
Parallel Computing 36 (2010) 254–272
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
A Matrix Partitioning Interface to PaToH in MATLAB

Bora Uçar a,*,1, Ümit V. Çatalyürek b,2, Cevdet Aykanat c,3

a Centre National de la Recherche Scientifique, Laboratoire de l’Informatique du Parallélisme, (UMR CNRS-ENS Lyon-INRIA-UCBL), Université de Lyon,
46, allée d’Italie, ENS Lyon, F-69364, Lyon Cedex 7, France
b Department of Biomedical Informatics and Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
c Department of Computer Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 December 2008
Received in revised form 13 July 2009
Accepted 9 December 2009
Available online 6 January 2010

Keywords:
Matrix partitioning
Hypergraph partitioning
Sparse matrix–vector multiplication
0167-8191/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.parco.2009.12.008

* Corresponding author. Tel.: +33 (4) 72728932;
E-mail addresses: bora.ucar@ens-lyon.fr (B. Uçar

1 The work of this author is partially supported by
2 The work of this author was supported in part by

Grant DE-FC02-06ER2775.
3 The work of this author was supported in part b
We present the PaToH MATLAB Matrix Partitioning Interface. The interface provides support
for hypergraph-based sparse matrix partitioning methods which are used for efficient parall-
elization of sparse matrix–vector multiplication operations. The interface also offers tools for
visualizing and measuring the quality of a given matrix partition. We propose a novel, mul-
tilevel, 2D coarsening-based 2D matrix partitioning method and implement it using the
interface. We have performed extensive comparison of the proposed method against our
implementation of orthogonal recursive bisection and fine-grain methods on a large set of
publicly available test matrices. The conclusion of the experiments is that the new method
can compete with the fine-grain method while also suggesting new research directions.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

During the last decade, several successful hypergraph-based models and methods were proposed for sparse matrix par-
titioning [1–10]. These models and methods have gained wide acceptance in the literature for efficient parallelization of
sparse matrix–vector multiply operations. There are three basic hypergraph models, namely, the column-net model [2],
the row-net model [2], and the column–row-net (fine-grain) model [3,5]. The column-net and row-net models are respec-
tively used for one-dimensional (1D) rowwise and 1D columnwise partitioning. The column–row-net model is used for 2D
nonzero-based fine-grain partitioning. In all these models, the partitioning objective of minimizing the cutsize, which is de-
fined over the hyperedges, exactly corresponds to minimizing the total communication volume. The partitioning constraint
of maintaining a balance on part weights, which are defined over the vertex weights, corresponds to maintaining a
computational load balance. Apart from the methods that partition the basic models, there are other methods such as the
orthogonal recursive bisection [6], the jagged-like and the checkerboard partitioning methods [4,5] which utilize both the
column-net and the row-net models for 2D partitioning.

MATLAB provides an ideal platform for quick prototyping of new numerical algorithms and for visualization of matrix-
based data. Although a mesh partitioning toolbox was available [11], a comprehensive hypergraph-based matrix partitioning
toolbox was missing. In this work, we provide the PaToH Matrix Partitioning Interface that utilizes PaToH [12] via the MATLAB
mex function utility. Our toolbox not only provides an interface for various 1D and 2D matrix partitioning methods, but also
offers partitioning visualization tools and supplementary codes to measure the quality of a given partition.
. All rights reserved.

fax: +33 (4) 72728080.
), catalyurek.1@osu.edu (Ü.V. Çatalyürek), aykanat@cs.bilkent.edu.tr (C. Aykanat).
‘‘Agence Nationale de la Recherche” through SOLSTICE project ANR-06-CIS6-010.

the National Science Foundation under Grants CNS-0643969, CCF-0342615, CNS-0403342 and DoE SciDAC

y The Scientific and Technological Research Council of Turkey (TUBITAK) under project EEEAG-109E019.

http://dx.doi.org/10.1016/j.parco.2009.12.008
mailto:bora.ucar@ens-lyon.fr
mailto:catalyurek.1@osu.edu
mailto:aykanat@cs.bilkent.edu.tr
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 255
Among the various hypergraph-based partitioning methods [1–6], the fine-grain partitioning method [3,5] provides the
most flexible partitioning technique by allowing assignment of individual nonzero elements to the processors. This degree of
freedom comes with a high execution time during partitioning. In this paper, we propose yet another novel 2D matrix par-
titioning method that utilizes the fine-grain method more intelligently in the multilevel partitioning framework. The pro-
posed approach uses a 2D coarsening method, in other words 1D coarsening of rows and columns, during the coarsening
phase of the multilevel partitioning framework, whereas it uses a weighted fine-grain model for the initial partitioning
and uncoarsening phases. The new coarsening method generates coarser approximations of the original matrix where, when
projected back to the original matrix, the cutsize of a partitioning at the coarser matrix gives an upper bound on the cutsize.
While going up through the matrix hierarchy towards the original matrix, this upper bound gets tighter, and can be refined
by the flexible fine-grain model. We expect this approach to be faster than direct application of fine-grain model and to pro-
duce comparable results.

The rest of the paper is organized as follows: Section 2 presents the background material on existing hypergraph models
and methods for 1D and 2D matrix partitioning schemes. Our PaToH MATLAB Matrix Partitioning Interface is presented in
Section 3 together with a sample method, Orthogonal Recursive Bisection, that utilizes this interface to provide a different
matrix partitioning method. Section 4 contains the detailed description of the proposed multilevel, 2D coarsening-based 2D
matrix partitioning method. A comprehensive evaluation of the interface and the new method is presented in Section 5. Fi-
nally, we conclude in Section 6.

2. Background

Here, we present some background material on parallel sparse matrix–vector multiply algorithms and the hypergraph
partitioning problem. We also give an overview of the hypergraph models and methods used for efficient parallelization
of sparse matrix–vector multiply algorithms.

2.1. Parallel matrix–vector multiply algorithms

Fig. 1 displays our taxonomy for the sparse matrix partitioning models and methods. As seen in the figure, partitioning
models and methods can be classified as one-dimensional (1D) and two-dimensional (2D). The row-parallel and column-par-
allel matrix–vector multiply algorithms can be applied to the partitions resulting from the 1D rowwise and 1D columnwise
schemes. The row–column-parallel matrix–vector multiply algorithm can be applied to the partitions resulting from the 2D
schemes. We will first briefly describe the most general nonzero-based row–column-parallel algorithm and then identify the
row-parallel and column-parallel algorithms as special cases of the row–column-parallel algorithm.

Consider the matrix–vector multiply of the form y Ax, where the nonzeros of the sparse matrix A as well as the entries
of the input and output vectors x and y are partitioned arbitrarily among the processors. Let mapð�Þ denote the nonzero-to-
processor and vector-entry-to-processor assignments induced by this partitioning. The row–column-parallel algorithm exe-
cutes the following steps at each processor Pk:

(1) Send the local input-vector entries xj, for all j with mapðxjÞ ¼ Pk, to those processors that have at least one nonzero in
column j.

(2) Compute the scalar products aijxj for the local nonzeros, i.e., the nonzeros for which mapðaijÞ ¼ Pk and accumulate the
results yk

i for the same row index i.
Fig. 1. A taxonomy for sparse matrix partitioning models and methods. There are three basic hypergraph models. Different partitioning methods use these
models.

256 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
(3) Send local nonzero partial results yk
i to the processor mapðyiÞ – Pk, for all nonzero yk

i .
(4) Add the partial y‘i results received to compute the final results yi ¼

P
y‘i for each i with mapðyiÞ ¼ Pk.

As seen in the algorithm, it is necessary to have partitions on the matrix A and the input- and output-vectors x and y of the
matrix–vector multiply operation. Finding a partition on the vectors x and y is referred to as the vector partitioning opera-
tion, and it can be performed in three different ways: by decoding the partition given on A [2]; in a post-processing step using
the partition on the matrix [7,8,13]; or explicitly partitioning the vectors during partitioning the matrix [9]. In any of these
cases, the vector partitioning for matrix–vector operations is called symmetric if x and y have the same partition, and non-
symmetric otherwise. We say a vector partitioning is consistent, if each vector entry is assigned to a processor that has at least
one nonzero in the respective row or column of the matrix. The consistency is easy to achieve for the nonsymmetric vector
partitioning; xj can be assigned to any of the processors that has a nonzero in the column j, and yi can be assigned to any of
the processors that has a nonzero in the row i. If a symmetric vector partitioning is sought, then special care must be taken to
assign a pair of matching input- and output-vector entries, e.g., xi and yi, to a processor having nonzeros in the corresponding
row and column. In order to have such a processor for all vector entry pairs, the sparsity pattern of the matrix A can be mod-
ified to have a zero-free diagonal. In such cases, a consistent vector partition is guaranteed to exist, because the processors
that own the diagonal entries can also own the corresponding input- and output-vector entries; xi and yi can be assigned to
the processor that holds the diagonal entry aii.

There are two communication phases in the parallel algorithm given above. The first one is at step 1 just before the local
matrix–vector multiply, and it is due to the communication of the x-vector entries. We refer to this multi-cast like operation
as expand. The second communication phase is at step 3 just after the local matrix–vector multiply, and it is due to the com-
munication of the partial results on the y-vector entries. We refer to this operation as fold. As it can be seen from these two
steps, row and column coherences are important factors in a matrix partition for efficient parallel computations. Column
coherence relates to the fact that nonzeros on the same column require the same x-vector entry. Row coherence relates
to the fact that nonzeros on the same row generate partial results for the same y-vector entry. Disturbing the column coher-
ences incurs expand communication, and disturbing the row coherences incurs fold communication.

The one-dimensional rowwise partitioning incurs only expand communication, because it respects row coherence by
assigning entire rows to processors while disturbing column coherence. Therefore, steps 3 and 4 will not exist in the
row-parallel algorithm. In a dual manner, 1D columnwise partitioning incurs only fold communication, because it respects
column coherence by assigning entire columns to processors while disturbing row coherence. Therefore, step 1 will not exist
in the column-parallel algorithm. The communication requirements of the row-parallel and the column-parallel algorithms
are discussed in [8,14], and the communication requirement of the row–column-parallel algorithm is discussed in [5]. The
implementation details of all these algorithms can be found in [15].

2.2. Hypergraphs and hypergraph partitioning

A hypergraph H ¼ ðV;NÞ consists of a set of vertices V and a set of nets (hyperedges) N. Every net nj 2N is a subset of
vertices in V; these vertices are called the pins of nj. The size of a net is equal to the number of its pins. The size of a hyper-
graph is defined as the total number of its pins, i.e., jHj ¼

P
nj2Njnjj. Weights can be associated with vertices and costs can be

associated with nets. We use wðv iÞ and cðnjÞ to denote, respectively, the weight of vertex v i and the cost of net cðnjÞ.
Given a hypergraph H ¼ ðV;NÞ;P ¼ fV1; . . . ;VKg is called a K-way partition of the vertex set V if each part is non-

empty, parts are pairwise disjoint, and the union of parts gives V. The partitioning constraint is to maintain a balance cri-
terion on part weights, i.e.,
Wk 6Wavgð1þ eÞ; for k ¼ 1;2; . . . ;K: ð1Þ
In (1), Wk denotes the weight of part Vk, i.e., Wk ¼
P

v i2Vk
wðv iÞ;Wavg denotes the average part weight, i.e.,

Wavg ¼
P

v i2Vwðv iÞ=K , and e represents the predetermined, maximum allowable imbalance ratio.
In a partition P of H, a net that has at least one vertex in a part is said to connect that part. The connectivity set Kj of a net

nj is defined as the set of parts connected by nj. The connectivity kj ¼ jKjj of a net nj denotes the number of parts connected by
nj. A net nj is said to be cut (external) if it connects more than one part (i.e., kj > 1), and uncut (internal) otherwise (i.e., kj ¼ 1).
The partitioning objective is to minimize the cutsize defined over the cut nets. There are various cutsize definitions. The rel-
evant cutsize definition for our purposes in this paper is as follows:
cutsizeðPÞ ¼
X
nj2N

cðnjÞðkj � 1Þ: ð2Þ
In (2), each cut net nj adds the cost cðnjÞðkj � 1Þ to the cutsize, whereas internal nets do not incur any cost. The hypergraph
partitioning problem is known to be NP-hard [16].

A recent variant of the above problem is the multi-constraint hypergraph partitioning [4,17–20] in which each vertex has
a vector of weights associated with it. The partitioning objective is the same as above, and the partitioning constraint is to
satisfy a balance criterion associated with each weight.

The multilevel paradigm [21] has been successfully applied to hypergraph partitioning [2,17,19,22]. A multilevel hyper-
graph partitioning method consists of three phases: coarsening, initial partitioning and uncoarsening. In the coarsening

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 257
phase, the original hypergraph is coarsened into a smaller hypergraph through a series of coarsening levels. At each coars-
ening level, highly coherent vertices are grouped into super-vertices of the next level, thus decreasing the sizes of the nets. In
the initial partitioning phase, the coarsest hypergraph is partitioned using various heuristics. In the uncoarsening phase, the
generated coarse hypergraphs are uncoarsened back to the original, flat hypergraph. At each uncoarsening level, the partition
projected from the previous coarser level is improved using a refinement heuristic such as FM [23] or KL [24].

2.3. Hypergraph models for sparse matrix partitioning

Here, we describe the hypergraph-based matrix partitioning models and methods according to the taxonomy given in
Fig. 1. We describe the existing ORB method in Section 3.2, because this method is used to show how our newly developed
PaToH MATLAB Matrix Partitioning Interface can be used to prototype new methods. In our discussion, we will consider the
partitioning of an M � N matrix A with Z nonzeros. We note that only the sparsity pattern of matrix A is important in our
discussion, i.e., the matrix A is always a f0;1gmatrix in the rest of the paper. We use the term ‘‘total communication volume”
of a partition to refer to the total communication volume of the matrix–vector multiply operation resulting from the given
partitions on a matrix and the input- and output-vectors.

2.3.1. One-dimensional partitioning
In the column-net hypergraph model [1,2] used for 1D rowwise partitioning, matrix A is represented as a unit-cost hyper-

graph HR ¼ ðVR;NCÞ with jVRj ¼ M vertices, jNCj ¼ N nets, and jHRj ¼ Z pins. In HR, there exists one vertex v i 2VR for
each row i of matrix A. Weight wðv iÞ of a vertex v i is equal to the number of nonzeros in row i. The name of the model comes
from the fact that columns are represented as nets. That is, there exists one unit-cost net nj 2NC for each column j of matrix
A. Net nj connects the vertices corresponding to the rows that have a nonzero in column j. That is, v i 2 nj if and only if aij – 0.

In the row-net hypergraph model [1,2] used for 1D columnwise partitioning, matrix A is represented as a unit-cost hyper-
graph HC ¼ ðVC;NRÞ with jVCj ¼ N vertices, jNRj ¼ M nets, and jHCj ¼ Z pins. In HC, there exists one vertex v j 2VC for
each column j of matrix A. Weight wðv jÞ of a vertex v j 2VR is equal to the number of nonzeros in column j. The name of the
model comes from the fact that rows are represented as nets. That is, there exists one unit-cost net ni 2NR for each row i of
matrix A. Net ni #VC connects the vertices corresponding to the columns that have a nonzero in row i. That is, v j 2 ni if and
only if aij – 0.

The use of the row-net and column-net hypergraph models in 1D sparse matrix partitioning is described in [1,2]. It is
shown in [1,2] that the partitioning objective (2) corresponds exactly to the total communication volume (with a consistent
vector partitioning), and the partitioning constraint (1) corresponds to maintaining a computational load balance.

2.3.2. Two-dimensional partitioning: Fine-grain (column–row-net) model
In the column–row-net hypergraph model [3] used for 2D nonzero-based fine-grain partitioning, matrix A is represented as

a unit-weight and unit-cost hypergraph HZ ¼ ðVZ;NRCÞ with jVZj ¼ Z vertices, jNRCj ¼ M þ N nets and jHZj ¼ 2Z pins.
In VZ, there exists one unit-weight vertex v ij for each nonzero aij of matrix A. The name of the model comes from the fact
that both rows and columns are represented as nets. That is, in NRC, there exist one unit-cost row-net ri for each row i of
matrix A and one unit-cost column-net cj for each column j of matrix A. The row-net ri connects the vertices corresponding to
the nonzeros in row i of matrix A, and the column-net cj connects the vertices corresponding to the nonzeros in column j of
matrix A. That is, v ij 2 ri and v ij 2 cj if and only if aij – 0. Note that each vertex v ij is in exactly two nets.

The use of the column–row-net model in 2D fine-grain sparse matrix partitioning is described in [3,5]. In this model, the
column nets model the expand-communication phase, whereas the row nets model the fold-communication phase. There-
fore, the column–row-net model, as the row-net and column-net models for 1D partitioning, encodes the total communica-
tion volume exactly [5], again with a consistent vector partitioning. The partitioning constraint defined over the unit-weight
vertices corresponds to maintaining a computational load balance.

2.3.3. Two-dimensional partitioning: Jagged-like method
The jagged-like (JL) partitioning method [18] achieves 2D partitioning through two consecutive 1D partitioning steps. One

of the steps models the expand phase using the column-net model, and the other step models the fold phase using the row-
net model. Among the two alternative schemes, we discuss the one which models the expand phase in the first step and the
fold phase in the second step. A similar discussion holds for the other alternative.

The JL method assumes that the K processors of the parallel system are organized as a P � Q virtual mesh, where
K ¼ P � Q . In the first step, matrix A is partitioned rowwise into P parts using the column-net hypergraph model. This P-
way rowwise partitioning step corresponds to partitioning the rows of matrix A among the P rows of the processor mesh.
Therefore, this partition is decoded as inducing P submatrices each assigned to a distinct row of the processor mesh. Note
that those P matrices have roughly equal number of nonzeros. In the second step, each of the P submatrices is independently
partitioned columnwise into Q parts using the row-net hypergraph HC. The Q-way columnwise partitioning of a submatrix
corresponds to partitioning the nonzeros of every row of that submatrix among the Q processors of the respective row of the
processor mesh. In this way, the nonzeros in a row of matrix A are partitioned among the Q processors in a row of the pro-
cessor mesh.

258 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
The JL method is described in [5,18] for 2D orthogonal partitioning of sparse matrices. The column-net model used for P-
way rowwise partitioning in the first step exactly encodes the total communication volume to be incurred during the expand
phase. The row-net models used for P independent Q-way columnwise partitionings in the second step exactly encode the
total communication volume to be incurred during the fold phase. The balancing constraint adopted in the partitioning of the
first step together with the balancing constraint adopted in each of the P partitionings of the second step ensures a compu-
tational load balance as described in [5].

We note that the MRD method [25] also obtains a jagged partition. We discuss again the method which performs a P-way
partitioning in the first step and P many Q-way partitionings in the second step. For a P � Q mesh of processors, MRD pro-
ceeds by partitioning the matrix first into P row stripes and then by partitioning each stripe vertically into Q column stripes
independently. In the resulting partition, the splits span the entire matrix in one dimension, while they are jagged in the
other one. There are two main differences between the MRD and the JL methods. First, MRD’s aim is to achieve balance
on processor loads, and it does not explicitly address the minimization of the communication cost metrics (an implicit upper
bound exist because of the resulting structured partitioning); whereas in JL method we use hypergraph models to explicitly
minimize the total communication volume, while also aiming load balance. Second, in the MRD method, the initial orders of
the rows and the columns are kept intact, and each of the Q independent partitioning steps are performed with the same
ordering; whereas in the JL method these orders are not respected, and each of the Q independent partitioning steps may
result in a different ordering of the columns, when the columns are mapped to the columns of the processor mesh. For these
two differences, the method we proposed [5,18] is called the jagged-like method. We also note that due to this reason, the
splits defining the partition of the JL method cannot be overlaid with the matrix in its entirety.

2.3.4. Two-dimensional partitioning: Checkerboard method
As the JL method, the checkerboard partitioning (CH) method [4] is also a two-step method, in which each step models

either the expand phase or the fold phase. Similar to JL, it assumes that the processors are organized as a P � Q mesh, and
therefore can be performed in two alternatives schemes. We discuss the one which models the expand phase in the first step
and the fold phase in the second step.

The first step of the CH method is exactly the same as that of the JL method. That is, the matrix A is partitioned rowwise
into P parts using the column-net hypergraph model. In the second step, the matrix A is partitioned columnwise into Q parts
using the row-net model with a multi-constraint partitioning formulation. Unlike the JL method, the whole matrix A is par-
titioned in the second step. The multi-constraint formulation adopted in the second step is needed to achieve computational
load balance. In the hypergraph HC used in the second step, each vertex v i is associated with P weights according to the
distribution of the nonzeros of column i among the P submatrices induced by the rowwise partition obtained in the first step.

The CH method is described in [4,5] for 2D orthogonal partitioning of sparse matrices. The column-net and row-net mod-
els used in the first and second steps exactly encode the total communication volume to be incurred during the expand and
fold phases, respectively. The balancing constraint adopted in the partitioning of the first step together with the multi-con-
straint formulation adopted in the partitioning of the second step ensures a computational load balance as described in [5].

The matrix partition resulting from the CH method is Cartesian in the sense that the rows and the columns are parti-
tioned, respectively, into P and Q sets, and the Cartesian products of these sets are mapped to the P � Q processor mesh.
In other words the orders of the columns (rows) in each row (column) stripe are the same. Compared to the JL method,
the CH method thus produces partitions whose boundaries can be overlaid with the given matrix.

3. PaToH MATLAB Matrix Partitioning Interface

Here, we briefly present the design of the main components of the matrix partitioning interface; a manual is available
[26]. Then, we will demonstrate how a new partitioning algorithm can be developed using the basic components of the
interface.

3.1. Main components

The two main components of the interface are PaToHMatrixPart and PaToH which have the following signatures:
½nnzpv;outpv;inpv� ¼ PaToHMatrixPartðA;K;mthÞ;
½partv;ptime� ¼ PaToHðhyp;K;nconst;vw;nc;imbalÞ;
Here, A is the sparse matrix to be partitioned, K is the number of parts and mth is a string specifying the partitioning method
of the choice. The mth can be any of the strings shown in Table 1. The function PaToH lies at the core of PaToHMatrixPart
and enables direct PaToH library calls from MATLAB. In this function, hyp is the hypergraph given as a sparse matrix (assum-
ing the column-net model), K is the number of parts, nconst is the number of vertex weight constraints (used in multi-con-
straint partitioning), vw is the array of vertex weights, nc is the array of net costs, and imbal is the maximum allowed
imbalance ratio e of (1).

Given the matrix A, the number of parts K, and the partitioning method mth, the function PaToHMatrixPart calls the
appropriate partitioning method to partition the matrix. The output nnzpv is an M � N sparse matrix whose nonzero entries

Table 1
Partitioning methods provided in the matrix partitioning interface. Each method can be asked to produce a symmetric or nonsymmetric vector partitioning.

Partitioning method Vector partitioning

Symmetric Nonsymmetric

Rowwise RWS RWU

Columnwise CWS CWU

Fine-grain FGS FGU

Jagged-like JLS JLU

Checkerboard CHS CHU

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 259
define the processor assignment for each nonzero of the matrix A, i.e., the number of nonzeros in those two matrices are the
same. The output outpv is an M � 1 array, and it defines the partition on the output-vector y of the y Ax operation. The
output inpv is an N � 1 array, and it defines the partition on the input-vector x of the same operation. As zero is not a valid
value for the nonzeros of a sparse matrix, we use numbers from 1 to K to denote part numbers.

We think that returning the partitioning information in the three output arguments nnzpv, outpv, and inpv is conve-
nient and useful. Convenient because it defines the partitioning on all components of the sparse matrix–vector multiply
operation. Useful, because the three outputs all together enable visualization of the partition. Consider the example, gener-
ated using the function PaToHSpy (for a detailed description of the function we refer the reader to the manual [26]), given in
Fig. 2, which is obtained by a 4-way, FGS partitioning of a matrix using the function PaToHMatrixPart. As seen in the fig-
ure, the matrix is permuted into a 4� 4 block form. The function PaToHSpy permutes the rows according to the partition
outpv in such a way that a row i, where outpv(i)=k, is ordered before any other row j where outpv(j) is bigger than
k. The order of rows within a block is arbitrary. A similar permutation is applied to the columns using the inpv. Hence, this
block form indicates the vector partitioning such that the input and output-vector elements of x and y aligned with the first
diagonal block belong to processor 1; those aligned with the second diagonal block belong to processor 2 and so on. The
owner of other nonzeros can be inferred from the shapes or colors.
3.2. Developing partitioning algorithms

Orthogonal recursive bisection (ORB) has initially been proposed for partitioning nonuniform two-dimensional compu-
tational domains into rectangular units of equal computational requirements [28,29]. In this approach, the domain is first
3 8 13 16 5 9 10 17 22 2 4 6 12 14 15 18 1 7 11 19 20 21 23

3

8

13

16

5

9

10

17

22

2

4

6

12

14

15

18

1

7

11

19

20

21

23

Pajek/GD02_a: 4−way FGS

nnz = 87
vol = 18 imbal = [−3.4%, 1.1%]

Fig. 2. A sample 4-way partitioning of the Pajek/GD02_a matrix from the UFL collection [27]. The 2D partitioning is obtained by using fine-grain method by
running the PaToHMatrixPart function and displayed by using the PaToHSpy function.

260 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
partitioned vertically into two blocks of equal work. Then each subblock is further partitioned horizontally into two, again
each having equal work. The process continues by partitioning alternately into horizontal and vertical blocks until the de-
sired number of partitions is obtained.

The ORB method is also applied to partitioning sparse matrices for parallel sparse matrix–vector multiplication operation
[6]. In this approach, the matrix is first partitioned rowwise into two submatrices using the column-net hypergraph model
[2], and then each part is further partitioned columnwise into two parts using the row-net hypergraph model [2]. The
process is continued recursively until the desired number of parts is obtained. It is also suggested to partition both rowwise
and columnwise at each recursion step and to continue with the best of the two. In this paper, we follow a similar but more
simplistic approach. For rectangular submatrices, we partition along the longer dimension. For the square submatrices, we
compute both the rowwise and columnwise partitions and choose the one with the best volume (in case of ties, we choose
the one which gives a better balance among the two parts) for the current bisection. Therefore, our ORB implementation is
different than Mondriaan [6] mainly due to the way we choose the partitioning direction. We note that another alterna-
tive [30] is to try the fine-grain partitioning as well at each recursive step and to choose the best among the three
alternatives.

Algorithm 1. Orthogonal recursive bisection based partitioning

function [pvr, pvc, pids]=orbPartAux(Klow, Kup, rlist, clist)

m = length(rlist);

n = length(clist);

submat = A(rlist, clist);

if(m<n),
[npv1, opv1, ipv1] = PaToHMatrixPart(submat, 2, ‘CWU’);

whichnpv = npv1;

rlistLeft = rlist;

rlistRight = rlist;

clistLeft = clist(ipv1 == 1);

clistRight = clist(ipv1 == 2);

elseif(m>n)
[npv2, opv2, ipv2] = PaToHMatrixPart(submat, 2, ‘RWU’);

whichnpv = npv2;

rlistLeft = rlist(opv2 == 1);

rlistRight = rlist(opv2 == 2);

clistLeft = clist;

clistRight = clist;

else

%Skipped in the presentation, the above two bisections

%are applied and the best one is choosen.

end

if(Kup-Klow == 1),%Base case

[submrows,submcols, submnnzpv] = find(whichnpv);

pvr = rlist(submrows);

pvc = clist(submcols);

pids = submnnzpv’ + Klow-1;

else %Recursive calls

kmid = (Kup-Klow+1)/2;

[pvrLeft,pvcLeft,pidsLeft]=. . .

orbPartAux(Klow, Klow+kmid-1, rlistLeft, clistLeft);

[pvrRight, pvcRight, pidsRight]=. . .

orbPartAux(Klow+kmid, Kup, rlistRight, clistRight);

%Combine

pvr = [pvrLeft, pvrRight];

pvc = [pvcLeft, pvcRight];

pids = [pidsLeft, pidsRight];

end

We show the implementation, almost complete, in Algorithm 1. The function orbPartAux is implemented as a nested
function within the scope of
function ½outpv;inpv;nnzpv� ¼ PaToHorbPartðmat;K;dimÞ:
Here, mat is a given original matrix. From mat, we obtain the pattern matrix A using A = spones(mat) and add missing diag-
onal entries if a symmetric partitioning (dim=‘ORS’) is requested. The nested function orbPartAux is then called with in-

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 261
puts orbPartAux(1, K, 1:orgm, 1:orgn) where orgm and orgn correspond to the row and column sizes of the original
matrix. The function orbPartAux then creates a submatrix of A using the rlist and clist, initially corresponding to
all of the rows and the columns of A.

In the implementation, we did not filter out any possibly empty rows or columns from the submatrix submat constructed
within the function orbPartAux. Therefore, the invocations to PaToHMatrixPart can have matrices with empty rows or
columns.
4. A novel two-dimensional partitioning method

A noteworthy feature of the multilevel hypergraph partitioning heuristics is that the rate of decrease in the number of
nets is, in general, much smaller than that of the number of vertices. Although this is desirable for the KL- and FM-based
refinement heuristics, the presence of a large number of nets slows down the partitioning process.

In the algorithms that use 1D partitioning models, the coarsening amounts to folding the matrix along the partitioning
dimension, along the rows or columns, while keeping the other dimension, columns or rows respectively, intact. In the
fine-grain case, the nonzeros are matched; the row- and column-nets corresponding to the rows and the columns of the ori-
ginal matrix remain intact. The fine-grain partitioning case can be visualized on a larger Z � ðM þ NÞmatrix whose rows cor-
respond to the nonzeros of the original matrix, and whose columns correspond to the set of rows and columns of the original
matrix. Then, coarsening will again result in folding the matrix along the rows while keeping the columns intact. Note that in
any of these cases nets disappear in the subsequent levels only if they become of size one during the coarsening phase. Also
note that the coarsening in these three cases works pattern-wise, e.g., in the rowwise partitioning case a coarse row has a
nonzero of value 1 in a column if either of its constituent rows (of the previous matrix) has a nonzero in that column, regard-
less of the current level of coarsening.

Here, we propose a novel multilevel coarsening approach whose main idea can be perceived as folding the matrix both
along the rows and the columns. In this way, the number of rows, columns, and nonzeros will decrease roughly at similar
rates during the levels of the coarsening phase. This 2D coarsening approach will be utilized to develop a multilevel matrix
partitioning algorithm which enables the use of the FG model in the initial partitioning and uncoarsening phases. As reported
in [5], the fine-grain partitioning method, because of the higher degree of freedom inherent in the underlying model, is the
most competent method among those discussed in Section 2.3 in reducing the total communication volume. However, it suf-
fers from a high partitioning time, mainly because of the large number of time-consuming coarsening levels. The proposed
2D partitioning approach attempts to benefit from the refinement capability inherent in the fine-grain model, while trying to
obtain an effective, and in the meantime, faster coarsening operation.

Our folding approach considers the initial matrix as a f0;1g-matrix, but performs addition operation while folding the
matrix. In other words, the gist of the proposed method is to build a hierarchy of integer matrices resulting from a sequence
of both rowwise and columnwise coarsenings, each time adding up the values of the nonzeros. Fig. 3 illustrates the concept
of the 2D coarsening approach. On the top, we have an 11� 11 matrix, referred to as Að0Þ. The matrix is coarsened for two
levels yielding the 3� 4 matrix at the bottom. A matching among the rows of Að0Þ is found and represented as a 6� 11 matrix
Pð1Þ. In Pð1Þ each column has a single nonzero, mapping a row of Að0Þ to a super-row in the coarser matrix. Therefore, two col-
umns having their nonzeros in a common row represent the match of the associated rows of Að0Þ. Similarly the matrix Q ð1Þ

represents the matching among the columns of Að0Þ. Any row i in Pð1Þ having only one nonzero signifies that the row of Að0Þ

corresponding to the nonzero column in row i of Pð1Þ is not matched and left as singleton. A column of Q ð1Þ with only one
nonzero signifies the same result for the associated column of Að0Þ. Thus, the coarser matrix Að1Þ can be computed by mul-
tiplying Að0Þ with Pð1Þ from the left and with Q ð1Þ from the right, i.e., Að1Þ ¼ Pð1ÞAð0ÞQ ð1Þ. Hence, a nonzero entry in Að1Þ repre-
sents a set of entries in Að0Þ which are amassed by the rowwise and columnwise folding operations. For example, consider the
nonzero að1Þ2;3 of Að1Þ in Fig. 3. As seen in the figure, the super-row 2 of Að1Þ contains rows 2 and 7 of Að0Þ, and the super-column 3
of Að1Þ contains columns 4 and 8 of Að0Þ. Therefore, að1Þ2;3 becomes 4 as the rows 2 and 7 both have nonzeros in the columns 4
and 8.

The 2D coarsening approach is not easily realizable in the hypergraph partitioning tools like PaToH [12] and Mondriaan
[6]. The closest approach available in these libraries is the coarsening operation on a fine-grain hypergraph model. As there is
no distinction between row nets and column nets in these libraries, it would not be possible to match, more precisely, to
cluster nonzeros in two rows or in two columns. We note, however, that in a symmetric matrix, the 2D coarsening approach
works like the coarsening operation in the multilevel graph partitioning methods (see [31] for coarsening in graph partition-
ing), if the matching of the rows and the matching of the columns are found using the same deterministic algorithm.

As the conceived 2D coarsening approach is not realizable within the PaToH library, we have implemented a recursive
bisection based, multilevel method. For the recursion, we use the skeleton of Algorithm 1 of Section 3.2. This time, however,
instead of providing the matrix and the list of rows and columns for partitioning, we pass the row and column indices of the
nonzeros that will be partitioned. At the beginning of each invocation, a sparse matrix is built using the given nonzeros. Then,
a multilevel algorithm with all three phases—coarsening, initial partitioning, and uncoarsening—is called for bisecting the
so-built matrix. We found it very convenient to formulate the coarsening and uncoarsening operations in terms of
matrix-matrix multiply operations. Below, we describe the three phases of the multilevel bisection algorithm, highlighting
the matrix-matrix multiplication based formulations.

Fig. 3. Two-dimensional coarsening operation on an 11� 11 matrix, Tina_AskCog, from the UFL collection [27]. The row and column indices are shown.
The values in brackets denote the number of columns/rows of the flat matrix Að0Þ represented by the respective row/column of the coarse matrix.

262 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
4.1. Coarsening

A significant component of the coarsening phase is a function that finds a matching for the rows and another matching for
the columns of a given matrix. In this paper, we propose the use of the cosine similarity as the matching criterion. The cosine
similarity of two real vectors x and y is defined as the angle h, where

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 263
cos h ¼ xT y
kxkkyk : ð3Þ
here, xT y is the inner product of the two vectors, i.e.,
P

xiyi, and k � k is the magnitude of a vector, i.e., kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiP

x2
i

q
and

kyk ¼
ffiffiffiffiffiffiffiffiffiffiffiP

y2
i

q
. The smaller the h between two vectors, the more similar they are. We note that the heavy connectivity match-

ing [12] or the inner product matching [6] use the inner product xT y as the similarity metric. There is, however, a subtle dif-
ference: the vectors x and y are always f0;1g-vectors in these two latter alternatives regardless of the coarsening level. That
is, the inner product metric has been used in the existing hypergraph partitioning libraries only with f0;1g-vectors.

For a given row i, let CðiÞ be the set of columns in which row i has nonzeros. Similarly for a given column j, let RðjÞ be the
set of rows in which column j has nonzeros. For a given unmatched row i, all unmatched rows in
fr : r 2 RðjÞ for some j 2 CðiÞg form the set of possible mates for the row i. The cosine similarity between row i and each such
row is computed using (3) and the row r with the smallest h is chosen as the mate of row i, i.e., P(i)=r and P(r)=i. As we
are working with nonnegative vectors, this amounts to choosing an available row with the maximum value of cos h. We have
implemented this matching algorithm for the rows of a matrix as a MATLAB mex function. The matching Q for the columns of
a matrix can easily be obtained by invoking that function on the transpose of the matrix. For now, we process the rows and
columns in descending order of number of nonzeros, but we intend to investigate alternatives. Furthermore, we apply a
threshold test to the similarity: if cos h < #, for a given # we do not apply the matching.

We have implemented a function PaToHMatch(A) that carries out a matching according to the cosine similarity metric.
The function PaToHMatch(A) gets a matrix A and computes two arrays P and Q, where P defines a matching among the
rows, and Q defines a matching among the columns of A. The matching P is defined in such a way that if two rows i and j
are matched, then P(i)=j and P(j)=i. If a row is not matched, then P(i)=i. The matching Q of the columns is defined
similarly. From the matching arrays P and Q, we obtain the coarsening operators PHier{level} and QHier{level} at
the level level. These two operators are sparse matrices and are constructed as follows. For a given M � N matrix A, the
matrix PHier{level} has a column dimension of M. Suppose we have obtained m1 matchings in rows, i.e., the total number
of matched pairs i and j (that is, P(i)=j and P(j)=i) plus the number of singletons (that is, P(i)=i) is m1. Then, the row
dimension of PHier{level} is m1, each row representing a matching or a singleton. If, for example, i and j are matched, then
there is a row in PHier{level} with 1’s in columns i and j. Similarly, the matrix QHier{level} has a row dimension of N.
Suppose we have obtained n1 matchings in the columns, i.e., the total number of matched pairs j and k (that is, Q(j)=k and
Q(k)=j) plus the number of singletons (that is Q(j)=j) is n1. Then, the column dimension of QHier{level} is n1, each col-
umn representing a matching or a singleton. If, for example, the column k of A is left as singleton, then there is a column in
QHier{level} with one nonzero entry at row k. The coarsened matrix Alevel is then of size m1 � n1 and can be computed
by multiplying A from the left by PHier{level} and from the right by QHier{level}.

The multilevel algorithm that carries out the two-dimensional coarsening on a matrix A is shown in Algorithm 2. We ini-
tialize levelMax=10 to allow at most 10 levels of coarsening. During coarsening if either the number of rows or the number
of columns of the current matrix falls below 1000, we stop the coarsening phase. Since we apply a threshold test for match-
ing two rows or columns, we also stop the coarsening if the contraction in a level does not reduce the number of rows and
the number of columns significantly (we use a ratio of 7/8 as seen in the algorithm). As described before, the matchings are
computed as arrays with the function PaToHMatch and then converted to sparse matrices in the function PaToHMLCoarse-

Operator. The matrices corresponding to the coarsening operators are stored in the structures PHier and QHier.

Algorithm 2. Multilevel two-dimensional coarsening algorithm

function [PHier,QHier,nlevels,ACoarsest] = PaToHMLCoarse(A, levelMax)

[P,Q] = PaToHMatch(A);

[PHier{1}, QHier{1}] = PaToHMLCoarseOperator(A, P, Q);

Alevel = A;

for level = 2:levelMax,

PMult = PHier{level-1};
QMult = QHier{level-1};
Alevel = PMult * Alevel * QMult;

[P, Q] = PaToHMatch(Alevel);

[PHier{level}, QHier{level}] = PaToHMLCoarseOperator(Alevel, P, Q);

if(size(PHier{level},1) < 1000 || size(QHier{level},2) < 1000),

break;
end

if (size(PHier{level},1)/size(PHier{level-1},1) >=7/8 &&

size(QHier{level},2)/size(QHier{level-1},2) >=7/8),
break;

end

end

nlevels = level;

ACoarsest = PHier{level}*Alevel*QHier{level};

264 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
Consider the example shown in Fig. 3 (for simplicity, we do not apply the threshold test on the similarity of two rows or
columns in this example). The given initial matrix Að0Þ has 36 nonzeros, each having a value 1. The coarsening operators PHi-
er{1} and QHier{1} are shown, respectively, as Pð1Þ and Q ð1Þ, and they are found by converting the matching arrays
P ¼ ½10 7 5 9 3 11 2 8 4 1 6�
Q ¼ ½5 3 2 8 1 10 7 4 9 6 11�
into matrices. The coarsened matrix Að1Þ is shown in the same figure. As seen in the figure, the sum of the nonzero values of
Að1Þ is again 36. The coarsening matrices PHier{2} and QHier{2} are shown, respectively, as Pð2Þ and Q ð2Þ, and they are found
by converting the matching arrays
P ¼ ½3 5 1 6 2 4�
Q ¼ ½2 1 6 5 4 3 7�
of the rows and columns of Að1Þ. The coarsest matrix Að2Þ is shown at the bottom of the figure. The sum of the values of the
nonzeros in Að2Þ is 36. In the figure, each row and column of the matrices Að1Þ and Að2Þ is tagged with the number of consti-
tuting rows and columns.

The proposed coarsening approach makes use of the 1D row-net and column-net hypergraph models augmented with
weights representing the nonzero values of the coarser matrices. We note that those weights seem to be associated with
the pins of the 1D hypergraphs—a counter-intuitive relationship since a pin of a hypergraph only represents a membership.
We store the weights twice, in two different arrays. The first one is aligned with the vertex lists of nets, and the second one is
aligned with the net lists of vertices. In a typical coarsening scheme used within the context of the 1D hypergraph models,
the nets of a vertex v are visited in turn, and the vertices of each such net are considered as a potential mate for v. In our
approach, while doing the same operation for a vertex v, we accumulate the inner product by using the two copies of the
weights with a constant additional time per each pin accessed. As a preprocess, we compute the norms of the vectors cor-
responding to the vertices of a hypergraph in OðZ þMÞ-time, where the hypergraph corresponds to the column-net hyper-
graph of a matrix with M rows and Z nonzeros. As the weights are used while accessing the pins of a hypergraph, they do not
affect the run-time complexity. Therefore, the proposed coarsening operation is akin to the coarsening operation in 1D
hypergraph models.

4.2. Initial partitioning

The aim in this phase is to find a partition of the coarsest matrix ACoarsest. If this matrix were not available, it could be
constructed using the hierarchy of nlevels of coarsening operators PHier and QHier. This can be accomplished by mul-
tiplying the original matrix A from the left by the product of the row coarsening matrices PMult and from the right by the
product of the column coarsening matrices QMult. Note that the number of rows and columns of PMult are equal to, respec-
tively, the number of rows of ACoarsest and the number of rows of the initial matrix A. Similarly, the number of rows and
columns of QMult are equal to, respectively, the number of columns of the initial matrix A and the number of columns of
ACoarsest.

To partition ACoarsest, we construct its fine-grain hypergraph model HZ, and assign weights to vertices such that each
vertex gets a weight equal to the value of the corresponding nonzero of ACoarsest. As the rows and the columns of
ACoarsest are themselves amalgamations of the rows and columns of the original matrix A, it is necessary to assign a cost
to each net. The cost of the row nets, rnc, and the column nets, cnc, of HZ can be computed by applying the coarsening
operators to the vectors of 1 of appropriate size.

The fine-grain hypergraph HZ is represented as a matrix hyp whose rows correspond to the vertices of HZ, and whose
columns correspond to the row nets and the column nets of HZ. With a call to the mex interface of PaToH
pv ¼ PaToHðhyp;2;1;vw; ½rnc;cnc�Þ;
we compute the partitioning of the nonzeros of the coarsest matrix. We note that at this point the cutsize of the partition will
not be equal to the cutsize of partition of the original matrix, as the coarsening operation does not necessarily match two
rows or two columns of the same sparsity pattern.

Consider the coarsest matrix Að2Þ of Fig. 3. A partition of the nonzeros of this matrix is shown on the top of Fig. 4 along
with the costs of the row nets and the column nets in the brackets. The nonzeros in the columns 1 and 4 are assigned to
processor 1, and the rest are assigned to processor 2. The loads of the processors are 16 and 20, respectively. Each row is
split between the two processors. Therefore, the total communication volume is 11 = 4 + 4 + 3. Note that this would be an
upper bound on the total communication volume, if the partition is projected to Að0Þ without any refinement.

4.3. Uncoarsening and refinement

Given an initial partitioning pv on the nonzeros of the coarsest matrix, the function PaToHMLUnCoarse shown in Algo-
rithm 3 projects the partitioning on the coarsest matrix to the finer one, and refines the projected partition. The function
initializes nnzpv to be equivalent to the initial partition on the coarsest matrix. Then, the partitioning information nnzpv,

Fig. 4. Uncoarsening operation succeeding the result of the coarsening operation shown in the previous figure.

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 265
represented as a sparse matrix conforming to the pattern of the coarsest matrix, is projected to the next matrix on the first
line of the for-loop by multiplying it with the transposes of the coarsening operators. At this point, the sparsity of nnzpv

266 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
becomes a superset of the sparsity pattern of the matrix associated with that level in the matrix hierarchy. In order to get the
accurate partition information, it is necessary to nullify the entries that fall outside the pattern of the matrix at the current
level Alevel. After this adjustment, the partition on the current matrix is refined by invoking the function Refine. The
function Refine is basically a wrapper to a mex function PaToHRefineBsctn which we have implemented to call any
of the refinement functions of PaToH [12] on a fine-grain hypergraph model. We use the refinement algorithm PATOH_RE-
FALG_BFMKL implemented in PaToH which performs one pass of boundary FM (BFM) followed by one pass of boundary KL
(BKL). The function PaToHRefineBsctn has the signature
Fig. 5.
are spli
nnzpv ¼ PaToHRefineBsctnðia;ja;vw;pv;rnc;cnc;imbalÞ;
where ia(i) and ja(i) define the nets of the vertex i which has a weight of vw(i); the array pv of the same size as ia
defines the current part of each vertex; the arrays rnc and cnc are the costs of the row nets and column nets computed in
the function PaToHMLUnCoarse; finally imbal is the allowed imbalance ratio.

Algorithm 3. Multilevel refinement algorithm

function nnzpv = PaToHMLUnCoarse(A,PHier,QHier,nlevels,pv,imbal)

nnzpv = pv;

[m,n] = size(A);

for level = nlevels:�1:1,
nnzpv = ((PHier{level})’ * nnzpv) * (QHier{level})’;
[PMult, QMult]=PaToHMLGetCoarseOperator(PHier, QHier, level-1);

Alevel = PMult * A * QMult;

nnzpvlevel = nnzpv.* spones(Alevel);

rnc = PMult * ones(size(PMult,2),1);

cnc = QMult’ * ones(size(QMult,1),1);

nnzpv = Refine(nnzpvlevel, Alevel, rnc, cnc, imbal);

end

As noted before, the cutsize of a partition on a coarser matrix is an upper bound on the cutsize of the same partition on the

original matrix. However, as the partition is projected towards the finer matrices, the cutsize of a partition will become tigh-
ter and tighter as an upper bound, and finally it will be exact on the original matrix. We also note that in order to reduce
memory overhead, we do not store the coarsened matrices. This entails a large overhead during the uncoarsening phase, be-
cause the projection of the partition on a coarser level requires computing the pattern of the associated matrix (the state-
ment Alevel = PMult * A * QMult in Algorithm 3). If we were to implement this routine as a standalone program, we
would store the coarsened matrices for better performance.

Fig. 4 shows the progress of the uncoarsening operation on the sample matrix shown in Fig. 3. At the top, we have the
partition Pð2Þ on the coarsest matrix Að2Þ. As noted before, this partition has a cutsize of 11. The partition Pð2Þ is then enlarged
by multiplying it with the transposes of the coarsening operators of the same level, i.e., by ðPð2ÞÞT form the left and by ðQ ð2ÞÞT

from the right. The resulting partition Pð1
0 Þ has a sparsity pattern which is a superset of the pattern of the associated matrix

Að1Þ. Filtering out the entries at positions that fall outside the sparsity pattern of Að1Þ, i.e., by entry-wise multiplying it with
sponesðAÞ, yields the partition Pð1Þ on Að1Þ. The partition Pð1Þ has a cutsize of 7 = 2 + 2 + 2 + 1, since the rows 3, 4, 5, and 6 are
split among parts 1 and 2. Note that the loads of the processors are 16 and 20. This partition is then refined (using the Re-

fine subroutine) to yield an improved partition Pð1Þ with the same cutsize 7 and a better load distribution, 18 versus 18. The
partition Pð1Þ is again enlarged through a multiplication operation using the transposes of the associated coarsening oper-
ators, ðPð1ÞÞT and ðQ ð1ÞÞT . Again, a partition Pð0

0 Þ on a superset of the nonzeros of Að0Þ ¼ A is found. This partition Pð0
0 Þ is filtered

using the pattern of A yielding Pð0Þ with a cutsize of 6 and a load distribution 18 versus 18. Later Pð0Þ is refined to yield the
final partition on A given in Fig. 5. This partition has a total cutsize of 4 due to the splits in rows 3 and 6 and in columns 2 and
8. The load distribution is again 18 versus 18.
Continuing from the previous figure, Pð0Þ is refined on the matrix Að0Þ to yield a total communication volume of 4 (rows 3 and 6 and columns 2 and 8
t among the two processors).

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 267
5. Experiments

We have performed an extensive experimental evaluation of the proposed novel 2D partitioning method using the PaToH
MATLAB Matrix-Partitioning Interface, on a large set of matrices from the University of Florida (UFL) sparse matrix collection
[27]. The experiments were conducted on computers owned by the Department of Biomedical Informatics at The Ohio State
University. Each computer is equipped with dual 2.4 GHz Opteron 250 processors, 8 GB of RAM and 500 GB of local storage.

We have performed two different sets of experiments. In the first set of experiments, we aimed to investigate the merits
of the cosine similarity metric used in the proposed multilevel 2D coarsening-based partitioning method (ML2D). In the sec-
ond set, we investigated the performance of the proposed ML2D method. In the following, we use the term ‘‘partitioning in-
stance” to refer to the partitioning of a matrix into a given number of parts. That is, for a given K, a K-way partitioning of a
matrix constitutes a partitioning instance.

5.1. Results

In the first set of experiments, we have compared the total communication volume found by ML2D with the cosine sim-
ilarity to that found by ML2D with the inner product metric. For this comparison, we did not apply the threshold test on the
similarity of two rows or columns under the cosine similarity metric. The inner product metric, otherwise known as the hea-
vy connectivity metric, has been used in the coarsening phase of the hypergraph partitioning tools Mondriaan [6] and PaToH
[12]. In these tools, the items whose inner products are computed are {0,1}-vectors. In our case, we compute the similarity of
the rows or columns of a non-{0,1} matrix. Therefore, a sort of length-scaling is likely to be required, justifying the use of the
Fig. 6. Performance profile plots comparing the three partitioning methods using the total communication volume as the performance indicator. In all sub-
figures, at s ¼ 1:8 the plots are FG, ML2D, and ORB from top to bottom.

268 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
cosine similarity instead of the inner product as the matching metric. We performed the first set of experiments in order to
experimentally support the observation above. These experiments are performed using K 2 f8;16;64g, and on real, square
matrices whose number of nonzeros are between 1,000 and 5,000,000 from the UFL collection, skipping the partitioning in-
stances in which minfM;Ng < 50� K . Out of 1576 partitioning instances (at the time of writing), in only 272 of them the
inner product metric performed better than the cosine similarity metric; in one instance they produced the same result.
In the remaining 1,303 instances, the cosine similarity metric produced better results than the inner product metric; about
10% better on the overall average. Hence, we made the cosine similarity as the default matching criterion for the proposed
ML2D method.

In the second set of experiments, we compared the performance of the proposed ML2D with the orthogonal recursive
bisection, ORB (see Section 3.2). We have implemented both of them using the described matrix partitioning interface.
We also wanted to compare the performance of these two methods against the existing methods presented in Section 2.3.
Since our primary interest was the total communication volume, we decided to compare the two methods against the fine-
grain (FG) method—in a recent work of ours [5], FG was found, by a thorough experimental evaluation, to be the best method
for minimizing the total communication volume. In that work, we presented a partitioning recipe which suggests a partition-
ing method among those methods summarized in Section 2.3. The recipe was experimentally shown to be close to FG in the
total volume of communication metric while being much faster. We did not incorporate the ML2D or ORB methods yet into
the recipe, therefore we compare them against the FG method. This also makes sense, as the proposed ML2D method uses
the fine-grain model in the refinement phase and produces an arbitrary 2D partitioning as the FG method does.

During the second set of experiments, in order to avoid possible skew or bias due to an overpopulated matrix group (there
were 149 of them at the UFL collection at the time of writing), we have selected up to 5 largest matrices from each group. In
this selection, we excluded matrices with number of nonzeros larger than 10,000,000 in order to complete the experiments
in a reasonable time frame. We also excluded small matrices (i.e., matrices that have less than 1,000 nonzeros or columns/
rows), as the parts would become too small to be meaningful. In total, we ran our experiments on 412 matrices with
K 2 f4;16;64;256;512g. We further discarded partitioning instances in which minfM;Ng < 100� K . This resulted in 1504
partitioning instances where 670 of them were with a symmetric matrix, 576 of them were with a nonsymmetric square
matrix, and 258 of them were with a rectangular matrix. For each partitioning instance, the presented results are the aver-
ages of 15 runs. We used a threshold test for the cosine similarity of two rows or columns. Two rows (or columns) are
deemed similar if cos h P 0:70 which corresponds roughly to 45�. Again the set of candidate mates for a row (or a column)
are visited, the cosine similarities are computed, and the larger one is declared as a mate if it passes the threshold test; if not,
the starting row (or the starting column) left as a singleton.

For the second set of experiments, we use performance profiles [32] to present our results. Performance profiles are a
generic tool for comparing a set of methods over a large set of test cases with regard to a specific performance metric.
The main idea behind performance profiles is to use a cumulative distribution function for a performance metric, instead
of, for example, taking averages over all the test cases. In our experiments, partitioning instances constitute the test cases.
We use the ratio of a performance indicator to the best among all partitioning methods as our performance metric and call it
s. As performance indicators, we use the total communication volume, the maximum volume of messages sent by a single
processor, the total number of messages, and the partitioning time.
Table 2
Comparison of total communication volumes found by ORB, ML2D and FG on some extreme cases.

Group/name Prop K ORB ML2D FG

ORB and FG perform better than ML2D
LPnetlib/lp_osa_60 RECT 4 239.0 6516.6 239.0
LPnetlib/lp_osa_60 RECT 16 1085.3 15440.5 1088.7
LPnetlib/lp_osa_30 RECT 4 236.5 3321.4 235.9

ORB performs better than FG
Li/pli SYM 4 6066.2 9878.8 10695.2
Norris/torso1 NON-SYM 4 5510.7 6643.9 10009.8
ND/nd6k SYM 4 13474.5 30436.9 24422.0

ML2D performs better than ORB
IBM_EDA/trans4 NON-SYM 4 109211.7 649.1 539.5
IBM_EDA/trans5 NON-SYM 4 107876.9 659.5 544.7
Muite/Chebyshev3 NON-SYM 4 3592.9 20.0 20.0

ML2D performs better than FG
Kamvar/Stanford_Berkeley NON-SYM 4 5481.3 891.4 1395.2
Norris/torso1 NON-SYM 4 5510.7 6643.9 10009.8
Mancktelow/viscorocks NON-SYM 16 4678.1 3907.3 5768.1

FG performs better than ORB
IBM_EDA/dc2 NON-SYM 4 109775.5 1049.1 550.1
IBM_EDA/trans4 NON-SYM 4 109211.7 649.1 539.5
IBM_EDA/dc3 NON-SYM 4 109321.9 758.1 542.4

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 269
The first set of performance profile charts displayed in Fig. 6 uses the total communication volume as the performance
indicator. As seen in the charts, FG and ML2D, in general, are better than ORB, though ORB obtains results within 2 times
of the best result in about 85% of the cases. In the rectangular test cases, there is a gap between FG and ML2D, otherwise,
they behave similarly. In the symmetric test cases, ORB and ML2D perform similarly and outperform FG until about
s ¼ 1:2. After this point, FG’s performance improves and passes that of ORB and matches to that of ML2D. After s ¼ 1:4,
the performances of the three methods stabilize where the methods rank as FG, ML2D, and ORB. In other cases, the same
ranking is obtained after a smaller s.

Table 2 displays some extreme cases where one of the methods performs significantly better than the others in terms of
the total communication volume (we restricted this analysis to the instances for which at least one of the methods obtained
a total communication volume of at least 3,000). As seen in the table, although there are cases that ORB performs signifi-
cantly better than ML2D, ORB’s performance on those cases are almost the same as those of FG (the extreme cases for which
FG outperformed ML2D are the same as the extreme cases for which ORB outperformed ML2D). There are some cases where
ORB performs nearly two times better than FG, but in general FG performs significantly better, and in some cases FG pro-
duces total communication volume that are two orders of magnitude better than ORB. In the instances where ML2D per-
forms better than ORB, FG is usually even better than ML2D. There are instances where ML2D performs better than FG, in
a significant portion of those cases, interestingly, ORB is also better than FG.

Fig. 7 displays the comparison of the three partitioning methods using the maximum communication volume per proces-
sor as the performance indicator. Apart from the symmetric partitioning instances, FG clearly outperforms the other two. In
about a little less than 90% of the cases, its results are within 1.2 times of the best result. The proposed ML2D is almost
Fig. 7. Performance profile plots comparing the three partitioning methods using the maximum communication volume per processor as the performance
indicator. In all sub-figures, at s ¼ 1:8 the plots are FG, ML2D, and ORB from top to bottom.

270 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
always in between the other two methods, while being more closer to FG than to ORB. Again ML2D’s performance is visibly
worse than that of FG in the rectangular cases. We had first experimented with the ML2D method in such a way that the two-
dimensional coarsening was always enforced. In that case, there were again an observable difference, more amplified than
the shown results, between the performances of ML2D and FG. Later on, we have updated the code such that on rectangular
cases if the number of rows is less than the two thirds of the number of columns, only columnwise coarsening is performed
(similar policy is applied for the other way around). Combined with the effect of the similarity threshold value, this had lifted
the performance of the ML2D method towards that of the FG method, but there seems to be room for improvement.

Fig. 8 presents the comparison of the three partitioning methods using the total number of messages as the performance
indicator. As one might expect, FG and ML2D show a very similar trend in general. ORB manages to produce the best result in
terms of the total number of messages in about 95% of the cases, at which point the results of FG and ML2D are within 2.2
times of the best.

In all of our experiments, we had used computational imbalance ratio e ¼ 3%. The three methods almost always produce
well-balanced partitions. The FG and ML2D methods, being able to improve partitions on a nonzero basis, always obtained
results within the allowable imbalance ratio. The ORB method failed to satisfy the required balance only in 2 instances where
the obtained balance were 3.1 for 512-way partitioning of BM_EDA/trans5 and 3.2 for 512-way partitioning of IBM_EDA/
dc3.

Finally, even though our implementations of ORB and ML2D are not optimized in terms of execution time, we present the
execution time comparison of the three methods just to give a rough idea about their characteristics. Fig. 9 presents this
comparison. In terms of execution time, we measured the time spent during actual hypergraph partitioning. For ML2D,
we also included matching time and refinement time during coarsening and uncoarsening phases. This gives an advantage
Fig. 8. Performance profile plots comparing the three partitioning methods using the total number of messages as the performance indicator. In all sub-
figures, the plots of FG and ML2D are very close to each other, and the plot of ORB is above those two.

Fig. 9. Performance profile plots comparing the three partitioning methods using the partitioning time as the performance indicator. At any s, the plots
correspond to ORB, ML2D, and FG from top to bottom.

B. Uçar et al. / Parallel Computing 36 (2010) 254–272 271
to ORB as the recursion overhead, including the construction of the submatrices, is not included in the timings, and to ML2D
as the construction of coarsened matrix/hypergraph and projection times are not included in the timings. For a more fair
comparison one should implement all methods completely in the same programming environment and in the same pro-
gramming language. With these added advantages ORB is the fastest of the three methods in about 85% of the test cases.
Second fastest is ML2D and FG is the slowest. With the current testing environment, the average run time of the ORB,
ML2D, and the FG methods are, respectively, 15, 50, and 81 s. With a more fair comparison, we expect the differences among
the average run time of the methods to decrease.

5.2. Further results and discussion

We report some more observations on the ML2D method. First, we note that we did not test the effect of the contraction
parameter (7/8 in Algorithm 2); rather we used a value close to a related parameter in PaToH. The reason to use this param-
eter is to avoid unnecessary calculations; if at a step the contraction is low, it is likely that in the next step the same will hold.
Therefore, this parameter would not have a significant effect on the partitioning quality. On the other hand, the value of the
threshold parameter # has a profound impact. First, it affects the quality of the coarsening—most often a high quality coars-
ening leads to high quality partitions. We have observed 20% difference between using # ¼ 0:70 and not using a threshold at
all. We have also tested # ¼ 0:75 and # ¼ 0:60 which correspond, respectively to, about 41� and 53�. With the higher one,
there were too little contraction, with the smaller one, there were too much contraction. Second, the threshold also affects
the run time (in combination with the test on the contraction amount). If a loose one is used, then a higher number of coars-
ening operations are performed, resulting in a faster execution. With no threshold test, the average run time were 27 s,
whereas with # ¼ 0:70 it is 50 s. With the threshold test, the average number of coarsening levels were
3:97;4:27;4:63;5:17 and 5:30 for K ¼ 4;16;64;256; and 512, respectively. These numbers show that 2D coarsening with
threshold test continues for a nontrivial number of levels. Although we are content with the choice of # ¼ 0:70, more inves-
tigation can be undertaken, for perhaps adapting the threshold test in the lower levels of coarsening.

As we had already stated, ML2D performs only one side coarsening if the number of rows or the number of columns are
less than the two thirds of the other dimension. We made this choice according to our previous experience in developing a
recipe for the matrix partitioning problem [5]. However, as seen in the performance profile figures, ML2D lacks behind FG for
the rectangular matrices, both without (not reported in the paper) and with the threshold parameter. We think that devel-
oping successful coarsening policies in combination with the threshold parameter rests as a future work.

6. Conclusion

We presented the PaToH MATLAB Matrix Partitioning Interface that provides support for various hypergraph-based 1D
and 2D matrix partitioning methods including rowwise, columnwise, jagged-like, checkerboard and fine-grain partitionings
[2–5]. In addition to providing an easy access to existing partitioning methods, this interface enables fast prototyping of new
matrix partitioning methods.

We also proposed a novel multilevel 2D coarsening-based, 2D partitioning method, ML2D, based on the cosine similarity
of the rows and columns of a suitably defined matrix. We implemented the proposed method as well as an orthogonal recur-
sive bisection method in MATLAB using the newly developed interface. We carried out an extensive evaluation of these
implementations using a large set of test matrices (more than 400) from University of Florida Sparse Matrix collection.

272 B. Uçar et al. / Parallel Computing 36 (2010) 254–272
We concluded that ML2D can compete with the fine-grain method in reducing the total communication volume while being
faster on average. We also suggested further research directions for improving the ML2D method’s performance. The relative
performance of ML2D with respect to the fine-grain method drops for rectangular matrices which calls for the evaluation of
the coarsening policies we used in this paper. We use a threshold test for the similarity test, which seems to have a profound
effect on the performance of the ML2D method. We believe that improvements on the threshold test would most probably
lead to improved performance, both in terms of the partition quality and the partitioning time. Apart from these most imme-
diate improvements, one can try to develop a matching variant which incorporates the sizes of the nets into the similarity
metric. Furthermore, one can also try to use agglomerative clustering schemes in which coarser vertices represent a set of
finer vertices instead of just two.

References

[1] Ü.V. Çatalyürek, C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix–vector multiplications, Lecture Notes in Computer Science
1117 (1996) 75–86.

[2] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Transactions Parallel
and Distributed Systems 10 (7) (1999) 673–693.

[3] Ü. V. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D decomposition of sparse matrices, in: Proceedings of 15th International Parallel and
Distributed Processing Symposium (IPDPS), San Francisco, CA, 2001.

[4] Ü. V. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for coarse-grain decomposition, in: ACM/IEEE SC2001, Denver, CO, 2001.
[5] Ü. V. Çatalyürek, C. Aykanat, B. Uçar, On two-dimensional sparse matrix partitioning: Models, methods, and a recipe, The Ohio State University,

Department of Biomedical Informatics, Tech. Rep. TR_2008_no4, also SIAM Journal on Scientific Computing, in press.
[6] B. Vastenhouw, R.H. Bisseling, A two-dimensional data distribution method for parallel sparse matrix–vector multiplication, SIAM Review 47 (1)

(2005) 67–95.
[7] B. Uçar, C. Aykanat, Minimizing communication cost in fine-grain partitioning of sparse matrices, Lecture Notes in Computer Science 2869 (2003) 926–

933.
[8] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel matrix–vector

multiplies, SIAM Journal on Scientific Computing 25 (6) (2004) 1827–1859.
[9] B. Uçar, C. Aykanat, Revisiting hypergraph models for sparse matrix partitioning, SIAM Review 49 (4) (2007) 595–603.

[10] B. Uçar, C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM Journal on Scientific Computing 29 (4) (2007)
1683–1709.

[11] J.R. Gilbert, G.L. Miller, S.-H. Teng, Geometric mesh partitioning: implementation and experiments, SIAM Journal on Scientific Computing 19 (6) (1998)
2091–2110.

[12] Ü.V. Çatalyürek, C. Aykanat, PaToH: A multilevel hypergraph partitioning tool, version 3.0, Tech. Rep. BU-CE-9915, Computer Engineering Department,
Bilkent University, 1999.

[13] R.H. Bisseling, W. Meesen, Communication balancing in parallel sparse matrix–vector multiplication, Electronic Transactions on Numerical Analysis 21
(2005) 47–65.

[14] B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing, Parallel Computing 26 (2000) 1519–1534.
[15] B. Uçar, C. Aykanat, A library for parallel sparse matrix–vector multiplies, Tech. Rep. BU-CE-0506, Department of Computer Engineering, Bilkent

University, Ankara, Turkey, 2005.
[16] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner, Chichester, UK, 1990.
[17] C. Aykanat, B.B. Cambazoglu, B. Uçar, Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices, Journal of Parallel

and Distributed Computing 68 (5) (2008) 609–625.
[18] Ü. V. Çatalyürek, Hypergraph Models for Sparse Matrix Partitioning and Reordering, Ph.D. Thesis, Bilkent University, Computer Engineering and

Information Science, November 1999.
[19] G. Karypis, V. Kumar, R. Aggarwal, S. Shekhar, hMeTiS: A Hypergraph Partitioning Package Version 1.0.1, University of Minnesota, Department of Comp.

Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.
[20] K. Schloegel, G. Karypis, V. Kumar, Parallel multilevel algorithms for multi-constraint graph partitioning, in: Euro-Par, 2000, pp. 296–310.
[21] T.N. Bui, C. Jones, A heuristic for reducing fill in sparse matrix factorization, in: Proceedings of the sixth SIAM Conference on Parallel Processing for

Scientific Computing, 1993, pp. 445–452.
[22] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, VLSI Design 11 (3) (2000) 285–300.
[23] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in: Proceedings of the 19th ACM/IEEE Design Automation

Conference, 1982, pp. 175–181.
[24] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System Technical Journal 49 (2) (1970) 291–307.
[25] L.F. Romero, E.L. Zapata, Data distributions for sparse matrix vector multiplication, Parallel Computing 21 (4) (1995) 583–605.
[26] B. Uçar, Ü. V. Çatalyürek, C. Aykanat, PaToH MATLAB interface. <http://bmi.osu.edu/umit/software.html>, 2009.
[27] T. Davis, The University of Florida Sparse Matrix Collection, Tech. Rep. REP-2007-298, CISE Department, University of Florida, Gainesville, FL, USA,

2007.
[28] M.J. Berger, S.H. Bokhari, A partitioning strategy for nonuniform problems on multiprocessors, IEEE Transactions on Computers C-36 (5) (1987) 570–

580.
[29] H. Kutluca, T.M. Kurc, C. Aykanat, Image-space decomposition algorithms for sort-first parallel volume rendering of unstructured grids, Journal of

Supercomputing 15 (2001) 51–93.
[30] R.H. Bisseling, T. van Leeuwen, Ü.V. Çatalyürek, A hybrid 2D method for sparse matrix partitioning, Presentation at SIAM Conference on Parallel

Processing for Scientific Computing, San Francisco, February 22–24, 2006.
[31] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing 20 (1) (1998)

359–392.
[32] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming 91 (2) (2002) 201–213.

http://bmi.osu.edu/umit/software.html

	A Matrix Partitioning Interface to PaToH in MATLAB
	Introduction
	Background
	Parallel matrix–vector multiply algorithms
	Hypergraphs and hypergraph partitioning
	Hypergraph models for sparse matrix partitioning
	One-dimensional partitioning
	Two-dimensional partitioning: Fine-grain (column–row-net) model
	Two-dimensional partitioning: Jagged-like method
	Two-dimensional partitioning: Checkerboard method

	PaToH MATLAB Matrix Partitioning Interface
	Main components
	Developing partitioning algorithms

	A novel two-dimensional partitioning method
	Coarsening
	Initial partitioning
	Uncoarsening and refinement

	Experiments
	Results
	Further results and discussion

	Conclusion
	References

