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a b s t r a c t

We propose a method for rapidly classifying surface reflectance directly from the output of spatio-

temporal filters applied to an image sequence of rotating objects. Using image data from only a single

frame, we compute histograms of image velocities and classify these as being generated by a specular or

a diffusely reflecting object. Exploiting characteristics of material-specific image velocities we show

that our classification approach can predict the reflectance of novel 3D objects, as well as human

perception.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Identifying the surface reflectance of an object is a funda-
mental problem in vision. Reflectance provides important in-
formation about the object’s material and identity and, given
known reflectance, algorithms for shape reconstruction exist for
both, diffuse [1–4] and specular surfaces [5]. Knowing surface
reflectance is even more important for interpreting image motion,
because of the strong differences in the motion fields generated
by specular and diffuse surfaces.

Previous work on diffuse vs. specular reflectance classification
has relied on specific assumptions and conditions, including
specialized lighting, assumptions about the spectral BRDF, or
knowledge of camera motion. The goal of this paper is to show
how reflectance can be rapidly classified based on the statistical
differences between the image motion generated by moving
diffuse and specular surfaces1 without these restrictive assump-
tions.

Broadly, the past research can be divided into two categories,
one has treated specularities as an undesirable image artifact and
thus focused on their removal, while the other has exploited
specular reflection as an additional source of information to 3D
shape.

Highlight removal: In order to extract 3D shape from an image
most machine vision algorithms use the intensity distribution
across an object. While this approach works well for matte
ll rights reserved.
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d purely diffusely reflecting
surfaces, specular highlights pose a serious problem for these
methods, as the region around a highlight entails abrupt and large
changes in image intensity—as opposed to the smoothly varying
intensity profile (shading) of a matte or Lambertian object.
Therefore, material classification into diffuse and specular
reflectances has been a by-product those approaches that aim to
remove specular highlights.

Within this approach one group of research has employed the
Dichromatic Reflection Model developed by Shafer [6] which
approximates the light reflected by a surface point as a linear
combination of diffuse and specular components, where both
components are assumed to have different spectral distributions.
Using this model Klinker [7] analyzes the spectral histogram of
single images of colored objects and combines it with a sensor
model to separate pixels belonging to highlights from those
belonging to diffuse object color—each of which form separate
spectral lines in the dichromatic plane. Bajcsy et al. [8] extended
this work by also segmenting highlights arising from interreflec-
tions between objects. Both approaches assume the diffuse color
across an object to be uniform, thus would not produce correct
results for textured surfaces. Tan et al. [9] proposes a pixel based
techniques which overcomes this limitation by comparing the
chromaticities of only two neighboring pixels to detect color
discontinuities. However, their iterative approach takes a sub-
stantial amount of time. A more efficient algorithm has been
developed by Chung et al. [10]. They proposed a integrative
feature based technique that classifies boundary pixels as either
belonging to a highlight or not, without relying on the color
signature of the diffuse and specular reflectance components.

An alternative to the approaches relying on the Dichromatic
Reflection Model approach [6] has been to identify specular
highlights by taking advantage of the fact that the light reflected
by specular regions is highly polarized while that reflected by
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diffuse body color is not. The polarization-based algorithm
proposed by Wolff [11], uses the Fresnel reflectance model to
predict the magnitudes of diffuse and specular polarization
components of reflected light. The separation algorithms by
Nayar et al. [12] combines color-, and polarization profiles,
successfully segmenting highlights with underlying varying
diffuse components, and highlights across regions of different
reflectance properties (e.g. smooth-rough).

Exploiting specular cues to 3D shape: Several machine vision
algorithms, instead of treating specular reflections as a source of
noise, take advantage of the cues provided by dense specular flow
in the computation of 3D shape. While there has been a
substantial amount of work for shape from specularity per se
(see [5] for an overview), only a few algorithms involve the
segmentation of diffuse and specular reflection. Nayar et al. [13],
for example, use a special illumination setup and photometric
sampling to determine the Lambertian and specular components
of surface reflection. Image intensities corresponding to different
light source directions are sampled, and their extraction algo-
rithm determines both, the shape of the object shape, and the
proportion of specular and Lambertian reflectance of the surface.
Oren and Nayar [14] introduce a caustics-based framework which
allows to distinguish between real (surface point or texture
element) and virtual features (reflection of a real features by a
specular surface). Their algorithm involves tracking of surface
features during known camera motion. Real and virtual features
are classified according to cluster compactness of the correspond-
ing caustics.2 Roth et al. [15] model dense optic flow arising from
a surface due to known small camera motion as a probabilistic
mixture of diffuse and specular reflection components. Assuming
distant illumination they show parametrically how specular flow
can be related to 3D geometry.

Material classification: DelPozo and Savareze [16] developed an
algorithm which identifies regions of static specular flow, and uses
these to classify part of a surface as specular or non-specular. Their
approach requires only minimal assumptions about the scene, a
single frame and no knowledge about 3D shape. Their approach
consists of three steps: first, regions of anisotropic patterns are
identified, subsequently complex texton image descriptor which
characterizes specular regions and non-specular regions is being
build, and lastly a classifier distinguish between those two types of
regions. To the best of our knowledge this is the only work in
addition to ours aiming to identify surface material per se.

Specular flow and human perception: The above discussed
works each rely on specific—and often multiple—assumptions
(except [16]), be it a specific reflection model, a specific
illumination or sensing setup or known camera trajectory.
Evidence from human vision, however, suggests that monocular
image motion across a few frames provides sufficient information
to classify a surface as diffuse or specular, e.g. [17] showed that
static objects with ambiguous apparent reflectance could be
unambiguously classified as shiny3 or matte when in motion.
Additionally, [18] demonstrated that it is also possible to generate
reflectance illusions from motion: under certain conditions,
rotating specular objects look matte. (For a demonstration of this
effect see http://bilkent.edu.tr/�katja/pr_mov.html Movie 1.)
Roth et al. [19] simulated specular flow on a sphere (consisting
of random dot elements), however, their simulations were not
perceived as shiny in appearance. The question arises: What
aspects of specular flow explain both, the rapid material
classification and the perceptual errors?
2 Envelope defined by the family of reflection rays produced by the motion of

a specular feature [14].
3 Shininess is a perceptual quality of BRDFs with a specular component.
Although specular flow patterns can be quite complex, we will
show in this paper that simple statistical measures on image

velocities can be used to classify moving objects as specular or
diffusely reflecting. In contrast to existing work on highlight
removal and shape-from-specularity our approach does not
require any additional assumptions or conditions. Unlike the
algorithm by DelPozo and Savareze [16] our approach does not
rely on the computation of complex image features or require the
presence of oriented features in the image, hence it is more
reliable. Moreover, we can link our proposed simple statistical
measurements directly to a theory of specular flow and 3D shape.

The paper is structured as follows: In Section 2 we will explain
how surface curvature variability and specular flow are related
and make predictions for the velocity distributions of moving
diffuse and specular objects. In Section 3 we will describe the
implementation of our classification methods, and report experi-
mental results in Section 4. Finally, in Section 5 we will
demonstrate that our classifiers can predict human perception.

This work constitutes a novel approach to material classifica-
tion, relying on simple measures of image velocities only. Our
research provides new insights into how 3D shape and surface
material are related. Rapid methods for reflectance classification,
such as the one proposed here, constitute an important step
towards a fully automated vision system.
2. Specular flow

The relative displacement of a specular feature or highlight
due to camera or observer motion (or, conversely due to object
motion relative to a stationary camera/observer), is negatively
related to the magnitude of surface curvature [3,20], i.e. specular
features ‘‘rush’’ across low curvature regions and ‘‘stick’’ to points
of high curvature. In contrast, all points on a moving diffusely
reflective surfaces stick. This suggests that the distribution of
image velocities,4 across a moving object may contain important
information about the object’s material, because all specular
surfaces with sufficient curvature variation undergoing a generic
motion will have both low velocity ‘‘sticky’’ points and high
velocity points, while diffusely reflective surfaces will have only
‘‘sticky’’ points. Moreover, except for rotations around the viewing
axis, the flow generated by a rigid body motion will have a
principle direction of motion.

For example, for an in-depth rotating specular object (Fig. 1A) the
distribution of image velocities generated by the specular flow
across the object will have regions of relatively high and low
magnitude, whose specific range is directly related to the magnitude
and range of surface curvatures. As an extreme case, a rotating cube,
(0 curvature across sides and positive curvature at the corners) will
produce two kinds of image velocities: high ones, opposite to the
direction of object rotation (along the sides) and those congruent
with object rotation speed and direction (‘‘sticking’’ to corners). As
an object increases in surface curvature homogeneity the resulting
range of image velocities will decrease, the extreme end being a
rotating specular sphere: it will produce image velocities of
magnitude and range 0. This velocity variability can be exploited
for reflectance classification: high image velocity variability, which
can be easily identified from the image velocity histogram, appears
to be crucial to induce the spatio-temporal characteristics associated
with perceived shininess [18]. Conversely, specular objects with low
curvature variability will, when rotated, generate low variability
image velocity distributions which are, not surprisingly, not distinct
4 We define image velocity as the distance traveled per frame by a flow point

(specular or diffuse) along the dominant direction of motion. See Sections 2.1

and 3.2.
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Fig. 1. Specular velocity and curvature variability. (A) Cross-sections through 3D scenes. The position of the 2D camera (triangle) and a point light source (circle) are fixed. We

find the surface normal at the point on the object where the specular feature (square) will be visible to the camera. ‘‘Specular velocity’’ is measured as the distance traveled by the

specular feature in x (indicated by fat black line) as the object rotates 101 counterclockwise around its origin. Consider the cuboidal cross-section: 1. The specular feature

(sf) appears on a high curvature point and ‘‘sticks’’ to this region as the object rotates. 2. The sf moves some distance in the direction of object rotation. 3. The sf appears on a low

curvature point. After a 101 rotation the distance that it has traveled, now in opposite the direction of object rotation, has nearly doubled. Compare this to the sf on the ellipsoid.

(B) Sf velocities for specular (upper plot) and surface feature velocities for diffusely reflecting (lower plot) objects per 21 rotation. See text for details.
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from those generated by diffusely reflecting objects (Fig. 1B). This
last observation may account for results by [19]. The simulated
specular flow did not look shiny, since a sphere lacks the surface
curvature variability crucial to induce the spatio-temporal char-
acteristics associated with perceived shininess.
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Fig. 2. Analysis of specular flow. A surface f(x,y), reflecting a far-field illumination

environment viewed orthographically to produce an image I(x,y), undergoing a

rigid body transformation T. The figure has been adapted from [21].
2.1. Statistical information in flow

Using the statistical properties of flow to classify material
properties requires the statistical relationships to be consistent.
What conditions are required for optic flow statistics to be
reliably different for diffuse and specular surfaces? To answer this
question we derive the relationship between object properties
and the statistics of optic flow. In particular, we show how the
motion of specular points depend critically on the principal
curvature of the surface at each point, so that the distribution of
curvatures produces the statistics of specular flow. We make this
relationship explicit below, and use the resulting equations to
discuss the conditions needed for classification accuracy.

Image motion induced by a moving object can be decomposed
into two components: image motion due to the change in
direction of surface normals (specular flow) and image motion
due to the displacement and rotation of surface points (optic
flow). Explicit equations for specular flow can be derived assuming
orthographic viewing and illumination parametrized by directions
on a sphere. The object surface F(x, y)¼(x, y, f(x, y)) is represented as
a function of image coordinates x, y, with ~nðx,yÞ ¼Nðy,fÞ be the
surface normal at the surface point F(x, y) with direction ðy,fÞ and N

represents the mapping between spherical and cartesian coordi-
nates. Because the viewing direction is v¼(0, 0, 1), the mirror
direction ~r ¼Nð2y,fÞ produces the image point at (x, y).

When the surface undergoes a rigid body motion TF(x, y)¼RF(x,
y)+t, both surface points and surface normals are transformed, and
both induce image motion. For a sufficiently textured surface, optic
flow is given by the projection of the motion field:

dx

dt
dy

dt

0
BB@

1
CCA¼ I2�3ð�R _R

T
Fðx,yÞþvobjÞ ð1Þ

where I2�3 is the orthographic projection matrix, and _RðtÞ ¼ ½o��x is
the cross-product matrix formed from the rotation axis o. Because
translations simply translate the flow under the viewing and
illumination assumptions, we focus on rotations. The relationship
shows that the motion field depends on the distribution of depths
F(x, y). The other component of image motion is specular flow,
caused by the motion of surface normals.

For a specular surface, the change in surface normals caused by
rotation around an axis o induces a specular flow field. The
equations simplify if we consider the vector field on a sphere
induced by a rotation around expressed in spherical coordinates
o¼ gðcosy0sinf0,siny0sinf0,cosf0Þ, where g is the magnitude of
the rotation and y0,f0 encode the direction. Let a,b represent the
angular coordinates of the reflection vectors corresponding to
each normal. In this representation, da=dt and db=dt are
differential changes to the direction of the reflection vectors
induced by the motion (Fig. 2).

A rigid rotation induces a vector field of changes to the
reflection vectors:

@a
@t
@b
@t

0
BB@

1
CCA¼ g cosb0�sinb0cosða�a0Þcotb

sinb0sinða0�aÞ

 !
ð2Þ

Specular flow due the change in reflection vectors was derived
in [22]. Here we rewrite it in terms of surface curvature using the
shape operator, the matrix whose eigenvectors and eigenvalues
form the principle curvatures. The shape operator stems from
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approximating a surface locally around a point p¼(x, y, z) as a
quadratic patch:

ðx,y,f ðx,yÞÞ � pþx~exþy~eyþðx yÞS
x

y

 !
~ez ð3Þ

where the matrix S is the shape operator:

S¼
1

ð1þjrf j2Þ3=2

1þ f 2
y �fxfy

�fxfy 1þ f 2
x

 !
fxx fxy

fxy fyy

 !
ð4Þ

Then the specular flow is given by

dx

dt
dy

dt

0
BB@

1
CCA¼�S�1

fx �fy

fy fx

 !
ð1þjrf j2Þ 0

0 jrf j2

 ! da
dt
db
dt

0
BB@

1
CCA ð5Þ

While specular flow ðdx=dt,dy=dtÞ is not directly measurable, it
generates measurable image motion in terms of an optic flow field
whenever the environment map has sufficient contrast and
texture variability. We will assume this is true when discussing
the relationship between curvature and image motion.

The three matrices in Eq. (5) have the following interpretation,
from right to left. The first two express the effect of the orientation of
the tangent plane—large gradients means more specular flow. The
last matrix is the inverse of the shape operator. We can use this fact to
forge a relationship between specular flow and principal curvatures,
which are the eigenvalues of the shape operator. Specifically,
S¼VDV�1, where D is a diagonal matrix with the principal curvatures
k1 and k2 as the entries, and V contains the directions of principal
curvature. Because S�1

¼V�1D�1V, which means specular flow is
proportional to inverse principal curvatures. For example a large
curvature yields a large eigenvalue, and hence produces no specular
flow—the image motion at those points is only due to optic flow. In
contrast, small curvatures produce exceptionally fast specular flow.
The direction of the flow is determined by the projection of the
direction of motion onto the direction of principle curvature and by
the sign of the curvature—convex produces motion away from the
Fig. 3. 3D curvature and specular flow. From left to right starting with the upper row

magnitude of principle curvatures, darker gray values correspond to concavities, lighter

right motion, and Panel 4 a 2D density estimate of simulated velocity measurement. S
surface rotation, concave towards. Parabolic points are especially
simple because they have only one non-zero eigenvalue. The matrix S

is singular for these points and the specular flow is parallel to the
principle curvature. From this analysis we see that the distribution of
principal curvatures has a direct effect on the characteristics of
specular flow. Fig. 3 panel 2 shows the principle curvature field and
simulated flow (panel 3) for a surface (panel 1) with a simulated
rotation around the y-axis in the surface plane. Note the relationship
between the curvature field and the simulated flow. Locally, the norm
of a given flow vector can be a good indicator for the image velocity of
the corresponding image point. Large flow will lead to high image
velocities, conversely small flow will cause relatively low image
velocities. Since we are interested in the global distribution of flow,
i.e. across the object, we first need to estimate the dominant direction
of image motion and then project each flow vector onto this axis,
before computing the corresponding image velocities. Fig. 3 panel 4
shows a 2D density estimate of simulated velocity measurements, for
which the bimodal distribution is clearly apparent.

It should be noted that a rotating planar specular surface (flat
mirror) constitutes a singularity and could not be classified by the
proposed method. The specular flow, in this case, would be
identical at every image point, hence the distribution of image
velocities would contain only a single value. Therefore, a minimal
requirement for our algorithm to work is that sufficient surface
curvature modulation is present across the object. Exactly what
sufficient entails in terms of curvature classes (hyperbolic,
parabolic, or elliptic) and magnitudes present is the subject of
ongoing research in our lab.
3. Implementation

3.1. Algorithm description

To rapidly classify reflectance properties from image velocities
our strategy was to (1) estimate velocities from rotating specular
: Panel 1 shows a surface as a contour map. Panel 2 depicts the corresponding

gray values to convexities. Panel 3 shows the theoretical specular flow for a left to

ee text for details.
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objects using spatio-temporal filters, (2) find the principal
direction of motion, and (3) classify the velocity histogram in
that principal direction using three different approaches: para-
metric, and non-parametric density estimation, as well as non-
negative matrix factorization. We chose to classify movies on the
basis of histogram velocities because we expected the velocity
signature of specular or matte (appearing) reflectances to be
largely object (identity) invariant (but see Section 2 for the special
role of 3D curvature). Furthermore, by focusing on the principal
direction of motion we achieve object motion invariance.

3.2. Spatio-temporal filtering

We filtered image sequences by directionally selective filters
G2 (second derivative of a 3D Gaussian) and H2 (and its Hilbert
transform) at orientations ða,b,gÞi [23]:

fOðx,y,zÞ ¼ GðrÞQNðxuÞ ð6Þ

are the even and odd filters formed by a nth order polynomial
QNðxuÞ

5 times a separable windowing function G(r) (e.g. a
Gaussian-like function), both of which are assumed to be
rotationally symmetric. R is the transformation that these
functions are rotated by such that their axis of symmetry points
along the direction of cosines a,b and g. We estimated velocity
vectors6 from the filter coefficients using the max-steering
method of Simoncelli [24]. Subsequent analysis of these velocities
was restricted to include samples only from within object

boundaries in order to avoid contamination with boundary
motion. Velocity vectors were sampled from a grid indicated by
the colored dots in Fig. 5C.

3.3. Dominant direction of motion

We performed principle components analysis on image
velocities to estimate the dominant direction of motion for a
given movie frame. Image velocities were projected onto this
direction vector.

3.4. Parametric and non-parametric density estimation

To develop statistical classifiers for reflectivity we estimated
the conditional probabilities of the projected velocities for both
diffuse and specular objects. To verify our results did not depend
on the details of a specific density estimation learning procedure,
we used three different density learning approaches. The three
classification algorithms are described below.

3.4.1. Cross-entropy density estimation
1.
 Compute histogram estimates of the conditional densities of
velocity given shiny.
2.
 Compute histogram estimates of the conditional densities of
velocity given matte.
3.
 Compute likelihood of a sample given the shiny density.

4.
 Compute likelihood of a sample given the matte density.

5.
 Take likelihood ratio and compare against a threshold.

Histogram densities were estimated with a generalized cross-
entropy density estimator [25] that uses a gaussian kernel
and data-driven bandwidth selection. To classify a given movie
frame into shiny or matte we used histogram estimates of
the conditional densities of velocity x given shiny S, PðxjSÞ, and
5 xu¼ axþbyþgz.
6 These were indicating both, direction and magnitude of the sample.
matte M, PðxjMÞ, from image sequences judged shiny and matte in
[18] (also see Section 5). A sample velocity xu from a test image
sequence was classified by comparing the likelihood ratio
PðxujSÞ=PðxujMÞ against a threshold k.7 Note, that we also used
the value of the likelihood ratio as a graded material measure for
the data set. Graded measures are particularly useful for
comparisons to human perception, as discussed below.

3.4.2. Mixture of Gaussians
1.
alar
Fit a mixture of Gaussians with two components [26] to a
sample frame of each movie.
2.
 Compute index of bimodality (velocity contrast) for each
sample frame velocity contrast of each sample.
3.
 If index 41; sample¼specular; else sample¼matte.

To confirm that the shape of a given histogram was indeed
driven by ‘‘diagnostic’’ (high and low curvature) regions we fitted
a mixture of Gaussians with two components [26] to frames of
each movie. Given the analysis in Section 2.1 we reasoned that a
two-component model would best capture the bimodal nature of
specular reflectance velocity distributions. If the estimated
Gaussian distributions would significantly overlap it would
indicate the absence of high and low velocity regions, hence be
indicative for diffuse reflectance. From the two estimated
Gaussian means (m1,m2) we compute the velocity contrast of the
sample

Cb ¼
jm1�m2j

maxðs1,s2Þ � 2
ð7Þ

which is derived from the common index of bimodality, i.e.
normal distribution means need to be separated by at least twice
the common standard deviation. Instead of the common-, we used
the larger standard deviation, which leads to a more stringent
criterium of bi-modality and we multiplied this value by 2 for
cosmetic purposes such that our cutoff value would be 1. All 36
movies were analyzed, frames were chosen such that the
orientation of the superellipsoids were approximately the same.
If Cb41, i.e. if the distribution of image passes the criterion of
bimodality, the sample is classified as specular, else as matte. The
value of Cb also forms a graded surface material measure.

We further computed the posterior probability of each pixel
given either Gaussian distribution. Pixel classifications are
illustrated by mapping color coded velocity samples back onto
the frame they were taken from.

3.4.3. Mixture of histograms using non-negative matrix factorization
1.
 Factorize velocity distributions using non-negative matrix
factorization.
2.
 Compute shininess criterion by taking a weighted ratio of
specular and matte components.
3.
 If index 41; sample¼specular; else sample¼matte.

To smooth the likelihoods and form a low-dimensional represen-
tation for the densities, we factorized the velocity distributions
using convolutive non-negative matrix factorization (NNMF) [27].
We preserved three components based on an initial estimate that
three components account for as much as 97% of the approxima-
tion error (see fig.). Because the histogram of a test sequence can
be represented as a weighted combination of the three compo-
nents, these weights can be used to represent the velocity
7 k was obtained by a bootstrapping procedure used to constrain the false

m rate to 5%.
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distributions of novel objects. To estimate the weights for a novel
sequence, we maximized the likelihood of the total sample
evaluated on the components with respect to the weights. The
best fitting weight values were used to classify a sample as shiny
or matte. A very simple shininess criterion can be computed by
taking the ratio of the weights of the two ‘‘specular components’’
and the weight of the ‘‘matte component’’, e.g. Cw¼1/2(wf 1+wf 3)/
wf 2, with values larger than 1 being classified as specular (see
Fig. 7B).

3.5. Movies

The test set consisted of 36 movies (6 shapes� 6 light probes)
of rotating specular superellipoids (http://bilkent.edu.tr/�katja/
g_run.html). Objects were constructed according to

1¼
x

rx

����
����
2=n2

þ
y

ry

����
����
2=n2

" #n2=n1

þ
z

rz

����
����
2=n1

ð8Þ

We set rx¼1 and ry¼rz¼0.64. Surface curvature was determined by
setting n1, n2 to: 0.3, 0.5, 0.7, 0.8, 0.9 or 1.0 (Fig. 4). Each object
rotated in depth. Its angular speed was adjusted (0.1, 0.35, 0.61, 0.74,
0.87, 1.01/frame) such that the resulting image velocities were in the
Fig. 4. Renderings. Sample frames from the test set. Panels are labeled according to the o

described in Eq. (8). Labels on the y-axis denote the light probe that the object was rend

tr/�katja/g_run.html. As the shape of the object exhibits less surface curvature variab

increasingly more homogeneous (see Section 2).
range that our filters were sensitive to. Superellipsoids were
rendered under six different light probes: two natural (L1 (‘‘grace’’),
L4 (‘‘uffizi’’) from http://gl.ict.usc.edu/Data/HighResProbes/), two
partially (L2, L5), two fully phase-scrambled (L3, L6) versions of L1
and L3, respectively. For each movie 40 512�512 images were
rendered with Radiance [28], using projective projection.
4. Experimental results

4.1. Histograms

Fig. 5 illustrates the characteristic changes that the velocity
histogram undergoes as the object decreases in surface curvature
variability (left to right). Table 1 shows normalized log-likelihood
ratios (LLR) for all histograms testing H0 that a given histogram
has been generated by a matte object.
4.2. Mixture of Gaussians pixel classification

Fig. 6 shows that the simple velocity distribution measure was
successful in roughly identifying image regions of high (blue
bject shape and the light probe. Numbers on the x-axis indicate values for n1, n2, as

ered under (see Section 3.5 for details.) Movies can be viewed at http://bilkent.edu.

ility (left to right) we expect the corresponding image velocity distribution to be

http://bilkent.edu.tr/&sim;katja/g_run.html
http://bilkent.edu.tr/&sim;katja/g_run.html
http://bilkent.edu.tr/&sim;katja/g_run.html
http://gl.ict.usc.edu/Data/HighResProbes/
http://bilkent.edu.tr/&sim;katja/g_run.html
http://bilkent.edu.tr/&sim;katja/g_run.html
http://bilkent.edu.tr/&sim;katja/g_run.html


Fig. 5. Histograms. Velocity histograms for all 36 movies. Labels are as in Fig. 4. The bimodal shape of the histograms is evident for specular appearing objects (e.g. n1,

n2¼0.3) but not for matte appearing ones (e.g. n1, n2¼1.0).

Table 1
Normalized log-likelihood ratios.

Light probe Superellipsoid shape coefficient n1, n2

0.3 0.5 0.7 0.8 0.9 1.0

L1 1.000T 0.362 0.145 0.153 0.114 0T

L2 0.961 0.362 0.184 0.215 0.139 0.031

L3 0.877 0.365 0.184 0.270 0.103 0.011

L4 0.749 0.267 0.178 0.114 0.114 0.003

L5 0.766 0.476 0.223 0.187 0.142 0.014

L6 0.805 0.368 0.159 0.187 0.148 0.003

Average 0.860 0.367 0.179 0.188 0.127 0.010

Values larger than k (k¼0.16) (in bold) were classified as shiny with a predicted

error rate of less than 5%. Training data are indicated by T.
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pixels) and low (orange pixels) velocities. Purplish colors indicate
that the sample could come from either Gaussian distribution.
Note, that the distinctiveness of the high and low velocity regions
decreases as the amount of the surface curvature variability
decreases: in the corresponding two-Gaussian model fit, the two
components approach a uni-modal mixture. The measure Cb

exploits the bi-modality of specular velocity distributions to
classify the material of test sequences (see Table 2).
4.3. Non-negative matrix factorization

The distribution of estimated weights across the stimulus set is
shown in Fig. 7A. Ellipsoidal objects’ velocity histograms (multi-
ples of 6) tended to have high weights on component 2 (solid
triangle) whereas most cube-like objects tended have high
weights on components 1(circle) and/or 3(square).
4.4. Objective classification of material of novel 3D objects

To verify that the velocity distribution can be sufficient for
objectively classifying material we tested an object with more
complex shape variation. We generated 40 frames of a rotating
version of the Utah ‘‘Teapot’’. This object was rendered with a
diffuse [29] and with a specular reflectance (see Fig. 8). We
evaluated the sequence using histograms, mixture of Gaussians,
and NNMF approaches. Teapots were correctly classified as shiny
and matte for all three methods. Histograms: LLR specular and
diffusely reflecting teapot were 0.26 (classified as shiny) and
0.008 (classified as matte). Note that the classifier has been
trained on specular movies only (superellipsoids), yet the matte
object has been classified correctly. Mixture of Gaussians: Cbs for
specular and diffusely reflecting teapot were 1.16 (classified as
shiny), and 0.87 (classified as matte). NNMF: The specular teapot



Fig. 6. Pixel classification using mixture of two Gaussians. Each panel shows a movie frame with a subset of classified (fast vs. slow) velocity samples mapped back onto the

frame. Labels are as in Fig. 4. Color indicates whether a given sample belongs to a high velocity region (blue) or a low velocity region (orange). This approach works well for

bimodal velocity histograms (see corresponding panels in Fig. 5). Purplish color values indicate that a given sample is equally likely to have generated from either Gaussian

distribution—which would occur for unimodal histograms.

Table 2
Average Cb.

Light probe Superellipsoid shape coefficient n1, n2

0.3 0.5 0.7 0.8 0.9 1.0

Average Cb 1.658 1.4143 0.6824 0.7247 0.4778 0.1341

The average was computed across light probes for superellipsoids with shape

coefficients n1¼n2 from 0.3 (cuboidal) to 1 (ellipsoidal). Values 41 (in bold)

indicate that the velocity histogram was classified as bimodal, which could be a

rough predictor of material shininess. Compare the relative magnitudes of values

to average observer ratings in Table 3.
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classified as shiny Cw¼33.2, and the diffusely reflecting teapot
was classified as matte Cw¼0.7954.
8 Note, that in a separate experiment we measured perceived rigidity for the

same set of stimuli and found that the two percepts were significantly correlated
5. Predicting human perception

5.1. Behavioral procedure and data

We used the same set of movies (Section 3.5) in a behavioral
experiment with the following modifications: (1) the angular
speed was adjusted to 2.951/frame, (2) a given superellipsoid
rotated in depth from �451 to 1351, 01 being the direction to the
camera. Frames were assembled into a movie using Quicktime
Pro, and set to loop back and forth. The size of the rotating objects
at their maximum visible extend was 8.91 visual angle. All movies
consisted of 61 frames and were played at 50 frames/s on a G5
workstation Sony GDMC520 (1024�1280) Refresh rate 75 Hz,
NVIDIA GeForce 6800 UltraDLL.

Observers were seated in a dark room with their heads
stabilized through a chin rest. The viewing distance to the screen
was 70 cm. On a given trial observers saw a clip of a rotating
superellipsoid either rotating from left to right or right to left (this
was achieved by simply playing movies backwards), clips could be
re-viewed if desired and the order of presentation of individual
clips was randomized. Four observers (three naive, one author
KD) indicated via keyboard press on a scale from 1 (matte)–7
(mirror reflection) how shiny a given superellipsoid appeared.
Prior to the experiments observers were familiarized with the
concepts of shininess.8



Fig. 7. NNMF of velocity histograms. (A) Estimated weights for our test set. (B) Average values of the shininess criterion Cw are 5.4, 1.8, 1.0, 0.7, 0.5, 0.06 for shapes n1,

n2¼0.3, 0.5, 0.7, 0.8, 0.9, 1.0, respectively. The red line represents the cut off value for shininess: Cw¼1. The black square on top or next to each bar indicates average

observer data for the same movie (note, observer values are plotted on a different scale). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 8. Classification of novel shape and surface material. Histograms and pixel classification are shown for the specular (upper) and diffusely (lower) reflecting Utah

Teapot. Note that our classifiers have been trained on specular movies only, yet the matte object has been classified correctly. This supports our notion that physically

matte and apparent matte moving objects share the same flow characteristics.
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We transformed all rating data to fall within the interval [0 1]
by (Xi�1)/6, where Xi is the individual rating on a given trial i, and
analyzed the data with respect to effects of surface curvature
variability.9 Fig. 9 shows mean shininess ratings for all shapes and
(footnote continued)

r¼0.69, po0:00001, i.e. an object perceived as shiny tended to also be perceived

as more rigid. In a separate work we show how objects can be classified according

to both, rigidity and reflectivity using optic flow information only [30].
9 The second variable in this experiment was the degree of phase scrambling

(‘‘realism’’) of the light probe. However, we will not discuss those results at this

point as the primary concern of this study is surface curvature variability. For

additional information contact the authors.
light probes. Results demonstrate that the more surface curvature
variability a rotating object has the shinier it is perceived
F(5,1860)¼674.29 po0:0001. A subset of average shininess
ratings are reported in Table 3.
5.2. Regression results

Regressing normalized LLRs (Table 1) onto normalized ob-
server data (Fig. 9) yielded R2

¼0.45, po0:00001. Repeating the
analysis with only the most shiny and matte data points yielded
R2
¼0.75, p¼0.0003. Training data was excluded from the

regression.



Table 3
Human shininess ratings.

Light probe Perceived shininess of shape n1, n2

0.3 0.5 0.7 0.8 0.9 1.0

L1 0.9740 0.9635 0.9219 0.8125 0.7552 0.6927

L3 0.8229 0.6875 0.3385 0.2292 0.0938 0.0365

Average 0.8872 0.7830 0.4991 0.3837 0.2578 0.1962

Shown are ratings for two light probes (those eliciting on average highest and

lowest shininess ratings) as well the average data (across all light probes and

observers). Differences in relative apparent shininess for different light probes is

consistent with previous research [31]. In the experiment observers rated

apparent shininess of all 36 light probe—shape combinations.

Fig. 9. Behavioral data. (A) Mean shininess ratings for all shapes and light probes. Shape IDs are coded by gray values as indicated. (B) Regression of histogram

classifications (LLRs) onto observer data. See text for details.
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6. Conclusion

We provided a first account of how to rapidly classify surface
reflectance from a single frame of object motion, without any
assumptions. We show that moving diffusely reflecting, and
specular objects with sufficient curvature variability, generate
distinct image velocity distributions whose respective character-
istics can be captured by simple, invariant statistical measures.
Our results account for the misperception of material in [18,19],
demonstrating that diffusely reflecting and apparently matte
objects, i.e. those that are specular but with insufficient surface
curvature variability, share the same velocity histogram char-
acteristics. Thus, we were able to correctly classify a diffusely
reflecting object on the basis of a classifier that was trained on a
matte-appearing (but physically specular) object.

In future work we will extend our analysis to a velocity region-
based approach, as the extent and spatial relationships between
high and low velocity regions is likely to be another important
diagnostic feature in classifying surface reflectance.
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