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Abstract

Matrix exponential (ME) distributions not only include the well-known class of phase-type distributions but also
can be used to approximate more general distributions (e.g., deterministic, heavy-tailed, etc.). In this paper, a novel
mathematical framework and a numerical algorithm are proposed to calculate the matrix exponential representation
for the steady-state waiting time in an ME/ME/1 queue. Using state–space algebra, the waiting time calculation
problem is shown to reduce to finding the solution of an ordinary differential equation in state–space form with order
being thesum of the dimensionalities of the inter-arrival and service time distribution representations. A numerically
efficient algorithm with quadratic convergence rates based on the matrix sign function iterations is proposed to find
the boundary conditions of the differential equation. The overall algorithm does not involve any transform domain
calculations such as root finding or polynomial factorization, which are known to have potential numerical stability
problems. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The successive waiting times in a single server queue with a first come first serve (FCFS) service
discipline is depicted inFig. 1. Here,Bn denotes the service time of customern andAn denotes the time
between the arrival of customersn andn + 1. The service of thenth customer beginsWn seconds after

∗ Tel.: +90 312 2902337; fax: +90 312 2664192.
E-mail address: akar@ee.bilkent.edu.tr.

0166-5316/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2004.12.002



132 N. Akar / Performance Evaluation 63 (2006) 131–145

Fig. 1. Successive queue waiting times in a single server queue.

its arrival whereWn denotes thenth customer’s waiting time in the queue. We observe fromFig. 1 that
the queue waiting timesWn+1 andWn of two successive customers in a single server queue are related
through the so-called Lindley recurrence relation[21]

Wn+1 = max(0, Wn + Bn − An), n ≥ 0. (1)

The GI/GI/1 notation (GI stands for general independent) is used to represent this queueing system with
one server and infinite waiting room where the successive inter-arrival times (service times)An (Bn) are
independent and identically distributed. We note that the more general case of non-renewal inter-arrival
and/or service times is left outside the scope of the current paper. We also assume in this paper that the
inter-arrival and service times possess a matrix exponential (ME) distribution[5,24]. An ME distribution
G on [0,∞) has a densityg(x) in the interval [0,∞) of the form

g(x) = veTxs + dδ(x), (2)

wherev is a row vector,T is a square matrix of sizem, s is a column vector,δ(x) is the unit impulse
function, andd = 1 +vT−1s is a scalar indicating the probability mass at zero[20,24]. The density then
has the unilateral Laplace transform

g∗(s) = L [g(x)] =
∫ ∞

0−
e−sxg(x) dx = v(sI − T)−1s + d, (3)

where the unilateral Laplace transformL [·] has a lower integration limit that is set to 0− as in[20]. In
short, we use the triple (v, T, s) to represent this matrix exponential distribution with dimensionalitym.
The representation (v, T, s) is irreducible if and only if

det(sI − T) = k[denominator ofg∗(s)],

wherek is a constant. By using[24], the ith moment of a matrix exponential distribution for a random
variableX with representation (v, T, s) can be written as

E[Xi] = (−1)i+1i!vT−(i+1)s.

The class of ME distributions are also characterized by rational Laplace transforms of their densities.
The well-known class PH of phase-type distributions form a sub-case of ME-type distributions; they
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have the representation as in(2) with s =−Te for a column vectore of ones and a substochastic matrix
T [26]. Moreover, PH-type distributions have a probabilistic interpretation as the distribution of time till
absorption in a continuous-time Markov chain withm transient and one absorbing state for which the
matrix T governs the transitions among the transient states[26].

Matrix exponential distributions are pioneered by Lipsky[24] and queues with matrix exponential
inputs have recently been addressed in a number of studies[5,11,25]. The focus of this paper is the
ME/ME/1 queue which is an important sub-case of the GI/GI/1 queue and we will study the steady-state
distribution of the waiting timeW � limn→∞ Wn in the ME/ME/1 queue, when it exists. There have been
successful studies on the approximation of more general (including heavy-tailed) inter-arrival and service
times by PH- or ME-type distributions[7,17,30]. Therefore, the approach proposed in this paper can also
be viewed as an approximate methodology to find the steady-state waiting times for the more general
GI/GI/1 queue.

For classical techniques that rely on root finding and Wiener–Hopf factorizations, we refer the reader to
several textbooks on queueing theory[3,18,21]. However, transform domain techniques and particularly
root finding may become ill conditioned for large-sized problems[27]. With the introduction of the
matrix analytical approach, matrix calculations have taken the role of root finding and such calculations
are amenable to algorithms with enhanced numerical features compared to the classical transform domain
techniques[29]. Using the matrix analytical approach, Sengupta[29] and Asmussen[4] show that the
waiting time has a matrix exponential representation and they present algorithms for the GI/PH/1 queue
using a nonlinear matrix equation which can be solved using an iterative technique. One drawback of
these algorithms are their linear convergence rates. Recently, Asmussen and Moller studied the more
general GI/PH/c and MAP/PH/c queues with arbitrary number of servers again making use of the matrix
analytical paradigm[6].

Another powerful approach is also a matrix analytical approach, the so-called matrix geometric
paradigm pioneered by Neuts, which involves computations for discrete-state structured Markov chains
[26,27]. An important sub-case of the GI/GI/1 system, the so-called PH/PH/1 queue, is studied in depth
by Neuts using the quasi-birth-and-death (QBD) process framework and the matrix geometric approach
[26]. In [26], an iterative algorithm is used with matrices of size being theproduct of the dimensionalities
of the inter-arrival and service time distribution representations, to first find the steady-state queue length
probabilities in matrix geometric form and then the waiting times. Latouche and Ramaswami extend this
analysis by considering the queue length process at the embedded epochs of queue size change[23]. They
show that the embedded QBD process can be solved by matrix geometric techniques and the quadratically
convergent logarithmic reduction (LR) procedure[22] operating on matrices that have a size of thesum
of the dimensionalities of the inter-arrival and service time distribution representations, as opposed to
their product. This size reduction within the LR iterations is a significant advantage of their proposed
algorithm. However, obtaining the matrices required for the LR iterations still require the construction of
a matrix with the order of the product of the number of phases in the arrival and service time distributions
and further matrix multiplications involving this product-sized matrix[23]. This size dependence on the
“product” appears to be a limiting factor for the scalability of the proposed algorithm in[23].

In this paper, we propose state–space methods for reducing the problem of finding the steady-state
waiting time distributions in ME/ME/1 queues to the solution of an ordinary differential equation (ODE)
with constant coefficients but with unknown initial conditions to be determined. We note that state–space
methods are successfully being used as powerful computational tools particularly in the area of control
systems and other areas including filtering and signal processing[15,16]. The strength of state–space
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methods stems from the availability of a wide variety of advanced linear algebra tools that can be employed
in conjunction with the state–space methodology. One such powerful linear algebra tool is the matrix
sign function that is used for solving the algebraic Riccati equation that arises in the solution of a
number of optimal control and filtering problems[12,28]. The problem of finding the initial conditions
of the ODE is shown to be equivalent to an ordinary spectral divide-and-conquer (SDC) problem (see
[9]) applied on a certain “coupling matrix” whose size equals the sum of the dimensionalities of the
inter-arrival time and service time distribution representations. In our proposed approach, the coupling
matrix is very easy to obtain and we do not need the Laplace transforms of the inter-arrival time and
service time densities. Instead, we use their natural matrix exponential representations, which makes
the overall algorithm numerically stable. We note that the term “coupling matrix” was coined by van
de Liefvoort[31] in which the waiting time distribution for the PH/PH/1 queue is obtained by finding
the eigenvalues of a certain matrix which is similar to the coupling matrix investigated in this paper. We
propose to use the computationally efficient matrix sign function and the corresponding Newton iterations
for solving the underlying spectral divide-and-conquer problem[12]. We note that this proposed method
does not require the computation of individual eigenvalues and eigenvectors. The reason for choosing
the matrix sign method stems from its ease of implementation although we note the existence of other
SDC techniques available in the numerical linear algebra literature[8]. We compare our results with the
algorithm proposed by Latouche and Ramaswami[23] for the case of the PH/PH/1 queue and also with
that of Asmussen and Bladt[5] for the GI/ME/1 queue, in terms of the number of required iterations and
accuracy.

The organization of the paper is as follows. In Section2, the spectral divide-and-conquer problem is
described and the matrix sign function is introduced. In Section3, we present the solution of the ME/ME/1
queue. Section4 is devoted to numerical examples. We conclude in Section5.

2. Spectral divide-and-conquer problem and the matrix sign function

We use the following notation in this paper. We denote vectors or matrices by boldface letters to
differentiate them from scalars.I denotes an identity matrix of suitable size. We use the notation * to
denote Laplace transforms. All differential equations and functions ofx, the indeterminate variable, to
be used in this paper are defined in the interval [0,∞).

For a givenn × n nonsymmetric real matrixM, we are interested in finding an invariant subspaceR
(i.e.,MR ⊆ R) corresponding to the eigenvalues ofM in an a priori specified regionD of the complex
plane. Equivalently, we are interested in obtaining an orthogonal matrixQ = (Q1, Q2) (i.e.,QTQ = I) with
R = span{Q1} such that

QTMQ =
[

M11 M12

0 M22

]
, (4)

where the eigenvalues ofM11 are the eigenvalues ofM in D. This problem is called the spectral divide-
and-conquer problem and is one of the most extensively studied problems of numerical linear algebra[9].
The Schur decomposition-based algorithm[10], inverse-free methods based on the QR decomposition[9],
and the matrix sign function-based methods[12,28]are among the most popular methods of numerical
linear algebra which address the SDC problem. A comparative study of the existing methods for the SDC
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problem in the context of the GI/GI/1 queue is outside the scope of the current paper and we focus only
on the matrix sign function-based algorithm due to the ease of its implementation.

Let C−, C+, andC0 denote the open left half plane, open right half plane, and the imaginary axis,
respectively. In many applications, the region of interestD is chosen to beC−, or equivalently the
eigenvalues of the submatrixM11 are the same as those of the matrixM with negative real parts. The
following is based on[28]. The sign function sign(M) of a matrixM with no eigenvalues on the imaginary
axis can be defined via the Jordan canonical form ofM. Let

M = X

[
J− 0

0 J+

]
X−1

be the Jordan canonical form ofM, where the eigenvalues ofJ− are in the open left half plane, and the
eigenvalues ofJ+ are in the open right half plane. Then, sign(M) is defined as

sign(M) � X

[−I 0

0 I

]
X−1. (5)

The simplest scheme to obtain the sign function ofM is the following Newton iteration

Mj+1 = 1

2
(Mj + M−1

j ), j ≥ 0, M0 = M. (6)

The above iteration is globally and ultimately quadratically convergent withM∞ � limj→∞ Mj =
sign(M). Scaling can also be introduced into the iterations(6) as in [2] to speed up the iterations but
we will not consider scaling in this paper. Moreover, if an orthogonal matrixQ is chosen such that its
leading columns span the range space of (I − M∞), thenQ yields the desired decomposition given in
(4). This last step can be carried out by a rank revealing QR decomposition[13]. A rank revealing QR
decomposition of a matrixA is

A = QR�,

whereR is upper triangular,Q is orthogonal, and� is a permutation matrix such that the rank deficiency
of A is exhibited inR for which the diagonal entries decrease in absolute value with increasing index. If
r = rank(A) is a priori known exactly (as will be the case for the current paper), then the firstr columns
of Q are known to span the range space ofA.

For the solution of certain structured Markov chains, Akar and Sohraby proposed to use the Newton
iterations for a matrix, sayM, which turns out to have one single eigenvalue on the imaginary axis (i.e.,
at the origin)[2]. Let xr andxl be right and left eigenvectors of the matrixM, respectively, corresponding
to the eigenvalue at the origin. The following Newton iteration is then suggested in[2]

Mj+1 = 1

2
(Mj + M−1

j ), j ≥ 0, M0 = M + xrxl

xlxr
, (7)

which converges toM∞. A rank revealing QR decomposition of (I − M∞) yields an orthogonal matrix
Q such that the decomposition(4) holds with the eigenvalues ofM11 andM22 being inC− andC0 ∪ C+,
respectively.
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3. Waiting times in the ME/ME/1 queue

Consider the ME/ME/1 queue with a matrix exponential inter-arrival distributionA and a matrix
exponential service time distributionB with irreducible representations (va, Ta, sa) and (vb, Tb, sb),
respectively. The matricesTa andTb are of sizesma × ma andmb × mb, respectively. For the sake of
generality, we allow arbitrary probability masses (at zero)da = 1 + vaT−1

a sa and db = 1 + vbT−1
b sb,

0≤ da, db < 1, for the inter-arrival and service time distributions, respectively. The associated Laplace
transforms are rational functions and are expressed as

a∗(s) = pa(s)

qa(s)
= va(sI − Ta)

−1sa + da, (8)

and

b∗(s) = pb(s)

qb(s)
= vb(sI − Tb)

−1sb + db. (9)

Recall thatBn denotes the service time of customern, An denotes the time between the arrival of customers
n andn + 1, and the waiting time of thenth customer denoted byWn satisfies the Lindley recurrence relation
given in(1). We assume throughout this paper that the loadρ defined by the mean service time divided
by the mean inter-arrival time, is strictly less than unity.

Therefore,Wn → W asn → ∞ in distribution, whereW is called the steady-state waiting time distri-
bution andw(x) denotes its density[3]. The Laplace transform of the waiting time density is denoted by
w∗(s). We are now ready to give the following theorem that provides an expression forw∗(s). For the
proof, we refer the reader to Section 8.2 of[21].

Theorem 1. Assume that the steady-state waiting time distribution exists. Then, there exists a polynomial
φ(s) = φ0 + φ1s + · · · + φmas

ma such that the following holds

w∗(s) = [1 − a∗(−s)b∗(s)]−1 φ(s)

qa(−s)
. (10)

Conversely, the choice of φ(s) satisfying (10) with w∗(s) being analytic in the closed right half of the
complex plane and w∗(0) = 1 gives the steady-state waiting time distribution.

This theorem can directly be used as a method for finding the waiting times by factorizing the numerator
of [1 − a* (−s)b* (s)] into two coprime polynomials, one having all its roots in the right half plane, and
then choosingφ(s) appropriately. However, this immediate approach has several disadvantages from a
numerical analysis standpoint. Firstly, one has to evaluate the Laplace transform of the inter-arrival and
service times. Secondly, root finding in transform domain may become ill conditioned for large-sized
problems especially when the roots are close to each other or some roots have multiplicities. Finally, we
need to use sophisticated inverse Laplace transform techniques to describe the steady-state waiting times
in the time domain. In this paper, we propose an algorithm that avoids ill-conditioned transform domain
calculations.Theorem 1is used as an intermediate tool for proving our results but is not explicitly used
in the proposed numerical algorithm which is based on state–space methods and the use of the matrix
sign function.
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A linear time-invariant dynamical system withr inputs andt outputs is represented by the following
set of ODEs[20]

d

dx
y(x) = Ty(x) + su(x), (11)

w(x) = vy(x) + du(x), (12)

whereu(x) = (u1(x), . . ., ur(x))T and w(x) = (w1(x), . . . , wt(x))T denote the input and output vectors,
respectively,y(x) = (y1(x), . . ., ym(x))T is called the state vector and its components are called the state
variables, or simply the states. The matricesT, v, s andd in the Eqs.(11) and (12)are real matrices
of suitable sizes. Considering zero initial state, the transfer matrixH* (s) between the input and output
vectors is written as[20]

w∗(s) = H∗(s)u∗(s) = (v(sI − T)−1s + d)u∗(s), (13)

whereu* (s) and w* (s) are the Laplace transforms of the input and output vectors, respectively. The
equations of the form(11) and (12)are said to constitute a state–space description or realization of the
given linear time-invariant system with transfer matrixH* (s) if (13)holds[20]. The number of states (i.e.,
m) is referred to as the order or the dimensionality of the state–space representation. Using similarity
transformations, one can obtain infinitely many realizations whereas realization theory deals with finding
state–space descriptions of linear systems and the properties of these descriptions[14,20]. Methods that
use state–space representations (as opposed to transform domain calculations) are called state–space
methods and they are frequently used in the fields of control and signal processing[15,16,20].

Our goal now is to find a matrix exponential representation forw(x) in Eq. (10) using the individual
representations for the inter-arrival and service times. For this purpose, consider the following linear
system (denoted bySa) associated with the inter-arrival times in state–space form but with nonzero initial
states

d

dx
ya(x) = −Taya(x) + saua(x), ya(0

−) = y0,

wa(x) = −vaya(x) + daua(x) + d0δ(x).
(14)

The systemSa has two inputs, one being the control inputua(x), the other being the unit impulse function
δ(x) feeding in through a amplifier (multiplier)d0, one outputwa(x), and a nonzero initial statey0. The
system parametersd0 andy0 are not known yet but they are to be determined. Now consider the following
linear system (denoted bySb) associated with the service times in state–space form

d

dx
yb(x) = Tbyb(x) + sbub(x), yb(0

−) = 0,

wb(x) = vbyb(x) + dbub(x).
(15)

The systemSb has one control inputub(x), one outputwb(x), and zero initial state. We propose to
interconnect the two systems via the following feedback configuration also given inFig. 2

ua(x) = wb(x) =: u(x), ub(x) = wa(x) =: w(x) (16)
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Fig. 2. Feedback interconnection diagram of the two systemsSa andSb.

As the next step, we show that the Laplace transform ofw(x) defined in(16), namelyw∗(s), satisfies the
identity (10). In order to prove this, we first show the following by using(14)

w∗(s) =




−vay∗
a(s) + dau

∗(s) + d0,

−va(sI + Ta)−1(y0 + sau
∗(s)) + dau

∗(s) + d0,

[−va(sI + Ta)−1y0 + d0] + [−va(sI + Ta)
−1sa + da]︸ ︷︷ ︸

a∗(−s)

u∗(s).
(17)

Sinceu∗(s) = (vb(sI − Tb)−1sb + db)w∗(s) = b∗(s)w∗(s) from (15), Eq.(17) implies

w∗(s) = [1 − a∗(−s)b∗(s)]−1[−va(sI + Ta)
−1y0 + d0], (18)

w∗(s) = [1 − a∗(−s)b∗(s)]−1 φ(s)

qa(−s)
, (19)

whereφ(s) is the numerator polynomial of [−va(sI + Ta)−1y0 + d0] and the associated denominator poly-
nomial is equal toqa(−s) up to a constant due to the irreducibility of the inter-arrival time distribution
representation. In(19), we obtain the same expression as inTheorem 1for w∗(s). Therefore, we conclude
that the choice ofy0 and the scalard0 in the set of ODEs(14)leading tow∗(s) being analytic in the closed
right half of the complex plane andw∗(0) = 1 gives the steady-state waiting time distribution.

To find the unknownsy0 andd0, by using standard matrix arithmetic, we combine the linear dynamical
Eqs.(14) and (15)into one linear dynamical equation associated with an autonomous system (i.e., no
exogenous inputs) withm = ma + mb state variables

d

dx
y(x) =




d

dx
ya(x)

d

dx
yb(x)


 = C

[
ya(x)

yb(x)

]
=

[
C11 C12

C21 C22

] [
ya(x)

yb(x)

]
, (20)

y(0+) =
[

ya(0
+)

yb(0
+)

]
=

[
y0 + n1d0

n2d0

]
, (21)

w(x) = cy(x) + nd0δ(x), (22)
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where

n � (1 − dadb)
−1, n1 � ndbsa, n2 � nsb, (23)

C11 � − Ta − ndbsava, C12 � nsavb, (24)

C21 � − nsbva, C22 � Tb + ndasbvb, (25)

and

c � [ −nva ndavb ]. (26)

The ordinary differential Eq.(20) and the output Eq.(22) completely describe the waiting timew(x) if
the initial state given in(21) is known. What then remains is the calculation of the unknownsy0 andd0

such that the conditions forTheorem 1are satisfied.
We note from realization theory[20] that the eigenvalues of the so-called coupling matrixC are exactly

the same as the zeros of the rational function [1− a* (−s)b* (s)] and therefore the matrixC, in case of a
stable queue (i.e.,ρ < 1), will have one eigenvalue at the origin,mb eigenvalues with negative real parts
andma − 1 eigenvalues with positive real parts[21]. Using the identitiesa* (0) = 1 andb* (0) = 1, one can
show through straightforward algebraic manipulations that the vectors defined by

xl � [ vaT−1
a vbT−1

b ] (27)

and

xr �
[−T−1

a sa

T−1
b sb

]
(28)

are the left and right eigenvectors, respectively, of the matrixC associated with the single eigenvalue at
the origin. Solving the SDC problem, one can find an orthogonal matrixU such that

UTCU = R =
[

R11 R12

0 R22

]
, (29)

where themb × mb matrix R11 has all its eigenvalues with negative real parts and thema × ma matrix
R22 has all its eigenvalues with nonnegative real parts (including the eigenvalue at the origin). The
transformation matrixU can be computed by a number of methods given in Section2. We propose the
following Newton iteration outlined in Section2

Mk+1 = 1

2
(Mk + M−1

k ), M0 = C + xrxl

xlxr
, (30)

which converges toM∞ ask → ∞. Recall that a rank revealing QR factorization of (I –M∞) yields the
desired decomposition(29).

Using the decomposition(29), we introduce a new state vectorz(x) � UTy(x) so that we rewrite the
dynamical Eqs.(20)–(22)in terms ofz(x)

d

dx
z(x) = Rz(x), (31)

w(x) = cUz(x) + nd0δ(x). (32)
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We then introduce the following partitions onz(x), cU, andU

z(x) �
[

zs(x)

zu(x)

]
, cU � [ cs cu ], U �

[
U11 U12

U21 U22

]
, (33)

where the sizes ofzs(x), zu(x), cs, cu, U11, U12, U21, andU22 aremb × 1,ma × 1, 1× mb, 1× ma, ma × mb,
ma × ma, mb × mb, andmb × ma, respectively.

We are now ready to state the conditions ony0 and d0 such that the conditions ofTheorem 1are
satisfied. Firstly, in order forw∗(s) to be analytic in the closed right half plane, eithercu is zero orzu(0+)
should be the zero vector, since otherwise the eigenvalues ofR22 would appear as the poles ofw∗(s).
The former cannot be true since it would then lead to an infinite number of solutions for the single server
queue which violates the uniqueness of the solution when it exists[21]. On the other hand, the latter
condition is mathematically equivalent to

zu(0
+) = [ UT

12 UT
12n1 + UT

22n2 ]

[
y0

d0

]
= 0. (34)

Whenzu(0+) = 0, we can rewritew(x), using(32)as follows

w(x) =




cUz(x) + nd0δ(x),

cseR11xzs(0) + nd0δ(x),

cseR11x[ UT
11 UT

11n1 + UT
21n2 ]

[
y0

d0

]
+ nd0δ(x).

(35)

Using(35)and by the requirementw∗(0) = 1, we obtain one other equation for the unknownsy0 andd0:

[ −csR−1
11 UT

11 −csR−1
11 (UT

11n1 + UT
21n2) + n ]

[
y0

d0

]
= 1. (36)

Eqs.(34) and (36)form ma + 1 linear equations withma + 1 unknowns. This linear system should be
nonsingular since otherwise one would violate the existence and uniqueness of a solution for the stable
GI/GI/1 queue. Solving for the unknownsy0 andd0 from these two equations, the steady-state waiting
time has an ME distribution

w(x) = veTxs + dδ(x), (37)

where

v � cs, T � R11, s � UT
11y0 + (UT

11n1 + UT
21n2)d0, d � nd0.

The technique described in this section for the calculation of the steady-state waiting time distribution
of the ME/ME/1 queue is based on the solution of an SDC problem. Since we opted to use the matrix
sign function (MSF) iterations as the numerical engine in such computations, the whole algorithm will
in short be referred to as the MSF algorithm.
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4. Numerical examples

We study two numerical examples in this section. The first example is a PH/PH/1 queue for which
the waiting times can efficiently be obtained by the particular matrix geometric technique proposed in
[23] that uses the logarithmic reduction algorithm as its computational engine[22]. For this example, we
compare the MSF algorithm proposed in this paper with that of[23] in terms of accuracy and convergence
speeds. The quadratically convergent logarithmic reduction-based algorithm and its variants are known
to result in the most efficient computational algorithms to date for PH/PH/1 queues, therefore such a
comparison is crucial to determine the effectiveness of the proposed algorithm of this paper. The second
example we study is aD/ME/1 queue from the existing literature[5]. For this example, the deterministic
inter-arrival time distribution is not of ME-type but can be approximated by ME distributions. We note
the possibility of extending the computationally efficient logarithmic reduction algorithm for solving the
more general ME/ME/1 queue for comparison purposes but such a possible extension is left outside the
scope of this paper. Instead, for theD/ME/1 example, we compare the MSF algorithm with that of[5]
in terms of accuracy and convergence speeds. We note that the latter algorithm is known to have linear
convergence rates unlike the LR iterations.

4.1. Example 1: PH/PH/1 queue

As a PH/PH/1 system, we study an IPP/Ek/1 queue, where the IPP (interrupted Poisson process) is
a PH-type process with two phases, namely the OFF and ON phases, andEk denotes the Erlangian
distribution withk stages[19]. The mean service rate is set to 100 in this numerical example. In an IPP,
the arrivals are Poisson with rateλ in the ON phase and there are no arrivals in the OFF phase; the IPP
has the following ME representation (va, Ta, sa) given in[19]

va = [
0 1

]
, Ta =

[−γ01 γ01

γ10 −(γ10 + λ)

]
, sa =

[
0

λ

]
.

Ek distributions have natural ME representations given in[26]. The burstinessb of an IPP is defined as
the ratio between the arrival rate in a burst and the overall average arrival rate. In this numerical example,
we fix γ01 = 10 and chooseγ10 so as to fix the burstinessb = 4. The rate parameter� is then chosen so as
to attain a desired loadρ on the queueing system.

The algorithm of[23] uses the LR iterative procedure for the PH/PH/1 queue. The LR procedure was
first introduced in[22]. The advantage of the algorithm[23] stems from the reduced size of the matrices
that are used within the LR procedure; the order of the matrices are the sum of the phases (i.e.,m = ma + mb)
in the arrival and service time distributions in[23]. This is in contrast with matrices of size being their
product (i.e.,mp = mamb) in the original matrix geometric algorithm given in[26]. This order reduction
brings a considerable computational advantage. However, calculation of the input matrices to the LR
procedure still require the construction of a matrix with the order of the product of the number of phases
in the arrival and service time distributions and further matrix multiplications involving this product-sized
matrix [23]. Therefore, the overall algorithm of[23] requires large computation times and storage space
when the productmp is large. We note that this algorithm employs one matrix inversion and eight matrix
multiplications (involving matrices of sizem and less) per iteration of the loop. On the other hand, the
MSF algorithm proposed in this paper does not use matrices of sizemp in any step of the algorithm and
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Table 1
The number of iterations required for LR and MSF iterations for the IPP/Ek/1 queue as a function ofρ and the number of stages
of the Erlangian service time distribution

ρ k Number of iterations ∆

LR MSF

0.6 4 7 13 2.8× 10−11

16 7 15 1.8× 10−11

64 7 17 1.6× 10−11

256 7 19 1.9× 10−11

0.9 4 10 13 1.4× 10−12

16 10 15 4.4× 10−13

64 10 17 2.7× 10−12

256 10 19 7.3× 10−11

0.9999 4 19 13 5.2× 10−6

16 19 14 4.2× 10−6

64 19 16 4.2× 10−6

256 19 21 5.9× 10−6

the matrix sign iterations require only one matrix inversion of sizem. We use both the algorithms to solve
for the IPP/Ek/1 queue as a function of the number of stagesk of the Erlangian distribution and also as
a function of the utilizationρ of the system. The stopping criterion we use isε = 10−8 whereε is the
normalized difference between the 1-norms of the successive iterated matrices for both algorithms.

In Table 1, we report the number of iterations required for the LR and the MSF procedures. Moreover,
we introduce a parameter∆ that is indicative of the accuracy of the proposed algorithm. The parameter∆

is calculated as the maximum of three normalized absolute differences with respect to the results of[23];
differences being in the probability mass at the origin, in the mean, and in the variance, of the steady-state
waiting time using the MSF algorithm.Table 1demonstrates that both the LR and MSF algorithms have
rapid convergence rates (i.e., quadratic). It generally took fewer iterations for the convergence of the LR
algorithm whereas for very heavy loads we have observed cases for which the MSF algorithm required
fewer iterations. Increasing the load also increased the number of iteration steps. For this particular
queueing problem, the number of iterations for LR did not depend on the system size, whereas the system
size was shown to have a slight effect on the convergence of MSF; increasingk also increased the required
iteration steps for MSF. In all cases, we have obtained very close results for both algorithms whereas the
normalized difference between the results of the two algorithms is shown to increase for critically loaded
systems, as would be expected.

4.2. Example 2: D/ME/1 queue

We consider aD/ME/1 queue studied in[5] where the service time distribution has the ME represen-
tation (vb, Tb, sb)

vb = [ 1 + 4π2 0 0], Tb =



0 1 0

0 0 1

−1 − 4π2 −3 − 4π2 −3


 , sb =




0

0

1


 ,
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and the arrival process is assumed to be deterministic (i.e., denoted byD) and is therefore degenerate at
the pointa = vbT−2

b sb/ρ for a given loadρ. The matrix analytical approach of[5] involves the iteration

v(k+1)
+ = vbe

a(Tb+sbv(k)
+ ), v(0)

+ = 0, (38)

which converges tov+ ask → ∞. It is shown in[5] that the waiting time has the ME representation (v+,
Tb + sbv+, (1+ v+T−1

b sb)sb). A numerical algorithm using squaring and scaling is proposed in[5] for
matrix exponentiation at each step of the iteration(38). As an alternative, we suggest to use the approach
of this paper for the solution of theD/ME/1 queue. However, the deterministic arrival distribution is not of
ME-type and therefore we propose to make use of Pade or Erlangian approximations for the deterministic
inter-arrival time[1]. We note that Erlang distribution is of PH-type and therefore it is also ME. A Pade
approximation has a matrix exponential representation but it is not guaranteed to be associated with a
probability density unless the degree of the approximation is sufficiently high. A Pade(l) or Erlang(l)
notation denotes a rational approximation to the irrational Laplace transform e−sa with numerator and
polynomial degrees being at mostl. The goal of this numerical example is to show if there may be
any potential computational benefit of the proposed algorithm in the numerical solution of GI/GI/1 type
queues by reporting the number of required iterations. We note that the size of the matrices in the Newton
iteration(30) arema + mb × ma + mb as opposed tomb × mb matrices of the iteration(38) which is an
advantage of the matrix analytical approach of[5]. However, note that each iteration of[5] requires
matrix exponentiation which is computationally more intensive than one matrix inversion required for
MSF.

Fig. 3. Steady-state waiting time distribution computed via different methods for the two cases: (a)ρ = 0.3; (b)ρ = 0.9. The
probability masses at the origin are not depicted in the plots.
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The densities of the waiting time are plotted using various methods forρ = 0.3 and 0.9 inFig. 3. For
both approaches, the iterations(30) and (38)are stopped when the norm of the difference among the
successive values of the iterated variables becomes less than 10−10. For the low load case ofρ = 0.3,
the matrix analytical approach of[5] required few iterations (i.e., 12 iterations) for convergence and to
reach the same level of accuracy, we had to use a Pade approximation with a dimensionality of 14. The
convergence of the solution with the Erlangian approximationE(l) to the actual solution asl → ∞ is
observed to be very slow in this case since there is a notable difference between the two densities even
for the E(800) case. The two Pade approximations (i.e., Pade(12) and Pade(14)) and the Erlang(800)
approximation required 11 and 13 Newton iterations, respectively.

We observe a substantial advantage of the approach proposed in this paper for the heavy load case
ρ = 0.9. In this case, the matrix analytical approach of[5] required 192 iterations for convergence and a
dimensionality of 6 for the Pade approximation is shown to be sufficient for the same level of accuracy.
Furthermore, we observe that the number of iterations required for the Newton iterations did not increase
with load, i.e., the two Pade approximations Pade(2) and Pade(6), and the Erlang(50) approximation,
required 9 and 11 Newton iterations, respectively. We are led to believe that it is the reduced system size
that resulted in less number of iterations for the heavy load case.

5. Conclusions

A novel approach for the numerical computation of the steady-state waiting times in ME/ME/1 type
queues is presented in the current paper. This approach is based on a state–space description of a feedback
interconnection system, which is easily derivable from the matrix exponential representations of the
individual inter-arrival and service times. Using this state–space description, we formulate the waiting time
calculation problem as an SDC problem and we propose to use the Newton iterations for the underlying
SDC. The advantages of the proposed approach are the quadratic convergence rates of the proposed
iterations, the lack of need for any transform domain calculations, and the fact that the “sum”, rather
than the “product”, of the dimensionalities of the representations for the inter-arrival and service times,
determines the computational complexity. Validation of the proposed approach is done by comparing
the results with two existing algorithms. We are currently working on extending the results of this paper
to Markov renewal queueing systems that arise frequently in the performance analysis of computer and
communication systems and networks.
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