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a b s t r a c t

We consider 2-surfaces arising from the Korteweg–de Vries (KdV) hierarchy and the KdV
equation. The surfaces corresponding to the KdV equation are in a three-dimensional
Minkowski (M3) space. They contain a family of quadratic Weingarten and Willmore-like
surfaces. We show that some KdV surfaces can be obtained from a variational principle
where the Lagrange function is a polynomial function of the Gaussian andmean curvatures.
We also give a method for constructing the surfaces explicitly, i.e., finding their parame-
terizations or finding their position vectors.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The connection of curves and surfaces in R3 to some nonlinear partial differential equations is very well known in dif-
ferential geometry [1,2]. The motion of curves on two dimensional surfaces in differential geometry lead to some integrable
nonlinear differential equations such as the nonlinear Schrödinger equation [3], and modified KdV and KdV equations [4,5].
In the history of differential geometry there are some special subclasses of 2-surfaces such as surfaces of constant Gaussian
curvature, surfaces of constant mean curvature, minimal surfaces, developable surfaces, Bianchi surfaces, surfaces where
the inverse of the mean curvature is harmonic and the Willmore surfaces. These surfaces arise in many different branches
of sciences; in particular, in various parts of theoretical physics (string theory, general theory of relativity), biology and
differential geometry [1–8].

Examples of some of these surfaces such as Bianchi surfaces, surfaces where the inverse of the mean curvature is har-
monic [9], and theWillmore surfaces [10,11] are very rare. The main reason is the difficulty of solving corresponding differ-
ential equations. For this purpose, some indirect methods [12–28] have been developed for the construction of two surfaces
in R3 and in three-dimensional Minkowskian geometries M3. Among these methods, the soliton surface technique is very
effective. In this method, one mainly uses the deformations of the Lax equations of the integrable equations. This way, it is
possible to construct families of surfaces corresponding to some integrable equations such as the sine Gordon, Korteweg–de
Vries (KdV) equation, modified Korteweg–de Vries (mKdV) equation and Nonlinear Schrödinger (NLS) equation [12–21], be-
longing to the aforementioned subclasses of 2-surfaces in a three-dimensional flat geometry. For details of integrable equa-
tions one may look at [29,30], and the references therein. In particular, using the symmetries of the integrable equations
and their Lax equation, we arrive at classes of 2-surfaces. There are many attempts in this direction and examples of new
2-surfaces.
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There are some surfaces derivable from a variational principle. Examples of these surfaces are the minimal surfaces
[6,31], surfaces with constant mean curvature, Willmore surfaces [10,11] and surfaces solving the shape equation [32–38].
All these surfaces come from a variational principle where the Lagrange function is a polynomial of degree two in the mean
curvature of the surface. There are more general surfaces solving the Euler–Lagrange equations corresponding to more gen-
eral Lagrange functions of the mean and Gaussian curvatures of the surface [32–34].

In [21], we constructedmKdV surfaces in R3 using deformation of parameters of the solution for the mKdV equation. We
have also constructed the Harry Dym (HD) surfaces inM3 using spectral deformation. We found new HD surfaces that solve
the generalized shape equation. Some of these surfaces belong to Willmore-like and Weingarten surfaces.

In this work, by using the deformation of Lax equations of the KdV equation, we generate some new Weingarten and
Willmore-like surfaces. Since the Lax representation of the KdV equation is given in the sl(2, R) algebra, the KdV surfaces
that we obtain in this work are in the Minkowski space M3. We also find some KdV surfaces which solve the generalized
shape equation. By following Fokas and Gelfand [15], in Section 2, we give the deformation technique in order to construct
2-surfaces. In Section 3, we study the variation of a functional where the Lagrange function is a function of the mean and
Gaussian curvatures. Following [32–34], we give the corresponding Euler–Lagrange equations. Solutions of these equations
define a family of surfaces extremizing the functional we started with. In Section 4, we give the surfaces corresponding to
the KdV hierarchy. In Section 5, we construct surfaces corresponding to the well-known KdV equation by using spectral
deformation. These surfaces contain quadratic Weingarten and Willmore-like surfaces. In Section 6, we show that KdV
surfaces contain also a subclass of surfaceswhich extremize families of functionals. For all these surfaces, we find all possible
functionals where the Euler–Lagrange equations are exactly solved.

Using the method of deformation of Lax equations, we can obtain the fundamental forms, Gauss and mean curvatures
of the surfaces. A parameterization of the position vector of these surfaces cannot be obtained directly. The deformation
technique does not produce the surfaces explicitly; we, therefore, give an approach to find a parameterization of the surfaces
explicitly. Our approach rests upon solving the Lax equations for a given solution of the KdV equation. Each solution of these
linear equations directly gives the position vectors of the corresponding surfaces. The solutions of the KdV equation can be
given analytically as we do in this work or numerically. In Section 7, by using our approach we give some surfaces from the
traveling wave solutions of the KdV equation. The surfaces arising from the numerical solutions of the KdV equation will be
presented in the future. In Section 8, we plot some of the KdV surfaces.

2. Deformation of soliton equations

Surfaces corresponding to integrable equations are called integrable surfaces and a connection formula, relating inte-
grable equations to surfaces, was first established by Sym [12,14]. His formula gives a relation between the family of im-
mersions and Lax pairs defined in a Lie algebra. Here, we shall give a brief introduction (following [17]) of the recent status
of the subject and also give some new results.

Let F : U → M3 be an isometric immersion of a domain U ∈ M2 into M3, where M2 and M3 are two- and three-
dimensional pseudo-Riemannian geometries, respectively. Let (x, t) ∈ U. The surface F(x, t) is uniquely defined up to rigid
motions by the first and second fundamental forms. LetN(x, t) be the normal vector field defined at each point of the surface
F(x, t). Then the triple {Fx, Ft ,N} at a point p ∈ S defines a basis of the tangent space at p, Tp(S), where S is the surface param-
eterized by F(x, t). Themotion of the basis on S is characterized by theGauss–Weingarten (GW) equations. The compatibility
condition of these equations are thewell-knownGauss–Mainardi–Codazzi (GMC) equations. TheGMCequations are coupled
nonlinear partial differential equations for the coefficients gij(x, t) and hij(x, t) of the first and the second fundamental forms,
respectively. For certain particular surfaces, these equations reduce to a single or to a systemof integrable equations. The cor-
respondence between the GMC equations and the integrable equations has been studied extensively, see for example [17].

Let us first give the connection between the integrable equations with a surface inM3 following Fokas and Gelfand [15].
Let G be a Lie group and G be the corresponding Lie algebra of dimension 3.

Theorem 2.1 (Fokas–Gelfand [15]). Let U(x, t; λ), V (x, t; λ), A(x, t; λ), B(x, t; λ) take values in an algebra G and let them be
differentiable functions of x, t and λ in some neighborhood of M2 × R. Assume that these functions satisfy

Ut − Vx + [U, V ] = 0, (1)

and

At − Bx + [A, V ] + [U, B] = 0. (2)

Define Φ(x, t; λ) in a group G and suppose that F(x, t; λ) takes values in the algebra G by the equations

Φx = U Φ, Φt = V Φ, (3)

and

Fx = Φ−1 AΦ, Ft = Φ−1 BΦ. (4)
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Then for each λ, F(x, t; λ) defines a 2-dimensional surface in R3,

yj = Fj(x, t; λ), j = 1, 2, 3, F =

3
k=1

Fk ek, (5)

where ek, (k = 1, 2, 3) form a basis of G. The first and the second fundamental forms of S are

(dsI)2 ≡ gij dxi dxj = ⟨A, A⟩ dx2 + 2⟨A, B⟩ dx dt + ⟨B, B⟩ dt2,

(dsII)2 ≡ hij dxi dxj = −⟨Ax + [A,U], C⟩ dx2 − 2⟨At + [A, V ], C⟩ dx dt − ⟨Bt + [B, V ], C⟩ dt2, (6)

where i, j = 1, 2, x1 = x and x2 = t, ⟨A, B⟩ =
1
2 trace(AB), [A, B] = AB − BA, ∥A∥ =

√
|⟨A, A⟩|, and C =

[A,B]
∥[A,B]∥ . A frame on

this surface S, is

Φ−1AΦ, Φ−1BΦ, Φ−1CΦ.

The Gauss and the mean curvatures of S are given by K = det(g−1 h),H =
1
2 trace(g

−1 h).

The function Φ , which is defined by equations in Eq. (3) exists if and only if U and V satisfy Eq. (1) [15]. In other words,
Eq. (1) is the compatibility condition of Eq. (3). The equations in Eq. (4) define a surface F if and only if A and B satisfy
Eq. (2) [15]. Namely, Eq. (2) is the condition to define a surface F in Lie algebraGwhich is obtained from Eq. (4). Furthermore,
to have regular surfaces, Fx and Ft (orA andB)must be linearly independent at each point of the surface S. This is the regularity
condition of the mapping F : S → R3. Hence the commutator [A, B] is nowhere zero on the surface. This ensures that the
three vectors A, B and C form a triad at each point of the surface.

Here and in what follows, subscripts x and t denote the derivatives of the objects with respect to x and t , respectively.
Subscript nx stands for n times x derivative, where n is positive integer. Given U and V , finding A and B from the equation
At − Bx + [A, V ] + [U, B] = 0 is in general a difficult task. However, there are some deformations which provide A and B
directly. Some of these deformations are given by Sym [12–14], Fokas and Gelfand [15], Fokas et al. [16] and Cieśliński [28].
As an example of such deformations, we shall make use of the λ parameter deformations and gauge symmetries of the Lax
equation which are defined as, respectively,

A =
∂U
∂λ

, B =
∂V
∂λ

, F = Φ−1 ∂Φ

∂λ
(7)

and

A = Mx + [M,U], B = Mt + [M, V ], F = Φ−1MΦ, (8)

whereM is any traceless 2 × 2 matrix.
For the KdV equation the group G is SL(2, R) and the algebra G is sl(2, R) with the base 2 × 2 matrices

e1 =


1 0
0 −1


, e2 =


0 1
1 0


, e3 =


0 1
−1 0


. (9)

Define an inner product on sl(2, R) as

⟨X, Y ⟩ =
1
2
trace(XY ), (10)

for X, Y ∈ sl(2, R).
In order to obtain the surfaces using the given technique, we have to find position vector F which is given by F =

Φ−1 (∂Φ/∂λ) [12]. To calculate F explicitly, the Lax equations Eq. (4) need to be solved for a given solution of the KdV
equation.

3. Surfaces from a variational principle

Let H and K be the mean and Gaussian curvatures of a 2-surface S (either inM3 (three-dimensional Minkowski space) or
in R3) then we have the following definition.

Definition 3.1. Let S be a 2-surface with its Gaussian (K ) and mean (H) curvatures. A functional F is defined by

F =


S

E(H, K)dA + p

V
dV (11)

where E is some function of H and K , p is a constant and V is the volume enclosed within the surface S.
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The following proposition gives the first variation of the functional F .

Proposition 3.2. Let E be a twice differentiable function of H and K . Then the Euler–Lagrange equation for F reduces to [32–34]

(∇2
+ 4H2

− 2K)
∂E

∂H
+ 2(∇ · ∇̄ + 2KH)

∂E

∂K
− 4HE + 2p = 0. (12)

Here and in what follows, ∇2
=

1
√
g

∂

∂xi


√
gg ij ∂

∂xj


and ∇ · ∇̄ =

1
√
g

∂

∂xi


√
gKhij ∂

∂xj


, g = det(gij), g ij and hij are inverse

components of the first and second fundamental forms; xi = (x, t) and we assume Einstein’s summation convention on repeated
indices over their ranges.

Example 3.3. The following are some examples:
(i) Minimal surfaces: E = 1, p = 0.
(ii) Constant mean curvature surfaces: E = 1.
(iii) Linear Weingarten surfaces: E = aH + b, where a and b are some constants.
(iv) Willmore surfaces: E = H2 [10,11].
(v) Surfaces solving the shape equation of lipid membrane: E = (H − c)2, where c is a constant [35,34].

Definition 3.4. The surfaces obtained from the solutions of the equation

∇
2H + aH3

+ bH K = 0, (13)

are calledWillmore-like surfaces, where a and b are arbitrary constants.

Remark 3.5. The case a = −b = 2 in Eq. (13) corresponds to the Willmore surfaces.

In this work we assume p = 0. In addition, for surfaces derivable from a variational principal, we require asymptotic
conditions such that H goes to a constant value and K goes to zero asymptotically. This is consistent with the vanishing of
boundary terms in obtaining the Euler–Lagrange equation (Eq. (12)). This requires that the soliton equations such as the KdV,
mKdV and NLS equations must have solutions decaying rapidly to zero at |x| → ±∞. For this purpose, we shall calculate H
and K for all surfaces obtained by the KdV equation and look for possible solutions (surfaces) of the Euler–Lagrange equation
(Eq. (12)).

4. Surfaces from the KdV hierarchy by using spectral deformation

In this section, we investigate some surfaces arising from the KdV equations. KdV surfaces are embedded in a three-
dimensional Minkowski space with signature +1. The following theorem gives the KdV hierarchy [39].

Theorem 4.1 (Blaszak [39]). Let u(x, tm) = u satisfy the evolution equations

utm = Ym(u) = ϕmY0, m = 0, 1, 2, . . . (14)

and set

U =


0 1

λ − u 0


, Vm =


τm κm
ρm −τm


, (15)

then we have

Utm + (Vm)x + [U, Vm] = 0, m ≥ 0 (16)

where U, Vm ∈ sl(2, R), Y0 = ux, ϕ(u) =
1
4D

2
+ u +

1
2uxD−1

τm = −
1
4

m
i=1

λm−iYi−1, (17)

κm = λm
+

1
2

m
i=1

λm−iγi−1, (18)

ρm = λm(λ − u) −
1
4

m
i=1

λm−i(Yi−1)x − 2(λ − u)γi−1

, (19)

Dγj = Yj. (20)

Remark 4.2. U and Vm in Eq. (15) define Lax pairs of the KdV hierarchy Eq. (14).
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We present classes of surfaces corresponding to the KdV hierarchy in the following proposition.

Proposition 4.3. Let u satisfy Eq. (14). The corresponding sl(2, R) valued hierarchy of Lax pairs U and Vm are given by (15). The
corresponding sl(2, R) valued matrices A and Bm are

A =


0 0
µ 0


, Bm =


µτ ′

m µκ ′

m
µρ ′

m −µτ ′
m


, (21)

where A = µ ∂U/∂λ, B = µ ∂Vm/∂λ, µ and λ are arbitrary constants. Then the surfaces Sm, generated by U, Vm, A and Bm, have
the following first and second fundamental forms (m = 0, 1, 2, . . .)

(dsI)2 = µ2κ ′

mdx dt + µ2((τ ′

m)2 + κ ′

mρ ′

m)dt2, (22)

(dsII)2 = −µdx2 − µκmdxdt −
µ

κ ′
m


κ ′

m


(τ ′

m)t + κ ′

mρm − κmρ ′

m + 2τmτ ′

m


− τ ′

m(κ ′

m)t − 2(τm)2κm


dt2, (23)

and the corresponding Gaussian and mean curvatures are

Km =
4

µ2(κ ′
m)3


κ ′

m


(κm)2 + (τ ′

m)t − κmρ ′

m + κ ′

mρm + 2τmτ ′

m


− 2κm(τ ′

m)2 − τ ′

m(κ ′

m)t


, (24)

Hm = −
2

µ(κ ′
m)2


κ ′

m(κm − ρ ′

m) − (τ ′

m)2


(25)

where τm, κm, ρm are respectively (17), (18), (19), primes denote λ partial derivatives and (τ ′
m)t = ∂τ ′

m/∂t, (κ ′
m)t = ∂κ ′

m/∂t.

5. KdV surfaces from spectral deformations

In this section, we find surfaces arising from the spectral deformation of the Lax pair for the well-known KdV equation.
If we letm = 1 in Theorem 4.1, we get the KdV equation and its Lax pair as shown in the following example.

Example 5.1. For m = 1 in Theorem 4.1 we have the Korteweg–de Vries (KdV) equation

ut =
1
4
u3x +

3
2
uux = Y1(u). (26)

sl(2, R) valued Lax pairs U and V (we use V notation instead of V1) are

U =


0 1

λ − u 0


, (27)

V =

 −
1
4
ux

1
2
u + λ

−
1
4
u2x +

1
2

(2 λ + u) (λ − u)
1
4
ux

 . (28)

The following proposition gives a class of surfaces that correspond to the KdV equation (Eq. (26)) arising from spectral
deformations of Lax pairs.

Proposition 5.2. Let u satisfy Eq. (26). The corresponding sl(2, R) valued Lax pairs U and V of the KdV equation are given by
Eqs. (27) and (28). sl(2, R) valued matrices A and B are

A =


0 0
µ 0


, (29)

B =


0 µ

µ

2
(4λ − u) 0


, (30)

where A = µ(∂U/∂λ), B = µ(∂V/∂λ), λ is the spectral parameter, andµ is a constant. Then the surface S, generated by U, V , A
and B, has the following first and second fundamental forms (i, j = 1, 2)

(dsI)2 ≡ gijdxi dxj = µ2dx dt +
µ2

2
(4λ − u)dt2, (31)

(dsII)2 ≡ hijdxidxj = −µ dx2 − µ(2 λ + u)dx dt −
µ

4


u2x + (u + 2 λ)2


dt2, (32)
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and the corresponding Gaussian and mean curvatures are

K = −
u2x

µ2
, H =

2(λ − u)
µ

, (33)

where x1 = x, x2 = t.

By using U, V , A and B, we found the first and second fundamental forms, and the Gaussian and mean curvatures of the
KdV surfaces corresponding to spectral deformation in Proposition 5.2. The following proposition contains the quadratic
Weingarten surfaceswhich are obtained by considering the travellingwave solutions of the KdV equation, i.e., ut +ux/c = 0,
where c is a constant.

Proposition 5.3. Let S be the surface obtained in Proposition 5.2 and u satisfy

u2x = −3u2
−

4
c
u + 4β. (34)

Then S is a quadratic Weingarten surface satisfying the relation

4 c µ2 K + 4µ (2 + 3 c λ)H − 3 c µ2 H2
− 4 (3 c λ2

+ 4 λ − 4β c) = 0, (35)

where c and β are constants. Here we assume that µ ≠ 0.

Proposition 5.4. Let u be the travelling wave solution (u2
x = −2u3

+ 4αu2
+ 8βu + 2γ ) of the KdV equation, then surface S

defined in Proposition 5.2 is a Willmore-like surface, i.e., Gaussian and mean curvatures satisfy Eq. (13), where

a =
7
4
, b = 1, (36)

β =
1
20


28λα − 16α2

− 21λ2 , (37)

γ =
1
5


16α3

− 56λα2
+ 70αλ2

− 28λ3 . (38)

α = −1/c (c ≠ 0), λ and c are arbitrary constants.

Proposition 5.5. By using the travelling wave solution of the KdV equation and Proposition 5.2, one can show that the mean
curvature of the KdV surface S satisfies a more general differential equation

∇
2H = −

1
2µ3


5µ3H3

+ 2µ2(2α − 3λ)H2
+ 4µ(12αλ − 9λ2

− 8α2
− 12β)H

+ 56λ3
− 112λ2α + 64α2λ − 32λβ + 64αβ + 16γ


. (39)

6. KdV surfaces from a variational principle

It is important to search surfaces which solve the generalized shape equation or in other words surfaces arising from a
variational principle [8,32–36,38]. The following proposition gives a class of the KdV surfaces that solve the Euler–Lagrange
equation (Eq. (12)).

Proposition 6.1. Let u be the travelling wave solution of the KdV equation, i.e., u2
x = −2u3

+ 4αu2
+ 8βu+ 2γ . Then there are

KdV surfaces, defined in Proposition 5.2, that satisfy the generalized shape equation (Eq. (12)) when E is a polynomial function of
H and K .

Here are several examples:

Example 6.2. Let deg(E) = N , then

(i) for N = 3: E = a1H3
+ a2H2

+ a3H + a4 + a5K + a6KH ,

a1 = −
11 pµ4

64Ω1
, a2 = −

15
32Ω1

pµ32α − 3 λ

,

a3 = −
pµ2

16Ω1


33 λ2

− 44α λ + 8α2
− 20β


,
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a4 =
pµ

8Ω1


47 λ3

− 94α λ2
+ 4 (10α2

− 17β) λ + 40α β − 2 γ

,

a6 =
7 pµ4

16Ω1

where Ω1 = 12 λ4
− 32α λ3

+ (20α2
− 36β)λ2

+ (40α β − 3 γ )λ + 2α γ + 16β2, µ ≠ 0, p ≠ 0, λ, α, β, γ and a5
are arbitrary constants, but λ, α, β and γ cannot be zero at the same time.

(ii) for N = 4:

E = a1H4
+ a2H3

+ a3H2
+ a4H + a5 + a6K + a7KH + a8K 2

+ a9KH2,

a1 = −
1
64

(34 a9 + 15 a8)

a2 =
1

56µ


(210 λ − 140α) a9 + (195 λ − 130α) a8 − 22µ a7


a3 =

1
56µ2


1512α λ − 308α2

− 1134 λ2
+ 588β


a9 +


546β − 718α2

− 2025 λ2
+ 2700α λ


a8 + 60µ


3 λ − 2α


a7

,

a4 =
1

14µ3


1414 λ3

− 2828 λ2α +

1652α2

− 700β

λ + 392β α − 28 γ

− 280α3

a9 +


2265 λ3

− 4530 λ2α +

2702α2

− 954β

λ

− 42 γ + 524β α − 484α3

a8 − 2


33λ2

− 20β + 8α2
− 44α λ


µ a7


,

a5 =
1

28µ3


19960 λ3α − 7485 λ4

+

2844β − 19012α2 λ2

+

96 γ + 7664α3

− 3536β α

λ + 784β2

− 1008α4
+ 1616α2β

− 64α γ

a8 +


9744 λ3α − 3654 λ4

+

168β − 9688α2 λ2

+

4256α3

− 224β α

λ + 224β2

+ 224α2β − 672α4

a9

+ 8µ a7

47 λ3

− 94 λ2α +

−68β + 40α2 λ − 2 γ + 40β α


,

a7 =
1

16µ Ω2


−672


4α λ − α2

+ β − 3 λ2


7 λ3/6 − 7 λ2α/3

+

α2

− 5β/3

λ + β α − γ /24


a9 +


4680 λ5

− 15600 λ4α

+

17576α2

− 9672β

λ3

−

7664α3

+ 414 γ − 18240β α

λ2

+

552α γ + 1008α4

+ 3216β2
− 9280α2β


λ − 170α2γ

+ 42 γ β − 2032α β2
+ 1008β α3


a8 + 7 pµ5


where Ω2 = 4 λ3 (3 λ − 8α) + 4


5α2

− 9β

λ2

+ (−3 γ + 40β α) λ + 2α γ + 16β2, and µ ≠ 0, p ≠ 0, λ, α,
β, γ , a6, a8 and a9 are arbitrary constants, but λ, α, β and γ cannot be zero at the same time.

(iii) for N = 5:

E = a1 H5
+ a2 H4

+ a3 H3
+ a4 H2

+ a5 H + a6 + a7 K + a8 K H
+ a9 K 2

+ a10 K H2
+ a11 K 2 H + a12 K H3,

a1, a2, a3, a4, a5, a6, a8 can be written in terms of a9, a10, a11, a12, α, β, γ , µ, p and λ.

For general N ≥ 3, from the above examples, the polynomial function E takes the form

E =

N
n=0

Hn


(N−n)

2


l=0

anlK l,

where ⌊x⌋ denotes the greatest integer less than or equal to x and anl are constants.
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7. The parameterized form of the KdV surfaces

In the previous section, possible surfaces satisfying certain equations are found without giving the F functions explicitly.
In this section, we find the position vector

y = (y1(x, t), y2(x, t), y3(x, t)) (40)

of the KdV surfaces for a given solution of the KdV equation and the corresponding Lax pairs. Our method of constructing
the position vector y of integrable surfaces consists of the following steps:

(i) Find a solution u = u(x, t) of the KdV equation with a given symmetry:
Here, we use travelling wave solutions ut = −ux/c . Using this assumption, we get

u2
x = −2u3

−
4
c
u2

+ 8βu + 2γ , (41)

where c ≠ 0, β and γ are arbitrary constants.
(ii) Find a solution of the Lax equations (Eq. (3)) for given U and V :
In our case, corresponding sl(2, R) valued Lax pairs of the KdV equation U and V are given by Eqs. (27) and (28). Consider

the 2 × 2 matrix Φ

Φ =


Φ11 Φ12
Φ21 Φ22


. (42)

By using Φ and U , we can write Φx = UΦ in matrix form as
(Φ11)x (Φ12)x
(Φ21)x (Φ22)x


=


Φ21 Φ22

(λ − u)Φ11 (λ − u)Φ12


. (43)

Using (Φ11)x = Φ21 and (Φ21)x = (λ − u)Φ11, we have

(Φ11)xx − (λ − u)Φ11 = 0. (44)

Similarly we have an equation for Φ12 as

(Φ12)xx − (λ − u)Φ12 = 0. (45)

By solving Eqs. (44) and (45), we determine the explicit x dependence of Φ11, Φ12 and also Φ21, Φ22. By using Φt = VΦ ,
we get

(Φ11)t = −
1
4
uxΦ11 +


1
2
u + λ


Φ21, (46)

(Φ21)t =


−

1
4
u2x +

1
2

(2 λ + u) (λ − u)


Φ11 +
1
4
uxΦ21, (47)

and

(Φ12)t = −
1
4
uxΦ12 +


1
2
u + λ


Φ22, (48)

(Φ22)t =


−

1
4
u2x +

1
2

(2 λ + u) (λ − u)


Φ12 +
1
4
uxΦ22. (49)

Hence solving these equations, we determine the explicit t dependence ofΦ11, Φ21, Φ12 andΦ22. Thus we find a solution
Φ of the Lax equations.

(iii) Find F : If Φ depends on λ explicitly, F can be found directly from

F = Φ−1 ∂Φ

∂λ
= y1e1 + y2e2 + y3e3. (50)

If Φ can be obtained for a fixed value of λ, then we can use Eq. (4) to find F . For our case, A and B are given by Eqs. (29) and
(30), respectively. Integrating equations (Eq. (4)) we obtain F . We get the components of the vector y by writing F as a linear
combination of e1, e2 and e3, and collecting the coefficients of ei.

Remark 7.1. The approach given above is easily applicable for simple solutions such as the travelling wave solutions of
the KdV equation. For other solutions such as the two soliton solutions of the KdV equation it is very hard to find the
parameterization of S analytically. It is however possible to solve the Lax equation numerically and plot the corresponding
surfaces.
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Remark 7.2. All KdV surfaces have the first and second fundamental forms given in Eqs. (31) and (32), respectively. Their
Gaussian and mean curvatures are given in Eq. (33). Local and global properties of these surfaces depend on the function
u(x, t), a solution of the KdV equation. We assume that the function u(x, t) is differentiable with respect to x three times
andwith respect to t once. This implies that the corresponding surfaces are locally smooth enough. For the global properties
of these surfaces, we need asymptotic conditions of u(x, t). For instance if u(x, t) is an asymptotically decaying solution
of the KdV equation, such as the one soliton solution, then the corresponding surfaces are asymptotically flat surfaces,
i.e., Gaussian curvature goes to zero and mean curvature goes to a constant asymptotically. Furthermore, depending on
the function u(x, t), some KdV surfaces are shown to be Weingarten, some of them are Willmore-like and some of them
extremize the most general functional where the Lagrange function is a polynomial of the Gaussian and mean curvatures.

Example 7.3. Let u = u0 =
2
3 (α±


α2 + 3β) be a constant solution of the integrated form u2

x +2u3
−4αu2

−8βu−2γ = 0
of the KdV equation (Eq. (26)), where α = −1/c, c ≠ 0. Denoting λ − u0 = m2 and (2λ + u0)/2 = n, we solve the Lax
equations Φx = UΦ and Φt = VΦ for the given Lax pairs U and V by Eqs. (27) and (28), respectively. The components of Φ
are

Φ11 = C1 em(nt+x)
+ D1 e−m(nt+x), (51)

Φ12 = C2 em(nt+x)
+ D2 e−m(nt+x), (52)

Φ21 = m(C1 em(nt+x)
− D1 e−m(nt+x)), (53)

Φ22 = m(C2 em(nt+x)
− D2 e−m(nt+x)) (54)

where C1, gC2,D1 and D2 are arbitrary constants.
Here we find that det(Φ) = 2m(C2D1 − C1D2) ≠ 0.
By using A, B, and Φ , we solve Eq. (4) and write F as

F = Φ−1 ∂Φ

∂λ
= y1e1 + y2e2 + y3e3, (55)

where e1, e2, e3 are basis elements of sl(2, R) and

y1 = −


D1C2 + C1D2

D1C2 − C1D2


(4λ − u0)t + x

2
√

λ − u0
, (56)

y2 =


D1C1 − D2C2

D1C2 − D2C1


(4λ − u0)t + x

2
√

λ − u0
, (57)

y3 = −


D1C1 + D2C2

D1C2 − D2C1


(4λ − u0)t + x

2
√

λ − u0
. (58)

Thuswe find the position vector y = (y1(x, t), y2(x, t), y3(x, t)), where y1, y2 and y3 are given by Eqs. (56)–(58), respectively.
This solution corresponds to a plane inM3.

Example 7.4. Let u = 2 k2 c2sech2k(t − cx) be a one soliton solution of the KdV equation, where k2 = −1/c3. By denoting
k(t − cx) = ξ , we find the solutions of Eqs. (44) and (45) as

Φ11 = A1(t)sech ξ + B1(t)[sinh ξ + ξsech ξ ], (59)
Φ12 = A2(t)sech ξ + B2(t)[sinh ξ + ξsech ξ ], (60)

and

Φ21 = (Φ11)x = kc A1(t) sech ξ tanh ξ + kc B1(t) [ξ sech ξ tanh ξ − cosh ξ − sech ξ ], (61)
Φ22 = (Φ12)x = kc A2(t) sech ξ tanh ξ + kc B2(t) [ξ sech ξ tanh ξ − cosh ξ − sech ξ ], (62)

for λ = k2c2. Using these functions and considering Eqs. (46)–(49) with ux = 4k3c3 sech2ξ tanh ξ, u2x = 4k3c3
2sech2ξ tanh2 ξ − sech4ξ


, we get

B1(t) = B1 and A1(t) = 2B1kt + C1, (63)
B2(t) = B2 and A2(t) = 2B2kt + C2, (64)

where B1, B2, C1 and C2 are arbitrary constants. Thus the components of Φ are

Φ11 = B1 (2kt sech ξ + sinh ξ + ξsech ξ) + C1sech ξ, (65)
Φ12 = B2 (2kt sech ξ + sinh ξ + ξsech ξ) + C2sech ξ, (66)
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Φ21 = kc

B1


2kt sech ξ tanh ξ − cosh ξ − sech ξ + ξsech ξ tanh ξ


+ C1sech ξ tanh ξ


, (67)

Φ22 = kc

B2


2kt sech ξ tanh ξ − cosh ξ − sech ξ + ξsech ξ tanh ξ


+ C2sech ξ tanh ξ


. (68)

Here we find that det(Φ) = 2 k c(C2B1 − C1B2) ≠ 0.
By inserting Φ, A, and B into Eq. (4), and solving the resultant equation, we find the immersion function F explicitly as

F = y1e1 + y2e2 + y3e3, (69)

where

y1 =
2E1
ζ1


R1ζ2 + R2ζ1 + ζ3


E2 + R3ζ2E3 + E4


, (70)

y2 =
E1
ζ1


R4ζ2 + R2ζ1 + ζ4


E5 +


R5ζ2 + R6


E6 + E7


, (71)

y3 =
E1
ζ1


R4ζ2 + R2ζ1 + ζ4


E8 +


R5ζ2 + R6


E9 + E10


, (72)

and e1, e2, e3 are basis elements of sl(2, R). Here ζi, i = 1, 2, 3, 4, Rj, j = 1, 2, . . . , 6, and El, l = 1, 2, . . . , 10 are given as

ζ1 = 1 + e−2ξ , ζ2 = e−2ξ
− 1, ζ3 = c3(e−4ξ

− 1 − 2 sinh(2ξ)), (73)

ζ4 = ζ3 + 288t2, R1 = −8(cx + 3t)2, R2 = 4kc3(9t − cx), (74)

R3 = 8kc3(3t − cx), R4 = −8(c2x2 − 6tcx − 9t2), (75)

R5 = −16kc3(cx + 3t), R6 = −192kc3t, (76)

E1 = µ/32c2 (B1C2 − B2C1) , E2 = B1B2, E3 = C1B2 + C2B1, (77)

E4 = −16c3C1C2, E5 = B2
2 − B2

1, E6 = B2C2 − B1C1, (78)

E7 = 16c3

C2
1 − C2

2


, E8 = B2

1 + B2
2, E9 = B1C1 + B2C2, (79)

E10 = −16c3(C2
1 + C2

2 ), (80)

where ζi, i = 1, 2, 3, 4 and Rj, j = 1, 2, . . . , 6 are functions of x and t , and El, l = 1, 2, . . . , 10 are constants given in terms
of arbitrary constants B1, B2, C1, and C2.

The position vector y = (y1(x, t), y2(x, t), y3(x, t)) of the KdV surface in M3 corresponding to a one soliton solution of
the KdV equation is given by Eqs. (70)–(72). Here y3 is the time like and y1 and y2 are space like coordinates inM3.

8. Graphs of some of the KdV surfaces

In this section, we will plot some of the surfaces given in Example 7.4 for special values of the constants.

Example 8.1. Taking µ = 1, k = 11.18, c = −0.2, B1 = 2, B2 = 1, C1 = 1, C2 = 1 in Eqs. (70)–(72), we get the surface
given in Fig. 1.

The components of the position vector are

y1 =
1

1 + e−2ξ


−x2 + (−0.89 − 30 t) x − 225 t2 − 20.12 t


e−2ξ

+ 0.05 sinh (2ξ) − 0.02 e−4ξ
+ x2 + (0.45 + 30 t) x + 225 t2 + 0.22


, (81)

y2 =
1

1 + e−2ξ


−168.75 t2 + (22.5 x + 4.19) t + 0.75 x2 + 0.39 x


e−2ξ

− 0.04 sinh (2ξ) + 0.02 e−4ξ
− 506.25 t2 + (−2.51 − 22.5 x) t − 0.75 x2 − 0.056 x − 0.019


,

y3 =
1

1 + e−2ξ


281.25 t2 + (−37.5 x − 2.51) t − 1.25 x2 − 0.95 x


e−2ξ

+ 0.06 sinh (ξ) − 0.03 e−4ξ
+ 843.75 t2 + (17.61 + 37.5 x) t + 1.25 x2 + 0.39 x + 0.23


, (82)

where ξ = 11.18t + 2.25x.
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Fig. 1. (x, t) ∈ [−0.1, 0.1] × [−0.1, 0.1].

Example 8.2. Taking µ = 1, k = 0.19, c = −3, B1 = 1, B2 = 0, C1 = 0, C2 = 1 in Eqs. (70)–(72), we get the surface given
in Fig. 2. The components of the position vector are

y1 =
1 + e−2ξ


−0.85 (x + t)


e−2ξ

− 1


, (83)

y2 =
1

288

1 + e−2ξ

 72 x2 + 144 tx − 72 t2
 

e−2ξ
− 1


+ 405

+ 20.52 (9 t + 3 x)

1 + e−2ξ 

+ 27 e−4ξ
− 54 sinh (2ξ) − 288 t2


, (84)

y3 =
1

288

1 + e−2ξ

−72 x2 − 144 tx + 72 t2
 

e−2ξ
− 1


+ 459

− 20.52 (9 t + 3 x)

1 + e−2ξ 

− 27 e−4ξ
+ 54 sinh (2ξ) + 288 t2


, (85)

where ξ = 0.19t + 0.57x.

9. Conclusion

In this work, we considered families of surfaces such as the Willmore-like surfaces, the Weingarten surfaces and the
surfaces derivable from a variational principle by using the KdV equation.Willmore-like surfaces, except for some particular
values of the parameters, do not arise from a variational problem. To construct these families of surfaces, we use themethod
of deformation of the Lax equations corresponding to nonlinear partial differential equations, specifically the KdV equation.
Any surface obtained through this method is called the integrable surface. This method allows us to find the first and second
fundamental forms, the Gaussian and mean curvatures of these surfaces. By solving the corresponding Lax equations of
integrable equations, it is possible to find explicit locations, i.e., position vectors of these surfaces. As an application we used
the KdV equation and its Lax equation. Corresponding to these equations, we have found several families of Willmore-like
surfaces and a hierarchy of surfaces arising from a variational problem, where the Lagrange function is a polynomial of
the Gaussian and mean curvatures of these surfaces. We have plotted some of the KdV surfaces for special values of the
parameters.
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Fig. 2. (x, t) ∈ [−2, 2] × [−2, 2].
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