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1. Introduction

This paper is a continuation of [1] whose results we briefly summarize. For a finite-dimensional CW-complex X,
let J (X) denote the finite Abelian group of stable fibre homotopy classes of vector-bundles over X and for a prime p,
Jp(X) the p-summand of J (X). For n, k ∈ Z

+, let Pn(C) = S2n+1/U(1) and Ln(pk) = S2n+1/Zpk denote the com-
plex projective space of (complex)-dimension n and the associated lens space respectively. In [1] Jp(Pn(C)) and
J (Ln(pk)) are determined by means of a set of generators and a complete set of relations. Let rn be the great-
est integer such that prn � n/p − 1. Then for 0 � s � rn and 0 � j � rn − s we defined a decreasing sequence
by t sj = [n − ps(pj − 1)/ps+j (p − 1)] where for a real number x, [x] denotes the greatest integer less than or

equal to x. Put tj = t0
j . We let ω denote the realification of the reduction of the Hopf bundle over Pn(C). Let

ψk
R

denote the Adams operation acting on K̃R(Pn(C)) and also on J (Pn(C)) and ρk
R

the associated characteristic
class taking values in 1 + K̃R(Pn(C)) ⊗ Qk where Qk is the sub-ring of rationals whose denominators are pow-
ers of k. m ∈ Z is defined to be a singular s-exponent if and only if the coefficient of ωm in the power series

ρ
p

R
(ψ

pk

R
(ω))p

tk is not integral (i.e. fractional) for some k ∈ Z
+. The j -index, ε

j
m of a singular s-exponent m is the

exponent of p in the denominator of the coefficient of ωm in the expansion of ρ
p

R
(ψ

pj

R
(ω))p

tj
. α = (α0, α1, . . . , αrn)

is an s-admissible sequence if and only if Congruence 1:
∑

j

αj

pε
j
m

∈ Z is satisfied by all singular s-exponents m.

We let Φ0
s = {t sk | t sk ≡ 0 (mod p)} and Ms = set of all singular s-exponents. Then [1, Proposition 4.4.4] states that

there is a bijection σs :Φ0
s → Ms (M = M0) given by σs(t

s
k ) = 1/2(p − 1)pktsk . If t sk ∈ Φ0

s , t sk = pνΔ (ν � 1,
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(Δ,p) = 1)) and m = σs(t
s
k ) then ε

j
m = pk+ν−jΔ + k + ν − j − t sj [1, Proposition 6.2.7] reduces the question of re-

lations in Jp(Pn(C)) to s-admissibility; in particular, proves that a relation:
∑

j�0 αjp
tsj Ψ

ps+j

R
(ω) = 0 (0 � s � rn)

exists in Jp(Pn(C)) if and only if α = {αj } is an s-admissible sequence. In [1, Section 5.2] two different sequences
called α- and β- sequences are constructed for each 0 � s � rn where αs

j = ∓1 or 0 and they are proved to be s-
admissible. In [1, Proposition 6.2.8 and 6.2.9] we obtain the corresponding set of (rn + 1)-relations in Jp(Pn(C))

which are proved to be complete. Hence in [1] Jp(Pn(C)) is determined by generators and a complete set of relations.
Analogous relations are then obtained for the J -groups of lens spaces.

However, the determination of the structure of a finite Abelian group is far from being over unless its primary
decomposition into cyclic groups is uncovered and it is the purpose of the present paper to determine the primary
decompositions of Jp(Pn(C)) and J (Ln(pk)). Using the framework of [1] the primary decomposition of Jp(Pn(C))

is reduced to the solution of the following problem in elementary number theory. For a prime p and a rational q , let
vp(q) denote the exponent of p in the prime factorization of q .

Problem. Let k, d ∈ Z
+, {ki} and τi are strictly-decreasing sequences such that 0 � ki � τi � k. Given integers {εj

i }
(1 � i � d, j � τi) such that

(i) For fixed i, ε
j
i is a strictly-increasing sequence in j for j � ki − 1, ε

ki−1
i � ε

ki

i , ε
ki

i = ε
ki+1
i and {εj

i } is a strictly-
decreasing sequence in j for ki + 1 � j � τi .

(ii) For fixed i, ε
j
i � 1 for at least one 0 � j � k.

(iii) ε
j ′
i − ε

j
i > ε

j ′
i′ − ε

j

i′ for i < i′ and j < j ′.

Find the least vp(αk) for a solution α = (α0, . . . , αk) (αi ∈ Z) of Congruence 1; i.e.

αk

pεk
i

+ αk−1

pεk−1
i

+ · · · + α0

pε0
i

∈ Z (1 � i � d). (1)

The main effort of this paper is concentrated in giving a solution to this problem.
Let Hk = {Ω ∈ 2[1,2,...,k] either Ω = ϕ, or, Ω = {i1, . . . , ir}, 1 � i1 < i2 < · · · < ir � d , εk−t+1

it
− εk−t

it
> 0 and

εk−t
it

> 0, 1 � t � r}. For each Ω ∈ Hk we define the associated set Φ = {{j1, . . . , js} | 1 � j1 < · · · < js � k,

(ε
k−jh+j
jh

− ε
k−jh+j−1
jh

) > 0, 1 � j � s}. Then we observe that Ω ∪ Φ = {1,2, . . . , l}, l � d . For each element Ω =
(i1, . . . , ir ) ∈Hk , we put vp(αk−t+1) = vp(αk−t )+ (εk−t+1

it
−εk−t

it
) (1 � t � r) and αk−r = 1, and obtain a vector α =

(α0, . . . , αk) with α0 = · · · = αk−r−1 = 0 and αk = p
∑r

t=1(ε
k−t+1
it

−εk−t
it

). The Congruence Theorem (e.g. Theorem 2.14)
which is original (and proved in this paper for the first time) shows that the vector α so defined is a solution of the
system of Congruences 1 with respect to Ω ∪ [l + 1, l + 2, . . . , k]. We then require all terms of Congruence 1 with
respect to j1, j2, . . . , js be integral. This necessitates that vp(αk−jh+h) � ε

k−jh+h
jh

(1 � h � s); or, equivalently, that

vp(αk) �
∑jh−h

t=1 (εk−t+1
it

− εk−t
it

) + ε
k−jh+h
jh

. Hence if we define

u(Ω) = max

(
r∑

t=1

(
εk−t+1
it

− εk−t
it

); max
1�h�s

ε
k−jh+h

jh
>0

(
jh−h∑
t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−jh+h
jh

))
. (2)

We obtain a solution α = (α0, . . . , αk) with vp(αk) = u(Ω). We then define a unique element Ω0 ∈ Hk and define
(e.g. Definition 2.5) uk = u(Ω0). Hence a solution to the system of Congruences 1 exists with vp(αk) = uk . (Actually,
αk = puk .) We then show (e.g. Proposition 2.6) that uk is minimal among u(Ω) as Ω varies over Hk . The observation
that when all the terms of Congruence 1 are not integral there are at least two terms with highest denominator with
positive p-exponent leads to Lemmas 2.8, 2.9, Corollary 2.10 and Lemma 2.11 and Lemma 2.11 together with Propo-
sition 2.6 yield Proposition 2.12 which states that for any solution α = (α0, . . . , αk) of the system of Congruence 1,
vp(αk) � uk . Hence the problem stated is solved in full. This completes the elementary number theory.

The proof of Theorem 2.21 which is the main result of the paper is straightforward algebra. It combines [1,
Proposition 6.2.14] with the solution of the above problem to deduce the primary decomposition of Jp(Pn(C)).



2486 I. Dibag / Topology and its Applications 153 (2006) 2484–2498
Thus, relations, β0ω + · · · + βkψ
pk

R
(ω) = 0 with minimal vp(βk) = tk + uk (actually, βk = ptk+uk ) exist. It fol-

lows from elementary algebra in a straightforward way that Jp(Pn(C)) has a primary decomposition with invariants
ptk+uk for 0 � k � rn. The first summand in this decomposition is generated by w and it is proved that it has order
pt0+u0 = Mn+1,p = p-component of the Atiyah–Todd number Mn+1. We then extend this to J -groups of lens spaces.

Let G(p,n, r) be the sub-group of J (Ln(pr)) generated by powers of w. The index functions ε
j
m are replaced by a

certain reduction ε
j
m(r) with respect to r . The whole theory goes over with ur

k defined analogously with uk in terms

of ε
j
m(r) and G(p,n, r) has a primary decomposition with invariants ptk+ur

k for 1 � k � r − 1. From this we recover
the decomposition of J (Ln(pr)) into a direct-sum of cyclic groups. The first summand generated by w has order
pt0+ur

0 = Mn+1(p
r) where Mn+1(p

r) is defined in [1, Definition 7.3.4]. We also recover the primary decomposi-
tions of Jp(Pn(C)) and J (Ln(pr)) when n = (p − 1)pk + s (0 � s � p − 2). In [1] as a demonstration we wrote
down the α- and β-relations in J2(P164(C)). In this paper we write down, very quickly, the primary decomposition of
J2(P164(C)).

These primary decompositions are existential in the sense that they only give the invariants of Jp(Pn(C)) and
J (Ln(pr)) (i.e. the orders of the cyclic groups in this decomposition) without an explicit expression for their gener-
ators except that of the first summand which is generated by w. For this reason, the previous paper [1] is essential to
those who seek explicit relations in these J -groups.

With [1] and the present paper the algebraic structure of the J -groups of complex projective and lens spaces is
completely determined and there is nothing more to do on the algebraic side. However, J -groups have two different
structures compatible with each other; the algebraic structure and the degree-function on them defined by stable co-
degrees of vector bundles just as vector spaces with a norm. The algebraic structure thus determined, the way is
opened to the determination of the degree-function and it is hoped that the infrastructure of this problem is laid down
in these two papers. The degree-function q on negative multiples of the complex Hopf bundle is the complex stable
James number which is the order of the obstruction to cross-sectioning a certain Stiefel fibration. Let 1+∑

i�1 an
i xi =

(1 + ∑
i�1

xpi−1

pi )n. Then a folklore conjecture states that the p-primary component qp(nηk−1) of q(nηk−1) is equal

to LCD{an
i : 1 � i � k − 1} for either p odd or p = 2 and n even.

2. Primary decomposition of Jp(Pn(C))

2.1. Background material from [1]

p is a fixed prime throughout. We define a decreasing sequence (tk)0�k�rn by tk = [ n−pk+1
pk(p−1)

]. Let Φ0 = {tk: tk ≡
0 (mod p)}. m is a singular exponent (i.e. m ∈ M) if the coefficient of ωm in the expansion of ρ

p

R
(ψ

pk

R
(ω))p

tk is not
integral for some 0 � k � rn. [1, Proposition 4.4.4] states that there is a bijection, σ :Φ0 → M given by σ(tk) =
1
2 (p − 1)pktk ; i.e. if tk = pνΔ (ν � 1, (Δ,p) = 1) then m = 1

2 (p − 1)piΔ where i = k + ν. tj = pi−jΔ − 1,

(k + 1 � j � i) and if we let Tm = ⋃i
j=k tj then for consecutive elements, m,m′ ∈ M (m′ > m), Tm′ ∩ Tm is either

empty or equal to {ti′ } = {tk} and the latter is always the case if p = 2. The j -index, ε
j
m of m, defined for j � i, is

the p-exponent of the denominator of the coefficient of ωm in the expansion of ρ
p

R
(ψ

pj

R
(ω))p

tj
when that coefficient

is not integral and is given by the formula, ε
j
m = pi−jΔ + i − j − tj . {εj

m}k�j�i = (ν ν ν − 1 ν − 2 . . . 2 1) and

(ε
j
m)j�k−1 is a strictly-increasing sequence bounded above by ν. εk−1

m = ν iff tk−1 = pν+1Δ + 1.

2.2. Lemma. Let m,m′ ∈ M, m′ > m, m = σ(tk) = σ(pνΔ) = 1
2 (p − 1)piΔ, m′ = σ(tk′) = σ(pν′

Δ′) =
1
2 (p − 1)pi′Δ′ ((Δ,p) = (Δ′,p) = 1, i = k + ν, i′ = k′ + ν′). If j ′ < j � i′ then (ε

j
m − ε

j ′
m) > (ε

j

m′ − ε
j ′
m′).

Proof.(
ε
j
m − ε

j ′
m

) − (
ε
j

m′ − ε
j ′
m′

)
= (

pi−jΔ + i − j − tj
) − (

pi−j ′
Δ + i − j ′ − tj ′

) − [(
pi′−jΔ′ + i′ − j − tj

) − (
pi′−j ′

Δ′ + i′ − j ′ − tj ′
)]
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= (
piΔ − pi′Δ′)(p−j − p−j ′)

= 2

(p − 1)
(m − m′)

(
1

pj
− 1

pj ′

)
> 0. �

2.3. Definition. For 0 � k � rn, Mk is the set m ∈ M such that the coefficient of ωm in the expansion of

ρ
p

R
(ψ

pj

R
(ω))p

tj
is not integral for some 0 � j � k. Let Mk = {m1, . . . ,md}, m1 < m2 < · · · < md .

2.4. Observation. Let m,m′ ∈ M,m′ > m. If (εi
m − εi−1

m ) is either undefined, or, (εi
m − εi−1

m ) � 0 (i � 1) then either
(εi−1

m′ − εi−2
m′ ) in undefined, or, (εi−1

m′ − εi−2
m′ ) � 0.

Proof. It follows from 2.1 that if m = σ(tk) and m′ = σ(tk′) Then k′ � k − 1 and k � i and hence k′ � i − 1. Thus,
(εi−1

m′ − εi−2
m′ ) is either undefined, or, (εi−1

m′ − εi−2
m′ ) � 0. �

2.5. Definition. Let Hk = {Ω ∈ 2Mk either Ω = φ, or, Ω = (mi1 , . . . ,mir ), 1 < i1 < i2 < · · · < ir � d, (ε
(k−t+1)
it

−
εk−t
it

) > 0 and εk−t
it

> 0, 1 � t � r}. Define the associated set Φ = {Ω ∈ Mk − Ω | either m < mir , or, m > mir

and (ε
(k−r)
m − εk−r−1

m ) > 0}:

(i) Let m ∈ Φ , mit < m < mit+1 . Then (ε
(k−t+1)
m − εk−t

m ) > 0 (since if we assume the contrary then (ε
(k−t+1)
it

− εk−t
it

)

is either undefined, or, (ε
(k−t+1)
it

− εk−t
it

) � 0 by Observation 2.4 which is a contradiction).

(ii) Let m� = sup(Ω ∪ Φ). It follows from the Observation 2.4 that Ω ∪ Φ = {m1,m2, . . . ,m�}, � � d and (ε
(k−r)
m −

εk−r−1
m ) is either undefined, or (ε

(k−r)
m − εk−r−1

m ) � 0 for m > m�.

For Ω ∈ Hk − {∅} we write down the corresponding set of inequalities I (Ω) for the index functions ε
j
i . Let

Ω = (mi1, . . . ,mir ), Φ = (mj1 , . . . ,mjs ) (r + s = �).

For 1 � t � r , ε
(k−t)
it

>
∑r

u=t+1(ε
(k−u+1)
iu

− ε
(k−u)
iu

) and ε
(k−t)
it

>
∑r

u=t+1(ε
(k−u+1)
iu

− ε
(k−u)
iu

) + ε
(k−jh+h)
jh

for

jh − h � t , ε
(k−jh+h)
jh

> 0.
There is a 1–1 correspondence between Ω ∈ Hk − {φ} and the set of inequalities I (Ω). The set of inequalities

{I (Ω); Ω ∈Hk −{φ}} are disjoint. (Two of which cannot hold simultaneously.) Hence at most one set of inequalities
is satisfied.

We let Ω0 = Ω if I (Ω) is satisfied for some Ω ∈ Hk and Ω0 = φ if none of the set of inequalities I (Ω) is satisfied.
For Ω = {mi1, . . . ,mir } ∈Hk and Φ = {mj1, . . . ,mjs } we define

u(Ω) = max

(
r∑

t=1

(
ε
(k−t+1)
it

− ε
(k−t)
it

); max
1�h�s

ε
k−jh+h

it
>0

(
jh−h∑
t=1

(
ε
(k−t+1)
it

− ε
(k−t)
it

) + ε
k−jh+h
jh

))
. (3)

We note that u(φ) = max(εk
m: m ∈ Mk, (εk

m − εk−1
m ) > 0). We then define uk = u(Ω0) where Ω0 is the unique

element of Hk defined above.

2.6. Proposition. Let Ω ∈ Hk . Then vp(u(Ω)) � uk .

Proof. Let Ω ∈ Hk and Φ be the associated set. Let Ω0 ∈ Hk be the unique element of Hk defined in 2.5 such that
uk = u(Ω0). Let Ω0 = {mi1, . . . ,mir }, Φ0 = {mj1 , . . . ,mjs }, Ω0 ∪ Φ0 = {m1, . . . ,m�}. Then by Definition 2.5,

uk = max

(
r∑

t=1

(
ε
(k−t+1)
it

− ε
(k−t)
it

); max
1�h�s

ε
k−jh+h

jh
>0

(
jh−h∑
t=1

(
ε
(k−t+1)
it

− ε
(k−t)
it

) + ε
k−jh+h
jh

))
. (4)

Let ε
k−jh+h

> 0 for some 1 � h � s. Suppose mi , . . . ,mip ∈ Ω and mi /∈ Φ (1 � p � jh − h)
jh 1 p+1
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jh−h∑
t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−jh+h
jh

=
p∑

t=1

(
εk−t+1
it

− εk−t
it

) +
jh−h∑

t=p+1

(
εk−t+1
it

− εk−t
it

)

=
p∑

t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−p−1
ip+1

−
jh−h∑

t=p+2

(
ε
k−p
ip+1

− (
εk−t+1
it

− εk−t
it

) − ε
k−jh+h
jh

)
<

p∑
t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−p
ip+1

< u(Ω) (5)

since by definition of Ω0 we have ε
k−p−1
ip+1

<
∑jh−h

t=p+2(ε
k−t+1
it

− εk−t
it

) + ε
k−jh+h
jh

. Also,

r∑
t=1

(
εk−t+1
it

− εk−t
it

) =
p∑

t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−p
ip+1

−
(

ε
k−p−1
ip+1

−
r∑

t=p+2

(
εk−t+1
it

− εk−t
it

))

<

p∑
t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−p
ip+1

< u(Ω). � (6)

2.7. Definition. Motivated by Proposition 2.6, we can give an alternative definition of uk . Let Hk be defined in Defi-
nition 2.5. If Ω ∈ Hk define u(Ω) as in 2.5. Then define uk = minu(Ω). Proposition 2.6, shows the equivalence of
Definitions 2.5 and 2.7.

If we use Definition 2.5, we have to check out the set of inequalities I (Ω) and hence pick the unique Ω0 and
with Definition 2.7 we have to check out u(Ω) for Ω ∈ Hk and take its minimum and the two require equal labour.
However, Definition 2.5 gives more insight.

2.8. Lemma. If all the terms in Congruence 1; i.e.
∑k

j=0
αj

pε
j
m

∈ Z are not integral there exists a subset U of

(1,2, . . . , k) containing at least two elements such that

(i) vp(αi) < εi
m ∀i ∈ U ;

(ii) vp(αi) − vp(αj ) < εi
m − ε

j
m ∀i, j ∈ U ; i.e. (vp(αi) − εi

m | i ∈ U) is a constant kU ;

(iii) vp(αi) − vp(αj ) < εi
m − ε

j
m for 0 � j < i � k, i /∈ U,j ∈ U ; i.e. (vp(αi) − εi

m) > kU ∀i /∈ U .

Proof. Assume the contrary. Then either (a) There is no pair (i, j), 0 < j < i � k such that vp(αi) − vp(αj ) =
εi
m − ε

j
m, or, (b) For each subset U of (0,1, . . . , k) with the property that vp(αi) − vp(αj ) < εi

m − ε
j
m ∀i, j ∈ U then

there exists s /∈ U such that vp(αs) − vp(αj ) = εs
m − ε

j
m ∀ j ∈ U .

In either case, let 0 � i0 � k be such that vp

( αi0

pε
i0
m

) = vp(αi0) − ε
i0
m = min(vp(αi) − εi

m) Then we have strict

inequality; i.e. vp(αi0) − ε
i0
m < vp(αi) − εi

m ∀i �= i0. If vp(αi0) − ε
i0
m � 0 then vp(αi) − εi

m � 0 (0 � i � k) and all the

terms of Congruence 1 would be integral which is a contradiction. Hence vp(αi0)− ε
i0
m < 0. Thus, Congruence 1 does

not hold which is a contradiction. �
2.9. Lemma. Let α = (α0, . . . , αk) be an admissible sequence such that all the terms of Congruence 1 with respect
to (mj1 , . . . ,mjs ) be integral and (mi1 , . . . ,mir ) be the remaining elements of Mk with respect to which not all
the terms of Congruence 1 are integral. Let Ut be the set defined in Lemma 2.8 for each mit (1 � t � r) and let
Vt = (0,1, . . . , k) − Ut be its complement. Let kt = supUt and lt = infUt . Then {0 � i � k, i > lt } ⊆ Vt+1 and
Ut+1 ⊆ {i; 0 � i � k, i � lt }. Hence either lt = kt+1, or, lt ∈ Vt+1 (1 � t � r − 1).
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Proof. Let i ∈ Ut+1 for i > lt . Then either i ∈ Ut and vp(αi) − vp(αlt ) = εi
it

− ε
lt
it

, or, i ∈ Vt and vp(αi) − vp(αlt ) >

εi
it

− ε
lt
it

, and hence in either case, vp(αi)− vp(αlt ) � εi
it

− ε
lt
it

. By Lemma 2.2, εi
it

− ε
lt
it

> εi
it+1

− ε
lt
it+1

. Thus, vp(αi)−
εi
it+1

> vp(αlt )−ε
lt
it+1

. By (iii) of Lemma 2.8, min0�j�k(vp(αj )−ε
j
it+1

) = kUt+1 and hence i /∈ Ut+1, i.e. i ∈ Vt+1. �
2.10. Corollary. Let α = (α0, . . . , αk) be an admissible sequence such that all the terms of Congruence 1 with respect
to (mj1 , . . . ,mjs ) be integral, j1 < j2 < · · · < js (i.e. vp(αi) � εi

jh
, 0 � i � k, 1 � h � s) and (mi1 , . . . ,mir ) are the

remaining elements i1 < i2 < · · · < ir , with respect to which not all the terms of Congruence 1 are integral. Then there
exists a strictly-decreasing sequence (lt )0�t�r in the interval [0, k] with l0 = k and lt � k − it such that vp(αlt ) < ε

lt
it

;

ε
lt−1
it

− ε
lt
it

> 0 and ε
lt
it

> 0 (1 � t � r). If we define

Kα = max

(
r∑

t=1

(
ε
lt−1
it

− ε
lt
it

); max
1�h�s

ε
ljh−h

jh
>0

(
jh−h∑
t=1

(
ε
lt−1
it

− ε
lt
it

) + ε
ljh−h

jh

))
, (7)

then vp(αk) � Kα .

Proof. Let Ut be the set defined in Lemma 2.8 and let lt = infUt (1 � t � r). Put l0 = k. It follows from Lemma 2.9
that {lt } forms a strictly-decreasing sequence such that (ε

lt−1
it

− ε
lt
it
) > 0 and ε

lt
it

> 0. Either k = supU1 and vp(αk) −
vp(αl1) = εk

i1
− ε

l1
i1

, or, k /∈ U1 and vp(αk) − vp(αl1) > εk
i1

− ε
l1
i1

. In either case,

1. vp(αk) − vp(αl1) � εk
i1

− ε
l1
i1

. Similarly, we have

2. vp(αl1) − vp(αl2) � ε
l1
i2

− ε
l2
i2

...

t. vp(αlt−1) − vp(αlt ) � ε
lt−1
it

− ε
lt
it

. Summing up these inequalities for 1 � t � r we obtain

vp(αk) �
jh−h∑
t=1

(
ε
lt−1
it

− ε
lt
it

)
. (8)

For 1 � h � s, summing up the first t = jh − h inequalities above together with the inequality; vp(αljh−h
) � ε

ljh−h

jh
we

obtain

vp(αk) �
jh−h∑
t=1

((
ε
lt−1
it

− ε
lt
it

) + ε
ljh−h

jh

)
. � (9)

2.11. Lemma. Let α = (α0, . . . , αk) be an admissible sequence and Kα be as defined in Corollary 2.10. Then Kα �
u(Ω) for some Ω ∈Hk .

Proof. Let α = (α0, . . . , αk) be an admissible sequence. Let the elements (mj1 , . . . ,mjs ) and (mi1 , . . . ,mir ) of Mk

and the number Kα be defined as in Corollary 2.10. Define Ω = {mit | (εk−t+1
it

− εk−t
it

) > 0 and εk−t
it

> 0}. Then
Ω ∈ Hk . Let Φ be the associated set to Ω as defined in 2.5. Then Φ ⊆ (mj1 , . . . ,mjs ). Let Ω = {mi1, . . . ,mir′ }
and Φ = (mj1 , . . . ,mjs′ ) where r ′ � r and s′ � s. Then by repeated application of Lemma 2.2 and for t = jh − h

(1 � h � s′) we obtain

Kα �
(
εk
i1

− ε
l1
i1

) + (
ε
l1
i2

− ε
l2
i2

) + · · · + (
ε
lt−1
it

− ε
lt
it

) + ε
lt
jh

�
(
εk
i1

− εk−1
i1

) + (
εk−1
i2

− εk−2
i2

) + · · · + (
εk−t+1
it

− εk−t
it

) + (
εk−t
jh

− ε
lt
jh

) + ε
lt
jh

= (
εk
i1

− εk−1
i1

) + (
εk−1
i2

− εk−2
i2

) + · · · + (
εk−t+1
it

− εk−t
it

) + +ε
lt
jh

.

Similarly, Kα �
∑r ′

t=1(ε
k−t+1
it

− εk−t
it

). Hence Kα � u(Ω). �
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2.12. Proposition. Let α = (α0, . . . , αk) be an admissible sequence. Then vp(αk) � uk .

Proof. vp(αk) � uα by Corollary 2.10. Kα � u(Ω) for some Ω ∈ K by Lemma 2.11 and u(Ω) � uk by Proposi-
tion 2.6. �

We shall prove (e.g. Proposition 2.18) that there exists an admissible sequence α = (α0, . . . , αk) with αk = puk and
we need the Congruence Theorem for this purpose. The Congruence Theorem is an original contribution of this paper.

2.13. Remark. Consider the system of congruences,

βk

pεk
i

+ βk−1

pεk−1
i

+ · · · + β0

pε0
i

∈ Z (1 � i � d).

If we define h = max(ε
j
i : 0 � j � k, 1 � i � d − 1) then any simultaneous solution β = (β0, . . . , βk) is determined

in β ∈ (Zph)k+1 (i.e. βj ∈ Zph , 0 � j � k).

2.14. Theorem (Congruence Theorem). Let p be a prime and ε
j
i ∈ Z (0 � j � k,1 � i � d) and εk

i < · · · < εk−i+1
i =

εk−i
i > εk−i−1

i > · · · > ε0
i . Let h = max(ε

j
i : 0 � j � k, 1 � i � d) and β ∈ Zph . Then there exists a simultaneous

solution β = (β0, . . . , βk) ∈ (Zph)k+1 of the system of congruences:

βk

pεk
i

+ βk−1

pεk−1
i

+ · · · + β0

pε0
i

∈ Z (1 � i � d) with βk = β.

If β is a unit in Zph so are βj (0 � j � k).

Proof. Define d
j
i = (ε

j
i − ε

j−1
i ) � 1 (0 � j � i − 1) and d

j
i = (ε

j
i − ε

j+1
i ) � 1 (i � j � k). Let 1 � r � h. We shall

show by induction on r that the following system of congruences have a unique simultaneous solution in (Zpr )k+1

with βk = β .

0. βi + βi−1 ≡ pdi
i γ i

i + pdi−1
i γ i−1

i (mod pr ),

1. γ i−1
i + βi−2 ≡ pdi−2

i γ i−2
i (mod pr ),

...

(i − 2). γ 2
i + β1 ≡ pd1

i γ 1
i (mod pr ),

(i − 1). γ 1
i + β0 ≡ 0 (mod pr ),

i. γ i
i + βi+1 ≡ pdi+1

i γ i+1
i (mod pr ),

i + 1. γ i+1
i + βi+2 ≡ pdi+2

i γ i+2
i (mod pr ),

...

(k − 1). γ k−1
i + βk ≡ 0 (mod pr ).

For r = 1, βi +βi−1 ≡ pdi
i γ i

i +pd
j−1
i γ i−1

i ≡ 0 (mod p), i.e. βi ≡ −βi−1 (mod p) (1 � j � k − 1). Let βk = β and

this determines βj ≡ (−1)k−j β (mod p). γ
j
i + βj−1 ≡ pd

j−1
i γ

j−1
i ≡ 0 (mod p) and thus γ

j
i ≡ (−1)k−j β (mod p)

(j � i−1) and, similarly, γ j
i ≡ (−1)k−j β (mod p) (i � j � k−1). Let r > 1 and assume the induction-hypothesis for

(r − 1). βi + βi−1 ≡ pdi
i γ i

i + pdi−1
i γ i−1

i (mod pr ) (di
i , d

i−1
i � 1) where γ i

i , γ i−1
i are the unique solutions mod pr−1.

Hence βi +βi−1 is uniquely determined mod pr (1 � i � k). From this and the fact that βk = β , all the βi (0 � i � k)

are uniquely determined in Zpr . From the equation, γ
j
i + βj−1 ≡ pd

j−1
i γ

j−1
i (mod pr ) and the fact that γ

j−1
i is

determined mod pr−1, d
j−1
i > 1, βj−1 is determined mod pr , the variables γ

j
i are uniquely determined mod pr

(2 � j � i−1). γ 1
i is uniquely determined in Zpr from the equation, γ 1

i +β0 ≡ 0 (mod pr ), γ j
i is uniquely determined

in Zpr (i � j � k − 1) from the equation, γ
j + βj+1 ≡ pd

j+1
i γ

j+1 (mod pr ) and the fact that the class of γ
j+1 is
i i i
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determined in Zpr−1 , d̄
j+1
i > 1, and that βj+1 is determined in Zpr . The variable γ k−1

i is determined uniquely in Zpr

from the equation, γ k−1
i + βk ≡ 0 (mod pr ). Hence all the variables are uniquely determined in Zpr . Let γ

j
i ≡ x

j
i

(mod pr−1) and γ
j
i ≡ x

j
i (mod pr−1). Then γ

j
i = x

j
i + k

j
i pr−1. The equations 0,1, . . . , i − 2, ī, i + 1, . . . , (k − 1)

are determined with γ
j
i = x

j
i and γ

j
i = x

j
i on the RHS of the congruence and if we now put γ

j
i and γ

j
i instead

of x
j
i and x

j
i , the RHS of the congruences differ by elements of the form k

j
i pd

j
i pr−1, or, k

j
i p

d
j
i pr−1 which are

congruent to 0 (mod pr ). Hence the uniquely determined variables satisfy the given system of congruences in Zpr .
The variables (β0, . . . , βk) of the system of congruences for r = h is a solution of the original system of congruences
with βk = β . �
2.15. Remark. α = (α0, . . . , αk) is called admissible with respect to a subset S of Mk if and only if Congruence 1 is
satisfied for all m ∈ S.

2.16. Proposition. Let Ω = {mi1, . . . ,mir } ∈ Hk (1 � i1 < i2 < · · · < ir � d) and Φ = {mj1, . . . ,mjs } (1 � j1 < j2
< · · · < js), be its associated set as in Definition 2.5. Then there exists an admissible sequence α = (α0, . . . , αk) with

respect to the set Ω ∪ (Mk − (Ω ∪ Φ)), with αk = p
∑r

t=1(ε
k−t+1
it

−εk−t
it

).

Proof. Let Mk = {m1, . . . ,md}, Ω ∪ Φ = {m1, . . . ,ml}, l � d . Suppose (ε
k−r−j+1
l+j − ε

k−r−j
l+j ) � 0 (1 � j � e) and

(ε
k−r−j+1
l+j − ε

k−r−j
l ) is undefined for j > e. Let αk−t+1 = p

∑r
u=t (ε

k−u+1
iu

−εk−t
iu

)
βk−t+1 (1 � t � r), αk−r = βk−r ,

αk−r−i = p
∑i

j=1(ε
k−r−j
l+j −ε

k−r−j+1
l+j )

βk−r−i (1 � i � e) and αj = βj = 0 (k − r − e < j � k). Let ir+j = l + j

(1 � j � e). Then Congruence 1; i.e.
∑k

j=0
αj

pε
j
m

∈ Z (m ∈ Ω ∪ (Mk − (Ω ∪ Φ))) can be written down as Congru-

ence 2; i.e.

βk

p
δk
it

+ βk−1

p
δk−1
it

+ · · · + βk−r−e

p
δk−r−e
it

∈ Z (1 � t � r + e). (10)

We claim the

Statement. δk
it

< δk−1
it

< · · · < δk−t+1
it

= δk−t
it

> δk−t+1
it

> · · · > δk−r−e
it

(1 � t � r + e).

Proof. (i) For 1 � j � t � r ,

δ
k−j+1
it

− δ
k−(j−1)+1
it

= δ
k−j+1
it

− δ
k−j+2
it

=
[
ε
k−j+1
it

−
r∑

s=j

(
εk−s+1
is

− εk−s
is

)] −
[
ε
k−j+2
it

−
r∑

s=j−1

(
εk−s+1
is

− εk−s
is

)]

= (
ε
k−j+2
ij−1

− ε
k−j+1
ij−1

) − (
ε
k−j+2
it

− ε
k−j+1
it

)
> 0 by Lemma 2.2

i.e. δ
k−j+1
it

> δ
k−(j−1)+1
it

. (11)

(ii) For 1 � t � r ,

δk−t+1
it

− δk−t
it

=
[
εk−t+1
it

−
r∑

s=t

(
εk−s+1
is

− εk−s
is

)] −
[
εk−t
it

−
r∑

s=t+1

(
εk−s+1
is

− εk−s
is

)]
= (

εk−t+1
it

− εk−t
it

) − (
εk−t+1
it

− εk−t
it

) = 0

i.e. δk−t+1
it

= δk−t
it

. (12)

(iii) For 1 � t � r , t < j � r − 1,
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δ
k−j+1
it

− δ
k−(j+1)+1
it

= δ
k−j+1
it

− δ
k−j
it

=
[
ε
k−j+1
it

−
r∑

s=j

(
εk−s+1
is

− εk−s
is

)] −
[
ε
k−j
it

−
r∑

s=j+1

(
εk−s+1
is

− εk−s
is

)]

= (
ε
k−j+1
it

− ε
k−j
it

) − (
ε
k−j+1
ij

− ε
k−j
ij

)
> 0 by Lemma 2.2,

i.e. δ
k−j+1
it

> δ
k−(j+1)+1
it

. (13)

(iv) For 1 � t � r , 0 � j � e − 1,

δ
k−r−j+1
it

− δ
k−r−(j+1)+1
it

= δ
k−r−j+1
it

− δ
k−r−j
it

=
[
ε
k−r−j+1
it

−
j−1∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)] −
[
ε
k−r−j
it

−
j∑

s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)]
= (

ε
k−r−j+1
it

− ε
k−r−j
it

) − (
ε
k−r−j+1
l+j − ε

k−r−j
l+j

)
> 0 by Lemma 2.2. (14)

(v) For 1 � t � r , δk−t+1
l+j > δk−t

l+j and the proof is similar to that of (i).
(vi) For 1 � j � i � e,

δ
k−l−j+1
l+i − δ

k−l−(j−1)+1
l+i = δ

k−l−j+1
l+i − δ

k−l−j+2
l+i

=
[
ε
k−l−j+1
l+i −

j−1∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)] −
[
ε
k−r−j+2
l+i −

j−2∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)]
= (

ε
k−r−j+2
l+j−1 − ε

k−r−j+1
l+j−1

) − (
ε
k−r−j+2
l+j − ε

k−r−j+1
l+j

)
> 0 by Lemma 2.2. (15)

(vii) For 0 � i � e − 1,

δk−r−i+1
l+i − δk−r−i

l+i =
[
εk−r−i+1
l+i −

i−1∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)] −
[
εk−r−i
l+i −

i∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)]
= (

εk−r−i+1
l+i − εk−r−i

l+i

) − (
εk−r−i+1
l+i − εk−r−i

l+i

) = 0. (16)

(viii) For 1 � i < j � e,

δ
k−r−j+1
l+i − δ

k−r−(j+1)+1
l+i = δ

k−r−j+1
l+i − δ

k−r−j
l+i

=
[
ε
k−r−j+1
l+i −

j−1∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)] −
[
ε
k−r−j
l+i −

j∑
s=1

(
εk−r−s
l+s − εk−r−s+1

l+s

)]
= (

ε
k−r−j+1
l+i − ε

k−r−j
l+i

) − (
ε
k−r−j+1
l+j − ε

k−r−j
l+j

)
> 0 by Lemma 2.2. � (17)

Hence Congruence 2 satisfies the hypothesis of the Congruence Theorem and we deduce from the Congruence The-
orem that there exists a solution β = (β0, . . . , βk) with βk = 1. Thus, Congruence 1 admits a solution α = (α0, . . . , αk)

with respect to m ∈ Ω ∪ (Mk − (Ω ∪Φ)) with αk = p
∑r

t=1(ε
k−t+1
it

−εk−t
it

) which by definition is an admissible sequence
with respect to Ω ∪ (Mk − (Ω ∪ Φ)). �
2.17. Proposition. Let Ω = (mi1, . . . ,mir ) ∈ Hk , i1 < i2 < · · · < ir . Then there exists an admissible sequence α =
(α0, . . . , αk) with αk = pu(Ω).

Proof. Let Φ = (mj1 , . . . ,mjs ) be the associated set to Ω so that Ω ∪ Φ = (m1,m2, . . . ,ml).
By Proposition 2.16 there exists an admissible sequence α′ = (α′

0, . . . , α
′
k) with respect to the set Ω ∪

{ml+1, . . . ,md} such that α′ = p
∑r

t=1(ε
k−t+1
it

−εk−t
it

). By definition
k
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u(Ω) = max

(
r∑

t=1

(
εk−t+1
it

− εk−t
it

); max
1�h�s

ε
k−jh−h

jh
>0

(
r∑

t=1

(
εk−t+1
it

− εk−t
it

) + ε
k−jh−h
jh

))

= λ +
r∑

t=1

(
εk−t+1
it

− εk−t
it

)
for λ � 0.

Define α = (α0, . . . , αk) by αj = pλα′
j (k − r � j � k). Then since Congruence 1 is homogeneous with respect to the

variables αj , it follows that α is also admissible with respect to the set Ω ∪ {ml+1, . . . ,md}, If we substitute

αk−t+1 = p
∑r

u=t (ε
k−u+1
iu

−εk−u
iu

)
βk−t+1 (1 � t � r), αk−r = βk−r ,

αk−r−i = p
∑i

j=1(ε
k−r−j
l+j −ε

k−r−j+1
l+j )

βk−r−i (1 � i � e) (18)

and αj = βj = 0 (k − r − e < j � k) as in the proof of Proposition 2.16, Congruence 1 takes the form 2.∑k
j=0

βj

pδ
j
m

∈ Z. Then by precisely the same arguments as used in the proof of Proposition 2.16, we can establish

the inequalities:

δk
jh

< δk−1
jh

< · · · < δ
k−jh+h
jh

> δ
k−jh+h−1
jh

> · · · > δ0
jh

(1 � h � s)

δ
k−jh+h
jh

= ε
k−jh+h
jh

− λ −
r∑

t=jh−h+1

(
εk−t+1
it

− εk−t
it

)

= ε
k−jh+h
jh

−
(

λ +
r∑

t=1

(
εk−t+1
it

− εk−t
it

)) +
jh−h∑
t=1

(
εk−t+1
it

− εk−t
it

)
= ε

k−jh+h
jh

− u(Ω) +
jh−h∑
t=1

(
εk−t+1
it

− εk−t
it

)
� 0 (19)

by definition of u(Ω). Thus, δi
jh

< δ
k−jh+h
jh

� 0 for i �= k − jh + h, by the above inequality. Hence all terms of Con-
gruence 2 and hence of Congruence 1 with respect to mjh

are integral (1 � h � s). It follows that α is an admissible
sequence with αk = pu(Ω). �
2.18. Proposition. There exists an admissible sequence α = (α0, . . . , αk) with αk = pu(Ω).

Proof. Take Ω = Ω0 in Proposition 2.17. �
2.19. Lemma. Let m ∈ M, m = σ(tk), tk = pνΔ (ν � 1, (Δ,p)) = 1, i = k+ν. Then for j � k + 1, pi−jΔ+ i −j <

tj−1.

Proof. tj−1 − (pi−jΔ+ i − j) � pi+j+1Δ + pk−j+1Δ−1
(p−1)

− (pi−jΔ + i − j) by [1, Lemma 4.4.6] � pi−j+1Δ+ k −
j + 1 − pi−jΔ − i + j = (p − 1)pi−jΔ − ν + 1 � (p − 1)pi−k−1 − (ν − 1) = (p − 1)pν−1Δ − (ν − 1) > 0. �
2.20. Corollary. For j < k, tk + uk < tj .

Proof. Since tj is a strictly-decreasing sequence, it suffices to prove that tk + uk < tk−1. Let Φ = {m1,m2, . . . ,ml}
be the associated set to the empty-set φ ∈Hk . Then (εk

j − εk−1
j ) > 0; i.e. if mj = σ(tkj

) then k � kj . Let tkj
= pνj Δj

(νj � 1, (Δj , p) = 1), ij = kj + νj , mj = 1
2 (p − 1)pij Δj (1 � j � l). Then εk

j = pij −kΔj + ij − k − tk < tk−1 − tk

by Lemma 2.19. Thus, uk � u(φ) = max1�j�l ε
k
j < tk−1 − tk i.e. tk + uk < tk−1. �

2.21. Theorem. Jp(Pn(C)) = ⊕rn
k=0 Zptk+uk . The order of the first summand generated by ω is the p-component,

Mn+1,p of the Atiyah–Todd number Mn+1.
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Proof. By Proposition 2.18, for each 0 � k � rn, there exists an admissible sequence α = (α0, . . . , αk) with αk =
puk . It follows from [1, Proposition 6.2.14] that there exists in Jp(Pn(C)) a relation, pt0α0ω + pt1α1ψ

p

R
(ω) + · · · +

ptk+ukψ
pk

R
(ω) = 0 By Corollary 2.20, tj > tk + uk (0 � j � k − 1) and hence if we let xk = pt0−(tk+uk)α0ω +

pt1−(tk+uk)α1ψ
p

R
(ω) + · · · + ptk−1−(tk+uk)αk−1ψ

pk−1

R
(ω) + ψ

pk

R
(ω) then the above relation can be written down as:

ptk+ukxk = 0 (0 � k � rn). Since {ω,ψ
p

R
(ω), . . . ,ψ

prn

R
(ω)} spans Jp(Pn(C)) and that the coefficient of ψ

pk

R
(ω) in

the expansion of xk is 1, it follows that {x0, x1, . . . , xrn} spans Jp(Pn(C)). Suppose β0x0 +· · ·+βrnxrn = 0. We claim
the following statement:

Statement. If β0x0 + · · · + βkxk = 0 (1 � k � rn) then βkxk = 0 and β0x0 + · · · + βk−1xk−1 = 0.

Proof. Substituting for xj in terms of ψ
pi

R
(ω) we obtain a relation, α0ω + α1ψ

p

R
(ω) + · · · + αk−1ψ

pk−1

R
(ω) +

βkψ
pk

R
(ω) = 0. By [1, Proposition 6.2.14], αj = ptj α′

j (0 � j � k − 1) and βk = ptkα′
k where α′ = (α′

0, . . . , α
′
k)

is an admissible sequence. By Proposition 2.12, puk |α′
k and thus ptk+uk |βk . Hence βkxk = 0 and thus, β0x0 + · · · +

βk−1xk−1 = 0, proving the statement. �
It follows from the statement by induction on k starting with k = rn that β0x0 = β1x1 = · · · = βrnxrn = 0. This

proves the desired primary decomposition. As for the second part of the theorem, t0 = [ n
p−1 ], H0 = {φ}. Φ = M0.

m ∈M0 is of the form m = 1
2 (p − 1)piΔ, (Δ,p) = 1. ε0

m = piΔ + i − t0 > 0. Let rm = piΔ = 2m
(p−1)

� [ n
p−1 ]. Then

rm + vp(rm) − t0 > 0.

u0 = max
m∈M0

[
rm + vp(rm) − t0

] = max

[
r + vp(r) − t0: 1 � r �

[
n

p − 1

]
, r + vp(r) �

[
n

p − 1

]]
,

t0 + u0 = max

[
r + vp(r): 1 � r �

[
n

p − 1

]
, r + vp(r) �

[
n

p − 1

]]
= max

[
r + vp(r): 1 � r �

[
n

p − 1

]]
= vp(Mn+1). �

2.22. Remark. The second part of the theorem is the solution of the complex analogue of the vector field problem and
the simplest proof so far has been provided.

As a corollary to Theorem 2.21, we recover [1, Proposition 6.2.12], i.e.

2.23. Corollary. Let n = pk(p − 1) + r ′ (0 � r ′ � p − 2). Then

Jp

(
Pn(C)

) = Z
p(pk+k) ⊕ Z

p(pk−1−1) ⊕ Z
p(pk−2−1) ⊕ · · · ⊕ Zpp−1 .

Proof. mi = m = {m}, m = 1
2 (p − 1)pk (1 � i � k) ε

j
m = pk−j − 1 (1 � j � i), i.e. εi

m < εi−1
m < · · · < ε0

m. Thus,
Hi = {φ} (1 � i � k) and the corresponding set Φ to φ is empty. Thus, ui = 0 (1 � i � k) and hence the ith-summand
has order pti = ppk−i−1 (1 � i � k). The order of the first summand follows from the definition of the Atiyah–Todd
number. �
2.24. Example. As a demonstration we wrote down in [1, Example 6.2.13] the α- and β-relations for J2(P164(C)).
We now obtain the primary decomposition of J2(P164(C)).

tj : {164 81 40 19 9 4 1 0}
ε
j

82: 2 2 1

ε
j

80: 1 3 3 3 2 1

ε
j : 1 2 2 2 1
64
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k = 1: M1 = (80,82), τ =
[

2 2
3 1

]
, H1 = {

(80),φ
}
, u((80)) = 4, u(φ) = 3, u1 = 3;

k = 2: M2 = (80,82), τ =
[

1 2 2
3 3 1

]
, H2 = {φ}, u(φ) = 3, u2 = 3;

k = 3: M3 = (64,80,82), τ =
[ 1 2 2

3 3 3 1
1

]
, H3 = {

(64)
}
, u((64)) = 1, u3 = 1;

k = 4: M4 = (64,80,82), τ =
[ 1 2 2

2 3 3 3 1
2 1

]
, H4 = {

(64),φ
}
, u((64)) = 1, u((φ)) = 2, u4 = 1;

k = 5: M5 = (64,80,82), τ =
[ 1 2 2

1 2 3 3 3 1
2 2 1

]
, H5 = {φ}, u(φ) = 0, u5 = 0;

k = 6: M6 = (64,80,82), τ =
[ 1 2 2

1 2 3 3 3 1
2 2 2 1

]
, H6 = {φ}, u(φ) = 0, u6 = 0;

k = 7: M7 = (64,80,82), τ =
[ 1 2 2

1 2 3 3 3 1
1 2 2 2 1

]
, H7 = {φ}, u(φ) = 0, u7 = 0;

M165,2 = 2166. According to Theorem 1.15,

J2
(
P164(C)

) = Z2166 ⊕ Z284 ⊕ Z240 ⊕ Z220 ⊕ Z210 ⊕ Z24 ⊕ Z21 .

According to this primary decomposition, |J2(P164(C))| = 2325. We know from [1] that |J2(P164(C))| =
2
∑7

k=0[ 164
2k ] = 2164+82+41+20+10+5+2+1 = 2325. It checks.

3. Primary decomposition of J(Ln(pr))

3.1. Definition. Let n ∈ Z
+, r � rn. Then J (p,n, r) = ψ

pr

R
(Jp(Pn(C))) = subgroup of Jp(Pn(C)) generated by

ψ
pr

R
(ω),ψ

pr+1

R
(ω), . . . ,ψ

prn

R
(ω). Let G(p,n, r) be the subgroup of J (Ln(pr)) generated by the powers of ω. Then it

follows from [1] that G(p,n, r) is the quotient, G(p,n, r) = Jp(Pn(C))/J (p,n, r). For details refers to [1, Defini-
tion 5.1.8 and Section 7.1].

We now define reduced index functions ε
j
m(r) which will play the same role for lens spaces as index functions ε

j
m

play for complex projective spaces.

3.2. Definition. Let n ∈ Z
+, r � rn and m = 1

2 (p−1)piΔ ∈M ((Δ,p) = 1). Then ε
j
m(r) = pi−jΔ+min(i, r −1)−

j − tj (j � i).

3.3. Lemma. Let n ∈ Z
+, r � rn and m = σ(tk) = σ(pνΔ) = 1

2 (p − 1)piΔ ∈ M, (Δ,p) = 1, i = k + ν. Then

ε
j
m(r) =

⎧⎪⎪⎨⎪⎪⎩
ε
j
m if i < r,

ε
j
m − εr

m if k + 1 < r � i,

r − j if k + 1 < r � j � i,

non-positive if k + 1 � r.

Proof. (i) If i < r , it follows from its definition that ε
j
m(r) = ε

j
m.

(ii) If k+1 < r � i, εj
m(r)−[(εj

m −εr
m)] = pi−jΔ+ r −1−j − tj − (pi−jΔ+ i −j − tj )+ (pi−rΔ+ i − r − tr ) =

pi−rΔ − 1 − tr = 0 by [1, Lemma 4.4.3].
(iii) If k + 1 � r , ε

j
m(r) = pi−jΔ + r − 1 − tj � pi−jΔ + k − tj � 0 by [1, Lemma 4.4.6]. �
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We now state a slight variation of [1, Proposition 5.1.7].

3.4. Proposition. If m′ > m are consecutive elements in M, m′ = σ(tk′) = σ(pν′
Δ′), m = σ(tk) = σ(pνΔ), (Δ,p) =

(Δ′,p) = 1. Let k′ + ν′ � s � k and (α0, . . . , αs) be admissible in Mm′
(in the sense of [1, Definition 5.1.3]). Then

there exist integers (αj )j�k+1 such that (α0, . . . , αs,0 . . . ,0, αk+1, . . . , αk+ν, . . . , αrn) is an admissible sequence.

Proof. Identical with that of [1, Proposition 5.1.7]. �
3.5. Proposition. There exists a relation, β0ω+· · ·+βsψ

ps

R
(ω) = 0 in G(p,n, r) (s � r −1) iff βj = ptj αj , 0 � j � s

where α = (α0, . . . , αs) is an admissible sequence with respect to ε
j
m(r).

Proof. Suppose β0ω + · · · + βsψ
ps

R
(ω) = 0 in G(p,n, r). Then β0ω + · · · + βsψ

ps

R
(ω) = 0 in Jp(Pn(C)) mod

J (p,n, r); i.e. there exist integers βr,βr+1, . . . , βrn such that β0ω + · · · + βsψ
ps

R
(ω) + βrψ

pr

R
(ω) + · · · +

βrnψ
prn

R
(ω) = 0 in Jp(Pn(C)). By [1, Proposition 6.2.14], βj = ptj αj (0 � j � s, r � j � rn) where α =

(α0, . . . , αs,0, . . . ,0, αr , . . . , αrn) is an admissible sequence with respect to the index functions, ε
j
m. Suppose that

m = σ(tk) = σ(pνΔ) ∈M
(i) k + ν < r . Then by Lemma 3.3, ε

j
m(r) = ε

j
m (0 � j � k + ν) and thus

min(s,k+ν)∑
j=0

αj

pε
j
m(r)

=
min(s,k+ν)∑

j=0

αj

pε
j
m

∈ Z.

(ii) k + 1 < r � k + ν. By Lemma 3.3, ε
j
m(r) = ε

j
m − εr

m (0 � j � r) and ε
j
m = r − j (r � j � k + ν).(

s∑
j=0

+
k+ν∑
j=r

)
αj

pε
j
m

= β ∈ Z.

Multiplying by pεr
m , we obtain:

s∑
j=0

αj

pε
j
m−εr

m

+
k+ν∑
j=r

αj

pε
j
m−εr

m

= βpεr
m ∈ Z; i.e.

s∑
j=0

αj

pε
j
m(r)

+
k+ν∑
j=r

αj

pε
j
m(r)

∈ Z,

αj

pε
j
m(r)

= αj

pr−j
= αjp

j−r (r � j � k + ν).

Thus,
∑s

j=0
αj

pε
j
m(r)

∈ Z.

(iii) r � k + 1. By Lemma 3.3, ε
j
m(r) � 0 and thus

∑s
j=0

αj

pε
j
m(r)

∈ Z.

Hence (α0, . . . , αs) is an admissible sequence with respect to the reduced index functions ε
j
m(r).

Conversely, let (α0, . . . , αs) be an admissible sequence with respect to ε
j
m(r) and βj = ptj αj (0 � j � s).

Let m = σ(tk) = σ(pνΔ) ∈ M ((Δ,p) = 1) be such that k + ν < r . Then by Lemma 3.3, ε
j
m(r) = ε

j
m and∑min(s,k+ν)

j=0
αj

pε
j
m

= ∑min(s,k+ν)
j=0

αj

pε
j
m(r)

∈ Z. Suppose there exists no m ∈ M such that k + 1 < r � k + ν. Let

m = sup{m′ = σ(tk′) = σ(pν′
Δ′): k′ + ν′ < r}. Then (α0, . . . , αs) is admissible in Mm. It follows from [1, Propo-

sition 5.1.7] if s � k + ν and from Proposition 3.4 if s > k + ν that (α0, . . . , αs) extends to an admissible sequence
(α0, . . . , αs,0, . . . ,0, αr , . . . , αrn). If there exists m = σ(tk) = σ(pνΔ) ∈M ((Δ,p) = 1) such that k +1 < r � k +ν

then put −αr = ∑s
j=0

αj

pε
j
m(r)

∈ Z and αr+1 = · · · = αk+ν = 0,

s∑ αj

pε
j
m−εr

m

+ αr = 0, or,
s∑ αj

pε
j
m

+ αr

pεr
m

= 0, i.e.

j=0 j=0
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(
∑s

j=0 +∑k+ν
j=r )

αj

pε
j
m

∈ Z. By [1, Proposition 5.1.7], (α0, . . . , αs,0, . . . ,0, αr , . . . , αk+ν) extends to an admissible

sequence, (α0, . . . , αs,0, . . . ,0, αr , . . . , αrn) with respect to ε
j
m. Put βj = ptj αj (r � j � rn) and we obtain from

[1, Proposition 6.2.14], the relation, (
∑s

j=0 +∑rn
j=r )βjψ

pj

R
(ω) = 0 in Jp(Pn(C)). Thus,

∑s
j=0 βjψ

pj

R
(ω) = 0 in

G(p,n, r). �
3.6. Definition. We define the invariant ur

k by replacing the index functions ε
j
m in the definition of uk by the reduced

index functions ε
j
m(r).

We obtain for G(p,n, r) the analogue of Theorem 2.21 for Jp(Pn(C)). Let Mn+1(p
r) be as defined in [1, Defini-

tion 7.3.4].

3.7. Theorem. G(p,n, r) = ⊕(r−1)
k=0 Z

p
tk+ur

k
. The first summand generated by ω has order Mn+1(p

r).

From Theorem 3.7 we write down the decomposition of J (Ln(pr)) into cyclic groups; i.e.

3.8. Theorem.

J
(
Ln

(
pr

)) =

⎧⎪⎪⎨⎪⎪⎩
⊕r−1

k=0 Z
p

tk+ur
k

if p is odd and n �≡ 0 (mod 4),⊕r−1
k=0 Z

p
tk+ur

k
⊕ Z2 if p is odd and n ≡ 0 (mod 4),⊕r−2

k=0 Z
2tk+ur

k
⊕ Z

2
tr−1+ur

r−1+1 if p = 2.

The first summand generated by ω has order Mn+1(p
r). As a corollary to Theorem 3.8, we recover [1, Proposi-

tion 7.3.8], i.e.

3.9. Corollary. Let n = pk(p − 1) + r ′ (0 � r ′ � p − 2) (1 � r � k). Then

J
(
Ln

(
pr

)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z
ppk+r−1 ⊕ Z

p(pk−1−1) ⊕ Z
ppk−2−1 ⊕ · · · ⊕ Z

p(pk−r+1−1)

if p is odd and n �≡ 0 (mod 4),

Z
ppk+r−1 ⊕ Z

p(pk−1−1) ⊕ Z
ppk−2−1 ⊕ · · · ⊕ Z

p(pk−r+1−1) ⊕ Z2

if p is odd and n ≡ 0 (mod 4),

Z
22k+r−1 ⊕ Z

2(2k−1−1) ⊕ Z
22k−2−1 ⊕ · · · ⊕ Z

22k−r+1

if p = 2.

Proof. εi
m(r) < εi−1

m (r) < · · · < ε0
m(r) and the set Hr

i defined in analogy with Hi consists, merely of φ and the
associated set Φ to ∅ is empty and hence ur

i = 0 (r − 1 � i � k). The order of the first summand follows from the
definition of the number Mn+1(p

r). �
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