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Effects of thermal annealing on the morphology of the AlxGa(1�x)N films with two

different high Al-contents (x=0.43 and 0.52) have been investigated by atomic force

microscopy (AFM). The annealing treatments were performed in a nitrogen (N2) gas

ambient as short-time (4 min) and long-time (30 min). Firstly, the films were annealed

as short-time in the range of 800–950 1C in steps of 50–100 1C. The surface root-mean-

square (rms) roughness of the films reduced with increasing temperature at short-time

annealing (up to 900 1C), while their surface morphologies were not changed. At the

same time, the degradation appeared on the surface of the film with lower Al-content

after 950 1C. Secondly, the Al0.43Ga0.57N film was annealed as long-time in the range of

1000–1200 1C in steps of 50 1C. The surface morphology and rms roughness of the film

with increasing temperature up to 1150 1C did not significantly change. Above those

temperatures, the surface morphology changed from step-flow to grain-like and the rms

roughness significantly increased.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wide band gap nitride semiconductors are most
promising materials for electronic and optoelectronic
devices due to superior material properties [1,2,3,4,5].
These materials are also remarkably tolerant of aggressive
environments because of their thermal stability and
radiation hardness [5]. It is rather well known that nitride
materials are generally grown on sapphire substrates due
to its low cost, thermal stability, and mature growth
technology [6,7]. Unfortunately, different lattice para-
meters and thermal expansion coefficients of the nitride
and sapphire materials cause large stresses in the grown
epitaxial films. In this case, nitride films have poor
ll rights reserved.
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crystalline quality because of the introduction of cracks
and defects into material as stress relieving mechanisms
[8]. The preparation of good-quality nitride epitaxial films
is quite important for high-performance device fabrica-
tion. Thermal annealing has been a powerful technique for
improving the structural quality of epitaxial films in the
growth of lattice mismatch systems [9,10,11,12,13,14].
Thermal annealing is also an important processing step in
the fabrication of nitride based devices [8]. It has been
reported that the annealing in a N2 gas ambient between
900 and 1100 1C considerably improved morphological
and optical properties of GaN layers [13,14,15]. However,
effects of the annealing on AlGaN materials have not been
completely clarified as of yet.

In the present work, we studied the effects of short-
and long-time annealing on the morphological properties
of AlxGa(1�x)N films with two different Al-contents
(x=0.43 and 0.52) grown on sapphire substrates by
metal-organic chemical vapor deposition (MOCVD). We
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found that the Al-contents in AlGaN films and annealing
temperatures have significant influences on the morpho-
logical changes depending on annealing.
2. Experiments

About 400 nm-thick AlxGa(1�x)N films were grown on
c-face sapphire substrates by MOCVD. Hydrogen (H2) was
used as the carrier gas and trimethylgallium (TMGa),
trimethylaluminum (TMAl), and ammonia (NH3) were used
as the Ga, Al, and N sources, respectively. The films with two
different high Al-contents (x=0.43 and 0.52) were labeled as
samples A and B. A sequence of annealing treatments was
performed in a N2 gas ambient as short-time (4 min) and
long-time (30 min). First of all, samples A and B were
annealed at short-time (4 min) from 800 up to 950 1C in
steps of 50–100 1C and then sample A with lower Al-content
was annealed at long-time (30 min) from 1000 up to 1200 1C
in steps of 50 1C. After annealing treatments, AFM measure-
ments with two different scan areas (5�5mm2 and
2�2mm2) were used to characterize the samples. AFM
images of the samples were recorded using the needle mode
operation on an Omicron VT STM/AFM. For the subsequent
AFM measurements, each sample was cleaned by solvent
rinsing: acetone (5 min), ethanol (5 min), and de-ionized
H2O, respectively. The measurements were carried out at
room-temperature (RT) and atmosphere pressure. The rms
Fig. 1. AFM images with (a), (c) 5�5mm2 and (b), (d) 2
values from the surface topography were processed with
Scala Pro software.

3. Results and discussion

Surface morphology of the AlGaN films has a signifi-
cant effect on the formation of contacts in devices. On the
other hand, the effects of thermal annealing on the films
are more evident near the surface [16]. Thus, AFM is a
useful technique to characterize morphological properties
of as-grown and annealed samples in this study. Fig. 1
shows the AFM images with 5�5mm2 and 2�2mm2 scan
area of as-grown samples A and B and AFM line profiles on
the images with 2�2mm2 scan area. There appear
relatively parallel step-terraces and dark spots on the
surfaces of both samples. The lateral sizes of the terraces
that were obtained from AFM line profiles of samples A
and B are approximately 85 and 79 nm. The dark spots on
the surfaces travel deep into the AlGaN epitaxial films and
their diameters are in the range of 30–60 nm. The dark
spot density of samples is approximately estimated as
107 cm�2 from the ratio of the number of total dark spots
to the scanned area. Step-terraces on the surface show
that the AlGaN epifilms are grown as step-flow. Step-flow
growth mode is beneficial for device performance,
because it creates a smoother surface [17,18]. However,
the dark spots on the AlGaN surface are known to have
surface traps and they lead to current collapse and power
�2mm2 scan area of as-grown samples A and B.
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Fig. 2. AFM images with 5�5mm2 scan area of short-time annealed samples A and B. Inset shows the image with a 2�2mm2 scan area.
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slump [19,20]. The surface rms roughnesses of samples A
and B are obtained as 0.79 and 1.66 nm. A 2�2mm2 scan
area is often relatively flat and is not an accurate
representation of the surface, while the 5�5mm2 scan
area is a much better representation of the surface. Thus,
we used the rms values that were obtained with scan area
of 5�5mm2 for quantifying the surface roughness. At the
same time, the lateral sizes of the terraces on the surface
are quite important to evaluate surface roughness. Due to
the appearance of the laterally larger terraces on the
surface, this suggests lower roughness on the surface
[21,22]. As seen in Fig. 1, the lateral terrace sizes that were
determined from line profiles are harmonious with the
surface rms roughnesses of samples.

Fig. 2 shows AFM images with 5�5 and 2�2mm2 scan
area of short-time annealed samples A and B from 800
until 950 1C. Below 950 1C, no morphological change on
both samples has been observed. This result is in
agreement with other experimental studies [23,24].
However, there appears a hillock-like structure with
approximately 0.5–2.0 nm in height and on the order of
350–1000 nm in diameter on the surface of sample A after
950 1C annealing. On the contrary in sample A, there is no
change on the step-flow morphology of sample B. The
degradation on the surface of sample A can be related to
the thermal stability of sample A due to its low Al content.
This result shows that the Al-contents in films have a
significant influence on morphological change. Fig. 3
shows the variation of the surface rms roughness as a
function of annealing temperature for samples. The rms
roughness of sample A slightly reduced until surface
degradation (from 0.79 to 0.72 nm) and then the rms
roughness (0.94 nm) increased as a result of increasing
annealing temperature. However, the surface rms
roughness of sample B was reduced from 1.66 to
0.74 nm. The smoother surface is related to the reducing
defect density and removing impurities on the surface of
samples after short-time annealing [2,14,15].

Fig. 4 shows AFM images with 5�5 and 2�2mm2 scan
area of long-time annealed sample A from 1000 to
1200 1C. As seen in Fig. 4, there is no change in the step-
flow surface morphology of the sample up to 1150 1C
annealing except for hillock-like degradation. However,
there appear grains with approximately 50–150 nm in
size on the sample after 1150 1C annealing and its surface
morphology is changed from the step-flow to grain-like.
Kuball et al. [25] reported that AlGaN material degraded
for annealing temperatures higher than 1150 1C using the
Raman scattering. Note that a large amount of strain
builds in the AlGaN film prior to its degradation at
1150 1C. Stress changes during annealing in a N2 gas
ambient that are attributed to morphological changes in
the sample [8,25]. Thus, the change on the surface
morphology of sample A is probably related to the
relaxation of the residual stress in the AlGaN layer. On
the other hand, the grain sizes on the surface are reduced
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Fig. 4. AFM images with 5�5mm2 scan area of long-time annealed sample A. Inset shows the image with a 2�2mm2 scan area.

Fig. 3. The variation of the surface rms values of samples A and B that were obtained from the AFM measurements with 5�5mm2 scan areas as a function

of annealing temperature.
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from 50–150 to 40–120 nm after 1200 1C annealing. Tao
et al. [26] investigated the effects of annealing on mosaic
structure of GaN films and found that lateral coherence
length has an important influence on the (0 0 0 2) full-
width at half-maximum (FWHM). In their study, the
increase of (0 0 0 2) FWHM together with the decrease of
lateral coherence lengths is attributed to the increase of
edge-type dislocation density during annealing. Within
this framework, the reduction in the grain sizes on the
surface of sample A after annealing from 1150 to 1200 1C
shows that sample A has poorer crystalline quality. These
results clearly indicate that the annealing temperature for
AlGaN films is rather critical from the viewpoint of
structural quality. In addition, as shown in Fig. 3, the
surface rms roughness of sample A slightly enhanced with
increase in temperature (up to 1150 1C). Moreover, the
rms roughness significantly increased along with the
change from step-flow to grain-like of the surface
morphology after 1150 1C annealing. XPS results show
that the stoichiometry of the surface is changed with
increased annealing temperature. Accordingly, Ga and Al
move deeper into the surface and N goes to the top
surface as the temperature is increased [2]. The increase
in rms roughness and change in morphology of sample A
are probably with this effect on the surface of AlGaN film.
AFM measurements obtained from both short- and long-
time annealing treatments clearly show that the best
annealing temperature for the Al0.43Ga0.57N film with
relatively low content (sample A) is around 900 1C, which
is an agreement with another report [4].

Recently, Liu et al. [24] investigated the effect of
thermal annealing on the morphological and structural
properties of AlN thin films. They found that the annealing
improves the crystalline quality of the AlN films up to
1000 1C. After 1000 1C annealing, the poorer crystalline
quality of the films was attributed to the decomposition
and degradation of AlN films. In their study, the surface
rms roughness of the AlN films has no significant change
up to 1000 1C. However, the rms roughness of the films
increased significantly after annealing at higher tempera-
ture. Therefore, it is concluded that AlN films keep stable
below 1000 1C. The experimental results regarding an-
nealed AlN and AlGaN thin films seem to be occurring in
harmony. Finally, both previous reports and our study
clearly show that the high annealing temperatures (above
1000 1C) are not good for AlGaN films with high Al-
contents due to the thermal damage on the surfaces.

4. Conclusion

Effects of thermal annealing on the morphology of the
Al0.43Ga0.57N and Al0.52Ga0.48N films with two different
Al-contents have been investigated by AFM. The annealing
treatments were performed in N2 gas ambient as short-
and long-time. It is found that the Al-contents in films and
annealing temperatures have significant influences on the
morphological changes. AFM measurements show that
the surface rms roughness of both films with increase in
temperature at short-time annealing up to 900 1C are
reduced but their surface morphologies are not changed.
However, degradation occurred on the surface of the film
with lower Al-content after 950 1C. Moreover, surface
morphology of the same film changed from step-flow to
grain-like and the rms roughness significantly increased
after 1150 1C long-time annealing.
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J Appl Phys 2007;101:123502.
[23] Kuball M, Demangeot F, Frandon J, Renucci MA, Massies J,

Grandjean N, et al. Appl Phys Lett 1998;73:960.
[24] Liu B, Gao J, Wu KM, Liu C. Solid State Commun 2009;149:715.
[25] Kuball M, Demangeot F, Frandon J, Renucci MA, Sands H, Btachelder

DN, et al. Appl Phys Lett 1999;74:549.
[26] Tao CZ, Ke X, Ping GL, Jian YZ, Bo PY, Yong SY, et al. Chin Phys Lett

2006;23:1257.


	Effects of thermal annealing on the morphology of the AlxGa(1minusx)N films
	Introduction
	Experiments
	Results and discussion
	Conclusion
	Acknowledgment
	References




