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1. Introduction

This paper is a continuation of [1] whose results we briefly summarize. For a finite-dimensional CW-complex X,
let J(X) denote the finite Abelian group of stable fibre homotopy classes of vector-bundles over X and for a prime p,
Jp(X) the p-summand of J(X). For n,k € Z*, let P,(C) = S*"*1/U(1) and L" (p*) = $***! /Z x denote the com-
plex projective space of (complex)-dimension n and the associated lens space respectively. In [1] J,(P,(C)) and
J(L"(p*)) are determined by means of a set of generators and a complete set of relations. Let r, be the great-
est integer such that p™ < n/p — 1. Then for 0 <s <r, and 0 < j < r, —s we defined a decreasing sequence
by tjs. =[n — p*(p/ — 1)/p*t(p — 1)] where for a real number x, [x] denotes the greatest integer less than or

equal to x. Put t; = t;). We let @ denote the realification of the reduction of the Hopf bundle over P,(C). Let

l/fﬂli denote the Adams operation acting on I?R(P,, (C)) and also on J(P,(C)) and pﬁ the associated characteristic

class taking values in 1 + ER(Pn (C)) ® Qr where Qy is the sub-ring of rationals whose denominators are pow-
ers of k. m € Z is defined to be a singular s-exponent if and only if the coefficient of ™ in the power series

k .
pﬂg(wﬂg (w))l’rk is not integral (i.e. fractional) for some k € Z*. The j-index, ¢j, of a singular s-exponent m is the

. . . . . J L
exponent of p in the denominator of the coefficient of ™ in the expansion of pﬁg(wﬂg (@)HP’ . a=(ag, oy, ..., ar,)
is an s-admissible sequence if and only if Congruence 1: Zj 0:’! € Z is satisfied by all singular s-exponents m.
p’lll

We let ¢9 = {t; 1 t{ =0 (mod p)} and M* = set of all singular s-exponents. Then [1, Proposition 4.4.4] states that
there is a bijection o5 : @2 — M* (M = MO) given by o,(#)) = 1/2(p — Dp*t}. If t{ € @0, 1§ = pYA (v > 1,
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(A, p)=1)) and m = o; (t,i) then &}, = pk+”_/A +k+v—j— t; [1, Proposition 6.2.7] reduc_:es the question of re-
lations in J, (P, (C)) to s-admissibility; in particular, proves that a relation: 09 ptf/v' W{ﬂ (W)=00<s<ry)
exists in J, (P, (C)) if and only if o« = {o;;} is an s-admissible sequence. In [1, Section 5.2] two different sequences
called a- and B- sequences are constructed for each 0 < s < r, where @ = F1 or 0 and they are proved to be s-
admissible. In [1, Proposition 6.2.8 and 6.2.9] we obtain the corresponding set of (r,, + 1)-relations in J, (P, (C))
which are proved to be complete. Hence in [1] J, (P, (C)) is determined by generators and a complete set of relations.
Analogous relations are then obtained for the J-groups of lens spaces.

However, the determination of the structure of a finite Abelian group is far from being over unless its primary
decomposition into cyclic groups is uncovered and it is the purpose of the present paper to determine the primary
decompositions of J,(P,(C)) and J(L"( P9y). Using the framework of [1] the primary decomposition of J, (P, (C))
is reduced to the solution of the following problem in elementary number theory. For a prime p and a rational ¢, let
v, (g) denote the exponent of p in the prime factorization of g.

Problem. Let k, d € Zt, {k;} and t; are strictly-decreasing sequences such that 0 < k; < 7; < k. Given integers {sij }
(1 <i<d,j<rt)suchthat
(i) For fixed i, aij is a strictly-increasing sequence in j for j <k; — 1, 811.("_1 < 85.(" , 85.(" = sfiﬂ and {sij} is a strictly-
decreasing sequence in j for k; + 1 < j < 7.
(ii) For fixed i, 81-] > 1 for atleast one 0 < j < k.

N Y Y .y .y
(i) &; —¢& >¢;, —¢; fori <i’and j <

Find the least v, () for a solution « = (a, ..., ax) (o; € Z) of Congruence 1; i.e.
o of— o
=4t —gel (1<i<d). ()
pti psi pbi
The main effort of this paper is concentrated in giving a solution to this problem.
Let Hy = {2 € 212K either 2 = ¢, or, 2 = {i1,...,i,}, 1 <ij <ir <--- <i, <d, sft_”q — ef‘t—t > 0 and
sl]f_t >0, 1 <t < r}. For each £2 € 'H; we define the associated set @ = {{j1,...,js} | 1 < j1 <--- < Js <k,

(el;h_jhﬂ — 8];’,_jh+j_l) >0, 1< j <s}. Then we observe that 2 U@ = {1,2,...,1}, [ <d. For each element 2 =
(i1, ...,0ir) € Hg, weput vp(atg—r41) = vplag—) + (e?‘l_ﬂrl —sl]i_’) (1 <t <r)and o;_, = 1, and obtain a vector ¢ =
r k—t+1 k—

(g, ...,ax) withag="---=a_,—1 =0and oy = pZ’=1(85r B 7). The Congruence Theorem (e.g. Theorem 2.14)
which is original (and proved in this paper for the first time) shows that the vector « so defined is a solution of the
system of Congruences 1 with respect to 2 U [l 41,/ 4 2, ..., k]. We then require all terms of Congruence 1 with
kijh+h

. ¢!
Jn

respect to ji, j2, ..., js be integral. This necessitates that v, (ax—j,+1) = € < h < 5); or, equivalently, that

n—h , k— - k—jn-+h .
vpla) =20 (8l-k[ o —Eik[ t)—}-sjh " Hence if we define

r Jn—h
@ =m0 (z< o) el )) ”
=1 k—jp+h t=1
Jn

We obtain a solution a = (o, ..., o) with v, (ax) = u(§2). We then define a unique element 20 € Hy and define
(e.g. Definition 2.5) uy = u(.QO). Hence a solution to the system of Congruences 1 exists with v, (ax) = uy. (Actually,
ar = p"*.) We then show (e.g. Proposition 2.6) that uy, is minimal among u(£2) as 2 varies over Hy. The observation
that when all the terms of Congruence 1 are not integral there are at least two terms with highest denominator with
positive p-exponent leads to Lemmas 2.8, 2.9, Corollary 2.10 and Lemma 2.11 and Lemma 2.11 together with Propo-
sition 2.6 yield Proposition 2.12 which states that for any solution « = («o, ..., @) of the system of Congruence 1,
vp(0tx) 2> ui. Hence the problem stated is solved in full. This completes the elementary number theory.

The proof of Theorem 2.21 which is the main result of the paper is straightforward algebra. It combines [1,
Proposition 6.2.14] with the solution of the above problem to deduce the primary decomposition of J,(P,(C)).
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Thus, relations, Bow + --- + ,Bkw]Rfk (w) = 0 with minimal v,(Br) = f + ui (actually, B = p* ") exist. It fol-
lows from elementary algebra in a straightforward way that J,(P,(C)) has a primary decomposition with invariants
p'etik for 0 < k < r,. The first summand in this decomposition is generated by w and it is proved that it has order
p'oto = M, 11 , = p-component of the Atiyah-Todd number M, ;. We then extend this to J-groups of lens spaces.

Let G(p,n, r) be the sub-group of J(L"(p")) generated by powers of w. The index functions &;, are replaced by a
certain reduction &;, () with respect to 7. The whole theory goes over with u), defined analogously with u in terms

of &}, (r) and G(p, n, r) has a primary decomposition with invariants pt””i for 1 <k <r — 1. From this we recover
the decomposition of J(L"(p")) into a direct-sum of cyclic groups. The first summand generated by w has order
p’0+”5 = M,+1(p") where M,,+1(p") is defined in [1, Definition 7.3.4]. We also recover the primary decomposi-
tions of J,(P,(C)) and J(L"(p”")) when n = (p — Dp*+5 (0<s < p—2).In[1] as a demonstration we wrote
down the - and B-relations in J>(P164(C)). In this paper we write down, very quickly, the primary decomposition of
J2(P164(C)).

These primary decompositions are existential in the sense that they only give the invariants of J,(P,(C)) and
J(L™(p")) (i.e. the orders of the cyclic groups in this decomposition) without an explicit expression for their gener-
ators except that of the first summand which is generated by w. For this reason, the previous paper [1] is essential to
those who seek explicit relations in these J-groups.

With [1] and the present paper the algebraic structure of the J-groups of complex projective and lens spaces is
completely determined and there is nothing more to do on the algebraic side. However, J-groups have two different
structures compatible with each other; the algebraic structure and the degree-function on them defined by stable co-
degrees of vector bundles just as vector spaces with a norm. The algebraic structure thus determined, the way is
opened to the determination of the degree-function and it is hoped that the infrastructure of this problem is laid down
in these two papers. The degree-function g on negative multiples of the complex Hopf bundle is the complex stable
James number which is the order of the obstruction to cross-sectioning a certain Stiefel fibration. Let 14 Zi>] a”xi =

1+ Zl>] "p )” Then a folklore conjecture states that the p-primary component g, (nn;—1) of g(nni_1) is equal
to LCD{a <i <k — 1} for either p odd or p =2 and n even.

2. Primary decomposition of .J, (P, (C))

2.1. Background material from [1]

p is a fixed prime throughout. We define a decreasing sequence (f)o<k<r, bY t = [" p +1 ] Let @9 = {te: tr =

0 (mod p)}. m is a singular exponent (i.e. m € M) if the coefficient of »” in the expans1on of ,()R(tp]R (w))P * is not
integral for some 0 < k < ry. [1, Proposition 4.4.4] states that there is a b1]ect1on o:0% > M given by o (t;) =
2(p—l)p ty; 1e. if i = pYA (v>1 A, p)_l)thenm_Q(p—l)pAWherez_k+v t]—pl ia—1,
k+1<j<i)andif welet T, = U iy t;j then for consecutive elements, m, m e M (m >m), T,y N T, is either
empty or equal to {t;/} = {tx} and the latter is always the case if p = 2. The j-index, sm of m, defined for j <i,is
the p-exponent of the denominator of the coefficient of w™ in the expansion of ,OR(I/IR (w))P " when that coefficient
is not integral and is given by the formula, &, = p' /A +i — j — . {81{1}k<j<i =@wvv—1v—2...21) and
(8,],.1) j<k—1 is a strictly-increasing sequence bounded above by v. 8’,;_1 =viff4_1 = p"“ A+1.

2.2. Lemma. Let m,m' € M, m" > m, m = o(ty) = o(p’A) = %(p —Dpia, m' =oty) = o(p”,A’) =
Lp—D)p' A (A, p) = (N, py=1, i=k+v, i' =K + V). If j' < j <i' then (s}, —&}y) > (¢], — &),
Proof.

(em —em) — (g5 — )

—(pTAvi—j—1) (P Avi—j =) =[P+ -1 = (P A+ = —1))]
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=(p'a-p"A)(p = p7)

2 ( ,)<1 1 ) 0 -
(r-1 plp/

2.3. Definition. For 0 < k < r,, My is the set m € M such that the coefficient of ™ in the expansion of
. "
pﬁg(lpﬁj (w))P” is not integral for some 0 < j < k. Let My ={my,...,mg},my <mp < --- <my.

2.4. Observation. Let m,m' e M, m’ > m. If (8£,, - 5,’;1_1) is either undefined, or, (8£,l - 5,’;1_1) <0 (i > 1) then either
(Si,;l - 8;;,2) in undefined, or, (8;;,1 — s;nfz) <0.

Proof. It follows from 2.1 that if m = o () and m =o(ty) Then k¥’ <k —1 and k <i and hence k¥’ <i — 1. Thus,
(8’ - &, ~2) is either undefined, or, (8’ I 8’_ )<0. O

2.5. Definition. Let 1) = {2 € 2M+ either 2 = ¢, or, 2= (m;,.....m;), 1 <iy<iy<---<i, <d, (e TV -
slf_t) > 0 and sfl_t >0, 1 <t <r}. Define the associated set ¢ = {2 € My — 2 | eitherm < m;, , or, m > m;,
and (%" — gk=r=1y > o}:

(k—1+1) 8kft)

(i) Letm € &, m;, <m <m,_,. Then (e(k D _ k= *~1) > 0 (since if we assume the contrary then (8 i

is either undefined, or, (s(k D _ kt )]

(ii) Let m¢ = sup($2 U @). It follows from the Observation 2.4 that 2 U @ = {m, my, ..., m}, £ < d and (e _
gk=r=1y is either undefined, or (g<k r _ gh=r=1) <

< 0by Observatlon 2.4 which is a contradiction).

0 for m > my.

For 2 € Hy — {0} we write down the corresponding set of inequalities / (£2) for the index functions 8 . Let

(mll,.. m,,) D=(mj,...,mj) (r+s=4£). .
For 1 <<, e(k DSy rH(e(k “th i(f_")) and e[.(tk_l) > Z;ztﬂ(eg‘_”l) - ei(f_”)) + 55.];_”’”1) for
P (k ]h+h)
jh—h>t, V€ > 0.

There is a 1-1 correspondence between 2 € Hy — {¢} and the set of inequalities 7 (£2). The set of inequalities
{I1(82); §2 € Hy — {¢}} are disjoint. (Two of which cannot hold simultaneously.) Hence at most one set of inequalities
is satisfied.

We let 20 = 2 if 1(£2) is satisfied for some 2 € H; and £2° = ¢ if none of the set of inequalities 7 (£2) is satisfied.

For 2 ={m;,,...,m;,} € Hyand @ = {m;, ..., m; } we define
r Jn—h
_ (k—t+1) (k—1)\. (k—t+1) (k 1) k—jn+h
u(.Q)_max(Z( i 81} )’ lrél}?és (Z( i lr )+8jh } )) )
t=1 gk ]h*h -0 t=1

it

We note that u(¢) = max(efn: m e My, (8],;1 — 8',;’1) > 0). We then define u; = u(.QO) where 220 is the unique
element of Hj, defined above.

2.6. Proposition. Let §2 € Hy. Then v, (u($2)) = uy

Proof. Let 2 € H; and @ be the associated set. Let 220 € H;, be the unique element of Hj defined in 2.5 such that

up =u(2°). Let 2°={m;,,...,m;.}, ®° ={mj,,...,m;}, 2°0 ®° = {my, ..., my}. Then by Definition 2.5,
r jn—h
ukzmaX<Z( ,(,k D z(,k t))v 12‘2‘% (Z( ,(,k o l(,k [)) +s/]‘.h_fh+h>). “4)
=1 sfh],+,, o =
Letek Jnth >Of0rsomelghgs.Supposemil,...,mip e.Qandm,-p+1 ¢d (1<p<jn—h)



2488 L. Dibag / Topology and its Applications 153 (2006) 2484-2498

k—t+1 k—t k—jn+h
(Ei, &, ) te,

p Jh—h
_ k—t+1 k—t k—t+1 k t
=D (e =)+ D (e & ')

t=1 t=p+1

u k 1 ht k k h
_ k—t+1 k=t -p=1 _ Z P (ghmtHl gkt —Jnt
- Z( it lt )+8i17+1 (8ip+l (Sit lt ) jh )

t=1 t=p+2

p

k—t+1 k—t k—

< Z(Eir +1_ Sit ) + 81 +1 M(Q) (5)

0 Jn=h o k—t+1 _ _k—t k—jn+h
since by definition of £2” we have 8 < - +2(8i, & )+e¢ W . Also,

r P r
k—t+1 k=141 _ k t k—p k—p—1 k—t+1 _ k=t
Z( lt Z )+€ip+1 - <8ip+l - Z ( l] lt ))
=1

t=1 t=p+2

A

P

k—
D (e e ’)+el.p+’1’<u(:2). 0 (6)
t=1

2.7. Definition. Motivated by Proposition 2.6, we can give an alternative definition of uy. Let Hy be defined in Defi-
nition 2.5. If £2 € Hy define u($2) as in 2.5. Then define uy = minu(§2). Proposition 2.6, shows the equivalence of
Definitions 2.5 and 2.7.

If we use Definition 2.5, we have to check out the set of inequalities 7(£2) and hence pick the unique £2° and
with Definition 2.7 we have to check out u(£2) for £2 € Hj and take its minimum and the two require equal labour.

However, Definition 2.5 gives more insight.

2.8. Lemma. If all the terms in Congruence 1; i.e. Z —0

pem
(1,2,...,k) containing at least two elements such that

() vploy) <&, ¥ e U,
(i1) vp(ai)—vp(ocj)<£ sm Vi,jeU;ie (vp(a;) — gl w |1 €U) is aconstant ky ;
(iii) vp(ai) —vp(aj) < 8 emforO J<i<k i¢U,jeUsie (vp(a) —sfn) >ky VigU.

Proof. Assume the contrary. Then either (a) There is no pair (i, j), 0 < j <i < k such that v, (a;) — vp(aj) =
sjn — &;,, or, (b) For each subset U of (0, 1, ..., k) with the property that vp (o) —vplaj) < 8;1 — &), Vi, j € U then
there exists s ¢ U such that v, (as) — vp(j) =5, —&m VjeU.

In either case, let 0 < ip < k be such that vp( ai%) = vp () — s,l,(,) = min(vp(a;) — sﬁn) Then we have strict
. - psm )
inequality; i.e. v, (o) — &) < vp(ay) — &, Vi #ig. If vp(oyy) — £ > 0 then vp (@) — 8 >0 (0 <i < k) and all the
terms of Congruence 1 would be integral which is a contradiction. Hence v, () — & < 0. Thus, Congruence 1 does
not hold which is a contradiction. O

2.9. Lemma. Let o = (), . .., o) be an admissible sequence such that all the terms of Congruence 1 with respect
to (mj,,...,mj) be integral and (mj,, ..., m; ) be the remaining elements of My with respect to which not all
the terms of Congruence 1 are integral. Let U, be the set defined in Lemma 2.8 for each m;, (1 <t <r) and let
Vi=(0,1,...,k) — U, be its complement. Let k; = supU, and I, = infU;. Then {0 <i <k, i >[;} C Vi1 and
U1 C{i; 0<i <k, i <Ilt}. Hence either l; = ki1, o1, l; € Vi 1<t <r —1).
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Proof. Leti € U4 fori > I;. Then either i € U; and v (a;) — vp(0y,) = 55: — 83, or,i € V; and v (a;) — vp(ay,) >
; i i b i b ) —
& & By Lemma 2.2, &, =& > TE Thus, v, (a;)

I .
— 8[;, and hence in either case, v, (a;) —vp(ay) = el’.

It

g > vp(oq[)—sl.[ . By (iii) of Lemma 2.8, m1n0<]<k(vp(oz]) ) =ky,,, andhencei ¢ Uy1y,ie.i € Viyy. O

I+l & +1
2.10. Corollary. Let a = («g, . . ., ox) be an admissible sequence such that all the terms of Congruence 1 with respect
to (mj,,...,m; ) be integral, J]<Jz< - < js (e vp(ozl)>8} 0<i<k 1<h<s)and (m;,...,m; ) are the

remaining elements iy <ip < --- <iy, wnh respect to which not all the terms of Congruence 1 are integral. Then there

exists a strictly-decreasing sequence (I;)o<s<r in the interval [0, k] with lo = k and I; > k — i; such that v, (ay,) < 85[ ;

ghi=1 —sll.; >Oandaff >0 (1 <1 <r). If we define

It
. l Jn=h ; Lj —h
Ka :maX(Z(é‘i;_l _ [l;) 121}?2“ (Z(gi;_] — lli) +8J:;lh7 )), (7)
NS

t=1 l:
then vy (ax) > K,

Proof. Let U, be the set defined in Lemma 2.8 and let [, = inf U, (1 <t <r). Put [y = k. It follows from Lemma 2.9

that {/;} forms a strictly-decreasing sequence such that (8 b1 _ sfj) > (0 and sll; > 0. Either k = sup U; and v, (o) —

vp(ay) = 8:'1 — 811 or, k ¢ Uy and v, (ax) — vp (o) > 8 — 85: In either case,

1. vp(ag) —vplay) = 8 i lll Similarly, we have
I l
2. vp(ozll)—vp(alz)}g eli
tovp(ay,_,) —vplag) = sf;’l — sf; Summing up these inequalities for 1 <7 < r we obtain
oy I l
vplen) = D (677! —¢y). ®)
t=1
I
For 1 <h <'s, summing up the first# = j, — h inequalities above together with the inequality; v, (ay;, _,) > £ 7t e
obtain
iy I I l
-1 t Jp—h
vplar) = Y (e —&)+¢,7"). O 9)

t=1

2.11. Lemma. Let o = («p, . . . , ;) be an admissible sequence and K, be as defined in Corollary 2.10. Then K, >
u(82) for some §2 € Hy.

Proof. Let o = (ap, ..., o) be an admissible sequence. Let the elements (m,,...,m;) and (m;,, ..., m; ) of My
and the number K, be defined as in Corollary 2.10. Define 22 = {m;, | (sf;tH - sf.‘:’) > 0 and sl’.‘:t > 0}. Then
§2 € Hy. Let @ be the associated set to §2 as defined in 2.5. Then @ C (mj,,...,mj). Let 2 = {m;,...,m;,}
and @ = (mj,,...,mj,) where ' <r and s’ <s. Then by repeated application of Lemma 2.2 and for ¢t = j; — h

A<h<s) we 0bta1n

Ko > (sf —el) + (el — &)+ +(1~ ef) + el
k

2 el el )l D) e T el ) e
=) T e ) e ) e

Similarly, K, > Y/ [ (e} — &l 7"). Hence Ko > u(2). O
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2.12. Proposition. Let o = (o, . . ., ax) be an admissible sequence. Then v (o) 2 uy

Proof. v, (ay) > uy by Corollary 2.10. Ky > u(£2) for some §2 € K by Lemma 2.11 and u(£2) > uy by Proposi-
tion 2.6. O

We shall prove (e.g. Proposition 2.18) that there exists an admissible sequence @ = («o, .. ., &) with ax = p“* and
we need the Congruence Theorem for this purpose. The Congruence Theorem is an original contribution of this paper.

2.13. Remark. Consider the system of congruences,

Br . Br—1 /30
k+ k1+ +

psi p; pz

eZ (1<i<a).

If we define h = max(e J: 0 < j <k, 1 <i<d-—1) then any simultaneous solution 8 = (fo, - . ., Bx) is determined
in B € (Zn)t! (e Bj € Zy, 0< j<k).

2.14. Theorem (Congruence Theorem). Let p be aprlme and 8 €eZ (0L j<k 1<i<d) and 8 << sk i+l =
l].‘ i sk -l l-. Let h = max(ai : <k, 1<i<d) and ,3 € Zph. Then there exists a simultaneous
solution B = (Bo, . .., ,Bk) €z, W L of the system ofcongmences.
Be | Br—1 ,30
-+ k1+. . €Z (1<i<d)withpB=8.

psi pz pz
If B is aunitin Z,. so are Bj (0 < j <k).

Proof. Defined! = (¢/ —¢/™)>1(0<j<i—1andd/ =/ —&/™") > 1 <j <k).Let 1 <r <h. We shall
show by induction on r that the following system of congruences have a unique simultaneous solution in (Z pr)kJrl
with g, = B.

=i i1

0. Bi +Bi—1 = phiyt + phi y/ 7! (mod p7),
. i—2 i

Loy ' 4 Bia=p% "y 7% (mod p),

(i —2). v+ Bi=pUy! (mod p),
(i —1. y,-1+ﬂozo(modp)
L. )7‘+,31+1_pl [+1
T L 7 4 Bia=ph 72 (mod pr),

(mod p"),

(k—l).. +,3k 0 (mod p").

=i . j—1 .
Forr =1, i + i1 = piy! +p "' =0(mod p),ie. fi = —Pi_1 (mod p) (1 < j <k—1).Let f = B and
. . i—1 - . .
this determines ; = (=D B (mod p). yij +Bi-1= pdij yij =0 (mod p) and thus yl.J = (—=D)¥J B (mod p)
(j £i—1) and, similarly, )7{ = (—1)* 7B (mod p) (i < j <k—1).Letr > 1 and assume the induction-hypothesis for

r—0D.8+Bi—1= pgf ]7i: —i—pdii Lyi-l (mod p ") (d’ d’ "> 1) where )7f, yiifl are the unique solutions mod p”~!.
Hence B; + Bi—1 is uniquely determlned mod p" (1 <i < k). From this and the fact that 8y = B, all the B; (0 < i k)
are uniquely determined in Z,r. From the equation, y +Bj-1 = p i ] ! (mod p") and the fact that y s

determined mod p’ ! d] I 1, Bj_1 is determined mod p", the Vanables yl are un1quely determined mod p”"

2<Lj<gi-). yl. is uniquely determined in Z - from the equatlon Y '+ By =0 (mod p"), y is uniquely determlned
inZy (i <j<k—1) from the equation, )7'{’ +Bjr1 = pdi ’+1 (mod p") and the fact that the class of y Vis
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determined in Z el c?ij +1 > 1, and that 8 is determined in Z,r. The variable )7{7_1 is determined uniquely in Z -

J
(mod p"~!) and ¥/ =%/ (mod p"~!). Then y; = x/ + k! p"~!. The equations 0,1,...,i —2,i,i +1,...,(k—1)

J
i

from the equation, )75.‘71 + B = 0 (mod p"). Hence all the variables are uniquely determined in Z,r. Let yij =x

on the RHS of the congruence and if we now put yl.j and )7ij instead
1

are determined with yi] = xij and )7{ =X

of xl.j and X{ , the RHS of the congruences differ by elements of the form kl.j pdfj p L o, E{ p‘irJ p"~" which are
congruent to 0 (mod p"). Hence the uniquely determined variables satisfy the given system of congruences in Zr.
The variables (8o, - . ., Bx) of the system of congruences for » = / is a solution of the original system of congruences
with 8y =6. O

2.15. Remark. o = (), . . ., o) is called admissible with respect to a subset S of My, if and only if Congruence 1 is
satisfied for all m € S.

2.16. Proposition. Let 2 = {m;,,...,m;,} e Hy 1 <ij<iz<---<i,<d)and @ ={mj,....m;} 1< ji1 < o
< --- < Js), be its associated set as in Definition 2.5. Then there exists an admissible sequence o = (g, . . ., ox) with

) S ek gkt
respect to the set 2 U (M — (2 U @), with ay = p~=1"u i ),

Proof. Let My ={my,...,mq}, 2U® ={my,...,m}, | <d. Suppose (8;:;—/“ —8},(_:;_‘/) <0(d<j<e)and

e e r k—u+1_ _k—
(Sﬁ; - 5;( "7J) is undefined for j > e. Let ax_s11 = p=o=Cu i t)ﬂk—t-i-l A <r<r), dp—r = Pr—r>
i k—r—j  _k—r—j+l1
Qprei=p =1 e ),3,{,,,,- I<i<eandaj=8=0Ck—-r—e<j<k). Leti,y; =1+
(1 £ j <e). Then Congruence 1; i.e. Zl;zo a—’, €Z (me 22U (My — (£2U @))) can be written down as Congru-
pem

ence 2; i.e.
Be | Pr—1 Br—r—
T oErt T i € (I<i<rte). (10)
ptph p

We claim the
Statement. 6} <5 ' <. <8 7T =5 > 5T S S 5T (1< < ).

Proof. (i) For 1 < j<r<r,

81{67]4»1 _ S{cf(]fl)ﬂ =8{c7]+1 _ 5’,‘71+2
t It It It

r r

_ | k=l k—s+1 k—s k—j+2 k—s+1 k—s

= |:8i, - Z(gix — & ):| - |:8i, - Z (Sis — & )
s=j s=j—1

—j2 il —jt2 —
=(sz I _ k=i )—(slf JT2_ gk j+)>0 by Lemma 2.2
Jj—1 lji—1 17 127

R (11)

it

(@) For1 <t <r,

r r
k—t+1 gkt _ | k—r+1 k—s+1 ks k—t k—s+1 ks
8;, =6 = |:8i, - § :(eis & ):| - |:8i, - E : (Six & ):|

s=t

_ (Sll_cr—tﬂ _ Sl{ct—t) _ (Sl{ct—tJrl _ 854) -0

fe. 55 = gkt (12)

(ii)For1<tr<r,t<j<r—1,
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Sl{c—;ﬂ _ gk G _ gkl gk
t It 17 12
r r
_ | ki k—s+1 _ gk—s k—j k—s+1 _ ck—s
- 8il - Z( is lv ) - Sit - Z ( is lx )
s=j s=j+1
o k—j+l k=) k—j+1 k—j
= (gl.[ —& ) — (sij —& )>0 byLemma2.2,
k—j+1 k—(G+D+1
ie.s % U+, (13)
(v)For1<r<r,0<j<e—1,
6k—r—j+1 _8k—r—(j+l)+l 8k r—j+1 8k r—j
17 193 123
k 1 = k j 4
—r—j+ k—r—s k—r—s+1 —r—j k—r—s k—r—s+1
Z(El+s T Elts ) &;, - Z(SH-Y T Elts )
s=1 s=1
r—j+1 _ k —r—j k—r—j+1 k—r—j
( & ) €1y — &4 ) >0 by Lemma 2.2. (14)
k—t+1 k—t it .
(v? For1 <t <r, 5z+/ > 51+/ and the proof is similar to that of (i).
(v1)Forl<]\l <e,
k—l—j+1 k—1—(j—1D+1 k—l—j+1 k—l—j+2
81+i - 81+i 81+1 81+i
j—1 Jj—2
_ | Jk—l=j+] k—r—s k—r—s+1 k—r—j+2 k—r—s k—r—s+1
= | &y _Z(SI—H &4y ) | €t _2(81+s ~E )
s=1 s=1
k—r—j+2 k r—j+1 k—r—j+2 k—r—j+1
(81+/—1 € ) — (EH_j — 4 )>0 byLemma2.2. (15)
(vi)For0<i<e—1,
i—1 i
k—r—i+1 k—r—i __ k—r—i+1 k—r—s k—r—s+1 k—r—i k—r—s k—r—s+1
S14i =8y = |4 Z(gl+s ~ Elgs )| = e T - Z(€l+v T s )
s=1 s=1
_ (k—r—i+1 k—r—i k—r—i+1 k—r—iy\ __
- (81+1 &y ) (£l+l &y ) =0. (16)
(viii) For 1 <i < j <
k—r—j+1 k—r—(j+D+1 k—r—j+1 k—r—j
81+i - 8l+i 81-’1—1 8l+i
k 1 = k— !
_ —r—j+ k—r—s _ _k—r—s+1 r—j k—r—s _ _k—r—s+1
= | &4 Z(Slﬂ Elts ) €1y Z(Slﬂ €l ys )
s=1 s=1
_ —r—j+l1 k—r—j k—r—j+1 k—r—j
= ( —e4 ')— &1 —& )>0 byLemma?2.2. o 17

Hence Congruence 2 satisfies the hypothesis of the Congruence Theorem and we deduce from the Congruence The-

orem that there exists a solution 8 =

(Bo, - - -

. . Z (Sk —t+1_
with respectto m € 2 U (M — (2 U @)) with o = p==!

with respect to 2 U (M — (2U ®)). O

2.17. Proposition. Let 2 = (m;,,
(ag, ..., ar) with ay = pu(‘g).

Proof. Let ® = (mj,, ...,

k—t+1_
{mi41, ..., mq} such that o = Z’ 1 (&,

Bx) with B = 1. Thus, Congruence 1 admits a solution & = («p, . . .

Lom ) € Hy, iy <ip < -

m ) be the associated set to £2 so that 2 U @ =
By Proposition 2.16 there exists an admissible sequence o’ =

, Q)

k—l
) which by definition is an admissible sequence

< iy. Then there exists an admissible sequence o =

(m15m27~"7ml)'

(a, ... o) with respect to the set £2 U

’t_'). By definition
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r r
u(£2) = max Z k=il k ’), max Z(lk gk ’)+sk.7”'7h
1<h<s t lt Jh

t=1 k—jp—h =1

n

:x+Z(k’+1 s{‘_’) for A > 0.

It It

Define o = (o, ..., o) by o = p’\a/ (k —r < j < k). Then since Congruence 1 is homogeneous with respect to the
variables «, it follows that « is also adm1ss1ble with respect to the set £2 U {m+1, ..., mg}, If we substitute
k—u+1_
Ok—i41 = PZ” =l OBt A<, aer = Bir,
(Ek r—j gk r— /+I) .
i = pi=1Cie T T (1<i<e) (18)

and aj = B; =0 (k —r —e < j < k) as in the proof of Proposition 2.16, Congruence 1 takes the form 2.
k_ ﬁ’ € Z. Then by precisely the same arguments as used in the proof of Proposition 2.16, we can establish
=0 y P y g p p

m

the inequalities:

k k—1 k—jn+h k—jn+h—1 0
th<5./h < <8jh >8jh > >8jh 1<h<y)
r

sk—dnth _ k=jnth _ 5 Z ( k—t+1 _ k= t)

Jh Jh i lt
t=jn—h+1
k N Jn—h
_ Jnt k—t+1 _ k- k t+1 k —t
= (T )+ D -
./h
= ]h+h u(2) + Z k t+1 {c[—t)go (19)

by definition of u(£2). Thus, 8;}’ < 8];;”’% < 0fori #k — j, 4 h, by the above inequality. Hence all terms of Con-
gruence 2 and hence of Congruence 1 with respect to m j, are integral (1 <& <s). It follows that « is an admissible

sequence with oy = p*?). O

2.18. Proposition. There exists an admissible sequence o = (aq, .. ., ax) with ay = p*2).
Proof. Take 2 = £2° in Proposition 2.17. O

2.19.Lemma. Letm e M,m=o(t;), tr =p" A (v =1, (A, p)=1,i =k+v. Thenfor j <k+1, p'TA+i—j <
rj—1.

. . . . k—j . . . .
Proof. tj_1 — (p' T A+i—j)>ptitla4 %_'f;l —(p'JA+i—j)by[l, Lemma4.4.6] > p it A4+ k—

jHl=pTA—itj=(p-DpA-v+1=(p-Dp ! —@w-1)=p-Dp"'A-@w-1)>0. O

2.20. Corollary. For j <k, tr +uy < t;.

Proof. Since ¢; is a strictly-decreasing sequence, it sufﬁces to prove that ty +uy < ty—1. Let @ = {my,mo, ..., my}
be the associated set to the empty-set ¢ € Hy. Then (8 — e ) >0;ie. if mj=o0(f;) then k <kj. Letty, = pUiA;
wj=1, (4, pp=1),i;=k; +vj,m,—2(p—l)pJA (l <. Thene —pf_kA +ij—k—tiy <tro1— 1k

by Lemma 2.19. Thus, u; < u(¢) = maxi ;g ej <tp_1— Il le ty +up < tk_l. O

2.21. Theorem. J,(P,(C)) = @2” 0 p1k+uk The order of the first summand generated by w is the p-component,
M, 11, of the Atiyah—Todd number M, .
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Proof. By Proposition 2.18, for each 0 < k < ry, there exists an admissible sequence o = («p, ..., ox) with o =
pirL Tt follows from [1, Proposition 6.2.14] that there exists in J,(P,(C)) a relation, p®agw + p"a; IﬂRIS (w)+---+
’k““wp (w) = 0 By Corollary 2.20, t; > 1 + uk (0 < j <k —1) and hence if we let x; = p0~ G+ g +

ph~ (“J“”k)oqu (@) + -+ pl-1~ (’””k)ak_le (a)) + ‘/’R (w) then the above relation can be written down as:

n k
ptikx =0 (0 < k < ry). Since {@, Y (@), ..., ¥k ()} spans J,(P,(C)) and that the coefficient of ¥ (w) in
the expansion of xy is 1, it follows that {xg, x1, ..., x,,} spans J, (P, (C)). Suppose Boxo =+ - - + By, %, = 0. We claim
the following statement:

Statement. If Boxo + - - - + Bixx =0 (1 < k < ry) then Brxi =0 and Boxo + - - + Br—1xk—1 = 0.

i k—1
Proof Substituting for x; in terms of WR (w) we obtain a relation, agw + allﬁﬁ () + -+ ak_llpﬁ (w) +
,Bka (w) = 0. By [1, Proposition 6.2.14], aj = p loc O<j<k—1)and gy = p"ak where o’ = (ao,...,a,’{)

is an admissible sequence. By Proposition 2.12, p%“ |oek and thus p’k+”k | Br.. Hence Brxr = 0 and thus, Boxo + - -- +
Br—1xx—1 = 0, proving the statement. O

It follows from the statement by induction on k starting with k = r,, that Boxo = ﬁ1x1 = By, xr, = 0. This
proves the desired primary decomposition. As for the second part of the theorem, 7y = [ ] Ho = {¢}. D = M.
m € My is of the form m = 2(p—l)p A, (A, p)= 1.8 =p'A+i—ty>0.Letr, =p'A= (p 1) <[ ”1] Then
I+ vp(rm) — 1o > 0.

n n
O_mnel%l( [rm-f-vp("m) ] max|:r+vp(r) —t: 1<r< [p— 1:|, rtup(r) 2 [—p i|]

n n
10+M0_max|:r+vp(r) 1<r< I:F} r+up(r) > [ﬁ:ﬂ

_max|:r +v,(r): 1<r< [%H =v,(My41). O

2.22. Remark. The second part of the theorem is the solution of the complex analogue of the vector field problem and
the simplest proof so far has been provided.

As a corollary to Theorem 2.21, we recover [1, Proposition 6.2.12], i.e.

2.23. Corollary. Let n = p*(p — 1) + 1" (0<r' < p —2). Then
Jp(Pa(©) = Z sty ® L ph-1 -ty D L2y @ - DLyt

Proof ml—m—{m}m—z(p—l)p A<i<k ey =pi—10<j<i)ie e <e~1<...<g Thus,

={¢p} (1 <i k) and the correspondlng set @ to ¢ is empty. Thus, u; = O (1 <i<k)and hence the ith- summand
has order p'i = pp ~1 (1 <i < k). The order of the first summand follows from the definition of the Atiyah—Todd
number. 0O

2.24. Example. As a demonstration we wrote down in [1, Example 6.2.13] the «- and B-relations for J;(Pie4(C)).
We now obtain the primary decomposition of J;(Pie4(C)).
tj: {164 81 40 199 4 1 0}
2 21
gt 1 3 3 321
el 12221
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k=1 M, =(80,82), r=[§

k=2 My=(80,82), r:[;
k=3 Ms=(64,80,82), =
k=4: My=(64,80,82), T =
k=5 Ms=(64,80,82), =

k=6: Mec=1(64,80,82), =

k=7 M7= (64,80,82), =

Mies,2 = 2166 According to Theorem 1.15,

f] Hi = {(80), 9}, u((80) =4, u(@®) =3, us =3;

2
3

L1

ﬂ Ho=19), u(@) =3, u2=3;

1 2
33

N =

2
1

2
3

[\

K

2
1

W N

—

s={6H}, u(@H) =1, u3 =1;

}, Ha={(64), 6}, u(@©H) =1, u((@) =2, us=1;

2
1i|’ H5={¢}7 u(d’):()a MSZO,

2 2
3 1i|’H6={¢}7 M((P):O, M6=O;

2 2
3

1
3 1],H7={¢}, u(@) =0, u7 =0;

Jz(P164((C)) = 7166 B Linsa B Zipso B ZLiyro @ Zpyio © Zys © Zy:1.

According to this primary decomposition, |J2(Pie4(C))| = 2325 We know from [1] that |J2(Piss(C))| =
222:0[%] — 9164+82+41420-+10+5+2+1 _ 2325 |t checks.

3. Primary decomposition of J(L"(p"))

3.1. Definition. Let n € Z™, r <r,. Then J(p,n,r) = wﬁr(Jp(Pn(C))) = subgroup of J,(P,(C)) generated by

r r+1 m
vk (), Uk ! (@), ..., ¥k (w).Let G(p,n,r) be the subgroup of J(L"(p")) generated by the powers of w. Then it
follows from [1] that G(p, n, r) is the quotient, G(p, n,r) = J,(P,(C))/ T (p, n, r). For details refers to [1, Defini-

tion 5.1.8 and Section 7.1].

We now define reduced index functions &, () which will play the same role for lens spaces as index functions &;,

play for complex projective spaces.

J

3.2. Definition. Letn € Z+, r <r, andm = 5(p—1)p' A € M ((A, p) = 1). Then el (r) = pi~/ A+minG,r—1)—

J—t (G <i).

33.Lemma. Letn e ZT, r <ryandm=o(t;) =o(p’A) = %(p —DpiAeM, (A, p)=1,i=k+v. Then

e,j(, ifi<r,
glrl;l(r): 8yjn—8;n lfk+1<l"<l,
r—j ifk+1<r<j<i,

non-positive ifk+1>r.

Proof. (i) If i <r, it follows from its definition that e,{l r)= g,il
() Ifk+1<r<i,emr)—[(em—e)=p TA+r—1—j—t;j—(p"TA+i—j—t))+ (P TA+i—r—1t)=
p'"A—1—1t =0by[l, Lemma4.4.3].
Gi)IFk+1>r,eh()=p A+r—1—1;<pJA+k—1; <Oby[l,Lemma44.6]. O
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We now state a slight variation of [1, Proposition 5.1.7].

3.4. Proposition. I[f m’ > m are consecutive elements in M, m' = o (ty/) = U(pV/A/), m=o({t) =0(p’A), (4, p)=
(A, p)=1. Let k' +v' <s <k and (ap, . .., as) be admissible in M (in the sense of [1, Definition 5.1.3)]). Then
there exist integers (j) j>k+1 such that (ao, ..., a5,0...,0, Qgt1, ..., Cktv, ..., &) is an admissible sequence.

Proof. Identical with that of [1, Proposition 5.1.7]. O

3.5. Proposition. There exists a relation, Bow+ - - ~+/351/f1§x (@)=0inG(p,n,r) (s<r—1Diff Bj = pli aj, 0<j<s

where @ = (o, ..., &) is an admissible sequence with respect to & ().

Proof. Suppose fow + -+ + Byl (@) =0 in G(p,n,r). Then fow + -+ + Bs¥rl (@) = 0 in J,(P,(C)) mod
J(p,n,r); ie. there exist integers By, Br+1,..., B, such that Bow + --- + ﬂslﬂg (w) + ﬂ,xpﬁr (w) + - +
,Brnwﬂgrn (w) =0 in J,(P,(C)). By [1, Proposition 6.2.14], B; = p’jaj O<j<s, r<j<r where o =

(ag, ..., 05,0,...,0,,,...,a,) is an admissible sequence with respect to the index functions, &l Suppose that
m=o(t;) =0(p’'A) e M _ '
(i) k +v <r. Then by Lemma 3.3, eh(r)=¢l, (0< Jj <k +v) and thus

min(s,k+v) o min(s,k+v) o
Z .] = E j. e .
, &m(r) , &
Jj=0 p Jj=0 p

(i)k+1<r<k-+v.ByLemma3.3,e,(r)=c} —¢ (0<j<r)ande} =r —j (r <j <k+v).

s k+v .
(z . 2) % _pez.
=0 i=r

o
pem

Multiplying by pfm, we obtain:

K o k+v o K o k+v o
Z -/ +Z L —BpmeZ; ie. Z J +Z ez,
‘ & —el, - - ; e (r) ; Em(r)
j=0 P j=r P j=0P j=r P
o o o .
L= L =ajp/ r<j<k+).
psin(r) Pr J
s o j
Thus, Zj:o Psr];z(r)
(iii)) r <k + 1. By Lemma 3.3, 5,],, (r) <0 and thus Zj’:o :jj(r)
[)'Iﬂ
Hence («o, . . ., &) is an admissible sequence with respect to the reduced index functions &7, (r).
Conversely, let (ag, ..., o) be an admissible sequence with respect to &;,(r) and B i =plia; 0<j<s).

Let m = o(t) = o(p"A) € M ((A, p) = 1) be such that k + v < r. Then by Lemma 3.3, &,(r) = ¢/, and

Z‘;ino(s'k”) 2L = Z?;“O(S’H”) Oj—/() € Z. Suppose there exists no m € M such that k + 1 <r <k + v. Let
p€m r

psm
m=sup{m’ =o(ty) = a(p”,A’): k' +v" <r}. Then (o, ..., as) is admissible in M™. It follows from [1, Propo-
sition 5.1.7] if s < k 4 v and from Proposition 3.4 if s > k + v that («p, ..., &) extends to an admissible sequence
(ag, ..., 05,0,...,0,ar,...,0,). If there exists m = o (tx) =0 (p*A) e M ((4, p)=1) suchthatk+1 <r <k+v
thenput—ar=2‘;:0% eZand oy =+ =y =0,

P
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(Z O+Zk+” a’ € Z. By [l, Proposition 5.1.7], (ag, ..., as,0,...,0,ar,..., ary,) extends to an admissible

sequence, (g, ...,as,0,...,0,a,...,a,) with respect to em Put 8; = p’foz] (r <j<ry and we obtaln from

[1, Proposition 6.2.14], the relation, (Zj:O_‘_Zj:r)'ijR (w) =0 in J,(P,(C)). Thus, Z):O ﬂjsz (w) =0 in
G(p,n,r). O

3.6. Definition. We define the invariant uj, by replacing the index functions 8,],.1 in the definition of uj by the reduced

index functions &, (r).

We obtain for G(p, n, r) the analogue of Theorem 2.21 for J,(P,(C)). Let M, 1(p") be as defined in [1, Defini-
tion 7.3.4].

3.7. Theorem. G(p,n,r) = EB(r S/ i The first summand generated by w has order M, 4+1(p").

From Theorem 3.7 we write down the decomposition of J(L"(p")) into cyclic groups; i.e.

3.8. Theorem.
Di_ Z Sk if p is odd and n # 0 (mod 4),
J(L"(p")) = @k;g) Zp,k+,,k ® Zs if p is odd and n = 0 (mod 4),
BiZ0 Zynoy Ly, yug_n1 i P=2.

The first summand generated by @ has order M,,+1(p”). As a corollary to Theorem 3.8, we recover [1, Proposi-
tion 7.3.8], i.e.

3.9. Corollary. Letn = p*(p — 1)+ (0< ' < p—2) (1 <r <k). Then

prk+,_1 @ Zp(pk—l_n & prk—z_l D---D Zp(,,k—rJrl_l)
if p is odd and n # 0 (mod 4),

prkJr,,l @ Z[J(l,k—l,l) ® prk—Z,l D---D Zp(pk—rJrl,l) YA
if p is odd and n =0 (mod 4),

Zzzkﬂ 1 @Zz(zk 1y @Z2zk 2., - @ZZQk r+1
ifp=2.

J(L"(p")) =

Proof. sj'n r) < sﬁn_l(r) <. < 821 (r) and the set H defined in analogy with H; consists, merely of ¢ and the
associated set @ to @ is empty and hence ul’ =0 (r — 1 <i < k). The order of the first summand follows from the
definition of the number M, ((p"). O
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