 341.11 22 3.26 0.84 2.05 123.6 1.5
2 353.74 11 1.64 0.99 2.08 328.6 1.3
2.5 370.68 8 1.19 0.99 2.10 680.5 1.2

0.5 300 150 1.5 342.41 5 1.31 0.48 1.34 54.2 3.6
2 362.04 3 0.72 0.69 1.22 107.8 3.1
2.5 386.03 3 0.68 0.76 1.28 153.6 2.2

900 1.5 349.34 5 1.18 0.48 1.35 56.3 3.6
2 369.16 3 0.72 0.69 1.22 107.8 3.1
2.5 393.19 3 0.68 0.76 1.28 153.6 2.2

900 150 1.5 347.03 6 1.22 0.51 1.75 196.1 4.4
2 366.12 4 0.82 0.61 1.61 314.4 2.9
2.5 389.25 3 0.54 0.82 1.48 663.2 2.7

900 1.5 353.91 6 1.17 0.38 1.70 177.4 4.3
2 373.18 4 0.81 0.60 1.62 333.5 2.9
2.5 396.41 3 0.54 0.82 1.48 663.2 2.7

Table 10
Economically designed EWMA variance charts under exponential loss

E F W ρ C n h λv Lv ARL0 ARL1

0.05 300 150 1.5 588.65 12 1.68 0.87 1.51 33.6 1.7
2 659.45 7 0.67 0.95 1.63 92.0 1.5
2.5 888.40 4 0.26 0.87 1.46 140.9 1.7

900 1.5 595.78 14 1.76 0.94 1.51 31.5 1.6
2 666.73 7 0.67 0.95 1.63 92.0 1.5
2.5 895.72 4 0.26 0.87 1.46 140.9 1.7

900 150 1.5 593.12 16 1.60 0.80 2.00 131.2 1.9
2 664.10 7 0.56 0.85 1.93 336.2 1.8
2.5 894.42 5 0.28 0.85 1.84 560.5 1.7

900 1.5 600.27 16 1.60 0.80 2.00 131.2 1.9
2 671.38 7 0.56 0.85 1.93 336.2 1.8
2.5 901.73 5 0.28 0.85 1.84 560.5 1.7

0.5 300 150 1.5 609.64 4 0.75 0.46 1.20 49.7 4.2
2 710.96 2 0.25 0.58 0.82 82.7 4.6
2.5 1017.97 2 0.16 0.70 0.91 155.2 3.5

900 1.5 616.67 4 0.75 0.46 1.20 49.7 4.2
2 717.90 2 0.30 0.62 0.82 79.4 4.6
2.5 1025.27 2 0.16 0.70 0.91 155.2 3.5

900 150 1.5 618.18 5 0.57 0.47 1.69 238.7 5.4
2 720.56 3 0.29 0.68 1.45 494.9 4.2
2.5 1031.76 2 0.14 0.71 1.03 504.1 4.4

900 1.5 625.13 5 0.58 0.47 1.69 238.7 5.4
2 727.73 3 0.29 0.68 1.45 494.9 4.2
2.5 1039.01 2 0.14 0.71 1.03 504.1 4.4

that economic designs with constraints on ARL would differ from the unconstrained economic designs mainly when the
shifts in mean or variance are small.

5.4. Effect of cost parameters

We also explore the sensitivity of the chart parameters to several input parameters in our numerical study. The increase
in the time to sample and chart one item E is observed to reduce both the optimal sample size and the optimal sampling
interval. Keeping other parameters fixed, the false alarm cost F and the sample size n are positively related; a larger F leads
to a greater n. The larger sample size helps to reduce the rate of false alarms. The impact of the cost of repairW on the chart
parameters is less clear; a significant relationship between W and the chart parameters is not observed in the numerical
study. The optimal cost increases asW and/or F increase.
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Table 11
Economically designed S charts under linear loss

E F W ρ C n h LS ARL0 ARL1

0.05 300 150 1.5 254.99 19 5.47 1.32 38.3 1.4
2 257.60 10 3.25 1.55 98.5 1.3
2.5 260.56 7 2.34 1.76 203.1 1.2

900 1.5 261.93 17 5.54 1.35 43.7 1.5
2 264.75 10 3.25 1.55 98.5 1.3
2.5 267.77 8 2.51 1.73 260.1 1.2

900 150 1.5 256.21 25 6.42 1.34 103.1 1.3
2 258.39 12 3.10 1.61 370.4 1.3
2.5 261.13 8 2.50 1.81 571.0 1.2

900 1.5 263.08 25 7.04 1.34 103.1 1.3
2 265.52 12 3.71 1.57 226.4 1.2
2.5 268.32 8 2.50 1.81 571.0 1.2

0.5 300 150 1.5 259.67 7 3.11 1.53 34.3 2.5
2 263.86 5 2.51 1.73 56.9 1.8
2.5 267.74 4 1.66 2.00 135.4 1.7

900 1.5 266.36 8 3.75 1.49 33.7 2.3
2 270.81 4 1.86 1.88 71.0 2.2
2.5 274.82 4 1.66 2.00 135.4 1.7

900 150 1.5 262.27 9 3.25 1.58 95.7 2.8
2 265.49 5 1.77 2.00 331.2 2.5
2.5 269.08 4 1.41 2.20 439.3 2.0

900 1.5 268.84 9 3.57 1.57 87.3 2.8
2 272.45 5 2.01 1.93 203.5 2.3
2.5 276.12 4 1.67 2.20 439.3 2.0

Table 12
Economically designed S charts under quadratic loss

E F W ρ C n h LS ARL0 ARL1

0.05 300 150 1.5 331.40 16 2.89 1.35 38.3 1.5
2 344.71 9 1.49 1.59 105.1 1.3
2.5 361.85 7 1.08 1.78 241.2 1.2

900 1.5 338.50 16 2.89 1.35 38.3 1.5
2 351.96 9 1.44 1.62 139.7 1.4
2.5 369.12 7 1.08 1.78 241.2 1.2

900 150 1.5 334.10 21 3.09 1.38 115.8 1.5
2 346.53 11 1.68 1.63 328.3 1.3
2.5 363.30 7 1.00 1.88 593.7 1.3

900 1.5 341.15 21 3.11 1.38 115.8 1.5
2 353.75 11 1.68 1.63 328.3 1.3
2.5 370.57 7 1.00 1.88 593.7 1.3

0.5 300 150 1.5 343.06 5 1.41 1.65 35.9 3.3
2 362.67 3 0.75 2.10 82.3 3.0
2.5 386.28 3 0.63 2.21 132.2 2.2

900 1.5 349.98 5 1.41 1.65 35.9 3.3
2 369.79 3 0.75 2.10 82.3 3.0
2.5 393.46 3 0.63 2.21 132.2 2.2

900 150 1.5 349.23 6 1.33 1.75 109.8 4.3
2 367.32 4 0.72 2.14 304.6 3.0
2.5 390.01 3 0.53 2.49 492.8 2.7

900 1.5 356.05 6 1.33 1.75 109.8 4.3
2 374.41 4 0.75 2.16 343.7 3.1
2.5 397.17 3 0.53 2.49 492.8 2.7

6. Conclusion

Reduction of variation in product performance characteristics is a key element of Six Sigma quality improvement
programs applied in large companies such as Motorola and General Electric. Quantifying the quality costs using a loss
function is a well-known approach for estimating the economic consequences of variation. We have incorporated linear,
quadratic and exponential quality loss functions into the economic design of EWMA control charts. We have explored the
impact of the size of shifts in mean and variance on the design parameters. We have also examined the design of Shewhart
X and S charts based on the concept of quality loss function. Our computational study suggests that using a different type of
quality loss function (linear versus quadratic) leads to a significant change in sampling interval while affecting the sample
size and control limits very little. It is also observed that the overall costs are insensitive to the choice of Shewhart or EWMA
charts.
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Table 13
Economically designed S charts under exponential loss

E F W ρ C n h LS ARL0 ARL1

0.05 300 150 1.5 588.60 14 1.71 1.38 40.3 1.6
2 659.60 7 0.62 1.67 97.0 1.5
2.5 888.69 5 0.33 1.89 155.5 1.5

900 1.5 595.77 14 1.71 1.38 40.3 1.6
2 666.88 7 0.62 1.67 97.0 1.5
2.5 896.00 5 0.33 1.89 155.5 1.5

900 150 1.5 593.46 18 1.80 1.41 112.2 1.7
2 664.28 8 0.62 1.76 347.2 1.6
2.5 895.01 5 0.30 2.04 441.7 1.6

900 1.5 600.60 18 1.80 1.41 112.2 1.7
2 671.56 8 0.62 1.76 347.2 1.6
2.5 902.32 5 0.30 2.04 441.7 1.6

0.5 300 150 1.5 610.93 4 0.76 1.76 39.0 4.0
2 712.34 2 0.27 2.47 74.0 4.6
2.5 1019.70 2 0.16 2.68 135.8 3.5

900 1.5 617.96 4 0.76 1.76 39.0 4.0
2 719.54 2 0.26 2.58 101.2 5.1
2.5 1026.95 2 0.16 2.68 135.8 3.5

900 150 1.5 622.39 5 0.64 1.87 136.3 5.5
2 724.14 3 0.36 2.34 238.8 3.9
2.5 1035.87 2 0.13 3.06 451.8 4.5

900 1.5 629.31 5 0.76 1.82 98.8 4.8
2 731.30 3 0.36 2.34 238.8 3.9
2.5 1043.19 2 0.15 2.99 358.5 4.3

Since the economic design approach entails estimation of a number of input parameters (i.e. time and cost estimates for
various activities), finding a good design may require solving the model multiple times with different estimates of inputs.
Whether the insensitivity of the sample size and control limits to the type of loss function observed in our setting also holds
in other problems with different values of input parameters is an open question. Future research may investigate the issue
of finding robust solutions to the optimization models studied in this paper.
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Appendix A. Calculating the ARL of the EWMAmean chart

In theMarkov chainmethodwe divide the interval between theUCL and LCL into k equally spaced subintervals (kmust be
an odd integer). For the EWMA mean chart, the subintervals are R1 = [u0, u1], R2 = [u1, u2], . . . , Ri = [ui−1, ui], . . . , Rk =
[uk−1, uk] where ui = LCLewma + i1u and 1u = (UCLewma − LCLewma)/k. The subintervals correspond to the transitional
states in the Markov chain and the transition probabilities pi,j are found by setting the EWMA statistic Zt to the midpoint of
the subinterval Ri when ui−1 < Zt ≤ ui. Hence,

pi,j = P(Zt ∈ Rj|Zt−1 ∈ Ri) = P(uj−1 < Zt ≤ uj|Zt−1 = (ui−1 + ui)/2).

Note that u(k+1)/2 = µ0. The transition probabilities can be computed iteratively by using [16]

pi,j = fi,j − fi,j−1, i, j = 1, . . . , k,

where fi,j = Φ{[2Lm(j− (1− λm)(i− 0.5)− 0.5λmk)]/(k[λm(2− λm)]0.5)− δn0.5}, i = 1, . . . , k, j = 0, . . . , k.
Recall that Φ(.) denotes the cumulative distribution function for the standard normal probability distribution. The

transient states in the Markov chain are the in-control states and the EWMA statistic Zt moves to the absorbing state if
Zt falls outside the control limits. The run length distribution of the EWMA mean chart can be found by using the initial
probability vector and transition probability matrix. The initial probability vector contains the probabilities of Z starting in
each state of the Markov chain. In this paper we use the zero-state ARL, i.e. the starting state for the EWMA statistic is the
in-control mean with probability one [1].
Let P = [pi,j] be the k× kmatrix of transition probabilities pi,j. Then, the ARL of the EWMAmean chart when the process

mean is µ0 + δσ0 is given by

ARLewma = pT(I− P)−11, (A.1)

where p is the initial probability vector containing the starting state probabilities (i.e. the probability that Zt starts in state
i, i = 1, . . . , k), I is the k × k identity matrix, and 1 is a column vector of ones [15]. We substitute p = ei in (A.1), ei is
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the ith unit vector with all elements zero except the ith element which is 1. In (A.1), we use i = (k + 1)/2. To find the
in-control ARL, we set δ = 0 in the expression for fi,j. Note that, alternatively, the out-of-control ARL can be computed using
the steady-state probability vector ps as the initial probability vector. The vector ps is found by solving p = PTp subject to
1Tp = 1 [15]. The use of ps as the initial probability vector would give the out-of-control ARL in the case where the process
stays in control for a long time before the shift occurs. Lucas and Saccucci [1] have found that, for most practical purposes,
the difference between zero-state and steady-state ARLs is not significant.

Appendix B. Calculating the ARL of the EWMA variance chart

The average run length of the EWMA variance chart can be determined following a procedure similar to that for the
EWMA mean chart. Let1v = (UCLewmavar − LCLewmavar)/k. The transition probabilities qi,j in the Markov chain, associated
with the EWMA variance chart, can be computed recursively from [16]

qi,j = hi,j − hi,j−1, i, j = 1, . . . , k,

where hi,j = G{(n− 1) exp([(j− 1)− (1− λv)(i− 1.5)]1v/λv)/ρ2}, i = 2, . . . , k, j = 1, . . . , k, h1,j = G{(n− 1) exp[(j−
1)1v/λv]/ρ2}, j = 1, . . . , k, and hi,0 = 0, i = 1, . . . , k.
Recall that G(.) denotes the cdf for the chi-squared probability distribution with n− 1 degrees of freedom. Let Q = [qi,j]

be the k× kmatrix of transition probabilities qi,j. The ARL of the EWMA variance chart when the process standard deviation
is ρσ0 is obtained from

ARLewmavar = qT(I− Q)−11. (B.2)

The vector of starting state probabilities q = ei, i = 1 in (B.2). To find the in-control ARL, we set ρ = 1 in the expression
for hi,j.
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