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a b s t r a c t

We propose a numerical algorithm for finding the steady-state queue occupancy distri-
bution for a workload-dependent MAP/PH/1 queue in which the arrival process and the
service rate depend continuously on the instantaneous workload in the system. Both in-
finite and finite queue capacity scenarios are considered, including partial rejection and
complete rejection policies for the latter. Using discretization, this system is approximately
described by amulti-regimeMarkov fluid queue for which numerical algorithms are avail-
able. The computational complexity of the proposed method is linear in the number of
regimes used for discretization. We provide numerical examples to validate the proposed
approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We study a single-server queuing system in which the job arrivals are modeled by a workload-dependent Markovian
arrival process (MAP). A workload-dependent MAP differs from an ordinaryMAP described in [1,2] by its matrix parameters
not being fixed but allowed to vary with the instantaneous queue occupancy. The workload brought by an individual job,
namely the job size, has a phase-type (PH-type) distribution. The queue service discipline is FIFO (first-in–first-out). The
queue is drained at a rate c(x) when the queue occupancy takes the value x > 0. In the infinite queue capacity case, a new
job arrival is always admitted, and it increases the queue occupancy (or workload) by the job size. In this paper, we will also
study the case of finite queue capacity. Although most finite queue capacity models pose a limit on the maximum number
of jobs allowed in the system, our interest in this study will be in models in which there is an upper limit on the overall
workload that the buffer can hold, say B. Such buffers are called workload bounded; in such buffers, different policies can
take effect depending on what is rejected when the workload limit is to be exceeded. With a partial rejection policy, if the
current workload plus the job size of an arriving job exceeds the workload capacity B, then the workload is increased up to
B, which amounts to rejecting part of the arriving job. In a complete rejection policy, the job is completely rejected in the
same situation. The goal of this article is the numerical calculation of the steady-state distribution of the system workload
in the infinite and finite queue capacity scenarios, the latter for both rejection policies. Other performance measures of
interest, including the job loss probability and the workload loss probability, can then be derived from this distribution. For
a discussion of various rejection policies for finite buffer systems, we refer the reader to [3].
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In related work, the authors of [4] study an M/G/1 queue with workload-dependent arrivals and service rates for the
infinite queue capacity case. The workload-boundedM/G/1 buffer under a complete rejection policy was studied in [5] with
closed-form expressions for the M/M/1 case. Ref. [6] studies M/G/1 queues with finite buffers with workload-dependent
arrival rate, service speed, and both partial and complete rejection policies. Level crossings and Volterra integral equations
play a key role in [6], in which closed-form expressions are also given. The goal of this article is to extend the model in [6] so
that we allow amore general arrival process, namely aMAP, and develop a numerically stable and computationally efficient
algorithm to solve the steady-state workload distribution. On the other hand, Ref. [7] investigates a workload-bounded
buffer using a complete rejection policy with anMMPP (Markovmodulated Poisson process) arrivals, which is a subcase of a
MAP. However, neither theMMPP nor the service speed is allowed to depend on the workload in this work. Themodel of [7]
has also been extended to systems with multiple priority classes in [8]. Multi-class MAP arrivals with workload-dependent
acceptance policies have recently been studied in [9] in the context of modeling customer impatience.

The approach we take in the current paper is to use the well-established theory of Markov fluid queues (MFQs) and in
particularmulti-regimeMFQs (MRMFQs) [10] to studyworkload-dependentMAP/PH/1 queues. This approach saves us from
the burden of rederiving the integral equations that would arise, and we can readily use the already existing numerically
stable and efficient methods that have been proposed for the steady-state solution of MRMFQs. The connection between
workload-dependent MAP/PH/1 queues and MRMFQs is obtained using sample path arguments as in [9,11,12], but the
derivation of this connection in the case of complete rejection policy is one of the main contributions of this paper. Fluid
queues in which a fluid acts as the input to and output of the buffer have been used extensively in various stochastic
modeling contexts since their introduction in the early studies of [13]. MFQs are described by a joint Markovian process
{(X(t), Z(t)) : t ≥ 0}, where X(t) represents the buffer level and Z(t) is an underlying finite state-space continuous-time
Markov chain (CTMC) that determines the drift, i.e., the rate at which the buffer content X(t) changes. Ref. [14] studiesMFQs
with infinite queue sizes using a spectral expansion approach, whereas [15] extends this analysis to finite queue sizes. In
MRMFQs, which are also called ‘‘level-dependent’’ [16], ‘‘multi-layer’’ [17,18] or ‘‘multi-threshold’’ [19] fluid queues, the
buffer space is partitioned into a finite number of non-overlapping intervals which are called the regimes of the MRMFQ.
In MRMFQs, the infinitesimal generator of the background CTMC as well as the drift of the buffer process are allowed to
depend on the regime in which the buffer level resides; see [16,20,10] for more detailed description of MRMFQs as well as
the boundary conditions that arise in the solution of the steady-state distribution of the buffer level. In continuous-feedback
Markov fluid queues (CFMFQs), both the infinitesimal generator of the background CTMC and the drift of the buffer process
are allowed to continuously depend on the instantaneous buffer level [21]. Explicit solutions for the steady-state distribution
of CFMFQs are available only for specific subcases [21], and numerical solutions based on discretization are generally the
basic tool for their numerical analysis [22].

The main method proposed in this study to find the steady-state distribution of the workload-dependent MAP/PH/1
queue comprises the following three main steps.

(i) The workload-dependent MAP/PH/1 queue for the infinite and finite queue capacity cases, under partial and complete
rejection policies for the latter, is described by a CFMFQ using sample path arguments.

(ii) The resulting CFMFQ is approximated by an MRMFQ using discretization.
(iii) The boundary conditions for this MRMFQ are solved using block-tridiagonal LU factorization [23] so as to obtain the

steady-state distribution of the queue occupancy.

The main contributions of the current work are as follows.

• We extend the problem addressed in [4,6] to a more general setting with workload-dependent MAP arrivals as opposed
to Poisson arrivals.

• We provide a numerical solution to the finite-capacity workload-dependent MAP/PH/1 queue with complete rejection,
which, to the best of our knowledge, has not been addressed before in the literature. A complete rejection policy is
essential in computer and communication systems and networks in which jobs need to be processed in their entirety.

• One of the main computational engines used for solving MRMFQs is the block-tridiagonal LU factorization stemming
from the block-banded structure of the linear system of equations that arise. The entries of the block-banded matrix are
obtained by using Schur decomposition and Sylvester equations, as in [10].We also show by numerical examples that the
computational complexity of the proposed algorithm depends linearly on the number of regimes used for discretizing
the CFMFQ. This approach is similar in spirit to the approach taken in [9], in which algebraic Riccati equations are solved
for each regime to solve again a block-banded linear system of equations.

Next, we describe the queuing model in more detail. The arrivals to the queuing system are modeled by a MAP with
ℓ phases [1,2,24,25], which is characterized by a matrix pair (D0,D1). The matrices D0 and D1 are ℓ × ℓ matrices, D0 has
negative diagonal elements and non-negative off-diagonal elements, D1 is non-negative, and D = D0 + D1 is an irreducible
infinitesimal generator. The matrix D0 (D1) governs transitions among phases of the MAP without (with) arrivals. Let π
denote the stationary probability vector of the phase process with generator D, i.e., πD = 0T , π1 = 1, where 0 and 1 denote
a column vector of zeros and ones, respectively, of appropriate size. We will also denote an m × n matrix of zeros and the
identity matrix of size n by 0m×n and In, respectively. The mean job arrival rate λ for the MAP is written as λ = πD11 [24]. A
MAPmodel can be obtained to fit observation data as in [26]. If the underlying MAP behavior depends on the instantaneous
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workload x in the queue, then the MAP is characterized with the matrix pair (D0(x),D1(x)) for x ≥ 0, which is then referred
to as a workload-dependent MAP.

The job size is represented by the random variable U , which is modeled by a phase-type (PH-type) distribution [27].
Consider a Markov process on the states {1, 2, . . . , h + 1} with initial probability vector


α 0


, α = [α1 α2 · · · αh] and

infinitesimal generator

T T0

0T 0


,where T is an h×h nonsingular matrix, T 0 is an h×1matrix, and T1+T 0

= 0. The random
variable U is defined as the time till absorption into the absorbing state h + 1. In this case, U is said to possess a PH-type
distribution, which is characterized by the matrix pair (α, T ). As in [4], we assume that the service speed is represented by
a function c(x) > 0 when the current workload takes the value x > 0, and c(0) = 0. When c(x) = c , then the service time
has a phase-type distribution with characterizing pair (α, cT ), but otherwise there is no direct relationship between the job
size and the service time.

The rest of the paper is organized as follows. In Section 2, Markov fluid queues and their variations are briefly described.
The workload-bounded and workload-dependent buffer problems as well as their connection to Markov fluid queues and
methods for finding their steady-state solutions are provided in Section 3. We provide numerical examples to validate the
proposed approach in Section 4. Finally, we conclude in Section 5.

2. Markov fluid queues

2.1. Single-regime Markov fluid queues

A single-regimeMarkov fluid queue is defined through a finite state-space continuous-time Markov chain {Z(t) : t ≥ 0}
that modulates the buffer through a drift function r(Z(t)) [14,20]. Let X(t) be the buffer level at time t . Let Z(t) have
the state space S = {1, . . . ,M}, and let Q denote its infinitesimal generator. We also define the diagonal rate matrix
R = diag{r(1), . . . , r(M)}. Let F(x) = [F1(x) · · · FM(x)] denote the steady-state cumulative distribution function (cdf)
vector for X(t), where Fm(x) is the joint cdf at statem. Actually, Fm(x) = limt→∞ P{Z(t) = m, X(t) ≤ x}. Spectral expansion
basedmethods to find F(x) for the infinite and finite buffer cases, i.e., X(t) cannot exceed a certain threshold B, are available
in [28,15], respectively, for the single-regime fluid queue.

2.2. Multi-regime Markov fluid queues (MRMFQs)

The following generalization is based on [20,10]. Amulti-regimeMarkov fluid queue hasmore boundaries than the usual
two terminal boundary points, 0 and B, that a single-regime Markov fluid queue has. Consider a buffer with capacity Bwith
K − 1 intermediate boundaries. Together with the upper and lower terminal boundaries 0 and B, there exists a total of
K + 1 boundaries, and K regimes. Let T (k), 0 ≤ k ≤ K denote these boundaries. We have 0 = T (0) < T (1) < · · · < T (K−1) <
T (K)

= B, andwe say that the system is operating in regime kwhen the buffer level is between T (k−1) and T (k). In regime k, we
denote the infinitesimal generator of the backgroundprocess byQ (k), and the driftmatrix byR(k).Wedenote the infinitesimal
generator and the drift matrix at boundary T (k) by Q̃ (k) and R̃(k), respectively. We denote the steady-state probability mass
accumulation vector at T (k) by c(k)

=

c(k)
1 · · · c(k)

M


. Note that c(k)

m = limt→∞ P{Z(t) = m, X(t) = T (k)
}. We also

denote the steady-state probability density function (pdf) vector in regime k by f (k)(x) =

f (k)
1 (x) · · · f (k)

M (x)

, T (k−1) <

x < T (k). The corresponding steady-state cdf vector in regime k is denoted by F (k)(x) =

F (k)
1 (x) · · · F (k)

M (x)

, where

F (k)
m (x) = limt→∞ P{Z(t) = m, X(t) ≤ x}, T (k−1)

≤ x < T (k). Let F(x) = F (k)(x)when T (k−1)
≤ x < T (k). Similarly, we define

f (x) = f (k)(x) when T (k−1) < x < T (k). Note that F(T (k)
−) + c(k)

= F(T (k)), 1 ≤ k ≤ K . Let S(k)
0 , S(k)

− , and S(k)
+ denote the set

of states in which the drift is 0, negative, and positive in regime k, respectively. Similarly, S̃(k)
0 , S̃(k)

− , and S̃(k)
+ denote the set of

states in which the drift is 0, negative, and positive, at the boundary point T (k), respectively. Obviously, S(k)
0 ∪ S(k)

− ∪ S(k)
+ = S

for 1 ≤ k ≤ K , and we have S̃(k)
0 ∪ S̃(k)

− ∪ S̃(k)
+ = S for 0 ≤ k ≤ K .

It is shown in [10] that the steady-state pdf vector of the K -regime fluid queue satisfies

d
dx

f (k)(x)R(k)
= f (k)(x)Q (k), T (k−1) < x < T (k), 1 ≤ k ≤ K , (1)

along with a set of boundary conditions. In this paper, we assume that R(k) is invertible for each regime, i.e., S(k)
0 = ∅, ∀k,

which does not lead to any loss of generality from the viewpoint of workload-dependent buffers with non-zero service
speeds. Moreover, in each state of the modulating process, the sign of the service speed remains the same for all regimes,
which allows us to simplify the set of boundary conditions listed in [10] to obtain

c(0)
m = 0, ∀m ∈ S(1)

+ (2)

c(k)
m = 0, ∀m ∈


S(k)
+ ∩ S(k+1)

+


∪


S(k)
− ∩ S(k+1)

−


, 1 ≤ k < K (3)
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c(K)
m = 0, ∀m ∈ S(K)

− (4)

f (1)(0+)R(1)
= c(0)Q̃ (0) (5)

f (k+1)(T (k)
+)R(k+1)

− f (k)(T (k)
−)R(k)

= c(k)Q̃ (k), 1 ≤ k < K (6)

f (K)(B−)R(K)
= −c(K)Q̃ (K) (7)

K
k=1

 T (k)
−

T (k−1)+

f (k)(x)dx +

K
k=0

c(k)


1 = 1. (8)

The solution to the steady-state pdf vector is then given in [10] in mixed matrix-exponential form for 1 ≤ k ≤ K :

f (k)(x) = a(k)V (k)(x) = a(k)

 L(k)
0

eA
(k)
−

(x−T (k−1))L(k)
−

e−A(k)
+

(T (k)
−x)L(k)

+

 , T (k−1) < x < T (k), (9)

where a(k)
=

a(k)
0 a(k)

− a(k)
+


is a 1×M coefficient vector that needs to be solved for, using the boundary conditions (2)–(8).

Above, the matrix defined by

Y (k)

−1
=


L(k)
0

T
L(k)
−

T
L(k)
+

T
T

is a similarity transformation that puts A(k)
= Q (k)


R(k)

−1

into block-diagonal form:


Y (k)−1

A(k)Y (k)
=

0
A(k)

−

A(k)
+

 ,

where A(k)
− has all its eigenvalues in the open left half plane and A(k)

+ has all its eigenvalues in the open right half plane. A
numerically efficient and stable algorithm to calculate Y (k) based on ordered Schur decomposition along with a Sylvester
equation is given in detail in [10]. In this paper, we propose to use the same algorithm.

The only step that remains for the complete solution of the finite-capacity MRMFQ is finding the coefficient vectors a(k)

and c(k). Using (2)–(8), one can form a system of linear equations in a(k), 1 ≤ k ≤ K , and c(k), 0 ≤ k ≤ K . Since each a(k)

appears in equations involving only a(k−1), a(k+1), c(k−1), and c(k), and since each c(k) appears in equations involving only a(k)

and a(k+1), the system of linear equations can be made block banded by ordering the unknown coefficient vectors as
c(0) a(1) c(1) a(2) c(2)

· · · a(K−1) c(K−1) a(K) c(K)

.

The block-banded structure can be exploited to cut down the time required for the complete solution dramatically, as will
be detailed later.

Solving infinite buffers where T (K)
= ∞ requires a similar procedure. Instead of the boundary conditions (4) and (7)

that describe the behavior of the system at the upper boundary T (K)
= B when B < ∞, we need to have conditions to

ensure stability. Therefore, we should have a(K)
0 = 0, a(K)

+ = 0T , so that the solution given in (9) remains bounded for all
values of x. Moreover, there cannot be any probability mass accumulation at infinity which gives c(K)

= 0T . The condition
for the existence of a steady-state distribution for the infinite buffer case is that themean drift in regime K should be strictly
negative, i.e., π (K)R(K)1 < 0, where π (k) denotes the stationary distribution of the CTMC with the infinitesimal generator
Q (k) [10]. We also assume that π (k)R(k)1 ≠ 0 for all regimes k.

2.3. Continuous-feedback Markov fluid queues (CFMFQs)

In CFMFQs, the transition rates within the states of the background process and/or the drifts depend on the buffer level
in a continuous fashion. Therefore, instead of the regime-dependent Q (k) and R(k) matrices of MRMFQs, we have Q (x) and
R(x) matrices that depend continuously on the buffer level x. In this case, the CFMFQ is characterized with the matrix pair
(Q (x), R(x)). The analytical treatment of such systems requires the solution to the differential equation

d
dx

(f (x)R(x)) = f (x)Q (x), 0 < x < B. (10)

The work in [29] employs three different numerical discretization methods to solve (10), whereas [22] extends this study
to accommodate sign changes in the drift matrix R(x), which leads to potential probability masses at points of sign change.
In this paper, we propose approximating CFMFQs with MRMFQs. For this purpose, the buffer space is divided into a number
of regimes in any of which the parameters of the modulating process are held constant. We then use the numerically stable
and efficient algorithms to solve MRMFQs which are already available in the literature, for example in [10]. Obviously, as
one uses more and more regimes, the accuracy of the MRMFQ approximation increases. We propose a method to solve the
system in linear time with respect to the number of regimes. On the other hand, the question of how our method compares
to those of [29,22,9] in terms of storage and computational run time is left out of the scope of this study.
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Lastly, we present the condition for the existence of a steady-state distribution for the infinite buffer case. We consider
the most general scenario in which D0(x), D1(x), and c(x) all depend on the buffer level x. Assuming convergence, we define
limx→∞ D0(x) = D̄0, limx→∞ D1(x) = D̄1, and limx→∞ c(x) = c̄. Let π̄ satisfy π̄(D̄0 + D̄1) = 0T , π̄1 = 1. Then, the
distribution exists if βπ̄ D̄11/c̄ < 1, where β is the mean job size. For further exploration of this topic, see [30].

3. Workload-dependent MAP/PH/1 queue

We study three different versions of theworkload-dependentMAP/PH/1 queue; the infinite buffer (IB) case, then the case
of a finite buffer with partial rejection (FB-PR) policy, and finally the case of a finite buffer with complete rejection (FB-CR)
policy. In all three versions, the arrival process is a MAP characterized with the pair (D0(x),D1(x)) with ℓ phases, the job
size has a PH-type distribution characterized with the pair (α, T ) with h phases, and the workload depletion rate c(x) is a
function of the instantaneous workload x in the buffer. Let tij, 1 ≤ i, j ≤ h, t0i , 1 ≤ i ≤ h, and αi, 1 ≤ i ≤ h, denote the
entries of T , T 0, and α, respectively.

3.1. Infinite buffer (IB)

Consider the operation of the infinite buffer. When the buffer is depleted, it stays empty until the next job arrival. When
an arrival occurs, the buffer level increases abruptly by an amount equal to the arriving job size. Replacing these jumps by
durations of linear increase with unity slope, one can obtain from the workload (or buffer level) process of the MAP/PH/1
queue, denoted by Y (t), a transformed process X(t), which can be modeled as a Markov fluid queue [31]. Since a sample
path of Y (t) can be obtained from the sample path of X(t) by deleting the time segments in which X(t) is increasing, solving
for the steady-state distribution of X(t) will suffice as far as the steady-state distribution of Y (t) is concerned. Therefore,
workload-dependent buffers can be analyzed using the paradigm of Markov fluid queues as in [32,9,11,12,31].

Next, we define the CFMFQ associated with the workload-dependent MAP/PH/1 queue for which Y (t) denotes the
workload at time t . LetX(t) be the process obtained from Y (t) via the transformation described, and let Z(t) be itsmodulator.
The states of Z(t) will be made up of the phases of the arrival process and those of the job size. When a job arrives, Z(t) will
transit into one of the PH states, and X(t) starts increasing. When absorption occurs, Z(t) will return to the MAP state that
the arrival takes theMAP into. The system needs to remember this state; therefore we should have ℓ replicas of the PH-type
distribution. Consequently, the process X(t) can be described by a CFMFQwith hℓ+ℓ states with the infinitesimal generator
Q (x) and the rate matrix R(x) given as follows:

Q (x) =


Iℓ ⊗ T Iℓ ⊗ T 0

D1(x) ⊗ α D0(x)


, R(x) =


Ihℓ

−c(x)Iℓ


, 0 ≤ x < ∞. (11)

The first hℓ states represent the PH-type replicas, in which the drift is +1, and the states hℓ + 1 through hℓ + ℓ represent
the MAP phases with drifts −c(x). We also stick with the notation introduced in Section 2, with the size of the state space
being M = hℓ + ℓ.

Let f (x) = [f1(x) · · · fhℓ+ℓ(x)] and F(x) = [F1(x) · · · Fhℓ+ℓ(x)] denote the pdf and cdf vectors for this CFMFQ, assuming
that the steady-state distribution exists. In order to find the steady-state distribution of the workload, we propose the
followingMRMFQ approximation to this system. Let K denote the number of regimes to be employed in the approximation,
and let T (k), 0 ≤ k ≤ K , denote the regime boundaries. Since T (K)

= ∞, we have to choose the T (K−1) value beyond which
we will assume that the Q (x) and R(x) matrices are approximately held constant. To this end, we propose selecting T (K−1)

the minimum value satisfying

max
Q (T (K−1)) − lim

x→∞
Q (x)


∞

,

R(T (K−1)) − lim
x→∞

R(x)

∞


≤ ϵ (12)

for a given ϵ > 0. After selecting a suitable T (K−1), we let δ =
T (K−1)

K−1 . We then uniformly choose the boundary points as
T (k)

= δk, 0 ≤ k ≤ K − 1. The parameter matrices of the approximative MRMFQ are then chosen as

Q (k)
= Q̃ (k−1)

= Q (T (k−1)), 1 ≤ k ≤ K , (13)

R(k)
= R(T (k−1)), 1 ≤ k ≤ K , (14)

R̃(k)
= R(T (k)), 0 ≤ k ≤ K − 1. (15)

Next, we examine the boundary conditions for the infinite buffer. We have to solve c(k), 0 ≤ k ≤ K , and a(k), 1 ≤ k ≤ K .
We immediately obtain c(k)

= 0T , 1 ≤ k ≤ K , and a(K)
0 = 0, a(K)

+ = 0T . Defining

c(0)
− =


c(0)
hℓ+1 · · · c(0)

hℓ+ℓ


, (16)
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we obtain the linear equation zH = 0T , where

z =

c(0)
− a(1)

· · · a(K−1) a(K)
−


, (17)

H =



W (0)

−V (1)(0) V (1)(T (1))

−V (2)(T (1)) V (2)(T (2))

. . .

V (K−1)(T (K−1))

−W (K)

 , (18)

W (0)
=

0ℓ×hℓ Iℓ


Q̃ (0) R(1)−1

, W (K)
= L(K)

− , (19)

and the matrix V (k)(x), 1 ≤ k ≤ K , is defined in (9).
As seen from (18), the matrix H is block banded. We seek to take advantage of this structure by means of the block-

tridiagonal LU factorization algorithm presented in [23, pages 174–175] for the numerical algorithm to solve the equation
zH = 0T , where z and H are given in (17) and (18), respectively. The algorithm is readily applicable to the equation zH = 0T

with a slight modification. The block-LU factorization requires H to be invertible, and the right-hand side of the equation
should be different from the zero vector. So, we replace the very first column of H and the right-hand side of the equa-
tion with the vector [1 0 · · · 0]. This means setting c(0)

hℓ+1 = 1 and solving the rest of the unknowns accordingly. We note
that this procedure will not have any adverse effect on our final solution, as we will later normalize the a(k) and c(k) values
using (8).

After we obtain the steady-state pdf vector for the associatedMRMFQ, denoted by f (x), we can find the steady-state joint
pdf vector of the queue occupancy denoted by g(y) = [g1(y) · · · gℓ(y)], where

gi(y) =
d
dy

lim
t→∞

P{J(t) = i, Y (t) ≤ y}, 0 < y, y ≠ T (k), 0 ≤ k ≤ K , (20)

J(t) being the phase process for the underlying MAP and Y (t) being the workload process. By conditioning on the
components of f (·) which correspond to the states in which the buffer is being depleted, we obtain

g(y) =


fhℓ+1(y) · · · fhℓ+ℓ(y)


F(∞)


01×hℓ 11×ℓ

T . (21)

Note that this step corresponds to deletion of the segments in the sample paths of X(t) in which X(t) is increasing.

3.2. Finite buffer with partial rejection (FB-PR)

We now assume that the buffer capacity B is finite, and that, whenever the job size of an arrival causes the buffer to
overflow, the portion of the arriving job that fits the available buffer space is accepted into the buffer, and the remaining
part is lost. To solve this model, we employ the same transformation used for the IB case. This time, the linear increases will
occasionally be accompanied by flat regions in which the buffer level stays constant at B. These regions correspond to the
overflows caused by arrivals that do not fit into the available buffer space.

Using the same states and enumeration as in the IB case, we obtain the same Q (x) and R(x) matrices given in (11). Since
the buffer capacity is finite, we discretize the CFMFQ into anMRMFQusing K regimeswith boundaries T (k)

= δk, 0 ≤ k ≤ K ,
where δ = B/K . Then, the matrices characterizing the MRMFQ are given by

Q̃ (K)
= Q (B), Q (k)

= Q̃ (k−1)
= Q (T (k−1)), 1 ≤ k ≤ K , (22)

R(k)
= R(T (k−1)), 1 ≤ k ≤ K , (23)

R̃(K)
= R(B)−, R̃(k)

= R(T (k)), 0 ≤ k ≤ K − 1, (24)

where R(B)− denotes the matrix which is equal to the R(B) matrix except for the positive elements of R(B), which are set
to 0.

The boundary conditions that hold for the FB-PR case are (2)–(8), from which we obtain again the equation zH = 0T ,
where this time

z =

c(0)
− a(1)

· · · a(K) c(K)
+


(25)
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H =



W (0)

−V (1)(0) V (1)(T (1))

−V (2)(T (1)) V (2)(T (2))

. . .

V (K)(T (K))

−W (K)

 , (26)

c(K)
+ =


c(K)
1 · · · c(K)

hℓ


,

W (K)
= −


Ihℓ 0hℓ×ℓ


Q̃ (K)


R(K)

−1
,

and c(0)
− , W (0), and V (k)(x) are given by (16), (19), and (9), respectively. Again, the equation zH = 0T can be solved using

block-tridiagonal LU factorization.
The steady-state joint pdf vector of the buffer level, g(y) = [g1(y) · · · gℓ(y)], is defined in the same way as in the IB

case, and, similar to (21), it is given by

g(y) =


fhℓ+1(y) · · · fhℓ+ℓ(y)


F(B)


01×hℓ 11×ℓ

T . (27)

For the FB-PR case, one can define the workload loss probability, denoted by Pw,FB-PR , as the ratio of the workload lost to
the overall amount of workload that has arrived at the buffer. In terms of g(y), Pw,fb-pr is expressed as

Pw,fb-pr =
1

−αT−11

 B

0


∞

B−y
(w − B + y)g(y)D1(y)1αeTwT 0dw dy. (28)

3.3. Finite buffer with complete rejection (FB-CR)

In this model, the buffer capacity B is finite, and arrivals with job sizes exceeding the available buffer space are rejected
entirely. We will use the same approach as in the IB and FB-PR cases; however, due to the complete rejection policy, the
underlying CFMFQ will be different. We will now show that the characterizing matrices of the associated CFMFQ for the
FB-CR case are given as

Q (x) =


Iℓ ⊗ T̃ (x) Iℓ ⊗ T̃ 0(x)

D1(x) ⊗ α̃(x) D̃0(x)


, 0 ≤ x ≤ B, (29)

R(x) =


Ihℓ

−c(x)Iℓ


, 0 ≤ x < B, R(B) =


0hℓ×hℓ

−c(B)Iℓ


, (30)

where

T̃ 0(x) =

t̃0i (x)


, t̃0i (x) =

t0i
1 − v(i)eT (B−x)1

, 1 ≤ i ≤ h,

T̃ (x) =

t̃ij(x)


, t̃ij(x) = tij

1 − v(j)eT (B−x)1
1 − v(i)eT (B−x)1

, 1 ≤ i, j ≤ h, i ≠ j,

t̃ii(x) = −

h
j=1,j≠i

t̃ij(x) − t̃0i (x), 1 ≤ i ≤ h,

α̃(x) = [α̃i(x)], α̃i(x) = αi

1 − v(i)eT (B−x)1


, 1 ≤ i ≤ h,

D̃0(x) = D0(x) + D1(x)αeT (B−x)1,

and v(i) denotes a row vector of zeros except for a value of 1 at position i. To see this, let us first assume that the associated
CFMFQ is in a state at time τ during which the buffer level is increasing. Denoting the phase for the job size at time τ
by s(τ ) = i, and the buffer level with X(τ ), we already know that the remaining job size, denoted by u(τ ), satisfies
u(τ ) < B − X(τ ). Hence, as ∆τ → 0, the quantity P{s(τ + ∆τ) = h + 1 | s(τ ) = i, u(τ ) < B − X(τ )}

=
P{s(τ + ∆τ) = h + 1, u(τ ) < B − X(τ ) | s(τ ) = i}

P{u(τ ) < B − X(τ ) | s(τ ) = i}
,

=
t0i ∆τ

1 − v(i)eT (B−X(τ ))1
. (31)
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Similarly, the probability P{s(τ + ∆τ) = j | s(τ ) = i, u(τ ) < B − X(τ )}, where 1 ≤ j ≤ h, reduces as ∆τ → 0 to

=
P{u(τ ) < B − X(τ ), s(τ + ∆τ) = j | s(τ ) = i}

P{u(τ ) < B − X(τ ) | s(τ ) = i}
,

=
P{u(τ + ∆τ) < B − X(τ + ∆τ) | s(τ + ∆τ) = j} tij∆τ

P{u(τ ) < B − X(τ ) | s(τ ) = i}
,

=
1 − v(j)eT (B−X(τ ))1
1 − v(i)eT (B−X(τ ))1

tij∆τ + O(∆τ 2). (32)

The north-east and north-west blocks of the characterizing matrix Q (x) in (29) follow from (31) and (32), respectively.
Let us now look into epochs of new job arrivals when the buffer level takes the value x. A new job is rejected if its size
exceeds the available buffer space B − x, which occurs with probability αeT (B−x)1. Therefore, transitions associated with
rejected arrivals should contribute to transitions without arrivals. This observation is reflected in the south-east corner of
Q (x), given in (29). On the other hand, using Bayes’ rule, an accepted job’s service will start at phase i with probability
α̃i(x) = αi


1 − v(i)eT (B−x)1


, which is the probability of being initially at phase i given that the PH-type random variable is

less than B − x, from which the south-west corner of Q (x) in (29) follows.
After the CFMFQ is defined, its MRMFQ approximation with discretization is carried out exactly as in the FB-PR case,

except for a slight modification. Notice that T̃ and T̃ 0 approach infinity as x approaches B. Therefore, we cannot use (22)
towards Q̃ (K). In order to be able to carry out numerical calculations, however, we need to use a Q̃ (K) matrix with finite
entries. Moreover, arbitrarily large choices as the entries of Q̃ (K) have the potential to lead to an ill-conditioned system of
equations. Therefore, we opted for using Q̃ (K)

= Q

T (K−1)

+ δ/2

. We obtained reasonably good results with this midpoint

strategy, so we stuck to this method throughout the study.
At this point, we have everything we need for solving the buffer level distribution g(y), which is defined in (20). The

solution procedure is exactly the same as in the FB-PR case, and (27) still holds for g(y). Now that we have the buffer level
distribution, the job loss probability Pfb-cr can be expressed as

Pfb-cr =

 B
0 g(y)D1(y)1αeT (B−y)1dy B

0 g(y)D1(y)1dy
. (33)

On the other hand, the workload loss probability Pw,fb-cr can be written as

Pw,fb-cr =
1

−αT−11

 B

0


∞

B−y
wg(y)D1(y)1αeTwT 0dwdy. (34)

Note that (34) differs from (28) only by the term w inside the integral instead of the term w − (B − y), which reflects the
different rejection policies of these two schemes.

4. Numerical examples

In this section, we present numerical examples to validate the proposed approach. The first example addresses the FB-CR
case for which we fix B = 10 and c(x) = 1−

1
2 sin( 2π

B x), which takes values in [0.5, 1.5] in a single period within [0, B]. This
function is selected since it drives the buffer level towards the middle of the buffer space [0, B]. The job size distribution is
of phase type, characterized with the pair


1 0


,

−2 2
0 −3


. We now define the following function, Dγ ,B(x) =

1−eγ x/B

1−eγ ,
which takes values in [0, 1] for x ∈ [0, B]. The function Dγ ,B(x) is an increasing function of x in [0, B], and it is convex
(concave) in xwhen γ > 0 (γ < 0). We use Dγ ,B(x) to experiment with general nonlinear continuous functions which can
be increasing or decreasing, and convex or concave. For this example, we set

D0(x) =


−d11(x) D2,10(x)

1 + D−1,10(x) −d22(x)


, D1(x) =


2 − D−4,10(x) 1 − D−3,10(x)

1 − D1,10(x)
1
2
(1 − D1,10(x))


, (35)

where d11(x) and d22(x) are selected such that D0(x) + D1(x) is stochastic. Note that there are all possible combinations of
increasing/decreasing and convex/concave functions in (35). The steady-state density of the buffer level seen at an arbitrary
time, which we denote by g(y) = g(y)1, is plotted for varying number of regimes K in Fig. 1, along with the simulation
results. It is clear that the analysis results converge to simulation results as K is increased, with the difference between the
two vanishing for K ≥ 1024. Throughout the rest of the numerical examples, we fix K = 1024.

In the second example, for the two finite buffer models FB-PR and FB-CR, we present three scenarios in which the job size
distribution is exponential, Erlangian (E10), and hyper-exponential (H2) with a coefficient of variation of 10 with balanced
means [33], all havingmean job sizes of 1.We test the proposed approach in twodifferent loading scenarios. For this purpose,
the MAP in this example is characterized by the matrices in (35) for the low-loading case, and D1(x) is doubled for each x for
the high-loading case alongwith the correspondingmodifications in dii(x), i = 1, 2. The service speed and the buffer capacity
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Fig. 1. Steady-state buffer level pdf for varying number of regimes.

Fig. 2. Steady-state buffer level pdf for the FB-PR and FB-CR policies under low loading.

Fig. 3. Steady-state buffer level pdf for the FB-PR and FB-CR policies under high loading.

are chosen as in the previous example. The steady-state buffer level density is given in Figs. 2 and 3 for low-loading and high-
loading scenarios, respectively, for the FB-CR and FB-PR rejection policies. The proposed approach perfectly captures the
pdf of the buffer level for all the tested job size distributions and for both loading scenarios without any numerical stability
problems. Moreover, in contrast to the FB-PR case, the pdf of the buffer level for the FB-CR case vanishes as the buffer level
approaches B due to the complete rejection policy. Theworkload loss probabilities produced by the FB-PR (FB-CR) policy and
the corresponding simulation results are given in Table 1 (Table 2), the latter table also presenting the job loss probability.
Note that, with the FB-CR policy, larger jobs are more likely to be rejected. This situation is magnified with increased service
time variability. If a rejection policy favors smaller jobs as opposed to larger jobs, this would have adverse effect on the
workload loss probability but may lead to improved overall job loss probability. For example, in Table 2, in the low-loading
case, the job loss rate is not even monotonically increasing with the service time variability for the FB-CR policy.

For validating the approach for the IB scenario,we use the previous example, butwith aMAP arrival process characterized
by

D0(x) =


−d11(x) 2 − e−x

3 − e−x/2
−d22(x)


, D1(x) =


e−x 2e−x/2

1
2
e−x/10 e−x/5


,

where d11(x) and d22(x) are again selected such that D0(x)+D1(x) is stochastic. For the high-loading case, we again doubled
D1(x). The service speed is c(x) = 3 −

1
2 e

−x cos(2πx), which has no particular significance other than having a limit as
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Table 1
Workload loss probabilities for the FB-PR policy: simulation results represent 10 runs
with 106 units of simulated time and 99% confidence intervals.

Pw,fb-pr Simulation

High loading
H2 4.9714 × 10−1 4.9124 × 10−1

± 3.1493 × 10−3

Exp 2.9519 × 10−1 2.9185 × 10−1
± 7.0134 × 10−4

E10 2.6532 × 10−1 2.6206 × 10−1
± 5.3100 × 10−4

Low loading
H2 4.7235 × 10−1 4.6966 × 10−1

± 4.0205 × 10−3

Exp 5.9215 × 10−2 5.8706 × 10−2
± 2.7172 × 10−4

E10 1.3103 × 10−2 1.2856 × 10−2
± 1.3227 × 10−4

Table 2
Workload and job loss probabilities for the FB-CR policy: simulation results represent
10 runs with 106 units of simulated time and 99% confidence intervals.

Pw,fb-cr Simulation

High loading
H2 5.1012 × 10−1 5.0963 × 10−1

± 4.6680 × 10−3

Exp 3.2352 × 10−1 3.2191 × 10−1
± 5.1730 × 10−4

E10 2.6643 × 10−1 2.6353 × 10−1
± 4.4079 × 10−4

Low loading
H2 4.9944 × 10−1 4.9837 × 10−1

± 4.5928 × 10−3

Exp 1.0427 × 10−1 1.0374 × 10−1
± 4.7205 × 10−4

E10 1.9091 × 10−2 1.8369 × 10−2
± 9.7872 × 10−5

Pfb-cr Simulation

High loading
H2 1.1453 × 10−2 1.1333 × 10−2

± 6.4506 × 10−5

Exp 1.3568 × 10−1 1.3457 × 10−1
± 3.6109 × 10−4

E10 2.3274 × 10−1 2.2964 × 10−1
± 4.4478 × 10−4

Low loading
H2 4.8591 × 10−3 4.8388 × 10−3

± 4.8460 × 10−5

Exp 3.2901 × 10−2 3.2606 × 10−2
± 1.2858 × 10−4

E10 1.5654 × 10−2 1.5245 × 10−2
± 8.3769 × 10−5

Fig. 4. Steady-state buffer level pdf for the IB case under low and high loading. The T (K−1) values found via (12) for low-loading and high-loading scenarios
are 62.2859 and 69.1978, respectively, for ϵ = 10−3 . The plots are truncated as the pdf vanishes.

x → ∞ and being complex enough to produce non-trivial buffer level distributions. The resulting steady-state buffer level
pdf obtained by analysis and simulation is depicted in Fig. 4, which clearly demonstrates the agreement between the two.
The behaviors of the systems having different job size distributions are quite different, which is reflected in the pdf plots.

As for the final example, we analyze a finite buffer system with complete rejection whose arrivals occur according to
an MMPP with N states. The job size has H2 distribution with mean 5 and coefficient of variation 10 with balanced means.
Enumerating the states of theMMPP from 1 to N , a state i transits into all other states with rate i, and leads to an arrival with
rate

 1
B −

2
B

i−1
N−1


x +

i−1
N−1 within 0 ≤ x ≤ B, where B is the buffer capacity, selected as 10 for this example. In other words,

the arrival rate in state 1 linearly goes from 0 up to 1 within [0, B], the arrival rate in state N goes linearly from 1 down to 0
within [0, B], and the rates of the rest of the states have equally spaced slopes that fall within 1/B and −1/B, while all rate
functions intersect at the point (B/2, 1/2). The service speed is taken c(x) = 1 −

1
2 sin( 2π

B x), as before. The resulting pdfs
for two values of N are given in Fig. 5.

Besides demonstrating that our method is able to accurately solve workload-dependent buffers with a large number of
states, we also provide a computational run time analysis with this example. Run times for various values of N and K are
presented in Table 3, which demonstrates the linear dependence of the computational complexity of the proposed approach
on the number of regimes. The run time for each case is provided in terms of overall run time, and the three major steps
that constitute the proposed method: constructing the block-tridiagonal matrix from the boundary conditions (Matrix Fill),
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Fig. 5. Steady-state buffer level pdf for the system with MMPP arrivals for N = 5 and 20.

Table 3
Run times in units of seconds for various values of N and K obtained on a
PC with Intel Core i7, 2.20 GHz processor, and 8 GB RAM.

N K Matrix Fill Block LU Normalization Overall

5

256 0.6245 0.0318 0.2284 0.8918
512 1.2618 0.0668 0.4593 1.7948
768 1.8902 0.1063 0.6799 2.6842

1024 2.5127 0.1472 0.8951 3.5635

10

256 0.8897 0.0622 0.2722 1.2327
512 1.7840 0.1279 0.5401 2.4631
768 2.6942 0.1979 0.8059 3.7114

1024 3.6196 0.2721 1.0772 4.9853

15

256 1.2297 0.1100 0.3612 1.7133
512 2.4828 0.2278 0.7021 3.4304
768 3.7789 0.3559 1.0391 5.1969

1024 5.0898 0.4861 1.3930 6.9971

20

256 1.6526 0.1654 0.4426 2.2772
512 3.3454 0.3406 0.8695 4.5815
768 5.0736 0.5262 1.2887 6.9237

1024 6.8673 0.7234 1.7191 9.3542

the block-LU factorization, and the normalization of the solution stemming from (8). It is clear that the most computation-
intensive step is theMatrix Fill, which consists of a Schur decomposition and a Sylvester equation for each regime in addition
to the calculation of V (k)(x) matrices, a procedure involving matrix exponentiation. We refer to [23] for the computational
complexity and stability of the associated numerical algorithms.

5. Conclusions

In this article, using sample path arguments, we reduce the steady-state analysis of a workload-dependent buffer
with MAP arrivals and PH-type distributed job sizes to that of a CFMFQ. We then appropriately approximate the CFMFQ
using uniform discretization by a K -regime MRMFQ and use the existing boundary conditions to solve for the MRMFQ.
Moreover, while solving the boundary equations of the MRMFQ, we take advantage of the block-tridiagonal structure of the
equations so as to reduce the computational complexity to O(K). With this method, large number of regimes (in the order
of thousands) can relatively easily be used for discretization. We have demonstrated perfect match with simulation results
in all scenarios we tested, provided that K is chosen large enough. Our future work will be directed towards applications of
the proposed method for the analysis of real-world systems in which controlled queues play a major role. Other directions
of future research are the exploration of different discretization techniques used for reducing CFMFQs to MRMFQs, and
the comparison of our method to existing CFMFQ solvers in terms of accuracy, numerical stability, and computational
complexity.

References

[1] M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, NY., 1989.
[2] D.M. Lucantoni, K.S. Meier-Hellstern, M.F. Neuts, A single server queue with server vacations and a class of nonrenewal arrival processes, Advances

in Applied Probability 22 (1990) 676–705.
[3] D. Perry, S. Asmussen, Rejection rules in the M/G/1 queue, Queueing Systems 19 (1995) 105–130.
[4] R. Bekker, S.C. Borst, O.J. Boxma, O. Kella, Queues with workload-dependent arrival and service rates, Queueing Systems 46 (2004) 537–556.
[5] D. Perry, W. Stadje, S. Zacks, The M/G/1 queue with finite workload capacity, Queueing Systems 39 (2001) 7–22.
[6] R. Bekker, Finite-buffer queues with workload-dependent service and arrival rates, Queueing Systems 50 (2005) 231–253.
[7] V. Sharma, J.T. Virtamo, A finite buffer queue, in: Global Telecommunications Conference, 1999. GLOBECOM ’99, pp. 1053–1057.

http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref1
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref2
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref3
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref4
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref5
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref6


1058 M.A. Yazici, N. Akar / Performance Evaluation 70 (2013) 1047–1058

[8] V. Sharma, J.T. Virtamo, A finite buffer queue with priorities, Performance Evaluation 47 (2002) 1–22.
[9] B. van Houdt, Analysis of the adaptive MMAP[K]/PH[K]/1 queue: a multi-type queue with adaptive arrivals and general impatience, European Journal

of Operational Research 220 (2012) 695–704.
[10] H.E. Kankaya, N. Akar, Solving multi-regime feedback fluid queues, Stochastic Models 24 (2008) 425–450.
[11] S. Asmussen, Ruin Probabilities, in: Advanced Series on Statistical Science and Applied Probability, World Scientific, 2000.
[12] H. Kankaya, N. Akar, Exact analysis of single-wavelength optical buffers with feedback Markov fluid queues, IEEE/OSA Journal of Optical

Communications and Networking (1) (2009) 530–542.
[13] L. Kosten, Stochastic theory of data handling systems with groups of multiple sources, Performance of Computer Communication Systems (1984)

321–331.
[14] D. Anick, D.Mitra,M.M. Sondhi, Stochastic theory of a data handling systemwithmultiple sources, Bell SystemTechnical Journal 61 (1982) 1871–1894.
[15] R. Tucker, Accurate method for analysis of a packet speech multiplexer with limited delay, IEEE Transactions on Communications 36 (1988) 479–483.
[16] A. da Silva Soares, G. Latouche, Fluid queues with level dependent evolution, European Journal of Operational Research 196 (2009) 1041–1048.
[17] N.G. Bean, M.M. O’Reilly, Performance measures of a multi-layer Markovian fluid model, Annals of Operations Research 160 (2008) 99–120.
[18] G. Horváth, B. van Houdt, A Multi-layer Fluid Queue with Boundary Phase Transitions and Its Application to the Analysis of Multi-type Queues with

General Customer Impatience, in: 2012 Ninth International Conference on Quantitative Evaluation of Systems, QEST, pp. 23–32.
[19] A. Badescu, S. Drekic, D. Landriault, On the analysis of a multi-threshold Markovian risk model, Scandinavian Actuarial Journal 2007 (2007) 248–260.
[20] M. Mandjes, D. Mitra, W. Scheinhardt, Models of network access using feedback fluid queues, Queueing Systems, Theory and Applications 44 (2003)

2989–3002.
[21] W. Scheinhardt, N. Foreest, M. Mandjes, Continuous feedback fluid queues, Operations Research Letters 33 (2005) 551–559.
[22] M. Gribaudo, M. Telek, Stationary analysis of fluid level dependent bounded fluid models, Performance Evaluation 65 (2008) 241–261.
[23] G.H. Golub, C.F. van Loan, Matrix Computations, The Johns Hopkins University Press, 1996.
[24] D.M. Lucantoni, New results for the single server queue with a batch Markovian arrival process, Stochastic Models 7 (1991) 1–46.
[25] G. Latouche, V. Ramaswami, Introduction to Matrix Analytical Methods in Stochastic Modeling, in: ASA-SIAM Series on Statistics and Applied

Probability, 2002.
[26] P. Buchholz, P. Kemper, J. Kriege, Multi-class Markovian arrival processes and their parameter fitting, Performance Evaluation 67 (2010) 1092–1106.
[27] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore, MD, 1989.
[28] V.G. Kulkarni, Fluidmodels for single buffer systems, in: J.H. Dshalalow (Ed.), Frontiers inQueuing:Models andApplications in Science andEngineering,

CRC Press, 1997, pp. 321–338.
[29] R. German, M. Gribaudo, G. Horváth, M. Telek, Stationary analysis of FSPNs with mutually dependent discrete and continuous parts, in: IEEE

International Workshop on Petri Nets and Performance Models, 2003.
[30] P.J. Brockwell, S.I. Resnick, R.L. Tweedie, Storage processes with general release rule and additive inputs, Advances in Applied Probability 14 (1982)

392–433.
[31] T. Dzial, L. Breuer, A. da Silva Soares, G. Latouche, M. Remiche, Fluid queues to solve jump processes, Performance Evaluation 62 (2005) 132–146.
[32] O. Kella, W. Whitt, A storage model with a two-state random environment, Operation Research 40 (1992) 257–262.
[33] H.C. Tijms, Stochastic Modelling and Analysis: A Computational Approach, John Wiley and Sons, 1986.

Mehmet Akif Yazici earned his B.S. and M.S. degrees in Electrical and Electronics Engineering from Middle East Technical
University, Turkey, in 2004 and 2006, respectively. He is currently a Ph.D. candidate in the Department of Electrical and Electronics
Engineering, Bilkent University, Turkey. His research interests include computer networks, with emphasis on stochasticmodeling,
and analysis of telecommunication systems and networks.

Nail Akar received his B.S. degree from Middle East Technical University, Turkey, in 1987, and his M.S. and Ph.D. degrees from
Bilkent University, Ankara, Turkey, in 1989 and 1994, respectively, all in Electrical and Electronics Engineering. From 1994 to
1996, he was a visiting scholar and a visiting assistant professor in the Computer Science Telecommunications program at the
University of Missouri—Kansas City. He joined the Technology Planning and Integration group at Long Distance Division, Sprint,
Overland Park, Kansas, in 1996, where he held a senior member of technical staff position from 1999 to 2000. Since 2000, he has
beenwith Bilkent University, Turkey, currently as an associate professor in the Electrical and Electronics Engineering Department.
His current research interests include performance analysis of computer and communication systems and networks, performance
evaluation tools and methodologies, design and engineering of optical and wireless networks, queuing systems, and resource
management.

http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref8
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref9
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref10
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref11
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref12
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref13
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref14
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref15
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref16
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref17
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref19
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref20
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref21
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref22
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref23
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref24
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref25
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref26
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref27
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref28
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref30
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref31
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref32
http://refhub.elsevier.com/S0166-5316(13)00109-0/sbref33

	The workload-dependent MAP/PH/1 queue with infinite/finite workload capacity
	Introduction
	Markov fluid queues
	Single-regime Markov fluid queues
	Multi-regime Markov fluid queues (MRMFQs)
	Continuous-feedback Markov fluid queues (CFMFQs)

	Workload-dependent MAP/PH/1 queue
	Infinite buffer (IB)
	Finite buffer with partial rejection (FB-PR)
	Finite buffer with complete rejection (FB-CR)

	Numerical examples
	Conclusions
	References


